
PlayStation Specifications

- psx-spx

None

None

None

Table of contents

131. Home

131.1 IMPORTANT UPDATE

131.2 Home

152. Memory Map

193. I/O Map

254. Graphics Processing Unit (GPU)

254.1 GPU I/O Ports, DMA Channels, Commands, VRAM

284.2 GPU Render Polygon Commands

304.3 GPU Render Line Commands

314.4 GPU Render Rectangle Commands

324.5 GPU Rendering Attributes

364.6 GPU Memory Transfer Commands

384.7 GPU Other Commands

394.8 GPU Display Control Commands (GP1)

444.9 GPU Status Register

464.10 GPU Versions

494.11 GPU Depth Ordering

504.12 GPU Video Memory (VRAM)

534.13 GPU Texture Caching

544.14 GPU Timings

564.15 GPU (MISC)

605. Geometry Transformation Engine (GTE)

605.1 GTE Overview

625.2 GTE Registers

665.3 GTE Saturation

675.4 GTE Opcode Summary

695.5 GTE Coordinate Calculation Commands

705.6 GTE General Purpose Calculation Commands

725.7 GTE Color Calculation Commands

745.8 GTE Division Inaccuracy

766. Macroblock Decoder (MDEC)

766.1 MDEC I/O Ports

776.2 MDEC Commands

796.3 MDEC Decompression

836.4 MDEC Data Format

Table of contents

- 2/1136 -

867. Sound Processing Unit (SPU)

867.1 SPU Overview

887.2 SPU ADPCM Samples

907.3 SPU ADPCM Pitch

937.4 SPU Volume and ADSR Generator

977.5 SPU Voice Flags

987.6 SPU Noise Generator

987.7 SPU Control and Status Register

997.8 SPU Memory Access

1037.9 SPU Interrupt

1047.10 SPU Reverb Registers

1057.11 SPU Reverb Formula

1077.12 SPU Reverb Examples

1097.13 SPU Unknown Registers

1107.14 SPU Internal State Machine from SPU RAM Timing

1148. Interrupts

1169. DMA Channels

12210. Timers

12511. CDROM Drive

12511.1 CDROM Controller I/O Ports

13411.2 CDROM Controller Command Summary

13811.3 CDROM - Control Commands

14011.4 CDROM - Seek Commands

14211.5 CDROM - Read Commands

14511.6 CDROM - Status Commands

15011.7 CDROM - CD Audio Commands

15311.8 CDROM - Test Commands

15311.9 CDROM - Test Commands - Version, Switches, Region, Chipset, SCEx

15511.10 CDROM - Test Commands - Test Drive Mechanics

15811.11 CDROM - Test Commands - Prototype Debug Transmission

15911.12 CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports

16111.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

16511.14 CDROM - Secret Unlock Commands

16611.15 CDROM - Video CD Commands

16811.16 CDROM - Mainloop/Responses

17111.17 CDROM - Response Timings

17211.18 CDROM - Response/Data Queueing

Table of contents

- 3/1136 -

17912. CDROM Format

17912.1 CDROM Disk Format

18312.2 CDROM Subchannels

18912.3 CDROM Sector Encoding

19212.4 CDROM Scrambling

19312.5 CDROM XA Subheader, File, Channel, Interleave

19512.6 CDROM XA Audio ADPCM Compression

20112.7 CDROM ISO Volume Descriptors

20412.8 CDROM ISO File and Directory Descriptors

20712.9 CDROM ISO Misc

20912.10 CDROM Extension Joliet

21112.11 CDROM Protection - SCEx Strings

21212.12 CDROM Protection - Bypassing it

21312.13 CDROM Protection - Modchips

21712.14 CDROM Protection - Chipless Modchips

21912.15 CDROM Protection - LibCrypt

22113. CDROM File Formats

22313.1 CDROM File Official Sony File Formats

22413.2 CDROM File Playstation EXE and SYSTEM.CNF

22613.3 CDROM File PsyQ .CPE Files (Debug Executables)

22813.4 CDROM File PsyQ .SYM Files (Debug Information)

23213.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)

23513.6 CDROM File Video Texture/Bitmap (Other)

24513.7 CDROM File Video Texture/Bitmap (TGA)

24713.8 CDROM File Video Texture/Bitmap (PCX)

25313.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

25713.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

26313.11 CDROM File Video STR Streaming and BS Picture Compression (Sony)

26413.12 CDROM File Video Streaming STR (Sony)

26513.13 CDROM File Video Streaming STR Variants

27813.14 CDROM File Video Streaming Framerate

28013.15 CDROM File Video Streaming Audio

28313.16 CDROM File Video Streaming Chunk-based formats

28813.17 CDROM File Video Streaming Mis-mastered files

29013.18 CDROM File Video BS Compression Versions

29413.19 CDROM File Video BS Compression Headers

29813.20 CDROM File Video BS Compression DC Values

30013.21 CDROM File Video BS Compression AC Values

Table of contents

- 4/1136 -

30213.22 CDROM File Video BS Picture Files

30413.23 CDROM File Video Wacwac MDEC Streams

30713.24 CDROM File Video Polygon Streaming

31113.25 CDROM File Audio Single Samples VAG (Sony)

31413.26 CDROM File Audio Sample Sets VAB and VH/VB (Sony)

31513.27 CDROM File Audio Sequences SEQ/SEP (Sony)

31713.28 CDROM File Audio Other Formats

32113.29 CDROM File Audio Streaming XA-ADPCM

32113.30 CDROM File Audio CD-DA Tracks

32113.31 CDROM File Archives with Filename

34613.32 CDROM File Archives with Offset and Size

36013.33 CDROM File Archives with Offset

36513.34 CDROM File Archives with Size

37013.35 CDROM File Archives with Chunks

37713.36 CDROM File Archives with Folders

38213.37 CDROM File Archive HUG/IDX/BIZ (Power Spike)

38313.38 CDROM File Archive TOC/DAT/LAY

38413.39 CDROM File Archive WAD (Doom)

38513.40 CDROM File Archive WAD (Cardinal Syn/Fear Effect)

38713.41 CDROM File Archive DIR/DAT (One/Viewpoint)

38813.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)

39113.43 CDROM File Archive Blue Chunks (Blue's Clues)

39213.44 CDROM File Archive HED/CDF (Parasite Eve 2)

39613.45 CDROM File Archive IND/WAD (MTV Music Generator)

39713.46 CDROM File Archive GAME.RSC (Colonly Wars Red Sun)

39813.47 CDROM File Archive BIGFILE.DAT (Soul Reaver)

39913.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)

40213.49 CDROM File Archive FF9 IMG (Final Fantasy IX)

40413.50 CDROM File Archive GTFS (Gran Turismo 2)

40613.51 CDROM File Archive Nightmare Project: Yakata

40713.52 CDROM File Archive FAdj0500 (Klonoa)

40813.53 CDROM File Archives in Hidden Sectors

41113.54 CDROM File Archive HED/DAT/BNS/STR (Ape Escape)

41213.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)

41513.56 CDROM File Archive BIGFILE.BIG (Gex)

41613.57 CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)

41713.58 CDROM File Archive FF9 DB (Final Fantasy IX)

41813.59 CDROM File Archive Ace Combat 2 and 3

Table of contents

- 5/1136 -

42013.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

42613.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

43213.62 CDROM File Archive DRACULA.DAT (Dracula)

43513.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

44113.64 CDROM File Archive Croc 2 (DIR, WAD, etc.)

44313.65 CDROM File Archive Headerless Archives

44413.66 CDROM File Compression

44513.67 CDROM File Compression LZSS (Moto Racer 1 and 2)

44613.68 CDROM File Compression LZSS (Dino Crisis 1 and 2)

44713.69 CDROM File Compression LZSS (Serial Experiments Lain)

44813.70 CDROM File Compression ZOO/LZSS

44913.71 CDROM File Compression Ulz/ULZ (Namco)

45113.72 CDROM File Compression SLZ/01Z (chunk-based compressed archive)

45213.73 CDROM File Compression LZ5 and LZ5-variants

45613.74 CDROM File Compression PCK (Destruction Derby Raw)

45713.75 CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

45913.76 CDROM File Compression GT20 and PreGT20

46113.77 CDROM File Compression HornedLZ

46213.78 CDROM File Compression LZS (Gundam Battle Assault 2)

46313.79 CDROM File Compression BZZ

46413.80 CDROM File Compression RESOURCE (Star Wars Rebel Assault 2)

46513.81 CDROM File Compression TIM-RLE4/RLE8

46613.82 CDROM File Compression RLE_16

46713.83 CDROM File Compression PIM/PRS (Legend of Mana)

46813.84 CDROM File Compression BPE (Byte Pair Encoding)

47013.85 CDROM File Compression RNC (Rob Northen Compression)

47313.86 CDROM File Compression Darkworks

47413.87 CDROM File Compression Blues

47413.88 CDROM File Compression Z (Running Wild)

47613.89 CDROM File Compression ZAL (Z-Axis)

47713.90 CDROM File Compression EA Methods

47813.91 CDROM File Compression EA Methods (LZSS RefPack)

47913.92 CDROM File Compression EA Methods (Huffman)

48113.93 CDROM File Compression EA Methods (BPE)

48213.94 CDROM File Compression EA Methods (RLE)

48313.95 CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

48413.96 Inflate - Core Functions

48513.97 Inflate - Initialization & Tree Creation

Table of contents

- 6/1136 -

48713.98 Inflate - Headers and Checksums

48813.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

49213.100 CDROM File Compression UPX

49213.101 CDROM File Compression LZMA

49513.102 CDROM File Compression XZ

50013.103 CDROM File Compression FLAC audio

50113.104 CDROM File Compression ARJ

50613.105 CDROM File Compression ARC

51113.106 CDROM File Compression RAR

51513.107 CDROM File Compression ZOO

51813.108 CDROM File Compression nCompress.Z

51913.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

52313.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

53613.111 CDROM File XYZ and Dummy/Null Files

53713.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)

54013.113 CDROM Disk Images CDI (DiscJuggler)

54313.114 CDROM Disk Images CUE/BIN/CDT (Cdrwin)

54513.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

54913.116 CDROM Disk Images NRG (Nero)

55213.117 CDROM Disk Image/Containers CDZ

55413.118 CDROM Disk Image/Containers ECM

55613.119 CDROM Subchannel Images

55813.120 CDROM Disk Images PBP (Sony)

56013.121 CDROM Disk Images CHD (MAME)

57313.122 CDROM Disk Images Other Formats

57714. Controllers and Memory Cards

57814.1 Controller and Memory Card Overview

58014.2 Controller and Memory Card Signals

58114.3 Controller and Memory Card Multitap Adaptor

58514.4 Controllers - Communication Sequence

58614.5 Controllers - Standard Digital/Analog Controllers

58914.6 Controllers - Mouse

59314.7 Controllers - Racing Controllers

59714.8 Controllers - Lightguns

59814.9 Controllers - Lightguns - Namco (GunCon)

60114.10 Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)

60414.11 Controllers - Lightguns - PSX Lightgun Games

60514.12 Controllers - Configuration Commands

Table of contents

- 7/1136 -

61014.13 Controllers - Vibration/Rumble Control

61214.14 Controllers - Analog Buttons (Dualshock2)

61514.15 Controllers - Dance Mats

61714.16 Controllers - Pop'n Controllers

61714.17 Controllers - Taiko Controllers (Tatacon)

61814.18 Controllers - Densha de Go! / Jet de Go! Controllers

61814.19 Controllers - Fishing Controllers

62214.20 Controllers - PS2 DVD Remote

62514.21 Controllers - I-Mode Adaptor (Mobile Internet)

62614.22 Controllers - Keyboards

63014.23 Controllers - Additional Inputs

63014.24 Controllers - Misc

63214.25 Memory Card Read/Write Commands

63514.26 Memory Card Data Format

63814.27 Memory Card Images

64014.28 Memory Card Notes

64215. Pocketstation

64215.1 Pocketstation Overview

64315.2 Pocketstation I/O Map

64715.3 Pocketstation Memory Map

64915.4 Pocketstation IO Video and Audio

65115.5 Pocketstation IO Interrupts and Buttons

65215.6 Pocketstation IO Timers and Real-Time Clock

65515.7 Pocketstation IO Infrared

65615.8 Pocketstation IO Memory-Control

65915.9 Pocketstation IO Communication Ports

66215.10 Pocketstation IO Power Control

66515.11 Pocketstation SWI Function Summary

66615.12 Pocketstation SWI Misc Functions

66715.13 Pocketstation SWI Communication Functions

67015.14 Pocketstation SWI Execute Functions

67215.15 Pocketstation SWI Date/Time/Alarm Functions

67315.16 Pocketstation SWI Flash Functions

67415.17 Pocketstation SWI Useless Functions

67515.18 Pocketstation BU Command Summary

67615.19 Pocketstation BU Standard Memory Card Commands

67815.20 Pocketstation BU Basic Pocketstation Commands

68015.21 Pocketstation BU Custom Pocketstation Commands

Table of contents

- 8/1136 -

68515.22 Pocketstation File Header/Icons

68815.23 Pocketstation File Images

69015.24 Pocketstation XBOO Cable

69316. Serial Interfaces (SIO)

69917. Expansion Port (PIO)

70017.1 EXP1 Expansion ROM Header

70117.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

70817.3 EXP2 DTL-H2000 I/O Ports

71017.4 EXP2 Post Registers

71117.5 EXP2 Nocash Emulation Expansion

71117.6 EXP2 PCSX-Redux Emulation Expansion

71318. Memory Control

72019. Unpredictable Things

72520. CPU Specifications

72520.1 CPU Registers

72620.2 CPU Opcode Encoding

72820.3 CPU Load/Store Opcodes

73020.4 CPU ALU Opcodes

73320.5 CPU Jump Opcodes

73420.6 CPU Coprocessor Opcodes

73520.7 CPU Pseudo Opcodes

73720.8 COP0 - Register Summary

73820.9 COP0 - Exception Handling

74220.10 COP0 - Misc

74320.11 COP0 - Debug Registers

74721. Kernel (BIOS)

74821.1 BIOS Overview

74921.2 BIOS Memory Map

75121.3 BIOS Function Summary

75821.4 BIOS File Functions

76321.5 BIOS File Execute and Flush Cache

76621.6 BIOS CDROM Functions

76921.7 BIOS Memory Card Functions

77421.8 BIOS Interrupt/Exception Handling

77821.9 BIOS Event Functions

78121.10 BIOS Event Summary

78321.11 BIOS Thread Functions

78421.12 BIOS Timer Functions

Table of contents

- 9/1136 -

78621.13 BIOS Joypad Functions

78821.14 BIOS GPU Functions

79021.15 BIOS Memory Allocation

79121.16 BIOS Memory Fill/Copy/Compare (SLOW)

79321.17 BIOS String Functions

79621.18 BIOS Number/String/Character Conversion

79821.19 BIOS Misc Functions

80321.20 BIOS Internal Boot Functions

80421.21 BIOS More Internal Functions

80521.22 BIOS PC File Server

80721.23 BIOS TTY Console (std_io)

81021.24 BIOS Character Sets

81121.25 BIOS Control Blocks

81321.26 BIOS Versions

81521.27 BIOS Patches

82822. Arcade Cabinets

82922.1 CPU

82922.2 GPU

83022.3 Audio

83022.4 Controls

83022.5 Storage

83222.6 Security

83322.7 Games

83423. Konami System 573

83523.1 Differences vs. PS1

83723.2 Register map

85323.3 JVS interface

85523.4 I/O boards

87123.5 Security cartridges

88823.6 External modules

89223.7 BIOS

90023.8 Bootleg mod boards

90323.9 Game-specific information

90823.10 Notes

92423.11 Pinouts

95423.12 Credits, sources and links

95624. Cheat Devices

95724.1 Cheat Devices - Datel I/O

Table of contents

- 10/1136 -

95824.2 Cheat Devices - Datel DB25 Comms Link Protocol

95924.3 Cheat Devices - Datel Chipset Pinouts

96224.4 Cheat Devices - Datel Cheat Code Format

96324.5 Cheat Devices - Xplorer Memory and I/O Map

96424.6 Cheat Devices - Xplorer DB25 Parallel Port Function Summary

96624.7 Cheat Devices - Xplorer DB25 Parallel Port Command Handler

96724.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol

97024.9 Cheat Devices - Xplorer Versions

97124.10 Cheat Devices - Xplorer Chipset Pinouts

97424.11 Cheat Devices - Xplorer Cheat Code Format

97524.12 Cheat Devices - Xplorer Cheat Code and ROM-Image Decryption

97624.13 Cheat Devices - FLASH/EEPROMs

98025. PSX Dev-Board Chipsets

98826. Hardware Numbers

99727. Pinouts

99827.1 Pinouts - Controller Ports and Memory-Card Ports

99927.2 Pinouts - Audio, Video, Power, Expansion Ports

100227.3 Pinouts - SIO Pinouts

100427.4 Pinouts - Chipset Summary

100927.5 Pinouts - CPU Pinouts

101227.6 Pinouts - GPU Pinouts (for old 160-pin GPU)

101427.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

101927.8 Pinouts - SPU Pinouts

102327.9 Pinouts - DRV Pinouts

102827.10 Pinouts - VCD Pinouts

103227.11 Pinouts - HC05 Pinouts

103627.12 Pinouts - MEM Pinouts

103927.13 Pinouts - CLK Pinouts

104027.14 Pinouts - PWR Pinouts

104327.15 Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

104527.16 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

104827.17 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

105127.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

105527.19 Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103

105727.20 Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

106027.21 Pinouts - Memory Cards

106127.22 Mods - Nocash PSX-XBOO Upload

106327.23 Mods - PAL/NTSC Color Mods

Table of contents

- 11/1136 -

106628. About & Credits

106729. CDROM Video CDs (VCD)

106829.1 VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO Filesystem)

107029.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

107329.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)

107629.4 VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO, PICTURES, CDI)

107829.5 VCD MPEG-1 Multiplex Stream

108129.6 VCD MPEG-1 Video Stream

108529.7 VCD MP2 Audio Stream

108830. CDROM Internal Info on PSX CDROM Controller

108930.1 CDROM Internal HC05 Instruction Set

109330.2 CDROM Internal HC05 On-Chip I/O Ports

110030.3 CDROM Internal HC05 On-Chip I/O Ports - Extras

110230.4 CDROM Internal HC05 I/O Port Usage in PSX

110430.5 CDROM Internal HC05 Motorola Selftest Mode

110430.6 CDROM Internal HC05 Motorola Selftest Mode (52pin chips)

110730.7 CDROM Internal HC05 Motorola Selftest Mode (80pin chips)

110830.8 CDROM Internal CXD1815Q Sub-CPU Configuration Registers

111030.9 CDROM Internal CXD1815Q Sub-CPU Sector Status Registers

111130.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

111530.11 CDROM Internal CXD1815Q Sub-CPU Misc Registers

111730.12 CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier

111930.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

112330.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

112730.15 CDROM Internal Commands CX(0x..Ex) - CXD2938Q Servo/Signal/SPU Combo

112930.16 CDROM Internal Commands CX(xx) - Notes

113130.17 CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands

113430.18 CDROM Internal Coefficients (for CXD2545Q)

Table of contents

- 12/1136 -

1. Home

1.1 IMPORTANT UPDATE

On the 20th of August 2022, Martin surprisingly released a new version of this

documentation. While this fork will try to incorporate the changes, one important

footnote that got added is the following:

I am homeless in Hamburg, please help me out!

The authors of this fork thought that this deserves more than a footnote, hence this

notice here.

1.2 Home

This is a conversion/edition of Martin "nocash" Korth's Playstation specs document

originally hosted at https://problemkaputt.de/psx-spx.htm. See https://github.com/psx-

spx/psx-spx.github.io#readme for more details.

You can also download this website as a single-page pdf.

Martin is a difficult individual to reach (see https://problemkaputt.de/email.htm,

especially the part about gmail), and so far, any attempt at contacting him about

collaborating on this document failed.

Therefore, no copyright or license have been properly acquired to republish and alter

this document. However, since this repository will accept and proceed to issue

corrections, amendments, and additions to the original work, the fair use and derivative

work doctrine is believed to be applicable in this case.

An important detail to know about this current document, as well as the original from

Martin, is that it isn't a clean room reverse engineering project, as some people may

seem to believe or repeat. A good chunk of the original document has been either

directly copy/pasted from the confidential code and documentation from Sony, or

summarized and rephrased. As this document isn't clean room, any work derived from it

shouldn't be considered clean, and anyone saying otherwise is misguided at best. The

reference source material, code, and documentation used to make this document can be

found at https://psx.arthus.net/sdk/Psy-Q/

1. Home

- 13/1136 -

https://problemkaputt.de/homeless.htm
https://problemkaputt.de/psx-spx.htm
https://github.com/psx-spx/psx-spx.github.io#readme
https://github.com/psx-spx/psx-spx.github.io#readme
https://problemkaputt.de/email.htm
https://en.wikipedia.org/wiki/Derivative_work
https://en.wikipedia.org/wiki/Derivative_work
https://psx.arthus.net/sdk/Psy-Q/

To discuss the contents of this document, or hang out with likely minded people on

development, hacking, and reverse engineering of Sony's first console, feel free to join

the PSX.Dev Discord Server.

Memory Map

I/O Map

Graphics Processing Unit (GPU)

Geometry Transformation Engine (GTE)

Macroblock Decoder (MDEC)

Sound Processing Unit (SPU)

Interrupts

DMA Channels

Timers

CDROM Drive

CDROM Format

CDROM File Formats

Controllers and Memory Cards

Pocketstation

Serial Interfaces (SIO)

Expansion Port (PIO)

Memory Control

Unpredictable Things

CPU Specifications

Kernel (BIOS)

Arcade Cabinets

Konami System 573

Cheat Devices

PSX Dev-Board Chipsets

Hardware Numbers

Pinouts

About & Credits

CDROM Video CDs (VCD)

CDROM Internal Info on PSX CDROM Controller

1.2 Home

- 14/1136 -

https://discord.gg/QByKPpH
https://discord.gg/QByKPpH

2. Memory Map

Memory Map

Additionally, there are a number of memory mirrors.

Additional Memory (not mapped to the CPU bus)

KUSEG,KSEG0,KSEG1,KSEG2 Memory Regions

Kernel Memory: KSEG1 is the normal physical memory (uncached), KSEG0 is a mirror

thereof (but with cache enabled). KSEG2 is usually intended to contain virtual kernel

memory, but in the PSX it's containing Cache Control hardware registers.

User Memory: KUSEG is intended to contain 2GB virtual memory (on extended MIPS

processors), the PSX doesn't support virtual memory, and KUSEG simply contains a

mirror of KSEG0/KSEG1 (in the first 512MB) (trying to access memory in the remaining

1.5GB causes an exception).

 KUSEG KSEG0 KSEG1
 00000000h 80000000h A0000000h 2048K Main RAM (first 64K reserved for BIOS)
 1F000000h 9F000000h BF000000h 8192K Expansion Region 1 (ROM/RAM)
 1F800000h 9F800000h -- 1K Scratchpad (D-Cache used as Fast RAM)
 1F801000h 9F801000h BF801000h 4K I/O Ports
 1F802000h 9F802000h BF802000h 8K Expansion Region 2 (I/O Ports)
 1FA00000h 9FA00000h BFA00000h 2048K Expansion Region 3 (SRAM BIOS region for DTL
cards)
 1FC00000h 9FC00000h BFC00000h 512K BIOS ROM (Kernel) (4096K max)
 FFFE0000h (in KSEG2) 0.5K Internal CPU control registers (Cache Control)

 1024K VRAM (Framebuffers, Textures, Palettes) (with 2KB Texture Cache)
 512K Sound RAM (Capture Buffers, ADPCM Data, Reverb Workspace)
 0.5K CDROM controller RAM (see CDROM Test commands)
 16.5K CDROM controller ROM (Firmware and Bootstrap for MC68HC05 cpu)
 32K CDROM Buffer (IC303) (32Kx8) (BUG: only two sectors accessible?)
 128K External Memory Card(s) (EEPROMs)

 Address Name i-Cache Write-Queue
 00000000h KUSEG Yes Yes
 80000000h KSEG0 Yes Yes
 A0000000h KSEG1 No No
 C0000000h KSEG2 (No code) No

2. Memory Map

- 15/1136 -

i-Cache

The i-Cache can hold 4096 bytes, or 1024 instructions.

It is only active in the cached regions (KUSEG and KSEG0).

There are reportedly some restrictions... not sure there... eventually it is using the LSBs

of the address as cache-line number... so, for example, it couldn't simultaneously

memorize opcodes at BOTH address 80001234h, AND at address 800F1234h (?)

Scratchpad

MIPS CPUs usually have a d-Cache, but, in the PSX, Sony has assigned it as what's

referenced as the "Scratchpad", mapped to a fixed memory location at 1F800000h..

1F8003FFh, ie. it's used as Fast RAM, rather than as cache.

There \<might> be a way to disable that behavior (via Port FFFE0130h or so), but, the

Kernel is accessing I/O ports via KUSEG, so activating Data Cache would cause the

Kernel to access cached I/O ports.

The purpose of the scratchpad is to have a more flexible cache system available to the

programmer. Neither the kernel nor the Sony libraries will try to make use of it, so it is

therefore completely up for grabs to the programmer. A good example would be if you

were to write a piece of code that's doing a lot of CRC computation, to use the 1KB

scratchpad to initially load the CRC lookup tables, which incidentally, is exactly 1KB

large. Doing this will relieve SDRAM page changes overhead while reading the data to

checksum linearly, while also keeping the whole CRC code in the i-Cache, hence being

more optimal than what you'd get with an automatic d-Cache system.

Memory Mirrors

As described above, the 512Mbyte KUSEG, KSEG0, and KSEG1 regions are mirrors of

each other. Additional mirrors within these 512MB regions are:

The size of the RAM, BIOS, Expansion regions can be configured by software, for

Expansion Region it's also possible to change base address, see:

Memory Control

The Scratchpad is mirrored only in KUSEG and KSEG0, but not in KSEG1.

 2MB RAM can be mirrored to the first 8MB (strangely, enabled by default)
 512K BIOS ROM can be mirrored to the last 4MB (disabled by default)
 Expansion hardware (if any) may be mirrored within expansion region
 The seven DMA Control Registers at 1F8010x8h are mirrored to 1F8010xCh

2. Memory Map

- 16/1136 -

Memory Exceptions

Write queue

The MIPS CPU has a 4-words deep pass-through write queue, in order to relieve some

bus contention when writing to memory. If reading the same memory location that just

got written into the write queue, it will first be flushed before being read back from

memory.

It is important to realize that the write queue's mechanism is only viable for normal

memory attached to the main CPU, and that any hardware register state machine will

get messed up by it.

The typical example is the typical JEDEC standard to access flash, which usually does

the following sequence to read the ID of a flash chip:

In this example above, if base is located in a memory segment that has the write

queue enabled, even if the low level assembly code will do the first 3 stores before doing

2 loads, the physical signals sent to that device through the CPU bus will be seen in the

sequence:

Therefore, using KSEG1 that disables the write queue is the only way to ensure that the

operations are done in the proper way.

The above is valid for most of the hardware connected to the main CPU, such as the

CDROM controller, exp1, exp2, the SPU, or the GPU. Therefore, using BF80180xh to

access the CDROM registers is more correct than using 1F80180xh.

 Memory Error ------> Misalignments
 (and probably also KSEG access in User mode)
 Bus Error ------> Unused Memory Regions (including Gaps in I/O Region)
 (unless RAM/BIOS/Expansion mirrors are mapped to "unused" area)

base[0xAAA] = 0xAA;
base[0x555] = 0x55;
base[0xAAA] = 0x90;
uint8_t mnfctrID = base[0x000];
uint8_t deviceId = base[0x002];

store(0xaaa, 0xaa)
load(0x000)
store(0x555, 0x55)
load(0x002)
store(0xaaa, 0x90)

2. Memory Map

- 17/1136 -

It is noteworthy that the Sony code will still incorrectly use KUSEG as the memory map

for all hardware registers, and they then spend a lot of time writing 4 dummy values

somewhere, in order to ensure the write queue has been flushed.

The SN debugger in contrast is properly using the KSEG1 memory map for all the

hardware registers, nullifying the need to flush the write queue when accessing it.

It's also noteworthy that doing ANY KSEG1 access (read OR write) will automatically

stall the CPU in order to flush the whole write queue before proceeding with the

operation. Therefore, all BIOS ROM operations will naturally and effectively have the

write queue disabled, as this code requires the CPU to read from KSEG1 constantly.

This also means that if using KUSEG for the hardware registers, another method to flush

the write queue, albeit potentially slightly less efficient, would be to simply read the first

byte located at BFC00000h. The latter is what is effectively described as the official

method to flush the write queue in the MIPS handbook. This could be potentially useful

to flush the write queue all at once, instead of flushing it word by word.

More Memory Info

For Info on Exception vectors, Unused/Garbage memory locations, I/O Ports, Expansion

ROM Headers, and Memory Waitstate Control, etc. see:

I/O Map

Memory Control

EXP1 Expansion ROM Header

BIOS Memory Map

BIOS Memory Allocation

COP0 - Exception Handling

Unpredictable Things

2. Memory Map

- 18/1136 -

3. I/O Map

Expansion Region 1

Scratchpad

Memory Control 1

Peripheral I/O Ports

Memory Control 2

 1F000000h 80000h Expansion Region (default 512 Kbytes, max 8 MBytes)
 1F000000h 100h Expansion ROM Header (IDs and Entrypoints)

 1F800000h 400h Scratchpad (1K Fast RAM) (Data Cache mapped to fixed address)

 1F801000h 4 Expansion 1 Base Address (usually 1F000000h)
 1F801004h 4 Expansion 2 Base Address (usually 1F802000h)
 1F801008h 4 Expansion 1 Delay/Size (usually 0013243Fh; 512Kbytes 8bit-bus)
 1F80100Ch 4 Expansion 3 Delay/Size (usually 00003022h; 1 byte)
 1F801010h 4 BIOS ROM Delay/Size (usually 0013243Fh; 512Kbytes 8bit-bus)
 1F801014h 4 SPU_DELAY Delay/Size (usually 200931E1h)
 1F801018h 4 CDROM_DELAY Delay/Size (usually 00020843h or 00020943h)
 1F80101Ch 4 Expansion 2 Delay/Size (usually 00070777h; 128-bytes 8bit-bus)
 1F801020h 4 COM_DELAY / COMMON_DELAY (00031125h or 0000132Ch or 00001325h)

 1F801040h 1/4 JOY_DATA Joypad/Memory Card Data (R/W)
 1F801044h 4 JOY_STAT Joypad/Memory Card Status (R)
 1F801048h 2 JOY_MODE Joypad/Memory Card Mode (R/W)
 1F80104Ah 2 JOY_CTRL Joypad/Memory Card Control (R/W)
 1F80104Eh 2 JOY_BAUD Joypad/Memory Card Baudrate (R/W)
 1F801050h 1/4 SIO_DATA Serial Port Data (R/W)
 1F801054h 4 SIO_STAT Serial Port Status (R)
 1F801058h 2 SIO_MODE Serial Port Mode (R/W)
 1F80105Ah 2 SIO_CTRL Serial Port Control (R/W)
 1F80105Ch 2 SIO_MISC Serial Port Internal Register (R/W)
 1F80105Eh 2 SIO_BAUD Serial Port Baudrate (R/W)

 1F801060h 4/2 RAM_SIZE (usually 00000B88h; 2MB RAM mirrored in first 8MB)

3. I/O Map

- 19/1136 -

Interrupt Control

DMA Registers

Timers (aka Root counters)

CDROM Registers (Address.Read/Write.Index)

 1F801070h 2 I_STAT - Interrupt status register
 1F801074h 2 I_MASK - Interrupt mask register

 1F80108xh DMA0 channel 0 - MDECin
 1F80109xh DMA1 channel 1 - MDECout
 1F8010Axh DMA2 channel 2 - GPU (lists + image data)
 1F8010Bxh DMA3 channel 3 - CDROM
 1F8010Cxh DMA4 channel 4 - SPU
 1F8010Dxh DMA5 channel 5 - PIO (Expansion Port)
 1F8010Exh DMA6 channel 6 - OTC (reverse clear OT) (GPU related)
 1F8010F0h DPCR - DMA Control register
 1F8010F4h DICR - DMA Interrupt register
 1F8010F8h unknown
 1F8010FCh unknown

 1F80110xh Timer 0 Dotclock
 1F80111xh Timer 1 Horizontal Retrace
 1F80112xh Timer 2 1/8 system clock

 1F801800h.x.x 1 CD Index/Status Register (Bit0-1 R/W, Bit2-7 Read Only)
 1F801801h.R.x 1 CD Response Fifo (R) (usually with Index1)
 1F801802h.R.x 1/2 CD Data Fifo - 8bit/16bit (R) (usually with Index0..1)
 1F801803h.R.0 1 CD Interrupt Enable Register (R)
 1F801803h.R.1 1 CD Interrupt Flag Register (R/W)
 1F801803h.R.2 1 CD Interrupt Enable Register (R) (Mirror)
 1F801803h.R.3 1 CD Interrupt Flag Register (R/W) (Mirror)
 1F801801h.W.0 1 CD Command Register (W)
 1F801802h.W.0 1 CD Parameter Fifo (W)
 1F801803h.W.0 1 CD Request Register (W)
 1F801801h.W.1 1 Unknown/unused
 1F801802h.W.1 1 CD Interrupt Enable Register (W)
 1F801803h.W.1 1 CD Interrupt Flag Register (R/W)
 1F801801h.W.2 1 Unknown/unused
 1F801802h.W.2 1 CD Audio Volume for Left-CD-Out to Left-SPU-Input (W)
 1F801803h.W.2 1 CD Audio Volume for Left-CD-Out to Right-SPU-Input (W)
 1F801801h.W.3 1 CD Audio Volume for Right-CD-Out to Right-SPU-Input (W)
 1F801802h.W.3 1 CD Audio Volume for Right-CD-Out to Left-SPU-Input (W)
 1F801803h.W.3 1 CD Audio Volume Apply Changes (by writing bit5=1)

3. I/O Map

- 20/1136 -

GPU Registers

MDEC Registers

SPU Voice 0..23 Registers

SPU Control Registers

 1F801810h.Write 4 GP0 Send GP0 Commands/Packets (Rendering and VRAM Access)
 1F801814h.Write 4 GP1 Send GP1 Commands (Display Control)
 1F801810h.Read 4 GPUREAD Read responses to GP0(C0h) and GP1(10h) commands
 1F801814h.Read 4 GPUSTAT Read GPU Status Register

 1F801820h.Write 4 MDEC Command/Parameter Register (W)
 1F801820h.Read 4 MDEC Data/Response Register (R)
 1F801824h.Write 4 MDEC Control/Reset Register (W)
 1F801824h.Read 4 MDEC Status Register (R)

 1F801C00h+N*10h 4 Voice 0..23 Volume Left/Right
 1F801C04h+N*10h 2 Voice 0..23 ADPCM Sample Rate
 1F801C06h+N*10h 2 Voice 0..23 ADPCM Start Address
 1F801C08h+N*10h 4 Voice 0..23 ADSR Attack/Decay/Sustain/Release
 1F801C0Ch+N*10h 2 Voice 0..23 ADSR Current Volume
 1F801C0Eh+N*10h 2 Voice 0..23 ADPCM Repeat Address

 1F801D80h 4 Main Volume Left/Right
 1F801D84h 4 Reverb Output Volume Left/Right
 1F801D88h 4 Voice 0..23 Key ON (Start Attack/Decay/Sustain) (W)
 1F801D8Ch 4 Voice 0..23 Key OFF (Start Release) (W)
 1F801D90h 4 Voice 0..23 Channel FM (pitch lfo) mode (R/W)
 1F801D94h 4 Voice 0..23 Channel Noise mode (R/W)
 1F801D98h 4 Voice 0..23 Channel Reverb mode (R/W)
 1F801D9Ch 4 Voice 0..23 Channel ON/OFF (status) (R)
 1F801DA0h 2 Unknown? (R) or (W)
 1F801DA2h 2 Sound RAM Reverb Work Area Start Address
 1F801DA4h 2 Sound RAM IRQ Address
 1F801DA6h 2 Sound RAM Data Transfer Address
 1F801DA8h 2 Sound RAM Data Transfer Fifo
 1F801DAAh 2 SPU Control Register (SPUCNT)
 1F801DACh 2 Sound RAM Data Transfer Control
 1F801DAEh 2 SPU Status Register (SPUSTAT) (R)
 1F801DB0h 4 CD Volume Left/Right
 1F801DB4h 4 Extern Volume Left/Right
 1F801DB8h 4 Current Main Volume Left/Right
 1F801DBCh 4 Unknown? (R/W)

3. I/O Map

- 21/1136 -

SPU Reverb Configuration Area

SPU Internal Registers

Expansion Region 2 (default 128 bytes, max 8 KBytes)

Expansion Region 2 - Dual Serial Port (for TTY Debug Terminal)

 1F801DC0h 2 dAPF1 Reverb APF Offset 1
 1F801DC2h 2 dAPF2 Reverb APF Offset 2
 1F801DC4h 2 vIIR Reverb Reflection Volume 1
 1F801DC6h 2 vCOMB1 Reverb Comb Volume 1
 1F801DC8h 2 vCOMB2 Reverb Comb Volume 2
 1F801DCAh 2 vCOMB3 Reverb Comb Volume 3
 1F801DCCh 2 vCOMB4 Reverb Comb Volume 4
 1F801DCEh 2 vWALL Reverb Reflection Volume 2
 1F801DD0h 2 vAPF1 Reverb APF Volume 1
 1F801DD2h 2 vAPF2 Reverb APF Volume 2
 1F801DD4h 4 mSAME Reverb Same Side Reflection Address 1 Left/Right
 1F801DD8h 4 mCOMB1 Reverb Comb Address 1 Left/Right
 1F801DDCh 4 mCOMB2 Reverb Comb Address 2 Left/Right
 1F801DE0h 4 dSAME Reverb Same Side Reflection Address 2 Left/Right
 1F801DE4h 4 mDIFF Reverb Different Side Reflection Address 1 Left/Right
 1F801DE8h 4 mCOMB3 Reverb Comb Address 3 Left/Right
 1F801DECh 4 mCOMB4 Reverb Comb Address 4 Left/Right
 1F801DF0h 4 dDIFF Reverb Different Side Reflection Address 2 Left/Right
 1F801DF4h 4 mAPF1 Reverb APF Address 1 Left/Right
 1F801DF8h 4 mAPF2 Reverb APF Address 2 Left/Right
 1F801DFCh 4 vIN Reverb Input Volume Left/Right

 1F801E00h+N*04h 4 Voice 0..23 Current Volume Left/Right
 1F801E60h 20h Unknown? (R/W)
 1F801E80h 180h Unknown? (Read: FFh-filled) (Unused or Write only?)

 1F802000h 80h Expansion Region (8bit data bus, crashes on 16bit access?)

 1F802020h/1st DUART Mode Register 1.A (R/W)
 1F802020h/2nd DUART Mode Register 2.A (R/W)
 1F802021h/Read DUART Status Register A (R)
 1F802021h/Write DUART Clock Select Register A (W)
 1F802022h/Read DUART Toggle Baud Rate Generator Test Mode (Read=Strobe)
 1F802022h/Write DUART Command Register A (W)
 1F802023h/Read DUART Rx Holding Register A (FIFO) (R)
 1F802023h/Write DUART Tx Holding Register A (W)
 1F802024h/Read DUART Input Port Change Register (R)
 1F802024h/Write DUART Aux. Control Register (W)
 1F802025h/Read DUART Interrupt Status Register (R)
 1F802025h/Write DUART Interrupt Mask Register (W)

3. I/O Map

- 22/1136 -

Expansion Region 2 - Int/Dip/Post

Expansion Region 2 - Nocash Emulation Expansion

Expansion Region 2 - PCSX-Redux Emulation Expansion

 1F802026h/Read DUART Counter/Timer Current Value, Upper/Bit15-8 (R)
 1F802026h/Write DUART Counter/Timer Reload Value, Upper/Bit15-8 (W)
 1F802027h/Read DUART Counter/Timer Current Value, Lower/Bit7-0 (R)
 1F802027h/Write DUART Counter/Timer Reload Value, Lower/Bit7-0 (W)
 1F802028h/1st DUART Mode Register 1.B (R/W)
 1F802028h/2nd DUART Mode Register 2.B (R/W)
 1F802029h/Read DUART Status Register B (R)
 1F802029h/Write DUART Clock Select Register B (W)
 1F80202Ah/Read DUART Toggle 1X/16X Test Mode (Read=Strobe)
 1F80202Ah/Write DUART Command Register B (W)
 1F80202Bh/Read DUART Rx Holding Register B (FIFO) (R)
 1F80202Bh/Write DUART Tx Holding Register B (W)
 1F80202Ch/None DUART Reserved Register (neither R nor W)
 1F80202Dh/Read DUART Input Port (R)
 1F80202Dh/Write DUART Output Port Configuration Register (W)
 1F80202Eh/Read DUART Start Counter Command (Read=Strobe)
 1F80202Eh/Write DUART Set Output Port Bits Command (Set means Out=LOW)
 1F80202Fh/Read DUART Stop Counter Command (Read=Strobe)
 1F80202Fh/Write DUART Reset Output Port Bits Command (Reset means Out=HIGH)

 1F802000h 1 DTL-H2000: ATCONS STAT (R)
 1F802002h 1 DTL-H2000: ATCONS DATA (R and W)
 1F802004h 2 DTL-H2000: Whatever 16bit data ?
 1F802030h 1/4 DTL-H2000: Secondary IRQ10 Flags
 1F802032h 1 DTL-H2000: Whatever IRQ Control ?
 1F802040h 1 DTL-H2000: Bootmode "Dip switches" (R)
 1F802041h 1 PSX: POST (external 7 segment display, indicate BIOS boot status)
 1F802042h 1 DTL-H2000: POST/LED (similar to POST) (other addr, 2-digit wide)
 1F802070h 1 PS2: POST2 (similar to POST, but PS2 BIOS uses this address)

 1F802060h Emu-Expansion ID1 "E" (R)
 1F802061h Emu-Expansion ID2 "X" (R)
 1F802062h Emu-Expansion ID3 "P" (R)
 1F802063h Emu-Expansion Version (01h) (R)
 1F802064h Emu-Expansion Enable1 "O" (R/W)
 1F802065h Emu-Expansion Enable2 "N" (R/W)
 1F802066h Emu-Expansion Halt (R)
 1F802067h Emu-Expansion Turbo Mode Flags (R/W)

 1F802080h 4 Redux-Expansion ID "PCSX" (R)
 1F802080h 1 Redux-Expansion Console putchar (W)
 1F802081h 1 Redux-Expansion Debug break (W)

3. I/O Map

- 23/1136 -

Expansion Region 3 (default 1 byte, max 2 MBytes)

BIOS Region (default 512 Kbytes, max 4 MBytes)

Memory Control 3 (Cache Control)

Coprocessor Registers

 1F802082h 1 Redux-Expansion Exit code (W)
 1F802084h 4 Redux-Expansion Notification message pointer (W)

 1FA00000h - Not used by BIOS or any PSX games
 1FA00000h - POST3 (similar to POST, but PS2 BIOS uses this address)

 1FC00000h 80000h BIOS ROM (512Kbytes) (Reset Entrypoint at BFC00000h)

 FFFE0130h 4 Cache Control

 COP0 System Control Coprocessor - 32 registers (not all used)
 COP1 N/A
 COP2 Geometry Transformation Engine (GTE) - 64 registers (most are used)
 COP3 N/A

3. I/O Map

- 24/1136 -

4. Graphics Processing Unit (GPU)

The GPU can render Polygons, Lines, or Rectangles to the Drawing Buffer, and sends the

Display Buffer to the Television Set. Polygons are useful for 3D graphics (or rotated/

scaled 2D graphics), Rectangles are useful for 2D graphics and Text output.

GPU I/O Ports, DMA Channels, Commands, VRAM

GPU Render Polygon Commands

GPU Render Line Commands

GPU Render Rectangle Commands

GPU Rendering Attributes

GPU Memory Transfer Commands

GPU Other Commands

GPU Display Control Commands (GP1)

GPU Status Register

GPU Versions

GPU Depth Ordering

GPU Video Memory (VRAM)

GPU Texture Caching

GPU Timings

GPU (MISC)

4.1 GPU I/O Ports, DMA Channels, Commands, VRAM

GPU I/O Ports (1F801810h and 1F801814h in Read/Write Directions)

It (=GP0 only?) has a 64-byte (16-word) command FIFO buffer.

Optionally, Port 1F801810h (Read/Write) can be also accessed via DMA2.

The communication between the CPU and the GPU is a 32-bits data-only bus called the

VBUS. Aside from address line 2 being connected, in order to make the difference

 Port Name Expl.
 1F801810h-Write GP0 Send GP0 Commands/Packets (Rendering and VRAM Access)
 1F801814h-Write GP1 Send GP1 Commands (Display Control) (and DMA Control)
 1F801810h-Read GPUREAD Receive responses to GP0(C0h) and GP1(10h) commands
 1F801814h-Read GPUSTAT Receive GPU Status Register

4. Graphics Processing Unit (GPU)

- 25/1136 -

between port 0 and 1, there are no other address line between the two chips.

Thus the GPU can be seen as a blackbox that executes 32 bits commands.

GPU Timers / Synchronization

Most of the Timers are bound to GPU timings, see

Timers

Interrupts

GPU-related DMA Channels (DMA2 and DMA6)

Note: Before using DMA2, set up the DMA Direction in GP1(04h).

DMA2 is equivalent to accessing Port 1F801810h (GP0/GPUREAD) by software.

DMA6 just initializes data in Main RAM (not physically connected to the GPU).

GPU Command Summary

While it is probably more simple for the MIPS software to see GPU commands as a

collection of bytes, the GPU will only see 32 bits words being sent to it. Therefore, while

the Sony libraries will fill up structures to send to the GPU using byte-level granularity, it

is much more simple to see these as bitmasks from the GPU's point of view.

So when processing commands on GP0, the GPU will first inspect the top 3 bits of the 32

bits command being sent. Depending on the value of these 3 bits, further decoding of

the other bits can be done.

Commands sent to GP1 are more simple in nature to decode.

Top 3 bits of a GP0 command:

 Channel Recommended for
 DMA2 in Linked Mode - Sending rendering commands ;GP0(20h..7Fh,E1h..E6h)
 DMA2 in Continuous Mode - VRAM transfers to/from GPU ;GP0(A0h,C0h)
 DMA6 - Initializing the Link List ;Main RAM

 0 (000) Misc commands
 1 (001) Polygon primitive
 2 (010) Line primitive
 3 (011) Rectangle primitive
 4 (100) VRAM-to-VRAM blit
 5 (101) CPU-to-VRAM blit
 6 (110) VRAM-to-CPU blit
 7 (111) Environment commands

4.1 GPU I/O Ports, DMA Channels, Commands, VRAM

- 26/1136 -

Some GP0 commands require additional parameters, which are written (following the

initial command) as further 32bit values to GP0. The execution of the command starts

when all parameters have been received (or, in case of Polygon/Line commands, when the

first 3/2 vertices have been received).

The astute reader will realize that there are shared bits between primitives, such as the

gouraud shading flag.

Unlike all the others, the environment commands are more clear to be seen as a single 8

bits command, therefore the rest of the document will refer to them by their full 8 bits

value.

Clear Cache

The GPU has a small texture cache, in order to reduce VRAM access. This command

flushes it, when mutating the VRAM, similar to how the CPU i-cache must be flushed after

writing new code and before executing it.

Note that it is possible to abuse the texture cache by changing pixels in VRAM that the

GPU loaded in its cache, therefore creating weird drawing effects, but this is only seen in

some demos, and never in actual games.

Quick Rectangle Fill

Fills the area in the frame buffer with the value in RGB. Horizontally the filling is done in

16-pixel (32-bytes) units (see below masking/rounding).

The "Color" parameter is a 24bit RGB value, however, the actual fill data is 16bit: The

hardware linearly converts the 24bit RGB value to 15bit RGB by dropping the lower 3 bits

of each color value and additionally sets the mask bit (bit15) to 0.

Rectangle filling is not affected by the GP0(E6h) mask setting, acting as if GP0(E6h).0 and

GP0(E6h).1 are both zero.

This command is typically used to do a quick clear, as it'll be faster to run than an

equivalent Render Rectangle command.

 1st Command (01000000h)

 1st Color+Command (02BbGgRrh) ;24bit RGB value (see note)
 2nd Top Left Corner (YyyyXxxxh) ;Xpos counted in halfwords, steps of 10h
 3rd Width+Height (YsizXsizh) ;Xsiz counted in halfwords, steps of 10h

4.1 GPU I/O Ports, DMA Channels, Commands, VRAM

- 27/1136 -

VRAM Overview / VRAM Addressing

VRAM can be 1 MB or 2 MB (not mapped to the CPU bus) (it can be read/written only via

I/O or DMA). The memory is used for:

1 MB VRAM is laid out as 512 lines of 2048 bytes each. 2 MB VRAM (only present on some

arcade boads, not on consoles) is laid out as 1024 lines instead. It is accessed via

coordinates, ranging from (0,0)=Upper-Left to (N,1023)=Lower-Right.

The horizontal coordinates are addressing memory in 4bit/8bit/16bit/24bit/halfword units

(depending on what data formats you are using) (or a mixup thereof, eg. a halfword-base

address, plus a 4bit texture coordinate).

4.2 GPU Render Polygon Commands

When the upper 3 bits of the first GP0 command are set to 1 (001), then the command

can be decoded using the following bitfield:

Subsequent data sent to GP0 to complete this command will be the vertex data for the

command. The meaning and count of these words will be altered by the initial flags sent

in the first command.

If doing flat rendering, no further color will be sent. If doing gouraud shading, there will

be one more color per vertex sent, and the initial color will be the one for vertex 0.

If doing textured rendering, each vertex sent will also have a U/V texture coordinate

attached to it, as well as a CLUT index.

 Framebuffer(s) ;Usually 2 buffers (Drawing Area, and Display Area)
 Texture Page(s) ;Required when using Textures
 Texture Palette(s) ;Required when using 4bit/8bit Textures

 Unit = 4bit 8bit 16bit 24bit Halfwords | Unit = Lines
 Width = 4096 2048 1024 682.66 1024 | Height = 512/1024

 bit number value meaning
 31-29 001 polygon render
 28 1/0 gouraud / flat shading
 27 1/0 4 / 3 vertices
 26 1/0 textured / untextured
 25 1/0 semi-transparent / opaque
 24 1/0 raw texture / modulation
 23-0 rgb first color value.

4.2 GPU Render Polygon Commands

- 28/1136 -

So each vertex data can be seen as the following set of words:

The upper 16 bits of the first two UV words contain extra information. The first word

holds the Clut index. The second word contains texture page information. Any further

clut/page bits should be set to 0.

So for example, a solid flat blue triangle of coordinate (10, 20), (30, 40), (50, 60) will

be drawn using the following draw call data:

And a quad with gouraud shading texture-blend will have the following structure:

Some combination of these flags can be seen as nonsense however, but it's important to

realize that the GPU will still process them properly. For instance, specifying gouraud

shading without modulation will force the user to send the colors for each vertex to

satisfy the GPU's state machine, without them being actually used for the rendering.

Notes

Polygons are displayed up to \<excluding> their lower-right coordinates.

Quads are internally processed as two triangles, the first consisting of vertices 1,2,3,

and the second of vertices 2,3,4. This is an important detail, as splitting the quad into

triangles affects the way colours are interpolated.

Color xxBBGGRR - optional, only present for gouraud shading
Vertex YYYYXXXX - required, two signed 16 bits values
UV ClutVVUU or PageVVUU - optional, only present for textured polygons

200000FF
00100020
00300040
00500060

2CR1G1B1
Yyy1Xxx1
ClutV1U1
00R2G2B2
Yyy2Xxx2
PageV2U2
00R3G3B3
Yyy3Xxx3
0000V3U3
00R4G4B4
Yyy4Xxx4
0000V4U4

4.2 GPU Render Polygon Commands

- 29/1136 -

Within the triangle, the ordering of the vertices doesn't matter on the GPU side (a front-

back check, based on clockwise or anti-clockwise ordering, can be implemented at the

GTE side).

Dither enable (in Texpage command) affects ONLY polygons that do use gouraud

shading or modulation.

4.3 GPU Render Line Commands

When the upper 3 bits of the first GP0 command are set to 2 (010), then the command

can be decoded using the following bitfield:

So each vertex can be seen as the following list of words:

When polyline mode is active, at least two vertices must be sent to the GPU. The vertex

list is terminated by the bits 12-15 and 28-31 equaling 0x5 , or

(word & 0xF000F000) == 0x50005000 . The terminator value occurs on the first word

of the vertex (i.e. the color word if it's a gouraud shaded).

If the 2 vertices in a line overlap, then the GPU will draw a 1x1 rectangle in the location

of the 2 vertices using the colour of the first vertex.

Note

Lines are displayed up to \<including> their lower-right coordinates (ie. unlike as for

polygons, the lower-right coordinate is not excluded).

If dithering is enabled (via Texpage command), then both monochrome and shaded lines

are drawn with dithering (this differs from monochrome polygons and monochrome

rectangles).

 bit number value meaning
 31-29 010 line render
 28 1/0 gouraud / flat shading
 27 1/0 polyline / single line
 25 1/0 semi-transparent / opaque
 23-0 rgb first color value.

Color xxBBGGRR - optional, only present for gouraud shading
Vertex YYYYXXXX - required, two signed 16 bits values

4.3 GPU Render Line Commands

- 30/1136 -

Wire-Frame

Poly-Lines can be used (among others) to create Wire-Frame polygons (by setting the

last Vertex equal to Vertex 1).

4.4 GPU Render Rectangle Commands

Rectangles are drawn much faster than polygons. Unlike polygons, gouraud shading is

not possible, dithering isn't applied, the rectangle must forcefully have horizontal and

vertical edges, textures cannot be rotated or scaled, and, of course, the GPU does

render Rectangles as a single entity, without splitting them into two triangles.

The Rectangle command can be decoded using the following bitfield:

The size parameter can be seen as the following enum:

Therefore, the whole draw call can be seen as the following sequence of words:

Unlike for Textured-Polygons, the "Texpage" must be set up separately for Rectangles,

via GP0(E1h). Width and Height can be up to 1023x511, however, the maximum size of

the texture window is 256x256 (so the source data will be repeated when trying to use

sizes larger than 256x256).

 bit number value meaning
 31-29 011 rectangle render
 28-27 sss rectangle size
 26 1/0 textured / untextured
 25 1/0 semi-transparent / opaque
 24 1/0 raw texture / modulation
 23-0 rgb first color value.

 0 (00) variable size
 1 (01) single pixel (1x1)
 2 (10) 8x8 sprite
 3 (11) 16x16 sprite

Color ccBBGGRR - command + color; color is ignored when textured
Vertex1 YYYYXXXX - required, indicates the upper left corner to render
UV ClutVVUU - optional, only present for textured rectangles
Width+Height YsizXsiz - optional, dimensions for variable sized rectangles (max
1023x511)

4.4 GPU Render Rectangle Commands

- 31/1136 -

Texture Origin and X/Y-Flip

Vertex & Texcoord specify the upper-left edge of the rectangle. And, normally, screen

coords and texture coords are both incremented during rendering the rectangle pixels.

Optionally, X/Y-Flip bits can be set in Texpage.Bit12/13, these bits cause the texture

coordinates to be decremented (instead of incremented). The X/Y-Flip bits do affect only

Rectangles (not Polygons, nor VRAM Transfers).

Caution: Reportedly, the X/Y-Flip feature isn't supported on old PSX consoles (unknown

which ones exactly, maybe such with PU-7 mainboards, and unknown how to detect

flipping support; except of course by reading VRAM).

Note

There are also two VRAM Transfer commands which work similar to GP0(60h) and

GP0(65h). Eventually, that commands might be even faster... although not sure if they

do use the Texture Cache?

The difference is that VRAM Transfers do not clip to the Drawig Area boundary, do not

support fully-transparent nor semi-transparent texture pixels, and do not convert color

depths (eg. without 4bit texture to 16bit framebuffer conversion).

4.5 GPU Rendering Attributes

Vertex (Parameter for Polygon, Line, Rectangle commands)

Size Restriction: The maximum distance between two vertices is 1023 horizontally, and

511 vertically. Polygons and lines that are exceeding that dimensions are NOT rendered.

For example, a line from Y1=-300 to Y2=+300 is NOT rendered, a line from Y1=-100 to

Y2=+400 is rendered (as far as it is within the drawing area).

If portions of the polygon/line/rectangle are located outside of the drawing area, then the

hardware renders only the portion that is inside of the drawing area. Not sure if the

hardware is skipping all clipped pixels at once (within a single clock cycle), or if it's

(slowly) processing them pixel by pixel?

Color Attribute (Parameter for all Rendering commands, except Raw Texture)

 0-10 X-coordinate (signed, -1024..+1023)
 11-15 Not used (usually sign-extension, but ignored by hardware)
 16-26 Y-coordinate (signed, -1024..+1023)
 26-31 Not used (usually sign-extension, but ignored by hardware)

4.5 GPU Rendering Attributes

- 32/1136 -

Caution: For untextured graphics, 8bit RGB values of FFh are brightest. However, for

modulation, 8bit values of 80h are brightest (values 81h..FFh are "brighter than bright"

allowing to make textures about twice as bright as than they were originially stored in

memory; of course the results can't exceed the maximum brightness, ie. the 5bit values

written to the framebuffer are saturated to max 1Fh).

Texpage Attribute (Parameter for Textured-Polygons commands)

This attribute is used in all Textured-Polygons commands.

Clut Attribute (Color Lookup Table, aka Palette)

This attribute is used in all Textured Polygon/Rectangle commands. Of course, it's

relevant only for 4bit/8bit textures (don't care for 15bit textures).

Specifies the location of the CLUT data within VRAM.

GP0(E1h) - Draw Mode setting (aka "Texpage")

 0-7 Red (0..FFh)
 8-15 Green (0..FFh)
 16-23 Blue (0..FFh)
 24-31 Command (in first paramter) (don't care in further parameters)

 0-8 Same as GP0(E1h).Bit0-8 (see there)
 9-10 Unused (does NOT change GP0(E1h).Bit9-10)
 11 Same as GP0(E1h).Bit11 (see there)
 12-13 Unused (does NOT change GP0(E1h).Bit12-13)
 14-15 Unused (should be 0)

 0-5 X coordinate X/16 (ie. in 16-halfword steps)
 6-14 Y coordinate 0-511 (ie. in 1-line steps) ;\on v0 GPU (max 1 MB VRAM)
 15 Unused (should be 0) ;/
 6-15 Y coordinate 0-1023 (ie. in 1-line steps) ;on v2 GPU (max 2 MB VRAM)

 0-3 Texture page X Base (N*64) (ie. in 64-halfword steps) ;GPUSTAT.0-3
 4 Texture page Y Base 1 (N*256) (ie. 0, 256, 512 or 768) ;GPUSTAT.4
 5-6 Semi-transparency (0=B/2+F/2, 1=B+F, 2=B-F, 3=B+F/4) ;GPUSTAT.5-6
 7-8 Texture page colors (0=4bit, 1=8bit, 2=15bit, 3=Reserved);GPUSTAT.7-8
 9 Dither 24bit to 15bit (0=Off/strip LSBs, 1=Dither Enabled) ;GPUSTAT.9
 10 Drawing to display area (0=Prohibited, 1=Allowed) ;GPUSTAT.10
 11 Texture page Y Base 2 (N*512) (only for 2 MB VRAM) ;GPUSTAT.15
 12 Textured Rectangle X-Flip (BIOS does set this bit on power-up...?)
 13 Textured Rectangle Y-Flip (BIOS does set it equal to GPUSTAT.13...?)

4.5 GPU Rendering Attributes

- 33/1136 -

The GP0(E1h) command is required only for Lines, Rectangle, and Untextured-Polygons

(for Textured-Polygons, the data is specified in form of the Texpage attribute; except that,

Bits 9-10 can be changed only via GP0(E1h), not via the Texpage attribute).

Texture page colors setting 3 (reserved) is same as setting 2 (15bit).

Bits 4 and 11 are the LSB and MSB of the 2-bit texture page Y coordinate. Normally only

bit 4 is used as retail consoles only have 1 MB VRAM. Setting bit 11 (Y>=512) on a retail

console with a v2 GPU will result in textures disappearing if 2 MB VRAM support was

previously enabled using GP1(09h), as the VRAM chip select will no longer be active. Bit

11 is always ignored by v0 GPUs that do not support 2 MB VRAM.

Note: GP0(00h) seems to be often inserted between Texpage and Rectangle commands,

maybe it acts as a NOP, which may be required between that commands, for timing

reasons...?

GP0(E2h) - Texture Window setting

Mask specifies the bits that are to be manipulated, and Offset contains the new values for

these bits, ie. texture X/Y coordinates are adjusted as so:

The area within a texture window is repeated throughout the texture page. The data is

not actually stored all over the texture page but the GPU reads the repeated patterns as if

they were there. Considering all possible regular tilings of UV coordinates for powers of

two, the texture window primitive can be constructed as follows using a desired set of

parameters of tiling_x , tiling_y , window_pos_x , window_pos_y , u , v and

color_mode :

 14-23 Not used (should be 0)
 24-31 Command (E1h)

 0-4 Texture window Mask X (in 8 pixel steps)
 5-9 Texture window Mask Y (in 8 pixel steps)
 10-14 Texture window Offset X (in 8 pixel steps)
 15-19 Texture window Offset Y (in 8 pixel steps)
 20-23 Not used (zero)
 24-31 Command (E2h)

 Texcoord = (Texcoord AND (NOT (Mask * 8))) OR ((Offset AND Mask) * 8)

x_tiling_factor = {8: 0b11111, 16: 0b11110, 32: 0b11100, 64: 0b11000, 128: 0b10000, 256:
0b00000}[tiling_x]
y_tiling_factor = {8: 0b11111, 16: 0b11110, 32: 0b11100, 64: 0b11000, 128: 0b10000, 256:
0b00000}[tiling_y]
x_offset = u & 0b11111
x_offset <<= {15: 0, 8: 1, 4: 2}[color_mode]

4.5 GPU Rendering Attributes

- 34/1136 -

GP0(E3h) - Set Drawing Area top left (X1,Y1)

GP0(E4h) - Set Drawing Area bottom right (X2,Y2)

Sets the drawing area corners. The Render commands GP0(20h..7Fh) are automatically

clipping any pixels that are outside of this region.

GP0(E5h) - Set Drawing Offset (X,Y)

If you have configured the GTE to produce vertices with coordinate "0,0" being located in

the center of the drawing area, then the Drawing Offset must be "X1+(X2-X1)/2, Y1+(Y2-

Y1)/2". Or, if coordinate "0,0" shall be the upper-left of the Drawing Area, then Drawing

Offset should be "X1,Y1". Where X1,Y1,X2,Y2 are the values defined with GP0(E3h-E4h).

GP0(E6h) - Mask Bit Setting

When bit0 is off, the upper bit of the data written to the framebuffer is equal to bit15 of

the texture color (ie. it is set for colors that are marked as "semi-transparent") (for

untextured polygons, bit15 is set to zero).

When bit1 is on, any (old) pixels in the framebuffer with bit15=1 are write-protected, and

cannot be overwritten by (new) rendering commands.

x_offset >>= 3;
y_offset = v & 0b11111
y_offset >>= 3
texture_window_prim = (0xE20 << 20) | (y_offset << 15) | (x_offset << 10) |
(y_tiling_factor << 5) | x_tiling_factor

 0-9 X-coordinate (0..1023)
 10-18 Y-coordinate (0..511) ;\on v0 GPU (max 1 MB VRAM)
 19-23 Not used (zero) ;/
 10-19 Y-coordinate (0..1023) ;\on v2 GPU (max 2 MB VRAM)
 20-23 Not used (zero) ;/
 24-31 Command (Exh)

 0-10 X-offset (-1024..+1023) (usually within X1,X2 of Drawing Area)
 11-21 Y-offset (-1024..+1023) (usually within Y1,Y2 of Drawing Area)
 22-23 Not used (zero)
 24-31 Command (E5h)

 0 Set mask while drawing (0=TextureBit15, 1=ForceBit15=1) ;GPUSTAT.11
 1 Check mask before draw (0=Draw Always, 1=Draw if Bit15=0) ;GPUSTAT.12
 2-23 Not used (zero)
 24-31 Command (E6h)

4.5 GPU Rendering Attributes

- 35/1136 -

The mask setting affects all rendering commands, as well as CPU-to-VRAM and VRAM-to-

VRAM transfer commands (where it acts on the separate halfwords, ie. as for 15bit

textures). However, Mask does NOT affect the Fill-VRAM command.

This setting is used in games such as Metal Gear Solid and Silent Hill.

Note

GP0(E3h..E5h) do not take up space in the FIFO, so they are probably executed

immediately (even if there're still other commands in the FIFO). Best use them only if

you are sure that the FIFO is empty (otherwise the new Drawing Area settings might

accidentally affect older Rendering Commands in the FIFO).

4.6 GPU Memory Transfer Commands

The next three commands being described are when the high 3 bits are set to the values

4 (100), 5 (101), and 6 (110). For them, the remaining 29 bits are ignored, and can be

set to any arbitrary value.

VRAM to VRAM blitting - command 4 (100)

Copies data within framebuffer. The transfer is affected by Mask setting.

CPU to VRAM blitting - command 5 (101)

Transfers data from CPU to frame buffer. If the number of halfwords to be sent is odd, an

extra halfword should be sent, as packets consist of 32bits words. The transfer is affected

by Mask setting.

VRAM to CPU blitting - command 6 (110)

 1st Command
 2nd Source Coord (YyyyXxxxh) ;Xpos counted in halfwords
 3rd Destination Coord (YyyyXxxxh) ;Xpos counted in halfwords
 4th Width+Height (YsizXsizh) ;Xsiz counted in halfwords

 1st Command
 2nd Destination Coord (YyyyXxxxh) ;Xpos counted in halfwords
 3rd Width+Height (YsizXsizh) ;Xsiz counted in halfwords
 ... Data (...) <--- usually transferred via DMA

4.6 GPU Memory Transfer Commands

- 36/1136 -

Transfers data from frame buffer to CPU. Wait for bit27 of the status register to be set

before reading the image data. When the number of halfwords is odd, an extra halfword

is added at the end, as packets consist of 32bits words.

Masking and Rounding for FILL Command parameters

Fill does NOT occur when Xsiz=0 or Ysiz=0 (unlike as for Copy commands). Xsiz=400h

works only indirectly: Param=400h is handled as Xsiz=0, however, Param=3F1h..3FFh is

rounded-up and handled as Xsiz=400h.

Note that because of the height (Ysiz) masking, a maximum of 511 rows can be filled in

a single command. Calling a fill with a full VRAM height of 512 rows will be ineffective as

the height will be masked to 0.

Masking for COPY Commands parameters

Parameters are just clipped to 10bit/9bit range, the only special case is that Size=0 is

handled as Size=max.

Notes

The coordinates for the above VRAM transfer commands are absolute framebuffer

addresses (not relative to Draw Offset, and not clipped to Draw Area).

Non-DMA transfers seem to be working at any time, but GPU-DMA Transfers seem to be

working ONLY during V-Blank (outside of V-Blank, portions of the data appear to be

skipped, and the following words arrive at wrong addresses), unknown if it's possible to

change that by whatever configuration settings...? That problem appears ONLY for

 1st Command ;\
 2nd Source Coord (YyyyXxxxh) ; write to GP0 port (as usually)
 3rd Width+Height (YsizXsizh) ;/
 ... Data (...) ;<--- read from GPUREAD port (or via DMA)

 Xpos=(Xpos AND 3F0h) ;range 0..3F0h, in steps of 10h
 Ypos=(Ypos AND 1FFh) ;range 0..1FFh
 Xsiz=((Xsiz AND 3FFh)+0Fh) AND (NOT 0Fh) ;range 0..400h, in steps of 10h
 Ysiz=((Ysiz AND 1FFh)) ;range 0..1FFh

 Xpos=(Xpos AND 3FFh) ;range 0..3FFh
 Ypos=(Ypos AND 1FFh) ;range 0..1FFh
 Xsiz=((Xsiz-1) AND 3FFh)+1 ;range 1..400h
 Ysiz=((Ysiz-1) AND 1FFh)+1 ;range 1..200h

4.6 GPU Memory Transfer Commands

- 37/1136 -

continous DMA aka VRAM transfers (linked-list DMA aka Ordering Table works even

outside V-Blank).

Wrapping

If the Source/Dest starting points plus the width/height value exceed the 1024x512

pixel VRAM size, then the Copy/Fill operations wrap to the opposite memory edge

(without any carry-out from X to Y, nor from Y to X).

4.7 GPU Other Commands

GP0(1Fh) - Interrupt Request (IRQ1)

Requests IRQ1. Can be acknowledged via GP1(02h). This feature is rarely used.

Note: The command is used by Blaze'n'Blade, but the game doesn't have IRQ1 enabled,

and the written value (1F801810h) looks more like an I/O address, rather than like a

command, so not sure if it's done intentionally, or if it is just a bug.

GP0(03h) - Unknown?

Unknown. Doesn't seem to be used by any games. Unlike the "NOP" commands,

GP0(03h) does take up space in FIFO, so it is apparently not a NOP.

GP0(00h) - NOP (?)

This command doesn't take up space in the FIFO (eg. even if a VRAM-to-VRAM transfer

is still busy, one can send dozens of GP0(00h) commands, without the command FIFO

becoming full. So, either the command is ignored (or, if it has a function, it is executed

immediately, even while the transfer is busy).

...

GP0(00h) unknown, used with parameter = 08A16Ch... or rather 08FDBCh ... the

written value seems to be a bios/ram memory address, anded with 00FFFFFFh... maybe

a bios bug?

GP0(00h) seems to be often inserted between Texpage and Rectangle commands,

maybe it acts as a NOP, which may be required between that commands, for timing

reasons...?

 1st Command (Cc000000h) ;GPUSTAT.24

4.7 GPU Other Commands

- 38/1136 -

GP0(04h..1Eh,E0h,E7h..EFh) - Mirrors of GP0(00h) - NOP (?)

Like GP0(00h), these commands don't take up space in the FIFO. So, maybe, they are

same as GP0(00h), however, the Drawing Area/Offset commands GP0(E3h..E5h) don't

take up FIFO space either, so not taking up FIFO space doesn't neccessarily mean that

the command has no function.

4.8 GPU Display Control Commands (GP1)

GP1 Display Control Commands are sent by writing the 8bit Command number (MSBs),

and 24bit parameter (LSBs) to Port 1F801814h. Unlike GP0 commands, GP1 commands

are passed directly to the GPU (ie. they can be sent even when the FIFO is full).

GP1(00h) - Reset GPU

Resets the GPU to the following values:

Accordingly, GPUSTAT becomes 14802000h. The x1,y1 values are too small, ie. the

upper-left edge isn't visible. Note that GP1(09h) is NOT affected by the reset command.

GP1(01h) - Reset Command Buffer

Resets the command buffer and CLUT cache.

GP1(02h) - Acknowledge GPU Interrupt (IRQ1)

 0-23 Not used (zero)

 GP1(01h) ;clear fifo
 GP1(02h) ;ack irq (0)
 GP1(03h) ;display off (1)
 GP1(04h) ;dma off (0)
 GP1(05h) ;display address (0)
 GP1(06h) ;display x1,x2 (x1=200h, x2=200h+256*10)
 GP1(07h) ;display y1,y2 (y1=010h, y2=010h+240)
 GP1(08h) ;display mode 320x200 NTSC (0)
 GP0(E1h..E6h) ;rendering attributes (0)

 0-23 Not used (zero)

 0-23 Not used (zero) ;GPUSTAT.24

4.8 GPU Display Control Commands (GP1)

- 39/1136 -

Resets the IRQ flag in GPUSTAT.24. The flag can be set via GP0(1Fh).

GP1(03h) - Display Enable

Turns display on/off. "Note that a turned off screen still gives the flicker of NTSC on a PAL

screen if NTSC mode is selected."

The "Off" settings displays a black picture (and still sends /SYNC signals to the television

set). (Unknown if it still generates vblank IRQs though?)

GP1(04h) - DMA Direction / Data Request

Notes: Manually sending/reading data by software (non-DMA) is ALWAYS possible,

regardless of the GP1(04h) setting. The GP1(04h) setting does affect the meaning of

GPUSTAT.25.

Display start/end

Specifies where the display area is positioned on the screen, and how much data gets

sent to the screen. The screen sizes of the display area are valid only if the horizontal/

vertical start/end values are default. By changing these you can get bigger/smaller

display screens. On most TV's there is some black around the edge, which can be

utilised by setting the start of the screen earlier and the end later. The size of the pixels

is NOT changed with these settings, the GPU simply sends more data to the screen.

Some monitors/TVs have a smaller display area and the extended size might not be

visible on those sets. "(Mine is capable of about 330 pixels horizontal, and 272 vertical

in 320*240 mode)"

GP1(05h) - Start of Display area (in VRAM)

 0 Display On/Off (0=On, 1=Off) ;GPUSTAT.23
 1-23 Not used (zero)

 0-1 DMA Direction (0=Off, 1=FIFO, 2=CPUtoGP0, 3=GPUREADtoCPU) ;GPUSTAT.29-30
 2-23 Not used (zero)

 0-9 X (0-1023) (halfword address in VRAM) (relative to begin of VRAM)
 10-18 Y (0-511) (scanline number in VRAM) (relative to begin of VRAM)
 19-23 Not used (zero)

4.8 GPU Display Control Commands (GP1)

- 40/1136 -

Upper/left Display source address in VRAM. The size and target position on screen is set

via Display Range registers; target=X1,Y2; size=(X2-X1/cycles_per_pix), (Y2-Y1).

Unknown if using Y values in 512-1023 range is supported (with 2 MB VRAM).

GP1(06h) - Horizontal Display range (on Screen)

Specifies the horizontal range within which the display area is displayed. For resolutions

other than 320 pixels it may be necessary to fine adjust the value to obtain an exact

match (eg. X2=X1+pixels*cycles_per_pix).

The number of displayed pixels per line is "(((X2-X1)/cycles_per_pix)+2) AND NOT 3" (ie.

the hardware is rounding the width up/down to a multiple of 4 pixels).

Most games are using a width equal to the horizontal resolution (ie. 256, 320, 368, 512,

640 pixels). A few games are using slightly smaller widths (probably due to programming

bugs). Pandemonium 2 is using a bigger "overscan" width (ensuring an intact picture

without borders even on mis-calibrated TV sets).

The 260h value is the first visible pixel on normal TV Sets, this value is used by MOST

NTSC games, and SOME PAL games (see below notes on Mis-Centered PAL games).

Video clock unit used depends on console region, regardless of NTSC/PAL video mode set

by GP1(08h).3; see section on nominal video clocks for values.

GP1(07h) - Vertical Display range (on Screen)

Specifies the vertical range within which the display area is displayed. The number of lines

is Y2-Y1 (unlike as for the width, there's no rounding applied to the height). If Y2 is set to

a much too large value, then the hardware stops to generate vblank interrupts (IRQ0).

The 88h/A3h values are the middle-scanlines on normal TV Sets, these values are used

by MOST NTSC games, and SOME PAL games (see below notes on Mis-Centered PAL

games).

The 240/288 values are for fullscreen pictures. Many NTSC games display 240 lines, but

on most analog television sets, only 224 lines are visible (8 lines of overscan on top and 8

lines of overscan on bottom). Many PAL games display only 256 lines (underscan with

black borders).

Some games such as Chrono Cross will occasionally adjust these values to create a

 0-11 X1 (260h+0) ;12bit ;\counted in video clock units,
 12-23 X2 (260h+320*8) ;12bit ;/relative to HSYNC

 0-9 Y1 (NTSC=88h-(240/2), (PAL=A3h-(288/2)) ;\scanline numbers on screen,
 10-19 Y2 (NTSC=88h+(240/2), (PAL=A3h+(288/2)) ;/relative to VSYNC
 20-23 Not used (zero)

4.8 GPU Display Control Commands (GP1)

- 41/1136 -

screen shake effect, so proper emulation of this command is necessary for those

particular cases.

GP1(08h) - Display mode

Note: Interlace must be enabled to see all lines in 480-lines mode (interlace causes ugly

flickering, so a non-interlaced low resolution image typically has better quality than a high

resolution interlaced image, a pretty bad example is the intro screens shown by the

BIOS). The Display Area Color Depth bit does NOT affect GP0 draw commands, which

always draw in 15 bit. However, the Vertical Interlace flag DOES affect GP0 draw

commands.

Bit 7 is known as "reverseflag" and can reportedly be used on (v1?) arcade/prototype

GPUs to flip the screen horizontally. On a v2 GPU setting this bit corrupts the display

output, possibly due to leftovers of the v1 GPU's screen flipping circuitry still being

present.

GP1(10h) - Read GPU internal register

GP1(11h..1Fh) - Mirrors of GP1(10h), Read GPU internal register

After sending the command, the result can be read (immediately) from GPUREAD

register (there's no NOP or other delay required) (namely GPUSTAT.Bit27 is used only for

VRAM reads, but NOT for register reads, so do not try to wait for that flag).

On v0 GPUs, the following indices are supported:

 0-1 Horizontal Resolution 1 (0=256, 1=320, 2=512, 3=640) ;GPUSTAT.17-18
 2 Vertical Resolution (0=240, 1=480, when Bit5=1) ;GPUSTAT.19
 3 Video Mode (0=NTSC/60Hz, 1=PAL/50Hz) ;GPUSTAT.20
 4 Display Area Color Depth (0=15bit, 1=24bit) ;GPUSTAT.21
 5 Vertical Interlace (0=Off, 1=On) ;GPUSTAT.22
 6 Horizontal Resolution 2 (0=256/320/512/640, 1=368) ;GPUSTAT.16
 7 Flip screen horizontally (0=Off, 1=On, v1 only) ;GPUSTAT.14
 8-23 Not used (zero)

 0-23 Register index (via following GPUREAD)

 00h-01h = Returns Nothing (old value in GPUREAD remains unchanged)
 02h = Read Texture Window setting ;GP0(E2h) ;20bit/MSBs=Nothing
 03h = Read Draw area top left ;GP0(E3h) ;19bit/MSBs=Nothing
 04h = Read Draw area bottom right ;GP0(E4h) ;19bit/MSBs=Nothing
 05h = Read Draw offset ;GP0(E5h) ;22bit

4.8 GPU Display Control Commands (GP1)

- 42/1136 -

On v2 (and v1?) GPUs, the following indices are supported:

The selected data is latched in GPUREAD, the same/latched value can be read multiple

times, but, the latch isn't automatically updated when changing GP0 registers.

GP1(09h) - Set VRAM size (v2)

Controls whether or not GP0(E1h).bit11 can be used to reference textures in the second

half of VRAM on systems with 2 MB VRAM (possibly affects drawing/display area

commands and DMA transfers as well). The GPU has two separate chip select outputs for

the first and second half; on a retail console only the first output is used, so enabling this

feature will result in textures disappearing if GP0(E1h).bit11 is also set.

GP1(09h) is supported only on v2 GPUs; v0 GPUs don't support 2 MB VRAM at all and v1

seems to use command GP1(20h) instead.

GP1(20h) - Set VRAM size (v1)

Seems to be used only on v1 arcade/prototype GPUs. Regular v2 GPUs use GP1(09h)

instead of GP1(20h).

GP1(0Bh) - Unknown/Internal?

 06h-07h = Returns Nothing (old value in GPUREAD remains unchanged)
 08h-FFFFFFh = Mirrors of 00h..07h

 00h-01h = Returns Nothing (old value in GPUREAD remains unchanged)
 02h = Read Texture Window setting ;GP0(E2h) ;20bit/MSBs=Nothing
 03h = Read Draw area top left ;GP0(E3h) ;20bit/MSBs=Nothing
 04h = Read Draw area bottom right ;GP0(E4h) ;20bit/MSBs=Nothing
 05h = Read Draw offset ;GP0(E5h) ;22bit
 06h = Returns Nothing (old value in GPUREAD remains unchanged)
 07h = Read GPU version (1 or 2)
 08h = Unknown (Returns 00000000h) (lightgun? VRAM size set via GP1(09h)?)
 09h-0Fh = Returns Nothing (old value in GPUREAD remains unchanged)
 10h-FFFFFFh = Mirrors of 00h..0Fh

 0 Allow Y coordinates in 512-1023 range (0=No/wrap to 0-511, 1=Yes)
 1-23 Unknown (seems to have no effect)

 0-23 Unknown (501h=1 MB, 504h=2 MB, or so?)

 0-10 Unknown (GPU crashes after a while when set to 274h..7FFh)
 11-23 Unknown (seems to have no effect)

4.8 GPU Display Control Commands (GP1)

- 43/1136 -

The register doesn't seem to be used by any games.

GP1(0Ah,0Ch..0Fh,21h..3Fh) - N/A

Not used?

GP1(40h..FFh) - N/A (Mirrors)

Mirrors of GP1(00h..3Fh).

Mis-Centered PAL Games (wrong GP1(06h)/GP1(07h) settings)

NTSC games are typically well centered (using X1=260h, and Y1/Y2=88h+/-N).

PAL games should be centered as X1=260h, and Y1/Y2=A3h+/-N) - these values would

be looking well on a Philips Philetta TV Set, and do also match up with other common

picture positions (eg. as used by Nintendo's SNES console).

However, most PAL games are using completely different "random" centering values

(maybe caused by different developers trying to match the centering to the different TV

Sets) (although it looks more as if the PAL developers just went amok: Many PAL games

are even using different centerings for their Intro, Movie, and actual Game sequences).

In result, most PAL games are looking like crap when playing them on a real PSX. For

PSX emulators it may be recommended to ignore the GP1(06h)/GP1(07h) centering, and

instead, apply auto-centering to PAL games.

For PAL game developers, it may be recommended to add a screen centering option (as

found in Tomb Raider 3, for example). Unknown if this is really required... or if

X1=260h, and Y1/Y2=A3h+/-N would work fine on most or all PAL TV Sets?

4.9 GPU Status Register

1F801814h - GPUSTAT - GPU Status Register (R)

 0-3 Texture page X Base (N*64) ;GP0(E1h).0-3
 4 Texture page Y Base 1 (N*256) (ie. 0, 256, 512 or 768) ;GP0(E1h).4
 5-6 Semi-transparency (0=B/2+F/2, 1=B+F, 2=B-F, 3=B+F/4) ;GP0(E1h).5-6
 7-8 Texture page colors (0=4bit, 1=8bit, 2=15bit, 3=Reserved)GP0(E1h).7-8
 9 Dither 24bit to 15bit (0=Off/strip LSBs, 1=Dither Enabled);GP0(E1h).9
 10 Drawing to display area (0=Prohibited, 1=Allowed) ;GP0(E1h).10
 11 Set Mask-bit when drawing pixels (0=No, 1=Yes/Mask) ;GP0(E6h).0
 12 Draw Pixels (0=Always, 1=Not to Masked areas) ;GP0(E6h).1
 13 Interlace Field (or, always 1 when GP1(08h).5=0)
 14 Flip screen horizontally (0=Off, 1=On, v1 only) ;GP1(08h).7
 15 Texture page Y Base 2 (N*512) (only for 2 MB VRAM) ;GP0(E1h).11

4.9 GPU Status Register

- 44/1136 -

In 480-lines mode, bit31 changes per frame. And in 240-lines mode, the bit changes per

scanline. The bit is always zero during Vblank (vertical retrace and upper/lower screen

border).

Note

Further GPU status information can be retrieved via GP1(10h) and GP0(C0h).

Ready Bits

Bit28: Normally, this bit gets cleared when the command execution is busy (ie. once

when the command and all of its parameters are received), however, for Polygon and

Line Rendering commands, the bit gets cleared immediately after receiving the

command word (ie. before receiving the vertex parameters). The bit is used as DMA

request in DMA Mode 2, accordingly, the DMA would probably hang if the Polygon/Line

parameters are transferred in a separate DMA block (ie. the DMA probably starts ONLY

on command words).

Bit27: Gets set after sending GP0(C0h) and its parameters, and stays set until all data

words are received; used as DMA request in DMA Mode 3.

Bit26: Gets set when the GPU wants to receive a command. If the bit is cleared, then

the GPU does either want to receive data, or it is busy with a command execution (and

doesn't want to receive anything).

Bit25: This is the DMA Request bit, however, the bit is also useful for non-DMA transfers,

especially in the FIFO State mode.

 16 Horizontal Resolution 2 (0=256/320/512/640, 1=368) ;GP1(08h).6
 17-18 Horizontal Resolution 1 (0=256, 1=320, 2=512, 3=640) ;GP1(08h).0-1
 19 Vertical Resolution (0=240, 1=480, when Bit22=1) ;GP1(08h).2
 20 Video Mode (0=NTSC/60Hz, 1=PAL/50Hz) ;GP1(08h).3
 21 Display Area Color Depth (0=15bit, 1=24bit) ;GP1(08h).4
 22 Vertical Interlace (0=Off, 1=On) ;GP1(08h).5
 23 Display Enable (0=Enabled, 1=Disabled) ;GP1(03h).0
 24 Interrupt Request (IRQ1) (0=Off, 1=IRQ) ;GP0(1Fh)/GP1(02h)
 25 DMA / Data Request, meaning depends on GP1(04h) DMA Direction:
 When GP1(04h)=0 ---> Always zero (0)
 When GP1(04h)=1 ---> FIFO State (0=Full, 1=Not Full)
 When GP1(04h)=2 ---> Same as GPUSTAT.28
 When GP1(04h)=3 ---> Same as GPUSTAT.27
 26 Ready to receive Cmd Word (0=No, 1=Ready) ;GP0(...) ;via GP0
 27 Ready to send VRAM to CPU (0=No, 1=Ready) ;GP0(C0h) ;via GPUREAD
 28 Ready to receive DMA Block (0=No, 1=Ready) ;GP0(...) ;via GP0
 29-30 DMA Direction (0=Off, 1=?, 2=CPUtoGP0, 3=GPUREADtoCPU) ;GP1(04h).0-1
 31 Drawing even/odd lines in interlace mode (0=Even or Vblank, 1=Odd)

4.9 GPU Status Register

- 45/1136 -

4.10 GPU Versions

Summary of GPU Differences

The CXD8538Q (v1) GPU was only ever used in some arcade boards. Among other things,

this GPU seems to use completely different drawing commands and has some additional

functionality not available on v0/v2 GPUs (reportedly GP1(08h).bit7 can be used to flip

the screen horizontally?). It may however have a smaller texture cache or no cache at all,

which would explain why the screen flipping feature had to be removed from v2 to make

room on the die for the cache.

There is another arcade-only GPU revision, the CXD8654Q (v2b). It seems to use the

 Differences... v0 (160-pin) v1 (208-pin prototype) v2 (208-
pin)
 GPU Chip CXD8514Q CXD8538Q CXD8561Q/
BQ/CQ/CXD9500Q
 Mainboard EARLY-PU-8 and below Arcade boards only LATE-PU-8
and up
 Memory Type Dual-ported VRAM Dual-ported VRAM? Normal
DRAM
 GPUSTAT.13 when interlace=off always 0 unknown always 1
 GPUSTAT.14 always 0 screen flip
nonfunctional screen flip
 GPUSTAT.15 always 0 always 0? bit1 of
texpage Y base
 GP1(10h:index3..4) 19-bit (1 MB VRAM) 22-bit (2 MB VRAM) 20-bit (2
MB VRAM)
 GP1(10h:index7) N/A 00000001h version 00000002h
version
 GP1(10h:index8) mirror of index0 00000000h zero 00000000h
zero
 GP1(10h:index9..F) mirror of index1..7 unknown N/A
 GP1(09h) N/A N/A VRAM size
 GP1(20h) N/A VRAM size/settings N/A
 GP0(E1h).bit11 N/A N/A bit1 of
texpage Y base
 GP0(E1h).bit12/13 without x/y-flip without x/y-flip with x/y-
flip
 GP0(03h) N/A (no stored in fifo) unknown unknown/
unused command
 Shaded Textures ((color/8)*texel)/2 unknown
(color*texel)/16
 GP0(02h) FillVram xpos.bit0-3=0Fh=bugged unknown
xpos.bit0-3=ignored

 dma-to-vram: doesn't work with blksiz>10h (v2 gpu works with blksiz=8C0h!)
 dma-to-vram: MAYBE also needs extra software-handshake to confirm DMA done?
 320*224 pix = 11800h pix = 8C00h words

4.10 GPU Versions

- 46/1136 -

same commands as regular v2 GPUs, but the differences between v2b and v2 are

currently unknown.

Shaded Textures

The v0 GPU crops 8:8:8 bit gouraud shading color to 5:5:5 bit before multiplying it with

the texture color, resulting in rather poor graphics. For example, the snow scence in the

first level of Tomb Raider I looks a lot smoother on v2 GPUs. This bug was presumably

already fixed on the v1 prototype GPU (unconfirmed).

The cropped colors are looking a bit as if dithering would be disabled (although,

technically dithering works fine, but due to the crippled color input, it's always using the

same dither pattern per 8 intensities, instead of using 8 different dither patterns).

Memory/Rendering Timings

The v0 GPU uses two Dual-ported VRAM chips (each with two 16bit databusses, one for

CPU/DMA/rendering access, and one for output to the video DAC). The New GPU uses s

normal DRAM chip (with single 32bit databus).

The exact timing differences are unknown, but the different memory types should result

in quite different timings:

The v0 GPU might perform better on non-32bit aligned accesses, and on memory

accesses performed simultaneously with DAC output.

On the other hand, the v2 GPU's DRAM seems to be faster in some cases (for example,

during Vblank, it's fast enough to perform DMA's with blksiz>10h, which exceeds the

GPU's FIFO size, and causes lost data on v0 GPUs).

X/Y-Flip and PSone 2 MB VRAM

The X/Y-flipping feature may be used by arcade games (provided that the arcade board

is fitted with v2 GPUs). The flipping feature does also work on retail consoles with v2

GPUs, but PSX games should never use that feature (for maintaining compatiblity with

older PSX consoles).

Some PSone consoles seem to be fitted with 2 MB VRAM chips (maybe because smaller

chips had not been in production anymore), but only the first 1 MB region is accessible.

However, as all PSone models use a v2 GPU which supports 2 MB VRAM, it should be

possible to rewire the chip selects to make the upper half accessible.

4.10 GPU Versions

- 47/1136 -

GPU Detection (and optional VRAM size switching)

Below is slightly customized GPU Detection function taken from Perfect Assassin (the

index7 latching works ONLY on v1/v2 GPUs, whilst v0 GPUs would leave the latched

value unchanged; as a workaround, the index4 latching is used to ensure that the latch

won't contain 000002h on v0 GPUs, assuming that index4 is never set to 000002h).

GP0(02h) FillVram

The FillVram command does normally ignore the lower 4bit of the x-coordinate (and

software should always set those bits to zero). However, if the 4bits are all set, then the

old v0 GPU does write each 2nd pixel to wrong memory address. For example, a 32x4

pixel fill produces following results for x=0..1Fh:

 [1F801814h]=10000004h ;GP1(10h).index4 (latch draw area bottom right)
 [1F801814h]=10000007h ;GP1(10h).index7 (latch GPU version, if any)
 if ([1F801810h] AND 00FFFFFFh)=00000002h then goto @@gpu_v2
 [1F801810h]=([1F801814h] AND 3FFFh) OR E1001000h ;change GPUSTAT via GP0(E1h)
 dummy=[1F801810h] ;dummy read (unknown purpose)
 if ([1F801814h] AND 00001000h) then goto @@gpu_v1 else goto @@gpu_v0
 ;---
 @@gpu_v0:
 return 0
 ;---
 @@gpu_v1:
 if want_2mb_vram then [1F801814h]=20000504h ;GP1(20h)
 return 1
 ;---
 @@gpu_v2:
 if want_2mb_vram then [1F801814h]=09000001h ;GP1(09h)
 return 2

 0h 10h 20h 30h 40h
 | | | | |
 ################################ ;\x=00h..0Eh
 ################################ ; and, x=0Fh
 ################################ ; on v2 GPU
 ################################ ;/
 # # # # # # # ################## # # # # # # # ;\
 # # # # # # # ################## # # # # # # # ; x=0Fh
 # # # # # # # ################## # # # # # # # ; on v0 GPU
 # # # # # # # ################## # # # # # # # ;/
 ################################ ;\x=10h..1Eh
 ################################ ; and, x=1Fh
 ################################ ; on v2 GPU
 ################################ ;/
 # # # # # # # ################## # # # # # # # ;\
 # # # # # # # ################## # # # # # # # ; x=1Fh

4.10 GPU Versions

- 48/1136 -

4.11 GPU Depth Ordering

Absent Depth Buffer

The PlayStation's GPU stores only RGB colors in the framebuffer (ie. unlike modern 3D

processors, it's NOT buffering Depth values; leaving apart the Mask bit, which could be

considered as a tiny 1bit "Depth" or "Priority" value). In fact, the GPU supports only X,Y

coordinates, and it's totally unaware of Z coordinates. So, when rendering a polygon,

the hardware CANNOT determine which of the new pixels are in front/behind of the old

pixels in the buffer.

Simple Ordering

The rendering simply takes place in the ordering as the data is sent to the GPU (ie. the

most distant objects should be sent first). For 2D graphics, it's fairly easy follow that

order (eg. even multi-layer 2D graphics can be using DMA2-continous mode).

Depth Ordering Table (OT)

For 3D graphics, the ordering of the polygons may change more or less randomly (eg.

when rotating/moving the camera). To solve that problem, the whole rendering data is

usually first stored in a Depth Ordering Table (OT) in Main RAM, and, once when all

polygons have been stored in the OT, the OT is sent to the GPU via "DMA2-linked-list"

mode.

Initializing an empty OT (via DMA6)

DMA channel 6 can be used to set up an empty linked list, in which each entry points to

the previous:

Each entry has a size of 00h words (upper 8bit), and a pointer to the previous entry

(lower 24bit). With the above Example values, the generated table would look like so:

 # # # # # # # ################## # # # # # # # ; on v0 GPU
 # # # # # # # ################## # # # # # # # ;/

 DPCR - enable bits ;Example=x8xxxxxxh
 D6_MADR - pointer to the LAST table entry ;Example=8012300Ch
 D6_BCR - number of list entries ;Example=00000004h
 D6_CHCR - control bits (should be 11000002h) ;Example=11000002h

4.11 GPU Depth Ordering

- 49/1136 -

Inserting Entries (Passing GTE data to the OT) (by software)

The GTE commands AVSZ3 and AVSZ4 can be used to calculate the Average Z

coordinates of a polygon (based on its three or four Z coordinates). The result is

returned as a 16bit Z value in GTE register OTZ, the commands do also allow to divide

the result, to make it less than 16bit (the full 16bit would require an OT of 256KBytes -

for the EMPTY table, which would be a waste of memory, and which would slowdown the

DMA2/DMA6 operations) (on the other hand, a smaller table means less depth

resolution).

If there's been already an entry (at the same OTZ index), then the new polygon will be

processed first (ie. it will appear "behind" of the old entry).

Not sure if the packet size must be limited to max N=16 words (ie. as for the DMA2-

continous block size) (due to GP0 FIFO size limits)?

Sending the OT to the GPU (via DMA2-linked-list mode)

4.12 GPU Video Memory (VRAM)

Framebuffer

The framebuffer contains the image that is to be output to the Television Set. The GPU

supports 10 resolutions, with 16bit or 24bit per pixel.

 [80123000h]=00FFFFFFh ;1st entry, points to end code (xxFFFFFFh)
 [80123004h]=00123000h ;2nd entry, points to 1st entry
 [80123008h]=00123004h ;3rd entry, points to 2nd entry
 [8012300Ch]=00123008h ;last entry, points to 3rd entry (table entrypoint)

 [PacketAddr+0] = [80123000h+OTZ*4] + (N SHL 24) <--internal link chain
 [PacketAddr+4..N*4] = GP0 Command(s) and Parameters <--data (send to GP0)
 [80123000h+OTZ*4] = PacketAddr AND FFFFFFh <--internal link chain

 1 - Wait until GPU is ready to receive commands ;GPUSTAT.28
 2 - Enable DMA channel 2 ;DPCR
 3 - Set GPU to DMA cpu->gpu mode ;[GP1]=04000002h aka GP1(04h)
 3 - Set D2_MADR to the start of the list ;(LAST Entry) ;Example=80123010h
 4 - Set D2_BCR to zero ;(length unused, end at END-CODE)
 5 - Set D2_CHCR to link mode, mem->GPU and dma enable ;=01000401h

4.12 GPU Video Memory (VRAM)

- 50/1136 -

Note: In most cases, you'll need TWO framebuffers (one being displayed, and used as

rendering target) (unless you are able to draw the whole new image during vblank, or

unless when using single-layer 2D graphics). So, resolutions that occupy more than 512K

would exceed the available 1MB VRAM when using 2 buffers. Also, high resolutions mean

higher rendering load, and less texture memory.

Note: The 24bit pixels occupy 3 bytes (not 4 bytes with unused MSBs), so each 6 bytes

contain two 24bit pixels. The 24bit display mode works only with VRAM transfer

commands like GP0(A0h); the rendering commands GP0(20h..7Fh) cannot output 24bit

data. Ie. 24bit mode is used mostly for MDEC videos (and some 2D games like Heart of

Darkness).

Texture Bitmaps

A texture is an image put on a polygon or sprite. The data of a texture can be stored in

3 different modes:

 Resolution 16bit 24bit | Resolution 16bit 24bit
 256x240 120Kbytes 180Kbytes | 256x480 240Kbytes 360Kbytes
 320x240 150Kbytes 225Kbytes | 320x480 300Kbytes 450Kbytes
 368x240 xx0Kbytes xx0Kbytes | 368x480 xx0Kbytes xx0Kbytes
 512x240 240Kbytes 360Kbytes | 512x480 480Kbytes 720Kbytes
 640x240 300Kbytes 450Kbytes | 640x480 600Kbytes 900Kbytes

 15bit Direct Display (default) (works with polygons, lines, rectangles)
 0-4 Red (0..31)
 5-9 Green (0..31)
 10-14 Blue (0..31)
 15 Mask flag (0=Normal, 1=Do not allow to overwrite this pixel)
 24bit Direct Display (works ONLY with direct vram transfers)
 0-7 Red (0..255)
 8-15 Green (0..255)
 16-23 Blue (0..255)

 16bit Texture (Direct Color) ;(One 256x256 page = 128Kbytes)
 0-4 Red (0..31) ;\Color 0000h = Fully-transparent
 5-9 Green (0..31) ; Color 0001h..7FFFh = Non-transparent
 10-14 Blue (0..31) ; Color 8000h..FFFFh = Semi-transparent (*)
 15 Semi-transparency Flag ;/(*) or Non-transparent for opaque commands
 8bit Texture (256 Color Palette) ;(One 256x256 page = 64Kbytes)
 0-7 Palette index for 1st pixel (left)
 8-15 Palette index for 2nd pixel (right)
 4bit Texture (16 Color Palette) ;(One 256x256 page = 32Kbytes)
 0-3 Palette index for 1st pixel (left)
 4-7 Palette index for 2nd pixel (middle/left)

4.12 GPU Video Memory (VRAM)

- 51/1136 -

A Texture Page is a 256x256 texel region in VRAM (the Polygon rendering commands are

using Texcoords with 8bit X,Y coordinates, so polygons cannot use textures bigger than

256x256) (the Rectangle rendering commands with width/height parameters could

theoretically use larger textures, but the hardware clips their texture coordinates to 8bit,

too).

The GP0(E2h) Texture Window (aka Texture Repeat) command can be used to reduce the

texture size to less than 256x256 texels.

The Texture Pages can be located in the frame buffer on X multiples of 64 halfwords and Y

multiples of 256 lines.

Texture Palettes - CLUT (Color Lookup Table)

The clut is a the table where the colors are stored for the image data in the CLUT

modes. The pixels of those images are used as indexes to this table. The clut is arranged

in the frame buffer as a 256x1 image for the 8bit clut mode, and a 16x1 image for the

4bit clut mode.

The clut data can be arranged in the frame buffer at X multiples of 16 (X=0,16,32,48,etc)

and anywhere in the Y range of 0-511 (0-1023 if 2 MB VRAM is present).

Texture Color Black Limitations

On the PSX, texture color 0000h is fully-transparent, that means textures cannot contain

Black pixels. However, in some cases, Color 8000h (Black with semi-transparent flag)

can be used, depending on the rendering command:

So, with semi-transparent rendering commands, it isn't possible to use Non-Transparent

Black pixels in textures, the only workaround is to use colors like 0001h (dark red) or

0400h (dark blue). However, on some monitors with particularly high gamma, these

colors might be clearly visible to be brighter than black.

 8-11 Palette index for 3rd pixel (middle/right)
 12-15 Palette index for 4th pixel (right)

 0-4 Red (0..31) ;\Color 0000h = Fully-transparent
 5-9 Green (0..31) ; Color 0001h..7FFFh = Non-transparent
 10-14 Blue (0..31) ; Color 8000h..FFFFh = Semi-transparent (*)
 15 Semi-transparency Flag ;/(*) or Non-transparent for opaque commands

 opaque command, eg. GP0(24h) --> 8000h = Non-Transparent Black
 semi-transp command, eg. GP0(26h) --> 8000h = Semi-Transparent Black

4.12 GPU Video Memory (VRAM)

- 52/1136 -

4.13 GPU Texture Caching

The GPU has 2 Kbyte Texture Cache

There is also a CLUT cache that is preserved between GPU drawing commands. The

CLUT cache is invalidated when different CLUT index values are used or when GP0(01h)

is issued.

If polygons with texture are displayed, the GPU needs to read these from the frame

buffer. This slows down the drawing process, and as a result the number of polygons

that can be drawn in a given timespan. To speed up this process the GPU is equipped

with a texture cache, so a given piece of texture needs not to be read multiple times in

succession.

The texture cache size depends on the color mode used for the textures.

In 4 bit CLUT mode it has a size of 64x64, in 8 bit CLUT it's 32x64 and in 15bitDirect is

32x32. A general speed up can be achieved by setting up textures according to these

sizes. For further speed gain a more precise knowledge of how the cache works is

necessary.

Cache blocks

The texture page is divided into non-overlapping cache blocks, each of a unit size

according to color mode. These cache blocks are tiled within the texture page.

Cache entries

Each cache block is divided into 256 cache entries, which are numbered sequentially,

and are 8 bytes wide. So a cache entry holds 16 4bit clut pixels 8 8bit clut pixels, or 4

15bitdirect pixels.

 +-----+-----+-----+--
 |cache| | |
 |block| |
 | 0| 1 | 2 ..
 +-----+-----+--
 |.. | |

 4bit and 8bit clut: 15bitdirect:
 +----+----+----+----+ +----+----+----+----+----+----+----+----+
 | 0| 1| 2| 3| | 0| 1| 2| 3| 4| 5| 6| 7|
 +----+----+----+----+ +----+----+----+----+----+----+----+----+
 | 4| 5| 6| 7| | 8| 9| a| b| c| d| e| f|
 +----+----+----+----+ +----+----+----+----+----+----+----+----+
 | 8| 9| .. | 10| 11| ..
 +----+----+-- +----+----+--

4.13 GPU Texture Caching

- 53/1136 -

The cache can hold only one cache entry by the same number, so if f.e. a piece of texture

spans multiple cache blocks and it has data on entry 9 of block 1, but also on entry 9 of

block 2, these cannot be in the cache at once.

4.14 GPU Timings

Nominal Video Clock

Consoles will always use the video clock for its region, regardless of the GPU being

configured in NTSC or PAL output mode, because an NTSC console lacks a PAL reference

clock and vice versa. Without modifications for an additional oscillator for the other

region, consoles may experience drift over time when playing content from a different

video region. See vertical refresh rates below.

Vertical Video Timings

Horizontal blanking and vertical blanking signals occur on the video output side as

expected for NTSC/PAL signals. These are not necessarily the same as the timer/interrupt

HBLANK and VBLANK.

Vertical Refresh Rates

 | c| ..| | 18| ..|
 +----+-- +----+--
 | .. | ..

 NTSC video clock = 53.693175 MHz
 PAL video clock = 53.203425 MHz

 263 scanlines per field for NTSC non-interlaced
 262.5 scanlines per field for NTSC interlaced

 314 scanlines per field for PAL non-interlaced
 312.5 scanlines per field for PAL interlaced

 NTSC mode on NTSC video clock
 Interlaced: 59.940 Hz
 Non-interlaced: 59.826 Hz

 PAL mode on PAL video clock
 Interlaced: 50.000 Hz
 Non-interlaced: 49.761 Hz

4.14 GPU Timings

- 54/1136 -

For emulation purposes, it's recommended to use an NTSC video clock when running

NTSC content (or in NTSC mode) and a PAL clock when running PAL content (or in PAL

mode).

TODO: Derivations for vertical refresh rates; horizontal timing notes

Nocash's original GPU Timings notes:

Video Clock

The PSone/PAL video clock is the cpu clock multiplied by 11/7.

For other PSX/PSone PAL/NTSC variants, see:

Pinouts - CLK Pinouts

Vertical Timings

Timer1 can use the hblank signal as input, allowing to count scanlines (unless the display

is configured to 0 pixels width, which would cause an endless hblank). The hblank signal

is generated even during vertical blanking/retrace.

Horizontal Timings

Dotclocks:

 NTSC mode on PAL video clock
 Interlaced: 59.393 Hz
 Non-interlaced: 59.280 Hz

 PAL mode on NTSC video clock
 Interlaced: 50.460 Hz
 Non-interlaced: 50.219 Hz

 CPU Clock = 33.868800MHz (44100Hz*300h)
 Video Clock = 53.222400MHz (44100Hz*300h*11/7)

 PAL: 314 scanlines per frame (13Ah)
 NTSC: 263 scanlines per frame (107h)

 PAL: 3406 video cycles per scanline (or 3406.1 or so?)
 NTSC: 3413 video cycles per scanline (or 3413.6 or so?)

 PSX.256-pix Dotclock = 5.322240MHz (44100Hz*300h*11/7/10)
 PSX.320-pix Dotclock = 6.652800MHz (44100Hz*300h*11/7/8)
 PSX.368-pix Dotclock = 7.603200MHz (44100Hz*300h*11/7/7)

4.14 GPU Timings

- 55/1136 -

Dots per scanline are, depending on horizontal resolution, and on PAL/NTSC:

Timer0 can use the dotclock as input, however, the Timer0 input "ignores" the fractional

portions (in most cases, the values are rounded down, ie. with 340.6 dots/line, the timer

increments only 340 times/line; the only value that is rounded up is 425.75 dots/line) (for

example, due to the rounding, the timer isn't running exactly twice as fast in 512pix/PAL

mode than in 256pix/PAL mode). The dotclock signal is generated even during horizontal/

vertical blanking/retrace.

Frame Rates

Note

Above values include "hidden" dots and scanlines (during horizontal and vertical

blanking/retrace).

4.15 GPU (MISC)

GP0(20h..7Fh) - Render Command Bits

 PSX.512-pix Dotclock = 10.644480MHz (44100Hz*300h*11/7/5)
 PSX.640-pix Dotclock = 13.305600MHz (44100Hz*300h*11/7/4)
 Namco GunCon 385-pix = 8.000000MHz (from 8.00MHz on lightgun PCB)

 320pix/PAL: 3406/8 = 425.75 dots 320pix/NTSC: 3413/8 = 426.625 dots
 640pix/PAL: 3406/4 = 851.5 dots 640pix/NTSC: 3413/4 = 853.25 dots
 256pix/PAL: 3406/10 = 340.6 dots 256pix/NTSC: 3413/10 = 341.3 dots
 512pix/PAL: 3406/5 = 681.2 dots 512pix/NTSC: 3413/5 = 682.6 dots
 368pix/PAL: 3406/7 = 486.5714 dots 368pix/NTSC: 3413/7 = 487.5714 dots

 PAL: 53.222400MHz/314/3406 = ca. 49.76 Hz (ie. almost 50Hz)
 NTSC: 53.222400MHz/263/3413 = ca. 59.29 Hz (ie. almost 60Hz)

 0-23 Color for (first) Vertex (Not for Raw-Texture)
 24 Texture Mode (0=Blended, 1=Raw) (Textured-Polygon/Rect only)
 25 Semi-transparency (0=Off, 1=On) (All Render Types)
 26 Texture Mapping (0=Off, 1=On) (Polygon/Rectangle only)
 27-28 Rect Size (0=Var, 1=1x1, 2=8x8, 3=16x16) (Rectangle only)
 27 Num Vertices (0=Triple, 1=Quad) (Polygon only)
 27 Num Lines (0=Single, 1=Poly) (Line only)
 28 Shading (0=Flat, 1=Gouroud) (Polygon/Line only)
 29-31 Primitive Type (1=Polygon, 2=Line, 3=Rectangle)

4.15 GPU (MISC)

- 56/1136 -

Perspective (in-)correct Rendering

The PSX doesn't support perspective correct rendering: Assume a polygon to be rotated

so that it's right half becomes more distant to the camera, and it's left half becomes

closer. Due to the GTE's perspective division, the right half should appear smaller than

the left half.

The GPU supports only linear interpolations for rendering - that is correct concerning the

X and Y screen coordinates (which are still linear to each other, even after perspective

division, since both are divided by the same value).

However, texture coordinates (and Gouraud shaded colors) are NOT linear to the screen

coordinates, and so, the linear interpolated PSX graphics are often looking rather

distorted, that especially for textures that contain straight lines. For color shading the

problem is less obvious (since shading is kinda blurry anyways).

Perspective correct Rendering

For perspective correct rendering, the polygon's Z-coordinates would be needed to be

passed from the GTE to the GPU, and, the GPU would then need to use that Z-

coordinates to "undo" the perspective division for each pixel (that'd require some

additional memory, and especially a powerful division unit, which isn't implemented in

the hardware).

As a workaround, you can try to reduce the size of your polygons (the interpolation

errors increase in the center region of larger polygons). Reducing the size would be only

required for polygons that occupy a larger screen region (which may vary depending on

the distance to the camera).

Ie. you may check the size AFTER perspective division, if it's too large, then break it into

smaller parts (using the original coordinates, NOT the screen coordinates), and then

pass the fragments to the GTE another time.

Again, perspective correction would be relevant only for certain textures (not for

randomly dithered textures like sand, water, fire, grass, and not for untextured

polygons, and of course not for 2D graphics, so you may exclude those from size

reduction).

24bit RGB to 15bit RGB Dithering (enabled in Texpage attribute)

For dithering, VRAM is broken to 4x4 pixel blocks, depending on the location in that 4x4

pixel region, the corresponding dither offset is added to the 8bit R/G/B values, the result

is saturated to +00h..+FFh, and then divided by 8, resulting in the final 5bit R/G/B

values.

4.15 GPU (MISC)

- 57/1136 -

POLYGONs (triangles/quads) are dithered ONLY if they do use gouraud shading or

modulation.

LINEs are dithered (no matter if they are mono or do use gouraud shading).

RECTs are NOT dithered (no matter if they do use modulation or not).

Shading

The GPU has a shading function, which will scale the color of a primitive to a specified

brightness. There are 2 shading modes: Flat shading, and gouraud shading. Flat shading

is the mode in which one brightness value is specified for the entire primitive. In

Gouraud shading mode, a different brightness value can be given for each vertex of a

primitive, and the brightness between these points is automatically interpolated.

Semi-transparency

When semi-transparency is set for a pixel, the GPU first reads the pixel it wants to write

to, and then calculates the color it will write from the 2 pixels according to the semi-

transparency mode selected. Processing speed is lower in this mode because additional

reading and calculating are necessary. There are 4 semi-transparency modes in the GPU.

For textured primitives using 4-bit or 8-bit textures, bit 15 of each CLUT entry acts as a

semi-transparency flag and determines whether to apply semi-transparency to the pixel

or not. If the semi-transparency flag is off, the new pixel is written to VRAM as-is.

When using additive blending, if a channel's intensity is greater than 255, it gets clamped

to 255 rather than being masked. Similarly, if using subtractive blending and a channel's

intensity ends up being < 0, it's clamped to 0.

 -4 +0 -3 +1 ;\dither offsets for first two scanlines
 +2 -2 +3 -1 ;/
 -3 +1 -4 +0 ;\dither offsets for next two scanlines
 +3 -1 +2 -2 ;/(same as above, but shifted two pixels horizontally)

 B=Back (the old pixel read from the frame buffer)
 F=Front (the new semi-transparent pixel)
 * 0.5 x B + 0.5 x F ;aka B/2+F/2
 * 1.0 x B + 1.0 x F ;aka B+F
 * 1.0 x B - 1.0 x F ;aka B-F
 * 1.0 x B +0.25 x F ;aka B+F/4

4.15 GPU (MISC)

- 58/1136 -

Modulation (also known as Texture Blending)

Modulation is a colour effect that can be applied to textured primitives. For each pixel of

the primitive it combines every colour channel of the fetched texel with the

corresponding channel of the interpolated vertex colour according to this formula

(Assuming all channels are 8-bit).

Using modulation, one can either decrease (if the vertex colour channel value is < 128) or

increase (if it's > 128) the intensity of each colour channel of the texel, which is helpful

for implementing things such as brightness effects.

Using a vertex colour of 0x808080 (ie all channels set to 128) is equivalent to not

applying modulation to the primitive, as shown by the above formula.

"Texture blending" is not meant to be confused with normal blending, ie an operation that

merges the backbuffer colour with the incoming pixel and draws the resulting colour to

the backbuffer. The PS1 has this capability to an extent, using semi-transparency.

Draw to display enable

This will enable/disable any drawing to the area that is currently displayed. Not sure yet

WHY one should want to disable that?

Also not sure HOW and IF it works... the SIZE of the display area is implied by the

screen size - which is horizontally counted in CLOCK CYCLES, so, to obtain the size in

PIXELS, the hardware would require to divide that value by the number of cycles per

pixel, depending on the current resolution...?

finalChannel.rgb = (texel.rgb * vertexColour.rgb) / vec3(128.0)

4.15 GPU (MISC)

- 59/1136 -

5. Geometry Transformation Engine (GTE)

GTE Overview

GTE Registers

GTE Saturation

GTE Opcode Summary

GTE Coordinate Calculation Commands

GTE General Purpose Calculation Commands

GTE Color Calculation Commands

GTE Division Inaccuracy

5.1 GTE Overview

GTE Operation

The GTE doesn't have any memory or I/O ports mapped to the CPU memory bus,

instead, it's solely accessed via coprocessor opcodes:

GTE Load Delay Slots

Using CFC2/MFC2 has a delay of 1 instruction until the GPR is loaded with its new value.

Certain games are sensitive to this, with the notable example of Tekken 2 which will be

filled with broken geometry on emulators which don't emulate this properly.

GTE (memory-?) load and store instructions have a delay of 2 instructions, for any GTE

commands or operations accessing that register. Any? That's wrong!

GTE instructions and functions should not be used in

 mov cop0r12,rt ;-enable/disable COP2 (GTE) via COP0 status register
 mov cop2r0-63,rt ;\write parameters to GTE registers
 mov cop2r0-31,[rs+imm] ;/
 mov cop2cmd,imm25 ;-issue GTE command
 mov rt,cop2r0-63 ;\read results from GTE registers
 mov [rs+imm],cop2r0-31 ;/
 jt cop2flg,dest ;-jump never ;\implemented (no exception), but,
 jf cop2flg,dest ;-jump always ;/flag seems to be always "false"

 - Delay slots of jumps and branches
 - Event handlers or interrupts (sounds like nonsense?) (need push/pop though)

5. Geometry Transformation Engine (GTE)

- 60/1136 -

If an instruction that reads a GTE register or a GTE command is executed before the

current GTE command is finished, the CPU will hold until the instruction has finished. The

number of cycles each GTE instruction takes is shown in the command list.

GTE Command Encoding (COP2 imm25 opcodes)

The MVMVA bits are used only by the MVMVA opcode (the bits are zero for all other

opcodes).

The "sf" and "lm" bits are usually fixed (either set, or cleared, depending on the

command) (for MVMVA, the bits are variable) (also, "sf" can be changed for some

commands like SQR) (although they are usually fixed for most other opcodes, changing

them might have some effect on some/all opcodes)?

GTE Data Register Summary (cop2r0-31)

GTE Control Register Summary (cop2r32-63)

 31-25 Must be 0100101b for "COP2 imm25" instructions
 20-24 Fake GTE Command Number (00h..1Fh) (ignored by hardware)
 19 sf - Shift Fraction in IR registers (0=No fraction, 1=12bit fraction)
 17-18 MVMVA Multiply Matrix (0=Rotation. 1=Light, 2=Color, 3=Reserved)
 15-16 MVMVA Multiply Vector (0=V0, 1=V1, 2=V2, 3=IR/long)
 13-14 MVMVA Translation Vector (0=TR, 1=BK, 2=FC/Bugged, 3=None)
 11-12 Always zero (ignored by hardware)
 10 lm - Saturate IR1,IR2,IR3 result (0=To -8000h..+7FFFh, 1=To 0..+7FFFh)
 6-9 Always zero (ignored by hardware)
 0-5 Real GTE Command Number (00h..3Fh) (used by hardware)

 cop2r0-1 3xS16 VXY0,VZ0 Vector 0 (X,Y,Z)
 cop2r2-3 3xS16 VXY1,VZ1 Vector 1 (X,Y,Z)
 cop2r4-5 3xS16 VXY2,VZ2 Vector 2 (X,Y,Z)
 cop2r6 4xU8 RGBC Color/code value
 cop2r7 1xU16 OTZ Average Z value (for Ordering Table)
 cop2r8 1xS16 IR0 16bit Accumulator (Interpolate)
 cop2r9-11 3xS16 IR1,IR2,IR3 16bit Accumulator (Vector)
 cop2r12-15 6xS16 SXY0,SXY1,SXY2,SXYP Screen XY-coordinate FIFO (3 stages)
 cop2r16-19 4xU16 SZ0,SZ1,SZ2,SZ3 Screen Z-coordinate FIFO (4 stages)
 cop2r20-22 12xU8 RGB0,RGB1,RGB2 Color CRGB-code/color FIFO (3 stages)
 cop2r23 4xU8 (RES1) Prohibited
 cop2r24 1xS32 MAC0 32bit Maths Accumulators (Value)
 cop2r25-27 3xS32 MAC1,MAC2,MAC3 32bit Maths Accumulators (Vector)
 cop2r28-29 1xU15 IRGB,ORGB Convert RGB Color (48bit vs 15bit)
 cop2r30-31 2xS32 LZCS,LZCR Count Leading-Zeroes/Ones (sign bits)

 cop2r32-36 9xS16 RT11RT12,..,RT33 Rotation matrix (3x3) ;cnt0-4
 cop2r37-39 3x 32 TRX,TRY,TRZ Translation vector (X,Y,Z) ;cnt5-7

5.1 GTE Overview

- 61/1136 -

5.2 GTE Registers

Note in some functions format is different from the one that's given here.

Matrix Registers

Each element is 16bit (1bit sign, 3bit integer, 12bit fraction). Reading the last elements

(RT33,L33,LB3) returns the 16bit value sign-expanded to 32bit.

Translation Vector (TR) (Input, R/W?)

Each element is 32bit (1bit sign, 31bit integer).

Used only for MVMVA, RTPS, RTPT commands.

Background Color (BK) (Input?, R/W?)

 cop2r40-44 9xS16 L11L12,..,L33 Light source matrix (3x3) ;cnt8-12
 cop2r45-47 3x 32 RBK,GBK,BBK Background color (R,G,B) ;cnt13-15
 cop2r48-52 9xS16 LR1LR2,..,LB3 Light color matrix source (3x3) ;cnt16-20
 cop2r53-55 3x 32 RFC,GFC,BFC Far color (R,G,B) ;cnt21-23
 cop2r56-57 2x 32 OFX,OFY Screen offset (X,Y) ;cnt24-25
 cop2r58 BuggyU16 H Projection plane distance. ;cnt26
 cop2r59 S16 DQA Depth queing parameter A (coeff) ;cnt27
 cop2r60 32 DQB Depth queing parameter B (offset);cnt28
 cop2r61-62 2xS16 ZSF3,ZSF4 Average Z scale factors ;cnt29-30
 cop2r63 U20 FLAG Returns any calculation errors ;cnt31

 Rotation matrix (RT) Light matrix (LLM) Light Color matrix (LCM)
 cop2r32.lsbs=RT11 cop2r40.lsbs=L11 cop2r48.lsbs=LR1
 cop2r32.msbs=RT12 cop2r40.msbs=L12 cop2r48.msbs=LR2
 cop2r33.lsbs=RT13 cop2r41.lsbs=L13 cop2r49.lsbs=LR3
 cop2r33.msbs=RT21 cop2r41.msbs=L21 cop2r49.msbs=LG1
 cop2r34.lsbs=RT22 cop2r42.lsbs=L22 cop2r50.lsbs=LG2
 cop2r34.msbs=RT23 cop2r42.msbs=L23 cop2r50.msbs=LG3
 cop2r35.lsbs=RT31 cop2r43.lsbs=L31 cop2r51.lsbs=LB1
 cop2r35.msbs=RT32 cop2r43.msbs=L32 cop2r51.msbs=LB2
 cop2r36 =RT33 cop2r44 =L33 cop2r52 =LB3

 cop2r37 (cnt5) - TRX - Translation vector X (R/W?)
 cop2r38 (cnt6) - TRY - Translation vector Y (R/W?)
 cop2r39 (cnt7) - TRZ - Translation vector Z (R/W?)

 cop2r45 (cnt13) - RBK - Background color red component
 cop2r46 (cnt14) - GBK - Background color green component
 cop2r47 (cnt15) - BBK - Background color blue component

5.2 GTE Registers

- 62/1136 -

Each element is 32bit (1bit sign, 19bit integer, 12bit fraction).

Far Color (FC) (Input?) (R/W?)

Each element is 32bit (1bit sign, 27bit integer, 4bit fraction).

Screen Offset and Distance (Input, R/W?)

The X and Y values are each 32bit (1bit sign, 15bit integer, 16bit fraction).

The H value is 16bit unsigned (0bit sign, 16bit integer, 0bit fraction). BUG: When reading

the H register, the hardware does accidently \<sign-expand> the \<unsigned> 16bit

value (ie. values +8000h..+FFFFh are returned as FFFF8000h..FFFFFFFFh) (this bug

applies only to "mov rd,cop2r58" opcodes; the actual calculations via RTPS/RTPT opcodes

are working okay).

The DQA value is only 16bit (1bit sign, 7bit integer, 8bit fraction).

The DQB value is 32bit (1bit sign, 7bit integer, 24bit? fraction).

Used only for RTPS/RTPT commands.

Average Z Registers (ZSF3/ZSF4=Input, R/W?) (OTZ=Result, R)

Used only for AVSZ3/AVSZ4 commands.

Screen XYZ Coordinate FIFOs

 cop2r53 (cnt21) - RFC - Far color red component
 cop2r54 (cnt22) - GFC - Far color green component
 cop2r55 (cnt23) - BFC - Far color blue component

 cop2r56 (cnt24) - OFX - Screen offset X
 cop2r57 (cnt25) - OFY - Screen offset Y
 cop2r58 (cnt26) - H - Projection plane distance
 cop2r59 (cnt27) - DQA - Depth queing parameter A.(coeff.)
 cop2r60 (cnt28) - DQB - Depth queing parameter B.(offset.)

 cop2r61 (cnt29) ZSF3 | 0|ZSF3 1,3,12| Z3 average scale factor (normally 1/3)
 cop2r62 (cnt30) ZSF4 | 0|ZSF4 1,3,12| Z4 average scale factor (normally 1/4)
 cop2r7 OTZ (R) | |OTZ 0,15, 0| Average Z value (for Ordering Table)

 cop2r12 - SXY0 rw|SY0 1,15, 0|SX0 1,15, 0| Screen XY fifo (older)
 cop2r13 - SXY1 rw|SY1 1,15, 0|SX1 1,15, 0| Screen XY fifo (old)
 cop2r14 - SXY2 rw|SY2 1,15, 0|SX2 1,15, 0| Screen XY fifo (new)
 cop2r15 - SXYP rw|SYP 1,15, 0|SXP 1,15, 0| SXY2-mirror with move-on-write
 cop2r16 - SZ0 rw| 0|SZ0 0,16, 0| Screen Z fifo (oldest)
 cop2r17 - SZ1 rw| 0|SZ1 0,16, 0| Screen Z fifo (older)

5.2 GTE Registers

- 63/1136 -

SX,SY,SZ are used as Output for RTPS/RTPT. Additionally, SX,SY are used as Input for

NCLIP, and SZ is used as Input for AVSZ3/AVSZ4.

The SZn Fifo has 4 stages (required for AVSZ4 command), the SXYn Fifo has only 3

stages, and a special mirrored register: SXYP is a mirror of SXY2, the difference is that

writing to SXYP moves SXY2/SXY1 to SXY1/SXY0, whilst writing to SXY2 (or any other

SXYn or SZn registers) changes only the written register, but doesn't move any other Fifo

entries.

16bit Vectors (R/W)

All elements are signed 16bit. The IRn and VZn elements occupy a whole 32bit register,

reading these registers returns the 16bit value sign-expanded to 32bit. Note: IRn can be

also indirectly accessed via IRGB/ORGB registers.

Color Register and Color FIFO

RES1 seems to be unused... looks like an unused Fifo stage... RES1 is read/write-able...

unlike SXYP (for SXYn Fifo) it does not mirror to RGB2, nor does it have a move-on-write

function...

Interpolation Factor

Used as Output for RTPS/RTPT, and as Input for various commands.

XX...

 cop2r18 - SZ2 rw| 0|SZ2 0,16, 0| Screen Z fifo (old)
 cop2r19 - SZ3 rw| 0|SZ3 0,16, 0| Screen Z fifo (new)

 Vector 0 (V0) Vector 1 (V1) Vector 2 (V2) Vector 3 (IR)
 cop2r0.lsbs - VX0 cop2r2.lsbs - VX1 cop2r4.lsbs - VX2 cop2r9 - IR1
 cop2r0.msbs - VY0 cop2r2.msbs - VY1 cop2r4.msbs - VY2 cop2r10 - IR2
 cop2r1 - VZ0 cop2r3 - VZ1 cop2r5 - VZ2 cop2r11 - IR3

 cop2r6 - RGBC rw|CODE |B |G |R | Color/code
 cop2r20 - RGB0 rw|CD0 |B0 |G0 |R0 | Characteristic color fifo.
 cop2r21 - RGB1 rw|CD1 |B1 |G1 |R1 |
 cop2r22 - RGB2 rw|CD2 |B2 |G2 |R2 |
 cop2r23 - (RES1) | | Prohibited

 cop2r8 IR0 rw|Sign |IR0 1, 3,12| Intermediate value 0.

5.2 GTE Registers

- 64/1136 -

XX...

cop2r28 - IRGB - Color conversion Input (R/W)

Expands 5:5:5 bit RGB (range 0..1Fh) to 16:16:16 bit RGB (range 0000h..0F80h).

After writing to IRGB, the result can be read from IR3 after TWO nop's, and from IR1,IR2

after THREE nop's (for uncached code, ONE nop would work). When using IR1,IR2,IR3 as

parameters for GTE commands, similar timing restrictions might apply... depending on

when the specific commands use the parameters?

cop2r29 - ORGB - Color conversion Output (R)

Collapses 16:16:16 bit RGB (range 0000h..0F80h) to 5:5:5 bit RGB (range 0..1Fh).

Negative values (8000h..FFFFh/80h) are saturated to 00h, large positive values (1000h..

7FFFh/80h) are saturated to 1Fh, there are no overflow or saturation flags set in

cop2r63 though.

Any changes to IR1,IR2,IR3 are reflected to this register (and, actually also to IRGB) (ie.

ORGB is simply a read-only mirror of IRGB).

 cop2r24 MAC0 rw|MAC0 1,31,0 | Sum of products value 0

 cop2r25 MAC1 rw|MAC1 1,31,0 | Sum of products value 1
 cop2r26 MAC2 rw|MAC2 1,31,0 | Sum of products value 2
 cop2r27 MAC3 rw|MAC3 1,31,0 | Sum of products value 3

 0-4 Red (0..1Fh) (R/W) ;multiplied by 80h, and written to IR1
 5-9 Green (0..1Fh) (R/W) ;multiplied by 80h, and written to IR2
 10-14 Blue (0..1Fh) (R/W) ;multiplied by 80h, and written to IR3
 15-31 Not used (always zero) (Read only)

 0-4 Red (0..1Fh) (R) ;IR1 divided by 80h, saturated to +00h..+1Fh
 5-9 Green (0..1Fh) (R) ;IR2 divided by 80h, saturated to +00h..+1Fh
 10-14 Blue (0..1Fh) (R) ;IR3 divided by 80h, saturated to +00h..+1Fh
 15-31 Not used (always zero) (Read only)

5.2 GTE Registers

- 65/1136 -

cop2r30 - LZCS - Count Leading Bits Source data (R/W)

cop2r31 - LZCR - Count Leading Bits Result (R)

Reading LZCR returns the leading 0 count of LZCS if LZCS is positive and the leading 1

count of LZCS if LZCS is negative. The results are in range 1..32.

cop2r63 (cnt31) - FLAG - Returns any calculation errors.

See GTE Saturation chapter.

5.3 GTE Saturation

Maths overflows are indicated in FLAG register. In most cases, the result is saturated to

MIN/MAX values (except MAC0,MAC1,MAC2,MAC3 which aren't saturated). For

IR1,IR2,IR3 many commands allow to select the MIN value via "lm" bit of the GTE

opcode (though not all commands, RTPS/RTPT always act as if lm=0).

cop2r63 (cnt31) - FLAG - Returns any calculation errors.

Bit30-12 are read/write-able, ie. they can be set/reset by software, however, that's

normally not required - all bits are automatically reset at the begin of a new GTE

command.

 31 Error Flag (Bit30..23, and 18..13 ORed together) (Read only)
 30 MAC1 Result larger than 43 bits and positive
 29 MAC2 Result larger than 43 bits and positive
 28 MAC3 Result larger than 43 bits and positive
 27 MAC1 Result larger than 43 bits and negative
 26 MAC2 Result larger than 43 bits and negative
 25 MAC3 Result larger than 43 bits and negative
 24 IR1 saturated to +0000h..+7FFFh (lm=1) or to -8000h..+7FFFh (lm=0)
 23 IR2 saturated to +0000h..+7FFFh (lm=1) or to -8000h..+7FFFh (lm=0)
 22 IR3 saturated to +0000h..+7FFFh (lm=1) or to -8000h..+7FFFh (lm=0)
 21 Color-FIFO-R saturated to +00h..+FFh
 20 Color-FIFO-G saturated to +00h..+FFh
 19 Color-FIFO-B saturated to +00h..+FFh
 18 SZ3 or OTZ saturated to +0000h..+FFFFh
 17 Divide overflow. RTPS/RTPT division result saturated to max=1FFFFh
 16 MAC0 Result larger than 31 bits and positive
 15 MAC0 Result larger than 31 bits and negative
 14 SX2 saturated to -0400h..+03FFh
 13 SY2 saturated to -0400h..+03FFh
 12 IR0 saturated to +0000h..+1000h
 0-11 Not used (always zero) (Read only)

5.3 GTE Saturation

- 66/1136 -

Bit31 is apparently intended for RTPS/RTPT commands, since it triggers only on flags that

are affected by these two commands, but even for that commands it's totally useless

since one could as well check if FLAG is nonzero.

Note: Writing 32bit values to 16bit GTE registers by software does not trigger any

overflow/saturation flags (and does not do any saturation), eg. writing 12008900h

(positive 32bit) to a signed 16bit register sets that register to FFFF8900h (negative

16bit).

5.4 GTE Opcode Summary

GTE Command Summary (sorted by Real Opcode bits) (bit0-5)

 Opc Name Clk Expl.
 00h - N/A (modifies similar registers than RTPS...)
 01h RTPS 15 Perspective Transformation single
 0xh - N/A
 06h NCLIP 8 Normal clipping
 0xh - N/A
 0Ch OP(sf) 6 Cross product of 2 vectors
 0xh - N/A
 10h DPCS 8 Depth Cueing single
 11h INTPL 8 Interpolation of a vector and far color vector
 12h MVMVA 8 Multiply vector by matrix and add vector (see below)
 13h NCDS 19 Normal color depth cue single vector
 14h CDP 13 Color Depth Que
 15h - N/A
 16h NCDT 44 Normal color depth cue triple vectors
 1xh - N/A
 1Bh NCCS 17 Normal Color Color single vector
 1Ch CC 11 Color Color
 1Dh - N/A
 1Eh NCS 14 Normal color single
 1Fh - N/A
 20h NCT 30 Normal color triple
 2xh - N/A
 28h SQR(sf)5 Square of vector IR
 29h DCPL 8 Depth Cue Color light
 2Ah DPCT 17 Depth Cueing triple (should be fake=08h, but isn't)
 2xh - N/A
 2Dh AVSZ3 5 Average of three Z values
 2Eh AVSZ4 6 Average of four Z values
 2Fh - N/A
 30h RTPT 23 Perspective Transformation triple
 3xh - N/A
 3Dh GPF(sf)5 General purpose interpolation
 3Eh GPL(sf)5 General purpose interpolation with base
 3Fh NCCT 39 Normal Color Color triple vector

5.4 GTE Opcode Summary

- 67/1136 -

Unknown if/what happens when using the "N/A" opcodes?

GTE Command Summary (sorted by Fake Opcode bits) (bit20-24)

The fake opcode number in bit20-24 has absolutely no effect on the hardware, it seems

to be solely used to (or not to) confuse developers. Having the opcodes sorted by their

fake numbers gives a more or less well arranged list:

For the sort-effect, DCPT should use fake=08h, but Sony seems to have accidently

numbered it fake=0Fh in their devkit (giving it the same fake number as for NCDT). Also,

"Wipeout 2097" accidently uses 0140006h (fake=01h and distorted bit18) instead of

1400006h (fake=14h) for NCLIP.

 Fake Name Clk Expl.
 00h - N/A
 01h RTPS 15 Perspective Transformation single
 02h RTPT 23 Perspective Transformation triple
 03h - N/A
 04h MVMVA 8 Multiply vector by matrix and add vector (see below)
 05h - N/A
 06h DCPL 8 Depth Cue Color light
 07h DPCS 8 Depth Cueing single
 08h DPCT 17 Depth Cueing triple (should be fake=08h, but isn't)
 09h INTPL 8 Interpolation of a vector and far color vector
 0Ah SQR(sf)5 Square of vector IR
 0Bh - N/A
 0Ch NCS 14 Normal color single
 0Dh NCT 30 Normal color triple
 0Eh NCDS 19 Normal color depth cue single vector
 0Fh NCDT 44 Normal color depth cue triple vectors
 10h NCCS 17 Normal Color Color single vector
 11h NCCT 39 Normal Color Color triple vector
 12h CDP 13 Color Depth Que
 13h CC 11 Color Color
 14h NCLIP 8 Normal clipping
 15h AVSZ3 5 Average of three Z values
 16h AVSZ4 6 Average of four Z values
 17h OP(sf) 6 Cross product of 2 vectors
 18h - N/A
 19h GPF(sf)5 General purpose interpolation
 1Ah GPL(sf)5 General purpose interpolation with base
 1Bh - N/A
 1Ch - N/A
 1Dh - N/A
 1Eh - N/A
 1Fh - N/A

5.4 GTE Opcode Summary

- 68/1136 -

Additional Functions

The LZCS/LZCR registers offer a Count-Leading-Zeroes/Leading-Ones function.

The IRGB/ORGB registers allow to convert between 48bit and 15bit RGB colors.

These registers work without needing to send any COP2 commands. However, unlike for

commands (which do automatically halt the CPU when needed), one must insert dummy

opcodes between writing and reading the registers.

5.5 GTE Coordinate Calculation Commands

COP2 0180001h - 15 Cycles - RTPS - Perspective Transformation (single)

COP2 0280030h - 23 Cycles - RTPT - Perspective Transformation (triple)

RTPS performs final Rotate, translate and perspective transformation on vertex V0.

Before writing to the FIFOs, the older entries are moved one stage down. RTPT is same

as RTPS, but repeats for V1 and V2. The "sf" bit should be usually set.

If the result of the "(((H*20000h/SZ3)+1)/2)" division is greater than 1FFFFh, then the

division result is saturated to +1FFFFh, and the divide overflow bit in the FLAG register

gets set; that happens if the vertex is exceeding the "near clip plane", ie. if it is very close

to the camera (SZ3\<=H/2), exactly at the camara position (SZ3=0), or behind the

camera (negative Z coordinates are saturated to SZ3=0). For details on the division, see:

GTE Division Inaccuracy

For "far plane clipping", one can use the SZ3 saturation flag (MaxZ=FFFFh), or the IR3

saturation flag (MaxZ=7FFFh) (eg. used by Wipeout 2097), or one can compare the SZ3

value with any desired MaxZ value by software.

Note: The command does saturate IR1,IR2,IR3 to -8000h..+7FFFh (regardless of lm bit).

When using RTP with sf=0, then the IR3 saturation flag (FLAG.22) gets set \<only> if

"MAC3 SAR 12" exceeds -8000h..+7FFFh (although IR3 is saturated when "MAC3"

exceeds -8000h..+7FFFh).

 IR1 = MAC1 = (TRX*1000h + RT11*VX0 + RT12*VY0 + RT13*VZ0) SAR (sf*12)
 IR2 = MAC2 = (TRY*1000h + RT21*VX0 + RT22*VY0 + RT23*VZ0) SAR (sf*12)
 IR3 = MAC3 = (TRZ*1000h + RT31*VX0 + RT32*VY0 + RT33*VZ0) SAR (sf*12)
 SZ3 = MAC3 SAR ((1-sf)*12) ;ScreenZ FIFO 0..+FFFFh
 MAC0=(((H*20000h/SZ3)+1)/2)*IR1+OFX, SX2=MAC0/10000h ;ScrX FIFO -400h..+3FFh
 MAC0=(((H*20000h/SZ3)+1)/2)*IR2+OFY, SY2=MAC0/10000h ;ScrY FIFO -400h..+3FFh
 MAC0=(((H*20000h/SZ3)+1)/2)*DQA+DQB, IR0=MAC0/1000h ;Depth cueing 0..+1000h

5.5 GTE Coordinate Calculation Commands

- 69/1136 -

COP2 1400006h - 8 Cycles - NCLIP - Normal clipping

The sign of the result indicates whether the polygon coordinates are arranged clockwise

or anticlockwise (ie. whether the front side or backside is visible). If the result is zero,

then it's neither one (ie. the vertices are all arranged in a straight line). Note: The GPU

probably renders straight lines as invisble 0 pixel width lines?

COP2 158002Dh - 5 Cycles - AVSZ3 - Average of three Z values (for Triangles)

COP2 168002Eh - 6 Cycles - AVSZ4 - Average of four Z values (for Quads)

Adds three or four Z values together and multplies them by a fixed point value. The result

can be used as index in the GPU's Ordering Table (OT).

GPU Depth Ordering

The scaling factors would be usually ZSF3=N/30h and ZSF4=N/40h, where "N" is the

number of entries in the OT (max 10000h). SZn and OTZ are unsigned 16bit values, for

whatever reason ZSFn registers are signed 16bit values (negative values would allow a

negative result in MAC0, but would saturate OTZ to zero).

5.6 GTE General Purpose Calculation Commands

COP2 0400012h - 8 Cycles - MVMVA(sf,mx,v,cv,lm)

Multiply vector by matrix and vector addition.

Calculation:

 MAC0 = SX0*SY1 + SX1*SY2 + SX2*SY0 - SX0*SY2 - SX1*SY0 - SX2*SY1

 MAC0 = ZSF3*(SZ1+SZ2+SZ3) ;for AVSZ3
 MAC0 = ZSF4*(SZ0+SZ1+SZ2+SZ3) ;for AVSZ4
 OTZ = MAC0/1000h ;for both (saturated to 0..FFFFh)

 Mx = matrix specified by mx ;RT/LLM/LCM - Rotation, light or color matrix
 Vx = vector specified by v ;V0, V1, V2, or [IR1,IR2,IR3]
 Tx = translation vector specified by cv ;TR or BK or Bugged/FC, or None

 MAC1 = (Tx1*1000h + Mx11*Vx1 + Mx12*Vx2 + Mx13*Vx3) SAR (sf*12)
 MAC2 = (Tx2*1000h + Mx21*Vx1 + Mx22*Vx2 + Mx23*Vx3) SAR (sf*12)
 MAC3 = (Tx3*1000h + Mx31*Vx1 + Mx32*Vx2 + Mx33*Vx3) SAR (sf*12)
 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3]

5.6 GTE General Purpose Calculation Commands

- 70/1136 -

Multiplies a vector with either the rotation matrix, the light matrix or the color matrix and

then adds the translation vector or background color vector.

The GTE also allows selection of the far color vector (FC), but this vector is not added

correctly by the hardware: The return values are reduced to the last portion of the

formula, ie. MAC1=(Mx13*Vx3) SAR (sf*12), and similar for MAC2 and MAC3,

nethertheless, some bits in the FLAG register seem to be adjusted as if the full operation

would have been executed. Setting Mx=3 selects a garbage matrix (with elements -60h,

+60h, IR0, RT13, RT13, RT13, RT22, RT22, RT22).

COP2 0A00428h+sf*80000h - 5 Cycles - SQR(sf) - Square vector

Calculates the square of a vector. The result is, of course, always positive, so the "lm" flag

for negative saturation has no effect.

COP2 170000Ch+sf*80000h - 6 Cycles - OP(sf,lm) - Cross product of 2 vectors

Calculates the cross product of two signed 16bit vectors. Note: D1,D2,D3 are meant to be

the RT11,RT22,RT33 elements of the RT matrix "misused" as vector. lm should be usually

zero.

The official Sony documentation refers to this opcode as the Outer Product, but this is

likely the result of a bad translation from Japanese: " - gaiseki" can be translated to

"cross product", "vector product", or "outer product".

LZCS/LZCR registers - ? Cycles - Count-Leading-Zeroes/Leading-Ones

The LZCS/LZCR registers offer a Count-Leading-Zeroes/Leading-Ones function.

 [MAC1,MAC2,MAC3] = [IR1*IR1,IR2*IR2,IR3*IR3] SHR (sf*12)
 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] ;IR1,IR2,IR3 saturated to max 7FFFh

 [MAC1,MAC2,MAC3] = [IR3*D2-IR2*D3, IR1*D3-IR3*D1, IR2*D1-IR1*D2] SAR (sf*12)
 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] ;copy result

5.6 GTE General Purpose Calculation Commands

- 71/1136 -

5.7 GTE Color Calculation Commands

COP2 0C8041Eh - 14 Cycles - NCS - Normal color (single)

COP2 0D80420h - 30 Cycles - NCT - Normal color (triple)

COP2 108041Bh - 17 Cycles - NCCS - Normal Color Color (single vector)

COP2 118043Fh - 39 Cycles - NCCT - Normal Color Color (triple vector)

COP2 0E80413h - 19 Cycles - NCDS - Normal color depth cue (single vector)

COP2 0F80416h - 44 Cycles - NCDT - Normal color depth cue (triple vectors)

In: V0=Normal vector (for triple variants repeated with V1 and V2), BK=Background

color, RGBC=Primary color/code, LLM=Light matrix, LCM=Color matrix,

IR0=Interpolation value.

COP2 138041Ch - 11 Cycles - CC(lm=1) - Color Color

COP2 1280414h - 13 Cycles - CDP(...) - Color Depth Que

In: [IR1,IR2,IR3]=Vector, RGBC=Primary color/code, LCM=Color matrix,

BK=Background color, and, for CDP, IR0=Interpolation value, FC=Far color.

 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (LLM*V0) SAR (sf*12)
 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12)
 [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 ;<--- for NCDx/NCCx
 [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 ;<--- for NCDx only
 [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12) ;<--- for NCDx/NCCx
 Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3]

 [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12)
 [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4
 [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 ;<--- for CDP only
 [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12)
 Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3]

5.7 GTE Color Calculation Commands

- 72/1136 -

COP2 0680029h - 8 Cycles - DCPL - Depth Cue Color light

COP2 0780010h - 8 Cycles - DPCS - Depth Cueing (single)

COP2 0x8002Ah - 17 Cycles - DPCT - Depth Cueing (triple)

COP2 0980011h - 8 Cycles - INTPL - Interpolation of a vector and far color

In: [IR1,IR2,IR3]=Vector, FC=Far Color, IR0=Interpolation value, CODE=MSB of RGBC,

and, for DCPL, R,G,B=LSBs of RGBC.

DPCT executes thrice, and reads the R,G,B values from RGB0 (ie. reads from the Bottom

of the Color FIFO, instead of from the RGBC register) (the CODE value is kept read from

RGBC as usually), so, after DPCT execution, the RGB0,RGB1,RGB2 Fifo entries are

modified.

COP2 190003Dh - 5 Cycles - GPF(sf,lm) - General purpose Interpolation

COP2 1A0003Eh - 5 Cycles - GPL(sf,?) - General Interpolation with base

Note: Although the SHL in GPL is theoretically undone by the SAR, 44bit overflows can

occur internally when sf=1.

Details on "MAC+(FC-MAC)*IR0"

Note: Above "[IR1,IR2,IR3]=(FC-MAC)" is saturated to -8000h..+7FFFh (ie. as if lm=0),

anyways, further writes to [IR1,IR2,IR3] (within the same command) are saturated as

usually (ie. depening on lm setting).

 [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 ;<--- for DCPL only
 [MAC1,MAC2,MAC3] = [IR1,IR2,IR3] SHL 12 ;<--- for INTPL only
 [MAC1,MAC2,MAC3] = [R,G,B] SHL 16 ;<--- for DPCS/DPCT
 [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0
 [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12)
 Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3]

 [MAC1,MAC2,MAC3] = [0,0,0] ;<--- for GPF only
 [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SHL (sf*12) ;<--- for GPL only
 [MAC1,MAC2,MAC3] = (([IR1,IR2,IR3] * IR0) + [MAC1,MAC2,MAC3]) SAR (sf*12)
 Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3]

 [IR1,IR2,IR3] = (([RFC,GFC,BFC] SHL 12) - [MAC1,MAC2,MAC3]) SAR (sf*12)
 [MAC1,MAC2,MAC3] = (([IR1,IR2,IR3] * IR0) + [MAC1,MAC2,MAC3])

5.7 GTE Color Calculation Commands

- 73/1136 -

Details on "(LLM*V0) SAR (sf*12)" and "(BK*1000h + LCM*IR) SAR (sf*12)"

Works like MVMVA command (see there), but with fixed Tx/Vx/Mx parameters, the sf/lm

bits can be changed and do affect the results (although normally both bits should be set

for use with color matrices).

Notes

The 8bit RGB values written to the top of Color Fifo are the 32bit MACn values divided by

16, and saturated to +00h..+FFh, and of course, the older Fifo entries are moved

downwards. Note that, at the GPU side, the meaning of the RGB values depends on

whether or not texture blending is used (for untextured polygons FFh is max brightness)

(for texture blending FFh is double brightness and 80h is normal brightness).

The 8bit CODE value is intended to contain a GP0(20h..7Fh) Rendering command,

allowing to automatically merge the 8bit command number, with the 24bit color value.

The IRGB/ORGB registers allow to convert between 48bit and 15bit RGB colors.

Although the result of the commands in this chapter is written to the Color FIFO, some

commands like GPF/GPL may be also used for other purposes (eg. to scale or scale/

translate single vertices).

5.8 GTE Division Inaccuracy

GTE Division Inaccuracy (for RTPS/RTPT commands)

Basically, the GTE division does (attempt to) work as so (using 33bit maths):

alternatly, below would give (almost) the same result (using 32bit maths):

in both cases, the result is saturated about as so:

However, the real GTE hardware is using a fast, but less accurate division mechanism

(based on Unsigned Newton-Raphson (UNR) algorithm):

 n = (((H*20000h/SZ3)+1)/2)

 n = ((H*10000h+SZ3/2)/SZ3)

 if n>1FFFFh or division_by_zero then n=1FFFFh, FLAG.Bit17=1, FLAG.Bit31=1

5.8 GTE Division Inaccuracy

- 74/1136 -

the GTE's unr_table[000h..100h] consists of following values:

Above can be generated as "unr_table[i]=min(0,(40000h/(i+100h)+1)/2-101h)".

Some special cases: NNNNh/0001h uses a big multiplier (d=20000h), in practice, this can

occur only for 0000h/0001h and 0001h/0001h (due to the H\<SZ3*2 overflow check).

The min(1FFFFh) limit is needed for cases like FE3Fh/7F20h, F015h/780Bh, etc. (these do

produce UNR result 20000h, and are saturated to 1FFFFh, but without setting overflow

FLAG bits).

 if (H < SZ3*2) then ;check if overflow
 z = count_leading_zeroes(SZ3) ;z=0..0Fh (for 16bit SZ3)
 n = (H SHL z) ;n=0..7FFF8000h
 d = (SZ3 SHL z) ;d=8000h..FFFFh
 u = unr_table[(d-7FC0h) SHR 7] + 101h ;u=200h..101h
 d = ((2000080h - (d * u)) SHR 8) ;d=10000h..0FF01h
 d = ((0000080h + (d * u)) SHR 8) ;d=20000h..10000h
 n = min(1FFFFh, (((n*d) + 8000h) SHR 16)) ;n=0..1FFFFh
 else n = 1FFFFh, FLAG.Bit17=1, FLAG.Bit31=1 ;n=1FFFFh plus overflow flag

 FFh,FDh,FBh,F9h,F7h,F5h,F3h,F1h,EFh,EEh,ECh,EAh,E8h,E6h,E4h,E3h ;\
 E1h,DFh,DDh,DCh,DAh,D8h,D6h,D5h,D3h,D1h,D0h,CEh,CDh,CBh,C9h,C8h ; 00h..3Fh
 C6h,C5h,C3h,C1h,C0h,BEh,BDh,BBh,BAh,B8h,B7h,B5h,B4h,B2h,B1h,B0h ;
 AEh,ADh,ABh,AAh,A9h,A7h,A6h,A4h,A3h,A2h,A0h,9Fh,9Eh,9Ch,9Bh,9Ah ;/
 99h,97h,96h,95h,94h,92h,91h,90h,8Fh,8Dh,8Ch,8Bh,8Ah,89h,87h,86h ;\
 85h,84h,83h,82h,81h,7Fh,7Eh,7Dh,7Ch,7Bh,7Ah,79h,78h,77h,75h,74h ; 40h..7Fh
 73h,72h,71h,70h,6Fh,6Eh,6Dh,6Ch,6Bh,6Ah,69h,68h,67h,66h,65h,64h ;
 63h,62h,61h,60h,5Fh,5Eh,5Dh,5Dh,5Ch,5Bh,5Ah,59h,58h,57h,56h,55h ;/
 54h,53h,53h,52h,51h,50h,4Fh,4Eh,4Dh,4Dh,4Ch,4Bh,4Ah,49h,48h,48h ;\
 47h,46h,45h,44h,43h,43h,42h,41h,40h,3Fh,3Fh,3Eh,3Dh,3Ch,3Ch,3Bh ; 80h..BFh
 3Ah,39h,39h,38h,37h,36h,36h,35h,34h,33h,33h,32h,31h,31h,30h,2Fh ;
 2Eh,2Eh,2Dh,2Ch,2Ch,2Bh,2Ah,2Ah,29h,28h,28h,27h,26h,26h,25h,24h ;/
 24h,23h,22h,22h,21h,20h,20h,1Fh,1Eh,1Eh,1Dh,1Dh,1Ch,1Bh,1Bh,1Ah ;\
 19h,19h,18h,18h,17h,16h,16h,15h,15h,14h,14h,13h,12h,12h,11h,11h ; C0h..FFh
 10h,0Fh,0Fh,0Eh,0Eh,0Dh,0Dh,0Ch,0Ch,0Bh,0Ah,0Ah,09h,09h,08h,08h ;
 07h,07h,06h,06h,05h,05h,04h,04h,03h,03h,02h,02h,01h,01h,00h,00h ;/
 00h ;<-- one extra table entry (for "(d-7FC0h)/80h"=100h) ;-100h

5.8 GTE Division Inaccuracy

- 75/1136 -

6. Macroblock Decoder (MDEC)

The MDEC is a JPEG-style Macroblock Decoder, that can decompress pictures (or a series

of pictures, for being displayed as a movie).

MDEC I/O Ports

MDEC Commands

MDEC Decompression

MDEC Data Format

6.1 MDEC I/O Ports

1F801820h - MDEC0 - MDEC Command/Parameter Register (W)

Used to send command word, followed by parameter words to the MDEC (usually, only

the command word is written to this register, and the parameter words are transferred via

DMA0).

1F801820h.Read - MDEC Data/Response Register (R)

The data is always output as a 8x8 pixel bitmap, so, when manually reading from this

register and using colored 16x16 pixel macroblocks, the data from four 8x8 blocks must

be re-ordered accordingly (usually, the data is received via DMA1, which is doing the re-

ordering automatically). For monochrome 8x8 macroblocks, no re-ordering is needed

(that works with DMA1 too).

1F801824h - MDEC1 - MDEC Status Register (R)

 31-0 Command or Parameters

 31-0 Macroblock Data (or Garbage if there's no data available)

 31 Data-Out Fifo Empty (0=No, 1=Empty)
 30 Data-In Fifo Full (0=No, 1=Full, or Last word received)
 29 Command Busy (0=Ready, 1=Busy receiving or processing parameters)
 28 Data-In Request (set when DMA0 enabled and ready to receive data)
 27 Data-Out Request (set when DMA1 enabled and ready to send data)
 26-25 Data Output Depth (0=4bit, 1=8bit, 2=24bit, 3=15bit) ;CMD.28-27

6. Macroblock Decoder (MDEC)

- 76/1136 -

If there's data in the output fifo, then the Current Block bits are always set to the current

output block number (ie. Y1..Y4; or Y for mono) (this information is apparently passed to

the DMA1 controller, so that it knows if and how it must re-order the data in RAM). If the

output fifo is empty, then the bits indicate the currently processsed incoming block (ie.

Cr,Cb,Y1..Y4; or Y for mono).

1F801824h - MDEC1 - MDEC Control/Reset Register (W)

The data requests are required to be enabled for using DMA (and for reading the request

status flags by software). The Data-Out request acts a bit strange: It gets set when a

block is available, but, it gets cleared after reading the first some words of that block

(nethertheless, one can keep reading the whole block, until the fifo-empty flag gets set).

DMA

MDEC decompression uses a lot of DMA channels,

DMA0 and DMA1 should be usually used with a blocksize of 20h words. If necessary, the

parameters for the MDEC(1) command should be padded with FE00h halfwords to match

the 20h words (40h halfwords) DMA blocksize.

6.2 MDEC Commands

MDEC(1) - Decode Macroblock(s)

 24 Data Output Signed (0=Unsigned, 1=Signed) ;CMD.26
 23 Data Output Bit15 (0=Clear, 1=Set) (for 15bit depth only) ;CMD.25
 22-19 Not used (seems to be always zero)
 18-16 Current Block (0..3=Y1..Y4, 4=Cr, 5=Cb) (or for mono: always 4=Y)
 15-0 Number of Parameter Words remaining minus 1 (FFFFh=None) ;CMD.Bit0-15

 31 Reset MDEC (0=No change, 1=Abort any command, and set status=80040000h)
 30 Enable Data-In Request (0=Disable, 1=Enable DMA0 and Status.bit28)
 29 Enable Data-Out Request (0=Disable, 1=Enable DMA1 and Status.bit27)
 28-0 Unknown/Not used - usually zero

 1) DMA3 (CDROM) to send compressed data from CDROM to RAM
 2) DMA0 (MDEC.In) to send compressed data from RAM to MDEC
 3) DMA1 (MDEC.Out) to send uncompressed macroblocks from MDEC to RAM
 4) DMA2 (GPU) to send uncompressed macroblocks from RAM to GPU

6.2 MDEC Commands

- 77/1136 -

This command is followed by one or more Macroblock parameters (usually, all

macroblocks for the whole image are sent at once).

MDEC(2) - Set Quant Table(s)

The command word is followed by 64 unsigned parameter bytes for the Luminance Quant

Table (used for Y1..Y4), and if Command.Bit0 was set, by another 64 unsigned parameter

bytes for the Color Quant Table (used for Cb and Cr).

MDEC(3) - Set Scale Table

The command is followed by 64 signed halfwords with 14bit fractional part, the values

should be usually/always the same values (based on the standard JPEG constants,

although, MDEC(3) allows to use other values than that constants).

MDEC(0) - No function

This command has no function. Command bits 25-28 are reflected to Status bits 23-26

as usually. Command bits 0-15 are reflected to Status bits 0-15 (similar as the "number

of parameter words" for MDEC(1), but without the "minus 1" effect, and without actually

expecting any parameters).

MDEC(4..7) - Invalid

These commands act identical as MDEC(0).

 31-29 Command (1=decode_macroblock)
 28-27 Data Output Depth (0=4bit, 1=8bit, 2=24bit, 3=15bit) ;STAT.26-25
 26 Data Output Signed (0=Unsigned, 1=Signed) ;STAT.24
 25 Data Output Bit15 (0=Clear, 1=Set) (for 15bit depth only) ;STAT.23
 24-16 Not used (should be zero)
 15-0 Number of Parameter Words (size of compressed data)

 31-29 Command (2=set_iqtab)
 28-1 Not used (should be zero) ;Bit25-28 are copied to STAT.23-26 though
 0 Color (0=Luminance only, 1=Luminance and Color)

 31-29 Command (3=set_scale)
 28-0 Not used (should be zero) ;Bit25-28 are copied to STAT.23-26 though

6.2 MDEC Commands

- 78/1136 -

6.3 MDEC Decompression

decode_colored_macroblock ;MDEC(1) command (at 15bpp or 24bpp depth)

decode_monochrome_macroblock ;MDEC(1) command (at 4bpp or 8bpp depth)

rl_decode_block(blk,src,qt)

fast_idct_core(blk) ;fast "idct_core" version

Fast code with only 80 multiplications, works only if the scaletable from MDEC(3)

command contains standard values (which is the case for all known PSX games).

 rl_decode_block(Crblk,src,iq_uv) ;Cr (low resolution)
 rl_decode_block(Cbblk,src,iq_uv) ;Cb (low resolution)
 rl_decode_block(Yblk,src,iq_y), yuv_to_rgb(0,0) ;Y1 (and upper-left Cr,Cb)
 rl_decode_block(Yblk,src,iq_y), yuv_to_rgb(0,8) ;Y2 (and upper-right Cr,Cb)
 rl_decode_block(Yblk,src,iq_y), yuv_to_rgb(8,0) ;Y3 (and lower-left Cr,Cb)
 rl_decode_block(Yblk,src,iq_y), yuv_to_rgb(8,8) ;Y4 (and lower-right Cr,Cb)

 rl_decode_block(Yblk,src,iq_y), y_to_mono ;Y

 for i=0 to 63, blk[i]=0, next i ;initially zerofill all entries (for skip)
 @@skip:
 n=[src], src=src+2, k=0 ;get first entry, init dest addr k=0
 if n=FE00h then @@skip ;ignore padding (FE00h as first halfword)
 q_scale=(n SHR 10) AND 3Fh ;contains scale value (not "skip" value)
 val=signed10bit(n AND 3FFh)*qt[k] ;calc first value (without q_scale/8) (?)
 @@lop:
 if q_scale=0 then val=signed10bit(n AND 3FFh)*2 ;special mode without qt[k]
 val=minmax(val,-400h,+3FFh) ;saturate to signed 11bit range
 val=val*scalezag[i] ;<-- for "fast_idct_core" only
 if q_scale>0 then blk[zagzig[k]]=val ;store entry (normal case)
 if q_scale=0 then blk[k]=val ;store entry (special, no zigzag)
 n=[src], src=src+2 ;get next entry (or FE00h end code)
 k=k+((n SHR 10) AND 3Fh)+1 ;skip zerofilled entries
 val=(signed10bit(n AND 3FFh)*qt[k]*q_scale+4)/8 ;calc value for next entry
 if k<=63 then jump @@lop ;should end with n=FE00h (that sets k>63)
 idct_core(blk)
 return (with "src" address advanced)

 src=blk, dst=temp_buffer
 for pass=0 to 1
 for i=0 to 7
 if src[(1..7)*8+i]=0 then ;when src[(1..7)*8+i] are all zero:
 dst[i*8+(0..7)]=src[0*8+i] ;quick fill by src[0*8+i]

6.3 MDEC Decompression

- 79/1136 -

real_idct_core(blk) ;low level "idct_core" version

Low level code with 1024 multiplications, using the scaletable from the MDEC(3)

command. Computes dst=src*scaletable (using normal matrix maths, but with "src"

being diagonally mirrored, ie. the matrices are processed column by column, instead of

row by column), repeated with src/dst exchanged.

The "(sum+0fffh)/2000h" part is meant to strip fractional bits, and to round-up the result

if the fraction was BIGGER than 0.5. The hardware appears to be working roughly like

that, still the results aren't perfect.

Maybe the real hardware is doing further roundings in other places, possibly stripping

some fractional bits before summing up "sum", possibly stripping different amounts of

 else
 z10=src[0*8+i]+src[4*8+i], z11=src[0*8+i]-src[4*8+i]
 z13=src[2*8+i]+src[6*8+i], z12=src[2*8+i]-src[6*8+i]
 z12=(1.414213562*z12)-z13 ;=sqrt(2)
 tmp0=z10+z13, tmp3=z10-z13, tmp1=z11+z12, tmp2=z11-z12
 z13=src[3*8+i]+src[5*8+i], z10=src[3*8+i]-src[5*8+i]
 z11=src[1*8+i]+src[7*8+i], z12=src[1*8+i]-src[7*8+i]
 z5 =(1.847759065*(z12-z10)) ;=sqrt(2)*scalefactor[2]
 tmp7=z11+z13
 tmp6=(2.613125930*(z10))+z5-tmp7 ;=scalefactor[2]*2
 tmp5=(1.414213562*(z11-z13))-tmp6 ;=sqrt(2)
 tmp4=(1.082392200*(z12))-z5+tmp5 ;=sqrt(2)/scalefactor[2]
 dst[i*8+0]=tmp0+tmp7, dst[i*8+7]=tmp0-tmp7
 dst[i*8+1]=tmp1+tmp6, dst[i*8+6]=tmp1-tmp6
 dst[i*8+2]=tmp2+tmp5, dst[i*8+5]=tmp2-tmp5
 dst[i*8+4]=tmp3+tmp4, dst[i*8+3]=tmp3-tmp4
 endif
 next i
 swap(src,dst)
 next pass

 src=blk, dst=temp_buffer
 for pass=0 to 1
 for x=0 to 7
 for y=0 to 7
 sum=0
 for z=0 to 7
 sum=sum+src[y+z*8]*(scaletable[x+z*8]/8)
 next z
 dst[x+y*8]=(sum+0fffh)/2000h ;<-- or so?
 next y
 next x
 swap(src,dst)
 next pass

6.3 MDEC Decompression

- 80/1136 -

bits in the two "pass" cycles, and possibly keeping a final fraction passed on to the

y_to_mono stage.

yuv_to_rgb(xx,yy)

Note: The exact fixed point resolution for "yuv_to_rgb" is unknown. And, there's probably

also some 9bit limit (similar as in "y_to_mono").

y_to_mono

set_iqtab ;MDEC(2) command

iqtab_core(iq,src) ;src = 64 unsigned paramter bytes

Note: For "fast_idct_core" one could precalc "iq[i]=src[i]*scalezag[i]", but that would

conflict with the RLE saturation/rounding steps (though those steps aren't actually

required, so a very-fast decoder could omit them).

 for y=0 to 7
 for x=0 to 7
 R=[Crblk+((x+xx)/2)+((y+yy)/2)*8], B=[Cbblk+((x+xx)/2)+((y+yy)/2)*8]
 G=(-0.3437*B)+(-0.7143*R), R=(1.402*R), B=(1.772*B)
 Y=[Yblk+(x)+(y)*8]
 R=MinMax(-128,127,(Y+R))
 G=MinMax(-128,127,(Y+G))
 B=MinMax(-128,127,(Y+B))
 if unsigned then BGR=BGR xor 808080h ;aka add 128 to the R,G,B values
 dst[(x+xx)+(y+yy)*16]=BGR
 next x
 next y

 for i=0 to 63
 Y=[Yblk+i]
 Y=Y AND 1FFh ;clip to signed 9bit range
 Y=MinMax(-128,127,Y) ;saturate from 9bit to signed 8bit range
 if unsigned then Y=Y xor 80h ;aka add 128 to the Y value
 dst[i]=Y
 next i

 iqtab_core(iq_y,src), src=src+64 ;luminance quant table
 if command_word.bit0=1
 iqtab_core(iq_uv,src), src=src+64 ;color quant table (optional)
 endif

 for i=0 to 63, iq[i]=src[i], next i

6.3 MDEC Decompression

- 81/1136 -

scalefactor[0..7] = cos((0..7)*90'/8) ;for [1..7]: multiplied by sqrt(2)

zigzag[0..63] =

scalezag[0..63] (precalulated factors, for "fast_idct_core")

zagzig[0..63] (reversed zigzag table)

set_scale_table: ;MDEC(3) command

This command defines the IDCT scale matrix, which should be usually/always:

Note that the hardware does actually use only the upper 13bit of those 16bit values. The

values are choosen like so,

 1.000000000, 1.387039845, 1.306562965, 1.175875602,
 1.000000000, 0.785694958, 0.541196100, 0.275899379

 0 ,1 ,5 ,6 ,14,15,27,28,
 2 ,4 ,7 ,13,16,26,29,42,
 3 ,8 ,12,17,25,30,41,43,
 9 ,11,18,24,31,40,44,53,
 10,19,23,32,39,45,52,54,
 20,22,33,38,46,51,55,60,
 21,34,37,47,50,56,59,61,
 35,36,48,49,57,58,62,63

 for y=0 to 7
 for x=0 to 7
 scalezag[zigzag[x+y*8]] = scalefactor[x] * scalefactor[y] / 8
 next x
 next y

 for i=0 to 63, zagzig[zigzag[i]]=i, next i

 5A82 5A82 5A82 5A82 5A82 5A82 5A82 5A82
 7D8A 6A6D 471C 18F8 E707 B8E3 9592 8275
 7641 30FB CF04 89BE 89BE CF04 30FB 7641
 6A6D E707 8275 B8E3 471C 7D8A 18F8 9592
 5A82 A57D A57D 5A82 5A82 A57D A57D 5A82
 471C 8275 18F8 6A6D 9592 E707 7D8A B8E3
 30FB 89BE 7641 CF04 CF04 7641 89BE 30FB
 18F8 B8E3 6A6D 8275 7D8A 9592 471C E707

6.3 MDEC Decompression

- 82/1136 -

whereas, s0..s7 = scalefactor[0..7], multiplied by sqrt(2) (ie. by 1.414), and multiplied by

4000h (ie. with 14bit fractional part).

6.4 MDEC Data Format

Colored Macroblocks (16x16 pixels) (in 15bpp or 24bpp depth mode)

Each macroblock consists of six blocks: Two low-resolution blocks with color information

(Cr,Cb) and four full-resolution blocks with luminance (grayscale) information

(Y1,Y2,Y3,Y4). The color blocks are zoomed from 8x8 to 16x16 pixel size, merged with

the luminance blocks, and then converted from YUV to RGB format.

Native PSX files are usually containing vertically arranged Macroblocks (eg. allowing to

send them to the GPU as 16x240 portion) (JPEG-style horizontally arranged Macroblocks

would require to send the data in 16x16 pixel portions to the GPU) (something like

320x16 won't work, since that'd require to wrap from the bottom of the first macroblock

to the top of the next macroblock).

Monochrome Macroblocks (8x8 pixel) (in 4bpp or 8bpp depth mode)

Each macroblock consist of only one block: with luminance (grayscale) information (Y),

the data comes out as such (it isn't converted to RGB).

 +s0 +s0 +s0 +s0 +s0 +s0 +s0 +s0
 +s1 +s3 +s5 +s7 -s7 -s5 -s3 -s1
 +s2 +s6 -s6 -s2 -s2 -s6 +s6 +s2
 +s3 -s7 -s1 -s5 +s5 +s1 +s7 -s3
 +s4 -s4 -s4 +s4 +s4 -s4 -s4 +s4
 +s5 -s1 +s7 +s3 -s3 -s7 +s1 -s5
 +s6 -s2 +s2 -s6 -s6 +s2 -s2 +s6
 +s7 -s5 +s3 -s1 +s1 -s3 +s5 -s7

 .-----. .-----. .-----. .-----.
				Y1	Y2		
Cr	+	Cb	+	--+--	---->	RGB	
				Y3	Y4		
 '-----' '-----' '-----' '-----'

 .--. .--.
 |Y | ----> |Y |
 '--' '--'

6.4 MDEC Data Format

- 83/1136 -

The output is an 8x8 bitmap (not 16x16), so it'd be send to the GPU as 8x8 pixel

rectangle, or multiple blocks at once as 8x240 pixel rectangle. Since the data isn't RGB, it

should be written to Texture memory (and then it can be forwarded to the frame buffer in

form of a texture with monochrome 15bit palette with 32 grayscales). Alternately, one

could convert the 8bpp image to 24bpp by software (this would allow to use 256

grayscales).

Blocks (8x8 pixels)

An (uncompressed) block consists of 64 values, representing 8x8 pixels. The first

(upper-left) value is an absolute value (called "DC" value), the remaining 63 values are

relative to the DC value (called "AC" values). After decompression and zig-zag

reordering, the data in unfiltered horizontally and vertically (IDCT conversion, ie. the

relative "AC" values are converted to absolute "DC" values).

.STR Files

PSX Video files are usually having file extension .STR (for "Streaming").

MDEC vs JPEG

The MDEC data format is very similar to the JPEG file format, the main difference is that

JPEG uses Huffman compressed blocks, whilst MDEC uses Run-Length (RL) compressed

blocks.

The (uncompressed) blocks are same as in JPEGs, using the same zigzag ordering, AC to

DC conversion, and YUV to RGB conversion (ie. the MDEC hardware can be also used to

decompress JPEGs, when handling the file header and huffman decompression by

software).

Some other differences are that MDEC has only 2 fixed-purpose quant tables, whilst

JPEGs \<can> use up to 4 general-purpose quant tables. Also, JPEGs \<can> use other

color resolutions than the 8x8 color info for 16x16 pixels. Whereas, JPEGs \<can> do

that stuff, but most standard JPEG files aren't actually using 4 quant tables, nor higher

color resolution.

Run-Length compressed Blocks

Within each block the DCT information and RLE compressed data is stored:

6.4 MDEC Data Format

- 84/1136 -

DCT (1st value)

DCT data has the quantization factor and the Direct Current (DC) reference.

Contains the absolute DC value (the upper-left value of the 8x8 block).

RLE (Run length data, for 2nd through 64th value)

Example: AC values "000h,000h,123h" would be compressed as "(2 shl 10)+123h".

EOB (End Of Block)

Indicates the end of a 8x8 pixel block, causing the rest of the block to be padded with

zero AC values.

EOB isn't required if the block was already fully defined (up to including blk[63]),

however, most games seem to append EOB to all blocks (although it's just acting as

dummy/padding value in case of fully defined blocks).

Dummy halfwords

Data is sent in units of words (or, when using DMA, even in units of 32-words), which is

making it neccessary to send some dummy halfwords (unless the compressed data size

should match up the transfer unit). The value FE00h can be used as dummy value:

When FE00h appears at the begin of a new block, or after the end of block, then it is

simply ignored by the hardware (if it occurs elsewhere, then it acts as EOB end code, as

described above).

 DCT ;1 halfword
 RLE,RLE,RLE,etc. ;0..63 halfwords
 EOB ;1 halfword

 15-10 Q Quantization factor (6 bits, unsigned)
 9-0 DC Direct Current reference (10 bits, signed)

 15-10 LEN Number of zero AC values to be inserted (6 bits, unsigned)
 9-0 AC Relative AC value (10 bits, signed)

 15-0 End-code (Fixed, FE00h)

6.4 MDEC Data Format

- 85/1136 -

7. Sound Processing Unit (SPU)

SPU Overview

SPU ADPCM Samples

SPU ADPCM Pitch

SPU Volume and ADSR Generator

SPU Voice Flags

SPU Noise Generator

SPU Control and Status Register

SPU Memory Access

SPU Interrupt

SPU Reverb Registers

SPU Reverb Formula

SPU Reverb Examples

SPU Unknown Registers

SPU Internal State Machine from SPU RAM Timing

7.1 SPU Overview

SPU I/O Port Summary

SPU Memory layout (512Kbyte RAM)

 1F801C00h..1F801D7Fh - Voice 0..23 Registers (eight 16bit regs per voice)
 1F801D80h..1F801D87h - SPU Control (volume)
 1F801D88h..1F801D9Fh - Voice 0..23 Flags (six 1bit flags per voice)
 1F801DA2h..1F801DBFh - SPU Control (memory, control, etc.)
 1F801DC0h..1F801DFFh - Reverb configuration area
 1F801E00h..1F801E5Fh - Voice 0..23 Internal Registers
 1F801E60h..1F801E7Fh - Unknown?
 1F801E80h..1F801FFFh - Unused?

 00000h-003FFh CD Audio left (1Kbyte) ;\CD Audio before Volume processing
 00400h-007FFh CD Audio right (1Kbyte) ;/signed 16bit samples at 44.1kHz
 00800h-00BFFh Voice 1 mono (1Kbyte) ;\Voice 1 and 3 after ADSR processing
 00C00h-00FFFh Voice 3 mono (1Kbyte) ;/signed 16bit samples at 44.1kHz
 01000h-xxxxxh ADPCM Samples (first 16bytes usually contain a Sine wave)
 xxxxxh-7FFFFh Reverb work area

7. Sound Processing Unit (SPU)

- 86/1136 -

As shown above, the first 4Kbytes are used as special capture buffers, and, if desired, one

can also use the Reverb hardware to capture output from other voice(s).

The SPU memory is not mapped to the CPU bus, it can be accessed only via I/O, or via

DMA transfers (DMA4).

Voices

The SPU has 24 hardware voices. These voices can be used to reproduce sample data,

noise or can be used as frequency modulator on the next voice. Each voice has it's own

programmable ADSR envelope filter. The main volume can be programmed

independently for left and right output.

Voice Capabilities

All 24 voices are having exactly the same capabilities(?), with the exception that Voice 1

and 3 are having a special Capture feature (see SPU Memory map).

There seems to be no way to produce square waves (without storing a square wavefrom

in memory... although, since SPU RAM isn't connected to the CPU bus, the "useless"

DMA for square wave data wouldn't slowdown the CPU bus)?

Additional Sound Inputs

External Audio can be input (from the Expansion Port?), and the CDROM drive can be

commanded to playback normal Audio CDs (via Play command), or XA-ADPCM sectors

(via Read command), and to pass that data to the SPU.

Mono/Stereo Audio Output

The standard PSX Audio cables have separate Left/Right signals, that is good for stereo

TVs, but, when using a normal mono TV, only one of the two audio signals (Left or

Right) can be connected. PSX programs should thus offer an option to disable stereo

effects, and to output an equal volume to both cables.

Unstable and Delayed I/O

The SPU occasionally seems to "miss" 32bit I/O writes (not sure if that can be fixed by

any Memory Control settings?), a stable workaround is to split each 32bit write into two

16bit writes. The SPU seems to process written values at 44100Hz rate (so it may take

1/44100 seconds (300h clock cycles) until it has actually realized the new value).

7.1 SPU Overview

- 87/1136 -

SPU Bus-Width

The SPU is connected to a 16bit databus. 8bit/16bit/32bit reads and 16bit writes are

implemented; 32bit writes are also supported but seem to be particularly unstable (see

above). However, 8bit writes are NOT implemented: 8bit writes to ODD addresses are

simply ignored (without causing any exceptions), 8bit writes to EVEN addresses are

executed as 16bit writes (e.g. li v0, 12345678h; sb v0, spu_port will write 5678h

instead of 78h).

7.2 SPU ADPCM Samples

The SPU supports only ADPCM compressed samples (uncompressed samples seem to be

totally unsupported; leaving apart that one can write uncompressed 16bit PCM samples

to the Reverb Buffer, which can be then output at 22050Hz, as long as they aren't

overwritten by the hardware).

1F801C06h+N*10h - Voice 0..23 ADPCM Start Address (R/W)

This register holds the sample start address (not the current address, ie. the register

doesn't increment during playback).

Writing to this register has no effect on the currently playing voice.

The start address is copied to the current address upon Key On.

1F801C0Eh+N*10h - Voice 0..23 ADPCM Repeat Address (R/W)

If the hardware finds an ADPCM header with Loop-Start-Bit, then it copies the current

address to the repeat addresss register.

If the hardware finds an ADPCM header with Loop-Stop-Bit, then it copies the repeat

addresss register setting to the current address; that, \<after> playing the current

ADPCM block.

Normally, repeat works automatically via the above start/stop bits, and software doesn't

need to deal with the Repeat Address Register. However, reading from it may be useful to

sense if the hardware has reached a start bit, and writing may be also useful in some

 15-0 Startaddress of sound in Sound buffer (in 8-byte units)

 15-0 Address sample loops to at end (in 8-byte units)

7.2 SPU ADPCM Samples

- 88/1136 -

cases, eg. to redirect a one-shot sample (with stop-bit, but without any start-bits) to a

silent-loop located elsewhere in memory.

Sample Data (SPU-ADPCM)

Samples consist of one or more 16-byte blocks:

Flag Bits (in 2nd byte of ADPCM Header)

Possible combinations for Bit0-1 are:

Looped and One-shot Samples

The Loop Start/End flags in the ADPCM Header allow to play one or more sample

block(s) in a loop, that can be either all block(s) endless repeated, or only the last some

block(s) of the sample.

There's no way to stop the output, so a one-shot sample must be followed by dummy

block (with Loop Start/End flags both set, and all data nibbles set to zero; so that the

block gets endless repeated, but doesn't produce any sound).

SPU-ADPCM vs XA-ADPCM

The PSX supports two ADPCM formats: SPU-ADPCM (as described above), and XA-

ADPCM. XA-ADPCM is decompressed by the CDROM Controller, and sent directly to the

sound mixer, without needing to store the data in SPU RAM, nor needing to use a Voice

 00h Shift/Filter (reportedly same as for CD-XA) (see there)
 01h Flag Bits (see below)
 02h Compressed Data (LSBs=1st Sample, MSBs=2nd Sample)
 03h Compressed Data (LSBs=3rd Sample, MSBs=4th Sample)
 04h Compressed Data (LSBs=5th Sample, MSBs=6th Sample)

 0Fh Compressed Data (LSBs=27th Sample, MSBs=28th Sample)

 0 Loop End (0=No change, 1=Set ENDX flag and Jump to [1F801C0Eh+N*10h])
 1 Loop Repeat (0=Force Release and set ADSR Level to Zero; only if Bit0=1)
 2 Loop Start (0=No change, 1=Copy current address to [1F801C0Eh+N*10h])
 3-7 Unknown (usually 0)

 Code 0 = Normal (continue at next 16-byte block)
 Code 1 = End+Mute (jump to Loop-address, set ENDX flag, Release, Env=0000h)
 Code 2 = Ignored (same as Code 0)
 Code 3 = End+Repeat (jump to Loop-address, set ENDX flag)

7.2 SPU ADPCM Samples

- 89/1136 -

channel.

The actual decompression algorithm is the same for both formats. However, the XA

nibbles are arranged in different order, and XA uses 2x28 nibbles per block (instead of

2x14), XA blocks can contain mono or stereo data, XA supports only two sample rates,

and, XA doesn't support looping.

7.3 SPU ADPCM Pitch

1F801C04h+N*10h - Voice 0..23 ADPCM Sample Rate (R/W) (VxPitch)

Defines the ADPCM sample rate (1000h = 44100Hz). This register (and PMON) does

affect only the ADPCM sample frequency (but not on the Noise frequency, which is defined

- and shared for all voices - in the SPUCNT register).

1F801D90h - Voice 0..23 Pitch Modulation Enable Flags (PMON)

Pitch modulation allows to generate "Frequency Sweep" effects by mis-using the

amplitude from channel (x-1) as pitch factor for channel (x).

For example, output a very loud 1Hz sine-wave on channel 4 (with ADSR volume 4000h,

and with Left/Right volume=0; unless you actually want to output it to the speaker). Then

additionally output a 2kHz sine wave on channel 5 with PMON.Bit5 set. The "2kHz" sound

should then repeatedly sweep within 1kHz..3kHz range (or, for a more decent sweep in

1.8kHz..2.2kHz range, drop the ADSR volume of channel 4).

Pitch Counter

The pitch counter is adjusted at 44100Hz rate as follows:

 0-15 Sample rate (0=stop, 4000h=fastest, 4001h..FFFFh=usually same as 4000h)

 0 Unknown... Unused?
 1-23 Flags for Voice 1..23 (0=Normal, 1=Modulate by Voice 0..22)
 24-31 Not used

 Step = VxPitch ;range +0000h..+FFFFh (0...705.6 kHz)
 IF PMON.Bit(x)=1 AND (x>0) ;pitch modulation enable
 Factor = VxOUTX(x-1) ;range -8000h..+7FFFh (prev voice amplitude)
 Factor = Factor+8000h ;range +0000h..+FFFFh (factor = 0.00 .. 1.99)
 Step=SignExpand16to32(Step) ;hardware glitch on VxPitch>7FFFh, make sign
 Step = (Step * Factor) SAR 15 ;range 0..1FFFFh (glitchy if VxPitch>7FFFh)

7.3 SPU ADPCM Pitch

- 90/1136 -

Counter.Bit12 and up indicates the current sample (within a ADPCM block).

Counter.Bit4..11 are used as 8bit gaussian interpolation index.

Maximum Sound Frequency

The Mixer and DAC supports a 44.1kHz output rate (allowing to produce max 22.1kHz

tones). The Reverb unit supports only half the frequency.

The pitch counter supports sample rates up to 176.4kHz. However, exceeding the

44.1kHz limit causes the hardware to skip samples (or actually: to apply incomplete

interpolation on the 'skipped' samples).

VxPitch can be theoretically 0..FFFFh (max 705.6kHz), normally 4000h..FFFFh are

simply clipped to max=4000h (176.4kHz). Except, 4000h..FFFFh could be used with

pitch modulation (as they are multiplied by 0.00..1.99 before clipping; in practice this

works only for 4000h..7FFFh; as values 8000h..FFFFh are mistaken as signed values).

4-Point Gaussian Interpolation

Interpolation is applied on the 4 most recent 16bit ADPCM samples

(new,old,older,oldest), using bit4-11 of the pitch counter as 8bit interpolation index

(i=00h..FFh):

The Gauss table contains the following values (in hex):

 Step=Step AND 0000FFFFh ;hardware glitch on VxPitch>7FFFh, kill sign
 IF Step>3FFFh then Step=4000h ;range +0000h..+3FFFh (0.. 176.4kHz)
 Counter = Counter + Step

 out = ((gauss[0FFh-i] * oldest) SAR 15)
 out = out + ((gauss[1FFh-i] * older) SAR 15)
 out = out + ((gauss[100h+i] * old) SAR 15)
 out = out + ((gauss[000h+i] * new) SAR 15)

 -001h,-001h,-001h,-001h,-001h,-001h,-001h,-001h ;\
 -001h,-001h,-001h,-001h,-001h,-001h,-001h,-001h ;
 0000h,0000h,0000h,0000h,0000h,0000h,0000h,0001h ;
 0001h,0001h,0001h,0002h,0002h,0002h,0003h,0003h ;
 0003h,0004h,0004h,0005h,0005h,0006h,0007h,0007h ;
 0008h,0009h,0009h,000Ah,000Bh,000Ch,000Dh,000Eh ;
 000Fh,0010h,0011h,0012h,0013h,0015h,0016h,0018h ; entry
 0019h,001Bh,001Ch,001Eh,0020h,0021h,0023h,0025h ; 000h..07Fh
 0027h,0029h,002Ch,002Eh,0030h,0033h,0035h,0038h ;
 003Ah,003Dh,0040h,0043h,0046h,0049h,004Dh,0050h ;
 0054h,0057h,005Bh,005Fh,0063h,0067h,006Bh,006Fh ;
 0074h,0078h,007Dh,0082h,0087h,008Ch,0091h,0096h ;
 009Ch,00A1h,00A7h,00ADh,00B3h,00BAh,00C0h,00C7h ;

7.3 SPU ADPCM Pitch

- 91/1136 -

 00CDh,00D4h,00DBh,00E3h,00EAh,00F2h,00FAh,0101h ;
 010Ah,0112h,011Bh,0123h,012Ch,0135h,013Fh,0148h ;
 0152h,015Ch,0166h,0171h,017Bh,0186h,0191h,019Ch ;/
 01A8h,01B4h,01C0h,01CCh,01D9h,01E5h,01F2h,0200h ;\
 020Dh,021Bh,0229h,0237h,0246h,0255h,0264h,0273h ;
 0283h,0293h,02A3h,02B4h,02C4h,02D6h,02E7h,02F9h ;
 030Bh,031Dh,0330h,0343h,0356h,036Ah,037Eh,0392h ;
 03A7h,03BCh,03D1h,03E7h,03FCh,0413h,042Ah,0441h ;
 0458h,0470h,0488h,04A0h,04B9h,04D2h,04ECh,0506h ;
 0520h,053Bh,0556h,0572h,058Eh,05AAh,05C7h,05E4h ; entry
 0601h,061Fh,063Eh,065Ch,067Ch,069Bh,06BBh,06DCh ; 080h..0FFh
 06FDh,071Eh,0740h,0762h,0784h,07A7h,07CBh,07EFh ;
 0813h,0838h,085Dh,0883h,08A9h,08D0h,08F7h,091Eh ;
 0946h,096Fh,0998h,09C1h,09EBh,0A16h,0A40h,0A6Ch ;
 0A98h,0AC4h,0AF1h,0B1Eh,0B4Ch,0B7Ah,0BA9h,0BD8h ;
 0C07h,0C38h,0C68h,0C99h,0CCBh,0CFDh,0D30h,0D63h ;
 0D97h,0DCBh,0E00h,0E35h,0E6Bh,0EA1h,0ED7h,0F0Fh ;
 0F46h,0F7Fh,0FB7h,0FF1h,102Ah,1065h,109Fh,10DBh ;
 1116h,1153h,118Fh,11CDh,120Bh,1249h,1288h,12C7h ;/
 1307h,1347h,1388h,13C9h,140Bh,144Dh,1490h,14D4h ;\
 1517h,155Ch,15A0h,15E6h,162Ch,1672h,16B9h,1700h ;
 1747h,1790h,17D8h,1821h,186Bh,18B5h,1900h,194Bh ;
 1996h,19E2h,1A2Eh,1A7Bh,1AC8h,1B16h,1B64h,1BB3h ;
 1C02h,1C51h,1CA1h,1CF1h,1D42h,1D93h,1DE5h,1E37h ;
 1E89h,1EDCh,1F2Fh,1F82h,1FD6h,202Ah,207Fh,20D4h ;
 2129h,217Fh,21D5h,222Ch,2282h,22DAh,2331h,2389h ; entry
 23E1h,2439h,2492h,24EBh,2545h,259Eh,25F8h,2653h ; 100h..17Fh
 26ADh,2708h,2763h,27BEh,281Ah,2876h,28D2h,292Eh ;
 298Bh,29E7h,2A44h,2AA1h,2AFFh,2B5Ch,2BBAh,2C18h ;
 2C76h,2CD4h,2D33h,2D91h,2DF0h,2E4Fh,2EAEh,2F0Dh ;
 2F6Ch,2FCCh,302Bh,308Bh,30EAh,314Ah,31AAh,3209h ;
 3269h,32C9h,3329h,3389h,33E9h,3449h,34A9h,3509h ;
 3569h,35C9h,3629h,3689h,36E8h,3748h,37A8h,3807h ;
 3867h,38C6h,3926h,3985h,39E4h,3A43h,3AA2h,3B00h ;
 3B5Fh,3BBDh,3C1Bh,3C79h,3CD7h,3D35h,3D92h,3DEFh ;/
 3E4Ch,3EA9h,3F05h,3F62h,3FBDh,4019h,4074h,40D0h ;\
 412Ah,4185h,41DFh,4239h,4292h,42EBh,4344h,439Ch ;
 43F4h,444Ch,44A3h,44FAh,4550h,45A6h,45FCh,4651h ;
 46A6h,46FAh,474Eh,47A1h,47F4h,4846h,4898h,48E9h ;
 493Ah,498Ah,49D9h,4A29h,4A77h,4AC5h,4B13h,4B5Fh ;
 4BACh,4BF7h,4C42h,4C8Dh,4CD7h,4D20h,4D68h,4DB0h ;
 4DF7h,4E3Eh,4E84h,4EC9h,4F0Eh,4F52h,4F95h,4FD7h ; entry
 5019h,505Ah,509Ah,50DAh,5118h,5156h,5194h,51D0h ; 180h..1FFh
 520Ch,5247h,5281h,52BAh,52F3h,532Ah,5361h,5397h ;
 53CCh,5401h,5434h,5467h,5499h,54CAh,54FAh,5529h ;
 5558h,5585h,55B2h,55DEh,5609h,5632h,565Bh,5684h ;
 56ABh,56D1h,56F6h,571Bh,573Eh,5761h,5782h,57A3h ;
 57C3h,57E2h,57FFh,581Ch,5838h,5853h,586Dh,5886h ;
 589Eh,58B5h,58CBh,58E0h,58F4h,5907h,5919h,592Ah ;
 593Ah,5949h,5958h,5965h,5971h,597Ch,5986h,598Fh ;
 5997h,599Eh,59A4h,59A9h,59ADh,59B0h,59B2h,59B3h ;/

7.3 SPU ADPCM Pitch

- 92/1136 -

The PSX table is a bit different as the SNES table: Values up to 3569h are smaller as on

SNES, the remaining values are bigger as on SNES, and the width of the PSX table entries

is 4bit higher as on SNES.

The PSX table is slightly bugged: Theoretically, each four values (gauss[000h+i],

gauss[0FFh-i], gauss[100h+i], gauss[1FFh-i]) should sum up to 8000h, but in practice

they do sum up to 7F7Fh..7F81h (fortunately the PSX sum doesn't exceed the 8000h

limit; meaning that the PSX interpolations won't overflow, which has been a hardware

glitch on the SNES).

Waveform Examples

7.4 SPU Volume and ADSR Generator

1F801C08h+N*10h - Voice 0..23 Attack/Decay/Sustain/Release (ADSR) (32bit)

 Incoming ADPCM Data ---> Interpolated Data
 _ _ _ _
 | | | | | | | | Nibbles=79797979, Filter=0
 | | | | | | | | ---> / \ / \ / \ / \ HALF-volume ZIGZAG-wave
 | |_| |_| |_| |_ ' ' ' '
 ___ ___
 | | | | .'. .'. Nibbles=77997799, Filter=0
 | | | | ---> / \ / \ FULL-volume SINE-wave
 | |___| |___ ' '.' '.
 _______ ___
 | | .' '. Nibbles=77779999, Filter=0
 | | ---> / \ SQUARE wave (with rounded edges)
 | |_______ ' '.____
 _____ _ __
 | |_ _| .' ''. .' Nibbles=7777CC44, Filter=0
 | |___| ---> / '..' CUSTOM wave-form
 | '
 ___ __
 | |___| | _ \ ! / . \ ! / Nibbles=77DE9HZK, Filter=V
 |_ ____| _| ---> - + - + - + - SOLAR STORM wave-form
 __| |______|___ / ! \ ' / ! \

 ____lower 16bit (at 1F801C08h+N*10h)___________________________________
 15 Attack Mode (0=Linear, 1=Exponential)
 - Attack Direction (Fixed, always Increase) (until Level 7FFFh)
 14-10 Attack Shift (0..1Fh = Fast..Slow)
 9-8 Attack Step (0..3 = "+7,+6,+5,+4")
 - Decay Mode (Fixed, always Exponential)
 - Decay Direction (Fixed, always Decrease) (until Sustain Level)
 7-4 Decay Shift (0..0Fh = Fast..Slow)
 - Decay Step (Fixed, always "-8")

7.4 SPU Volume and ADSR Generator

- 93/1136 -

The Attack phase gets started when the software sets the voice ON flag (see below), the

hardware does then automatically go through Attack/Decay/Sustain, and switches from

Sustain to Release when the software sets the Key OFF flag.

1F801D80h - Mainvolume left

1F801D82h - Mainvolume right

1F801C00h+N*10h - Voice 0..23 Volume Left

1F801C02h+N*10h - Voice 0..23 Volume Right

Fixed Volume Mode (when Bit15=0):

Sweep Volume Mode (when Bit15=1):

Sweep is another Volume envelope, additionally to the ADSR volume envelope (unlike

ADSR, sweep can be used for stereo effects, such like blending from left to right).

Sweep starts at the current volume (which can be set via Bit15=0, however, caution - the

Bit15=0 setting isn't applied until the next 44.1kHz cycle; so setting the initial level with

Bit15=0, followed by the sweep parameter with Bit15=1 works only if there's a suitable

delay between the two operations). Once when sweep is started, the current volume level

 3-0 Sustain Level (0..0Fh) ;Level=(N+1)*800h
 ____upper 16bit (at 1F801C0Ah+N*10h)___________________________________
 31 Sustain Mode (0=Linear, 1=Exponential)
 30 Sustain Direction (0=Increase, 1=Decrease) (until Key OFF flag)
 29 Not used? (should be zero)
 28-24 Sustain Shift (0..1Fh = Fast..Slow)
 23-22 Sustain Step (0..3 = "+7,+6,+5,+4" or "-8,-7,-6,-5") (inc/dec)
 21 Release Mode (0=Linear, 1=Exponential)
 - Release Direction (Fixed, always Decrease) (until Level 0000h)
 20-16 Release Shift (0..1Fh = Fast..Slow)
 - Release Step (Fixed, always "-8")

 15 Must be zero (0=Volume Mode)
 0-14 Voice volume/2 (-4000h..+3FFFh = Volume -8000h..+7FFEh)

 15 Must be set (1=Sweep Mode)
 14 Sweep Mode (0=Linear, 1=Exponential)
 13 Sweep Direction (0=Increase, 1=Decrease)
 12 Sweep Phase (0=Positive, 1=Negative)
 7-11 Not used? (should be zero)
 6-2 Sweep Shift (0..1Fh = Fast..Slow)
 1-0 Sweep Step (0..3 = "+7,+6,+5,+4" or "-8,-7,-6,-5") (inc/dec)

7.4 SPU Volume and ADSR Generator

- 94/1136 -

increases to +7FFFh, or decreases to 0000h.

Sweep Phase should be equal to the sign of the current volume (not yet tested, in the

negative mode it does probably "increase" to -7FFFh?). The Phase bit seems to have no

effect in Exponential Decrease mode.

1F801DB0h - CD Audio Input Volume (for normal CD-DA, and compressed XA-ADPCM)

1F801DB4h - External Audio Input Volume

Note: The CDROM controller supports additional CD volume control (including ability to

convert stereo CD output to mono, or to swap left/right channels).

Envelope Operation depending on Shift/Step/Mode/Direction

 0-15 Volume Left (-8000h..+7FFFh)
 16-31 Volume Right (-8000h..+7FFFh)

 ; Precalculation, can be cached on phase begin.
 AdsrStep = 7 - StepValue
 IF Decreasing XOR PhaseNegative THEN
 AdsrStep = NOT AdsrStep ; +7,+6,+5,+4 => -8,-7,-6,-5
 AdsrStep = AdsrStep SHL Max(0,11-ShiftValue)
 CounterIncrement = 8000h SHR Max(0,ShiftValue-11)
 IF exponential AND increase AND AdsrLevel>6000h THEN
 IF ShiftValue < 10 THEN
 AdsrStep /= 4 ; SHR 2
 ELSE IF ShiftValue >= 11 THEN
 CounterIncrement /= 4 ; SHR 2
 ELSE
 AdsrStep /= 4 ; SHR 2
 CounterIncrement /= 4 ; SHR 2
 ELSE IF exponential AND decrease THEN
 AdsrStep=AdsrStep*AdsrLevel/8000h

 IF (StepValue | (ShiftValue SHL 2)) != ALL_BITS THEN
 CounterIncrement = MAX(CounterIncrement, 1)

 ; Runs once per 44.1kHz clock.
 Counter += CounterIncrement
 IF (Counter & 8000h) == 0 THEN
 RETURN ; No step this cycle.

 ; Saturate depending on mode.
 AdsrLevel = AdsrLevel + AdsrStep
 IF NOT decreasing THEN
 AdsrLevel = CLAMP(AdsrLevel, -8000h..+7FFFh)
 ELSE IF PhaseNegative THEN
 AdsrLevel = CLAMP(AdsrLevel, -8000h..0h)

7.4 SPU Volume and ADSR Generator

- 95/1136 -

Exponential Increase is a fake (simply changes to a slower linear increase rate at higher

volume levels).

Phase invert cause the step to be positive in decreasing mode, otherwise negative.

Using a step value of all-ones causes the volume to never step, and additionally never

saturate. i.e. 0x7f, or 0x1f for decay/release.

The step counter has very strange behaviour. Initially this was documented as

AdsrCycles = 1 SHL Max(0,ShiftValue-11) , however, this is incorrect for shift

values above 26. Hardware tests show that a rate of 0x76 behaves like 0x6A, seems it's

dependent on the Bit15=1.

Phase invert acts very strange. If the volume is positive, it will decrease to zero, then

increase back to maximum negative (inverted) volume. Except when decrementing, then

it snaps straight to zero. Simply clamping to int16 range will be fine for incrementing,

because the volume never decreases past zero. If the volume was negative, and is

incrementing, hardware tests show that it only clamps to max, not 0.

Phase inversion is commonly used in "Dolby Surround" for simulating sound effects that

should play through the rear speakers. There are also some cases where it is incorrectly

used, such as Wipeout 3, where it sets a positive volume with an inverted sweep, but

since all the rate bits are set to 1, the volume never steps, and it stays positive. If the

rate had any bits clear, then the volume would slowly decrease to zero, then up to

-8000h, growing louder but with phase inversion.

1F801C0Ch+N*10h - Voice 0..23 Current ADSR volume (R/W)

Reportedly Release can go down to -1 (FFFFh), but that isn't true; and release ends at

0... or does THAT depend on an END flag found in the sample-data?

The register is read/writeable, writing allows to let the ADSR generator to "jump" to a

specific volume level. But, ACTUALLY, the ADSR generator does overwrite the setting

(from another internal register) whenever applying a new Step?!

 ELSE ; decreasing
 AdsrLevel = MAX(AdsrLevel, 0)

 15-0 Current ADSR Volume (0..+7FFFh) (or -8000h..+7FFFh on manual write)

7.4 SPU Volume and ADSR Generator

- 96/1136 -

1F801DB8h - Current Main Volume Left/Right

1F801E00h+voice*04h - Voice 0..23 Current Volume Left/Right

These are internal registers, normally not used by software (the Volume settings are

usually set via Ports 1F801D80h and 1F801C00h+N*10h).

Note

Negative volumes are phase inverted, otherwise same as positive.

7.5 SPU Voice Flags

1F801D88h - Voice 0..23 Key ON (Start Attack/Decay/Sustain) (KON) (W)

Starts the ADSR Envelope, and automatically initializes ADSR Volume to zero, and copies

Voice Start Address to Voice Repeat Address.

1F801D8Ch - Voice 0..23 Key OFF (Start Release) (KOFF) (W)

For a full ADSR pattern, OFF would be usually issued in the Sustain period, however, it

can be issued at any time (eg. to abort Attack, skip the Decay and Sustain periods, and

switch immediately to Release).

1F801D9Ch - Voice 0..23 ON/OFF (status) (ENDX) (R)

The bits get CLEARED when setting the corresponding KEY ON bits.

The bits get SET when reaching an LOOP-END flag in ADPCM header.bit0.

 0-15 Current Volume Left (-8000h..+7FFFh)
 16-31 Current Volume Right (-8000h..+7FFFh)

 0-23 Voice 0..23 On (0=No change, 1=Start Attack/Decay/Sustain)
 24-31 Not used

 0-23 Voice 0..23 Off (0=No change, 1=Start Release)
 24-31 Not used

 0-23 Voice 0..23 Status (0=Newly Keyed On, 1=Reached LOOP-END)
 24-31 Not used

7.5 SPU Voice Flags

- 97/1136 -

R/W

Key On and Key Off should be treated as write-only (although, reading returns the most

recently 32bit value, this doesn't doesn't provide any status information about whether

sound is on or off).

The on/off (status) (ENDX) register should be treated read-only (writing is possible in so

far that the written value can be read-back for a short moment, however, thereafter the

hardware is overwriting that value).

7.6 SPU Noise Generator

1F801D94h - Voice 0..23 Noise mode enable (NON)

SPU Noise Generator

The signed 16bit output Level is calculated as so (repeated at 44.1kHz clock):

Note that the Noise frequency is solely controlled by the Shift/Step values in SPUCNT

register (the ADPCM Sample Rate has absolutely no effect on noise), so when using noise

for multiple voices, all of them are forcefully having the same frequency; the only

workaround is to store a random ADPCM pattern in SPU RAM, which can be then used

with any desired sample rate(s).

7.7 SPU Control and Status Register

1F801DAAh - SPU Control Register (SPUCNT)

 0-23 Voice 0..23 Noise (0=ADPCM, 1=Noise)
 24-31 Not used

 Wait(1 cycle) ;at 44.1kHz clock
 Timer=Timer-NoiseStep ;subtract Step (4..7)
 ParityBit = NoiseLevel.Bit15 xor Bit12 xor Bit11 xor Bit10 xor 1
 IF Timer<0 then NoiseLevel = NoiseLevel*2 + ParityBit
 IF Timer<0 then Timer=Timer+(20000h SHR NoiseShift) ;reload timer once
 IF Timer<0 then Timer=Timer+(20000h SHR NoiseShift) ;reload again if needed

 15 SPU Enable (0=Off, 1=On) (Don't care for CD Audio)
 14 Mute SPU (0=Mute, 1=Unmute) (Don't care for CD Audio)
 13-10 Noise Frequency Shift (0..0Fh = Low .. High Frequency)

7.6 SPU Noise Generator

- 98/1136 -

Changes to bit0-5 aren't applied immediately; after writing to SPUCNT, it'd be usually

recommended to wait until the LSBs of SPUSTAT are updated accordingly. Before setting a

new Transfer Mode, it'd be recommended first to set the "Stop" mode (and, again, wait

until Stop is applied in SPUSTAT).

1F801DAEh - SPU Status Register (SPUSTAT) (R)

When switching SPUCNT to DMA-read mode, status bit9 and bit7 aren't set immediately

(apparently the SPU is first internally collecting the data in the Fifo, before transferring

it).

Bit11 indicates if data is currently written to the first or second half of the four 1K-byte

capture buffers (for CD Audio left/right, and voice 1/3). Note: Bit11 works only if Bit2

and/or Bit3 of Port 1F801DACh are set.

The SPUSTAT register should be treated read-only (writing is possible in so far that the

written value can be read-back for a short moment, however, thereafter the hardware is

overwriting that value).

7.8 SPU Memory Access

1F801DA6h - Sound RAM Data Transfer Address

 9-8 Noise Frequency Step (0..03h = Step "4,5,6,7")
 7 Reverb Master Enable (0=Disabled, 1=Enabled)
 6 IRQ9 Enable (0=Disabled/Acknowledge, 1=Enabled; only when Bit15=1)
 5-4 Sound RAM Transfer Mode (0=Stop, 1=ManualWrite, 2=DMAwrite, 3=DMAread)
 3 External Audio Reverb (0=Off, 1=On)
 2 CD Audio Reverb (0=Off, 1=On) (for CD-DA and XA-ADPCM)
 1 External Audio Enable (0=Off, 1=On)
 0 CD Audio Enable (0=Off, 1=On) (for CD-DA and XA-ADPCM)

 15-12 Unknown/Unused (seems to be usually zero)
 11 Writing to First/Second half of Capture Buffers (0=First, 1=Second)
 10 Data Transfer Busy Flag (0=Ready, 1=Busy)
 9 Data Transfer DMA Read Request (0=No, 1=Yes)
 8 Data Transfer DMA Write Request (0=No, 1=Yes)
 7 Data Transfer DMA Read/Write Request ;seems to be same as SPUCNT.Bit5
 6 IRQ9 Flag (0=No, 1=Interrupt Request)
 5-0 Current SPU Mode (same as SPUCNT.Bit5-0, but, applied a bit delayed)

 15-0 Address in sound buffer divided by eight

7.8 SPU Memory Access

- 99/1136 -

Used for manual write and DMA read/write SPU memory. Writing to this registers stores

the written value in 1F801DA6h, and does additional store the value (multiplied by 8) in

another internal "current address" register (that internal register does increment during

transfers, whilst the 1F801DA6h value DOESN'T increment).

1F801DA8h - Sound RAM Data Transfer Fifo

Used for manual-write. Not sure if it can be also used for manual read?

1F801DACh - Sound RAM Data Transfer Control (should be 0004h)

The Transfer Type selects how data is forwarded from Fifo to SPU RAM:

Rep2 skips the 2nd halfword, Rep4 skips 2nd..4th, Rep8 skips 1st..7th.

Fill uses only the LAST halfword in Fifo, that might be useful for memfill purposes,

although, the length is probably determined by the number of writes to the Fifo (?) so one

must still issue writes for ALL halfwords...?

Note:

The above rather bizarre results apply to WRITE mode. In READ mode, the register

causes the same halfword to be read 2/4/8 times (for rep2/4/8).

SPU RAM Manual Write

Be sure that [1F801DACh] is set to 0004h

Set SPUCNT to "Stop" (and wait until it is applied in SPUSTAT)

Set the transfer address

Write 1..32 halfword(s) to the Fifo

Set SPUCNT to "Manual Write" (and wait until it is applied in SPUSTAT)

 15-0 Data (max 32 halfwords)

 15-4 Unknown/no effect? (should be zero)
 3-1 Sound RAM Data Transfer Type (see below) (should be 2)
 0 Unknown/no effect? (should be zero)

 __Transfer Type___Halfwords in Fifo________Halfwords written to SPU RAM__
 0,1,6,7 Fill A,B,C,D,E,F,G,H,...,X X,X,X,X,X,X,X,X,...
 2 Normal A,B,C,D,E,F,G,H,...,X A,B,C,D,E,F,G,H,...
 3 Rep2 A,B,C,D,E,F,G,H,...,X A,A,C,C,E,E,G,G,...
 4 Rep4 A,B,C,D,E,F,G,H,...,X A,A,A,A,E,E,E,E,...
 5 Rep8 A,B,C,D,E,F,G,H,...,X H,H,H,H,H,H,H,H,...

•

•

•

•

•

7.8 SPU Memory Access

- 100/1136 -

Wait until Transfer Busy in SPUSTAT goes off (that, AFTER above apply-wait)

For multi-block transfers: Repeat the above last three steps (that is rarely done by any

games, but it is done by the BIOS intro; observe that waiting for SPUCNT writes being

applied in SPUSTAT won't work in that case (since SPUCNT was already in manual write

mode from previous block), so one must instead use some hardcoded delay of at least

300h cycles; the BIOS is using a much longer bizarre delay though).

SPU RAM DMA-Write

Be sure that [1F801DACh] is set to 0004h

Set SPUCNT to "Stop" (and wait until it is applied in SPUSTAT)

Set the transfer address

Set SPUCNT to "DMA Write" (and wait until it is applied in SPUSTAT)

Start DMA4 at CPU Side (blocksize=10h, control=01000201h)

Wait until DMA4 finishes (at CPU side)

SPU RAM Manual-Read

As by now, there's no known method for reading SPU RAM without using DMA.

SPU RAM DMA-Read (stable reading, with [1F801014h].bit24-27 = nonzero)

Be sure that [1F801014h] is set to 220931E1h (bit24-27 MUST be nonzero)

Be sure that [1F801DACh] is set to 0004h

Set SPUCNT to "Stop" (and wait until it is applied in SPUSTAT)

Set the transfer address

Set SPUCNT to "DMA Read" (and wait until it is applied in SPUSTAT)

Start DMA4 at CPU Side (blocksize=10h, control=01000200h)

Wait until DMA4 finishes (at CPU side)

SPU RAM DMA-Read (unstable reading, with [1F801014h].bit24-27 = zero)

Below describes some dirt effects and some trickery to get around those dirt effects.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 Below problems (and workarounds) apply ONLY if [1F801014h].bit24-27 = zero.
 Ie. below info describes what happens when [1F801014h] is mis-initialized.
 Normally one should set [1F801014h]=220931E1h (and can ignore below info).

7.8 SPU Memory Access

- 101/1136 -

With [1F801014h].bit24-27=zero, reading SPU RAM via DMA works glitchy:

The first received halfword within each block is FFFFh. So with a DMA blocksize of 10h

words (=20h halfwords), the following is received:

that'd theoretically match the SPU Fifo Size, but, because of the inserted FFFFh value, the

last Fifo entry isn't received, ie. halfword[1Fh,3Fh] are lost. As a workaround, one can

increase the DMA blocksize to 11h words, and then the following is received:

this time, all data is received, but after the transfer one must still remove the FFFFh

values, and the duplicated halfwords by software. Aside from the \<inserted> FFFFh

values there are occassionaly some unstable halfwords ORed by FFFFh (or ORed by other

garbage values), this can be fixed by using "rep2" mode, which does then receive:

again, remove the first halfword (FFFFh) and the last halfword, and, take the duplicated

halfwords ANDed together. Unstable values occur only every 32 halfwords or so (probably

when the SPU is simultaneously reading ADPCM data), but do never occur on two

continous halfwords, so, even if one halfword was ORed by garbage, the other halfword is

always correct, and the result of the ANDed halfwords is 100% stable.

Note: The unstable reading does NOT occur always, when resetting the PSX a couple of

times it does occassionally boot-up with totally stable reading, since there is no known

way to activate the stable "mode" via I/O ports, the stable/unstable behaviour does

eventually depend on internal clock dividers/multipliers, and whether they are starting in

sync with the CPU or not.

Caution: The "rep2" trick cannot be used in combination with reverb (reverb seems to be

using the Port 1F801DACh Sound RAM Data Transfer Control, too).

 1st block: FFFFh, halfwords[00h..1Eh]
 2nd block: FFFFh, halfwords[20h..3Eh]
 etc.

 1st block: FFFFh, halfwords[00h..1Eh], twice halfword[1Fh]
 2nd block: FFFFh, halfwords[20h..3Eh], twice halfword[3Fh]
 etc.

 1st block: FFFFh, halfwords[00h,00h,..0Eh,0Eh], triple halfword[0Fh]
 2nd block: FFFFh, halfwords[10h,10h,..1Eh,1Eh], triple halfword[1Fh]
 etc.

7.8 SPU Memory Access

- 102/1136 -

7.9 SPU Interrupt

1F801DA4h - Sound RAM IRQ Address (IRQ9)

See also: SPUCNT (IRQ enable/disable/acknowledge) and SPUSTAT (IRQ flag).

Voice Interrupt

Triggers an IRQ when a voice reads ADPCM data from the IRQ address.

Mind that ADPCM cannot be stopped (uh, except, probably they CAN be stopped, by

setting the sample rate to zero?), all voices are permanently reading data from SPU RAM

- even in Noise mode, even if the Voice Volume is zero, and even if the ADSR pattern

has finished the Release period - so even inaudible voices can trigger IRQs. To prevent

unwanted IRQs, best set all unused voices to an endless looped dummy ADPCM block.

For stable IRQs, the IRQ address should be aligned to the 16-byte ADPCM blocks. If if

the IRQ address is in the middle of a 16-byte ADPCM block, then the IRQ doesn't seem

to trigger always (unknown why, but it seems to occassionally miss IRQs, even if the

block gets repeated several times).

Capture Interrupt

Setting the IRQ address to 0000h..01FFh (aka byte address 00000h..00FFFh) will trigger

IRQs on writes to the four capture buffers. Each of the four buffers contains 400h bytes

(=200h samples), so the IRQ rate will be around 86.13Hz (44100Hz/200h).

CD-Audio capture is always active (even CD-Audio output is disabld in SPUCNT, and even

if the drive door is open). Voice capture is (probably) also always active (even if the

corresponding voice is off).

Capture IRQs do NOT occur if 1F801DACh.bit3-2 are both zero.

Reverb Interrupt

Reverb is also triggering interrupts if the IRQ address is located in the reverb buffer

area. Unknown \<which> of the various reverb read(s) and/or reverb write(s) are

triggering interrupts.

Data Transfers

Data Transfers (usually via DMA4) to/from SPU-RAM do also trap SPU interrupts.

 15-0 Address in sound buffer divided by eight

7.9 SPU Interrupt

- 103/1136 -

Note

The IRQ Address is used in the following games (not exhaustive): Metal Gear Solid:

Dialogue and Konami intro. Legend of Mana Hercules: the memory card loading screen's

lip sync. Tokimeki Memorial 2 Crash Team Racing: Lip sync, requires capture buffers.

The Misadventures of Tron Bonne: Dialogues. Need For Speed 3: (somewhat?).

7.10 SPU Reverb Registers

Reverb Volume and Address Registers (R/W)

 Port Reg Name Type Expl.
 1F801D84h spu vLOUT volume Reverb Output Volume Left
 1F801D86h spu vROUT volume Reverb Output Volume Right
 1F801DA2h spu mBASE base Reverb Work Area Start Address in Sound RAM
 1F801DC0h rev00 dAPF1 disp Reverb APF Offset 1
 1F801DC2h rev01 dAPF2 disp Reverb APF Offset 2
 1F801DC4h rev02 vIIR volume Reverb Reflection Volume 1
 1F801DC6h rev03 vCOMB1 volume Reverb Comb Volume 1
 1F801DC8h rev04 vCOMB2 volume Reverb Comb Volume 2
 1F801DCAh rev05 vCOMB3 volume Reverb Comb Volume 3
 1F801DCCh rev06 vCOMB4 volume Reverb Comb Volume 4
 1F801DCEh rev07 vWALL volume Reverb Reflection Volume 2
 1F801DD0h rev08 vAPF1 volume Reverb APF Volume 1
 1F801DD2h rev09 vAPF2 volume Reverb APF Volume 2
 1F801DD4h rev0A mLSAME src/dst Reverb Same Side Reflection Address 1 Left
 1F801DD6h rev0B mRSAME src/dst Reverb Same Side Reflection Address 1 Right
 1F801DD8h rev0C mLCOMB1 src Reverb Comb Address 1 Left
 1F801DDAh rev0D mRCOMB1 src Reverb Comb Address 1 Right
 1F801DDCh rev0E mLCOMB2 src Reverb Comb Address 2 Left
 1F801DDEh rev0F mRCOMB2 src Reverb Comb Address 2 Right
 1F801DE0h rev10 dLSAME src Reverb Same Side Reflection Address 2 Left
 1F801DE2h rev11 dRSAME src Reverb Same Side Reflection Address 2 Right
 1F801DE4h rev12 mLDIFF src/dst Reverb Different Side Reflect Address 1 Left
 1F801DE6h rev13 mRDIFF src/dst Reverb Different Side Reflect Address 1 Right
 1F801DE8h rev14 mLCOMB3 src Reverb Comb Address 3 Left
 1F801DEAh rev15 mRCOMB3 src Reverb Comb Address 3 Right
 1F801DECh rev16 mLCOMB4 src Reverb Comb Address 4 Left
 1F801DEEh rev17 mRCOMB4 src Reverb Comb Address 4 Right
 1F801DF0h rev18 dLDIFF src Reverb Different Side Reflect Address 2 Left
 1F801DF2h rev19 dRDIFF src Reverb Different Side Reflect Address 2 Right
 1F801DF4h rev1A mLAPF1 src/dst Reverb APF Address 1 Left
 1F801DF6h rev1B mRAPF1 src/dst Reverb APF Address 1 Right
 1F801DF8h rev1C mLAPF2 src/dst Reverb APF Address 2 Left
 1F801DFAh rev1D mRAPF2 src/dst Reverb APF Address 2 Right
 1F801DFCh rev1E vLIN volume Reverb Input Volume Left
 1F801DFEh rev1F vRIN volume Reverb Input Volume Right

7.10 SPU Reverb Registers

- 104/1136 -

All volume registers are signed 16bit (range -8000h..+7FFFh).

All src/dst/disp/base registers are addresses in SPU memory (divided by 8), src/dst are

relative to the current buffer address, the disp registers are relative to src registers, the

base register defines the start address of the reverb buffer (the end address is fixed, at

7FFFEh). Writing a value to mBASE does additionally set the current buffer address to

that value.

1F801D98h - Voice 0..23 Reverb mode aka Echo On (EON) (R/W)

Sets reverb for the channel. As soon as the sample ends, the reverb for that channel is

turned off... that's fine, but WHEN does it end?

In Reverb mode, the voice seems to output BOTH normal (immediately) AND via Reverb

(delayed).

Reverb Bits in SPUCNT Register (R/W)

The SPUCNT register contains a Reverb Master Enable flag, and Reverb Enable flags for

External Audio input and CD Audio input.

When the Reverb Master Enable flag is cleared, the SPU stops to write any data to the

Reverb buffer (that is useful when zero-filling the reverb buffer; ensuring that already-

zero values aren't overwritten by still-nonzero values).

However, the Reverb Master Enable flag does not disable output from Reverb buffer to

the speakers (that might be useful to output uncompressed 22050Hz samples)

(otherwise, to disable the buffer output, set the Reverb Output volume to zero and/or

zerofill the reverb buffer).

7.11 SPU Reverb Formula

Reverb Formula

 0-23 Voice 0..23 Destination (0=To Mixer, 1=To Mixer and to Reverb)
 24-31 Not used

 ___Input from Mixer (Input volume multiplied with incoming data)_____________
 Lin = vLIN * LeftInput ;from any channels that have Reverb enabled
 Rin = vRIN * RightInput ;from any channels that have Reverb enabled
 ____Same Side Reflection (left-to-left and right-to-right)___________________
 [mLSAME] = (Lin + [dLSAME]*vWALL - [mLSAME-2])*vIIR + [mLSAME-2] ;L-to-L
 [mRSAME] = (Rin + [dRSAME]*vWALL - [mRSAME-2])*vIIR + [mRSAME-2] ;R-to-R
 ___Different Side Reflection (left-to-right and right-to-left)_______________
 [mLDIFF] = (Lin + [dRDIFF]*vWALL - [mLDIFF-2])*vIIR + [mLDIFF-2] ;R-to-L

7.11 SPU Reverb Formula

- 105/1136 -

Notes

The values written to memory are saturated to -8000h..+7FFFh.

The multiplication results are divided by +8000h, to fit them to 16bit range.

All memory addresses are relative to the current BufferAddress, and wrapped within

mBASE..7FFFEh when exceeding that region.

All data in the Reverb buffer consists of signed 16bit samples. The Left and Right Reverb

Buffer addresses should be choosen so that one half of the buffer contains Left samples,

and the other half Right samples (ie. the data is L,L,L,L,... R,R,R,R,...; it is NOT

interlaced like L,R,L,R,...), during operation, when the buffer address increases, the Left

half will overwrite the older samples of the Right half, and vice-versa.

The reverb hardware spends one 44100h cycle on left calculations, and the next 44100h

cycle on right calculations (unlike as shown in the above formula, where left/right are

shown simultaneously at 22050Hz).

Reverb Disable

SPUCNT.bit7 disables writes to reverb buffer, but reads from reverb buffer do still occur.

If vAPF2 is zero then it does simply read "Lout=[mLAPF2-dAPF2]" and "Rout=[mRAPF2-

dAPF2]". If vAPF2 is nonzero then it does additionally use data from APF1, if vAPF1 and

vAPF2 are both nonzero then it's also using data from COMB. However, the SAME/DIFF

stages aren't used when reverb is disabled.

Bug

vIIR works only in range -7FFFh..+7FFFh. When set to -8000h, the multiplication by

-8000h is still done correctly, but, the final result (the value written to memory) gets

 [mRDIFF] = (Rin + [dLDIFF]*vWALL - [mRDIFF-2])*vIIR + [mRDIFF-2] ;L-to-R
 ___Early Echo (Comb Filter, with input from buffer)__________________________
 Lout=vCOMB1*[mLCOMB1]+vCOMB2*[mLCOMB2]+vCOMB3*[mLCOMB3]+vCOMB4*[mLCOMB4]
 Rout=vCOMB1*[mRCOMB1]+vCOMB2*[mRCOMB2]+vCOMB3*[mRCOMB3]+vCOMB4*[mRCOMB4]
 ___Late Reverb APF1 (All Pass Filter 1, with input from COMB)________________
 Lout=Lout-vAPF1*[mLAPF1-dAPF1], [mLAPF1]=Lout, Lout=Lout*vAPF1+[mLAPF1-dAPF1]
 Rout=Rout-vAPF1*[mRAPF1-dAPF1], [mRAPF1]=Rout, Rout=Rout*vAPF1+[mRAPF1-dAPF1]
 ___Late Reverb APF2 (All Pass Filter 2, with input from APF1)________________
 Lout=Lout-vAPF2*[mLAPF2-dAPF2], [mLAPF2]=Lout, Lout=Lout*vAPF2+[mLAPF2-dAPF2]
 Rout=Rout-vAPF2*[mRAPF2-dAPF2], [mRAPF2]=Rout, Rout=Rout*vAPF2+[mRAPF2-dAPF2]
 ___Output to Mixer (Output volume multiplied with input from APF2)___________
 LeftOutput = Lout*vLOUT
 RightOutput = Rout*vROUT
 ___Finally, before repeating the above steps_________________________________
 BufferAddress = MAX(mBASE, (BufferAddress+2) AND 7FFFEh)
 Wait one 22050Hz cycle, then repeat the above stuff

7.11 SPU Reverb Formula

- 106/1136 -

negated (this is a pretty strange feature, it is NOT a simple overflow bug, it does affect

the "+[mLSAME-2]" addition; although that part normally shouldn't be affected by the

"*vIIR" multiplication). Similar effects might (?) occur on some other volume registers

when they are set to -8000h.

Speed of Sound

The speed of sound is circa 340 meters per second (in dry air, at room temperature). For

example, a voice that travels to a wall at 17 meters distance, and back to its origin,

should have a delay of 0.1 seconds.

Reverb Buffer Resampling

Input and output to/from the reverb unit is resampled using a 39-tap FIR filter with the

following coefficients.

7.12 SPU Reverb Examples

Reverb Examples

Below are some Reverb examples, showing the required memory size (ie. set Port

1F801DA2h to "(80000h-size)/8"), and the Reverb register settings for Port

1F801DC0h..1F801DFFh, ie. arranged like so:

Also, don't forget to initialize Port 1F801D84h, 1F801D86h, 1F801D98h, and SPUCNT, and

to zerofill the Reverb Buffer (so that no garbage values are output when activating

reverb). For whatever reason, one MUST also initialize Port 1F801DACh (otherwise reverb

stays off).

 -0001h, 0000h, 0002h, 0000h, -000Ah, 0000h, 0023h, 0000h,
 -0067h, 0000h, 010Ah, 0000h, -0268h, 0000h, 0534h, 0000h,
 -0B90h, 0000h, 2806h, 4000h, 2806h, 0000h, -0B90h, 0000h,
 0534h, 0000h, -0268h, 0000h, 010Ah, 0000h, -0067h, 0000h,
 0023h, 0000h, -000Ah, 0000h, 0002h, 0000h, -0001h,

 dAPF1 dAPF2 vIIR vCOMB1 vCOMB2 vCOMB3 vCOMB4 vWALL ;1F801DC0h..CEh
 vAPF1 vAPF2 mLSAME mRSAME mLCOMB1 mRCOMB1 mLCOMB2 mRCOMB2 ;1F801DD0h..DEh
 dLSAME dRSAME mLDIFF mRDIFF mLCOMB3 mRCOMB3 mLCOMB4 mRCOMB4 ;1F801DE0h..EEh
 dLDIFF dRDIFF mLAPF1 mRAPF1 mLAPF2 mRAPF2 vLIN vRIN ;1F801DF0h..FEh

7.12 SPU Reverb Examples

- 107/1136 -

Room (size=26C0h bytes)

Studio Small (size=1F40h bytes)

Studio Medium (size=4840h bytes)

Studio Large (size=6FE0h bytes)

Hall (size=ADE0h bytes)

Half Echo (size=3C00h bytes)

 007Dh,005Bh,6D80h,54B8h,BED0h,0000h,0000h,BA80h
 5800h,5300h,04D6h,0333h,03F0h,0227h,0374h,01EFh
 0334h,01B5h,0000h,0000h,0000h,0000h,0000h,0000h
 0000h,0000h,01B4h,0136h,00B8h,005Ch,8000h,8000h

 0033h,0025h,70F0h,4FA8h,BCE0h,4410h,C0F0h,9C00h
 5280h,4EC0h,03E4h,031Bh,03A4h,02AFh,0372h,0266h
 031Ch,025Dh,025Ch,018Eh,022Fh,0135h,01D2h,00B7h
 018Fh,00B5h,00B4h,0080h,004Ch,0026h,8000h,8000h

 00B1h,007Fh,70F0h,4FA8h,BCE0h,4510h,BEF0h,B4C0h
 5280h,4EC0h,0904h,076Bh,0824h,065Fh,07A2h,0616h
 076Ch,05EDh,05ECh,042Eh,050Fh,0305h,0462h,02B7h
 042Fh,0265h,0264h,01B2h,0100h,0080h,8000h,8000h

 00E3h,00A9h,6F60h,4FA8h,BCE0h,4510h,BEF0h,A680h
 5680h,52C0h,0DFBh,0B58h,0D09h,0A3Ch,0BD9h,0973h
 0B59h,08DAh,08D9h,05E9h,07ECh,04B0h,06EFh,03D2h
 05EAh,031Dh,031Ch,0238h,0154h,00AAh,8000h,8000h

 01A5h,0139h,6000h,5000h,4C00h,B800h,BC00h,C000h
 6000h,5C00h,15BAh,11BBh,14C2h,10BDh,11BCh,0DC1h
 11C0h,0DC3h,0DC0h,09C1h,0BC4h,07C1h,0A00h,06CDh
 09C2h,05C1h,05C0h,041Ah,0274h,013Ah,8000h,8000h

 0017h,0013h,70F0h,4FA8h,BCE0h,4510h,BEF0h,8500h
 5F80h,54C0h,0371h,02AFh,02E5h,01DFh,02B0h,01D7h
 0358h,026Ah,01D6h,011Eh,012Dh,00B1h,011Fh,0059h
 01A0h,00E3h,0058h,0040h,0028h,0014h,8000h,8000h

7.12 SPU Reverb Examples

- 108/1136 -

Space Echo (size=F6C0h bytes)

Chaos Echo (almost infinite) (size=18040h bytes)

Delay (one-shot echo) (size=18040h bytes)

Reverb off (size=10h dummy bytes)

Note that the memory offsets should be 0001h here (not 0000h), otherwise zerofilling the

reverb buffer seems to fail (maybe because zero memory offsets somehow cause the fill-

value to mixed with the old value or so; that appears even when reverb master enable is

zero). Also, when not using reverb, Port 1F801D84h, 1F801D86h, 1F801D98h, and the

SPUCNT reverb bits should be set to zero.

7.13 SPU Unknown Registers

1F801DA0h - Some kind of a read-only status register.. or just garbage..?

 033Dh,0231h,7E00h,5000h,B400h,B000h,4C00h,B000h
 6000h,5400h,1ED6h,1A31h,1D14h,183Bh,1BC2h,16B2h
 1A32h,15EFh,15EEh,1055h,1334h,0F2Dh,11F6h,0C5Dh
 1056h,0AE1h,0AE0h,07A2h,0464h,0232h,8000h,8000h

 0001h,0001h,7FFFh,7FFFh,0000h,0000h,0000h,8100h
 0000h,0000h,1FFFh,0FFFh,1005h,0005h,0000h,0000h
 1005h,0005h,0000h,0000h,0000h,0000h,0000h,0000h
 0000h,0000h,1004h,1002h,0004h,0002h,8000h,8000h

 0001h,0001h,7FFFh,7FFFh,0000h,0000h,0000h,0000h
 0000h,0000h,1FFFh,0FFFh,1005h,0005h,0000h,0000h
 1005h,0005h,0000h,0000h,0000h,0000h,0000h,0000h
 0000h,0000h,1004h,1002h,0004h,0002h,8000h,8000h

 0000h,0000h,0000h,0000h,0000h,0000h,0000h,0000h
 0000h,0000h,0001h,0001h,0001h,0001h,0001h,0001h
 0000h,0000h,0001h,0001h,0001h,0001h,0001h,0001h
 0000h,0000h,0001h,0001h,0001h,0001h,0000h,0000h

 0-15 Unknown?

7.13 SPU Unknown Registers

- 109/1136 -

Usually 9D78h, occassionaly changes to 17DAh or 108Eh for a short moment.

Other day: Usually 9CF8h, or occassionally 9CFAh.

Another day: Usually 0000h, or occassionally 4000h.

1F801DBCh - 4 bytes - Unknown? (R/W)

Other day (dots = same as above):

1F801E60h - 32 bytes - Unknown? (R/W)

Other day (dots = same as above):

The bytes at 1F801DBCh and 1F801E60h usually have the above values on cold-boot.

The registers are read/write-able, although writing any values to them doesn't seem to

have any effect on sound output. Also, the SPU doesn't seem to modify the registers at

any time during sound output, nor reverb calculations, nor activated external audio

input... the registers seem to be just some kind of general-purpose RAM.

7.14 SPU Internal State Machine from SPU RAM Timing

7.14.1 Introduction

The 33.8 Mhz clock of the PSX is a well chosen value. It is exactly 768 x 44.1 Khz = For

each audio sample in CD quality, there are 768 cycles of system clock. So, the state

machine has to repeat its complete cycle every 768 system clock cycles.

Now the full job to do within those 768 cycles: - 24 channels to process. - Reverb to

compute and write back. - Write back to voice 1 / 3, audio CD L/R. - Do transfer from/to

CPU bus of SPU RAM data if asked.

 80 21 4B DF

 .. 31

 7E 61 A9 96 47 39 F9 1E E1 E1 80 DD E8 17 7F FB
 FB BF 1D 6C 8F EC F3 04 06 23 89 45 C1 6D 31 82

 7B ..
 04 86

7.14 SPU Internal State Machine from SPU RAM Timing

- 110/1136 -

7.14.2 First look at the data from logic analyzer.

By looking at the signal of the SPU RAM chip, it is possible to figure out what it is

reading and writing. - A read or a write to the SPU Ram is happening in 8 clock cycles.

(Did not check in detail, but probably allow refresh and everything) - Each channel is

using 24 cycles. (3 operations of 8 cycles) - Has TWO read for the current ADPCM

block : one to the header of the currently played ADPCM block, one to the current 16 bit

of the ADPCM. - A unrelated READ (see later) - 8 Cycle for each operation : WRITE CD

Left, WRITE CD Right, Voice 1 WRITE, Voice 3 WRITE. - Reverb operations : 14 memory

operations of 8 cycles.

7.14.3 Sequence of work

When doing the analysis from data, it is possible to figure out what are the operations,

in what order they are done. But it is not possible to figure out what is the FIRST

operation in the loop. So we arbitrarely decide to start the loop at 'Voice 1' (voice being

from 1 to 24).

Voice 1

Write CD Left

Write CD Right

Write Voice 1

Write Voice 3

Reverb

Voice 2

Voice 3

Voice 4

...

...

Voice 23

Voice 24

As written earlier, each Voice is 3x RAM access (one unrelated), reverb is 14x RAM

access, then 4x RAM access for the all write.

•

•

•

•

•

•

•

•

•

•

•

•

•

7.14.2 First look at the data from logic analyzer.

- 111/1136 -

7.14.4 What we can guess from those information.

If system wants to keep reverb done in the end, and write in sync against Voice 1 and

3, then the loop would most likely start at Voice 2.

ADPCM decoder has to keep ADPCM decoder internal state about the samples. As the

algorithm depends on the previous value inside a block, it can't do a direct access to a

given sample in the block.

We also understand how reverb is using 22 Khz because of the lack of bandwidth to do

everything in 768 cycles if done at 44.1 Khz.

Even when voices are not active, they always read something. It is possible to guess

that the sample is simply ignored at some point in the data path (volume set to zero

internally or mux not selecting the value). Interestingly, it may be possible if garbage

is introduced in those read, to know how it is cancelled (enabling suddenly the channel

and reading the sample out of the channel 1 or 3) -> DSP keeps history of sample for

Gaussian Interpolation.

7.14.5 Reverb Computation Order

We anticipate that the easiest way in hardware to disable/enable the REVERB function

would be to switch those WRITE into READ.

•

•

•

•

 [Left Side] [Right Side]
READ REVERB dLSame dRSame
READ REVERB mLSame-1 mRSame-1
READ REVERB dRDiff dLDiff
XXXX REVERB mLSame mRSame <-- WRITE becomes READ if REVERB
DISABLED.
READ REVERB mLDiff-1 mRDiff-1
READ REVERB mLComb1 mRComb1
XXXX REVERB mLDiff mRDiff <-- WRITE becomes READ if REVERB
DISABLED.
READ REVERB mLComb2 mRComb2
READ REVERB mLComb3 mRComb3
READ REVERB mLComb4 mRComb4
READ REVERB mLAPF1 - dAPF1 mRAPF1 - dAPF1
READ REVERB mLAPF2 - dAPF2 mRAPF2 - dAPF2
XXXX REVERB mLAPF1 mRAPF1 <-- WRITE becomes READ if REVERB
DISABLED.
XXXX REVERB mLAPF2 mRAPF2 <-- WRITE becomes READ if REVERB
DISABLED.

7.14.4 What we can guess from those information.

- 112/1136 -

7.14.6 Voices

7.14.7 Notes

Remaining cycles.

With 24x8 + 4x8 + 14x8 = 720 cycles out of 768 cycles.

That would mean 6 READ/WRITE should still be possible.

UNRELATED READ in voices : probably used for transfer from [CPU->SPU RAM] or

[SPU RAM->CPU]

That would equate to a transfer performance of 24 x 2 byte x 44100 Khz = 2,116,800

bytes/sec

The fixed READ timing would explain also why CPU can't read directly SPU RAM. As the

SPU need to be the master to push the data.

It only works with DMA waiting for the data to be sent.

Everything is not fully clear yet, testing of SPU with proper tests to validate/invalidate

various assumption. Our finding are based on a logic analyzer log using the PSX boot

sounds, knowing the values of the registers thanks to emulators.

Read Header word in current ADPCM block.
Read Current Sample 16 bit word in current ADPCM block.
Read [UNRELATED ADR ? Not related to current block...]

•

•

•

•

•

•

•

7.14.6 Voices

- 113/1136 -

8. Interrupts

1F801070h I_STAT - Interrupt status register (R=Status, W=Acknowledge)

1F801074h I_MASK - Interrupt mask register (R/W)

Status: Read I_STAT (0=No IRQ, 1=IRQ)

Acknowledge: Write I_STAT (0=Clear Bit, 1=No change)

Mask: Read/Write I_MASK (0=Disabled, 1=Enabled)

Secondary IRQ10 Controller (Port 1F802030h)

EXP2 DTL-H2000 I/O Ports

Interrupt Request / Execution

The interrupt request bits in I_STAT are edge-triggered, ie. the get set ONLY if the

corresponding interrupt source changes from "false to true".

If one or more interrupts are requested and enabled, ie. if "(I_STAT AND

I_MASK)=nonzero", then cop0r13.bit10 gets set, and when cop0r12.bit10 and

cop0r12.bit0 are set, too, then the interrupt gets executed.

Interrupt Acknowledge

To acknowledge an interrupt, write a "0" to the corresponding bit in I_STAT. Most

interrupts (except IRQ0,4,5,6) must be additionally acknowledged at the I/O port that

has caused them (eg. JOY_CTRL.bit4).

 0 IRQ0 VBLANK (PAL=50Hz, NTSC=60Hz)
 1 IRQ1 GPU Can be requested via GP0(1Fh) command (rarely used)
 2 IRQ2 CDROM
 3 IRQ3 DMA
 4 IRQ4 TMR0 Timer 0 aka Root Counter 0 (Sysclk or Dotclk)
 5 IRQ5 TMR1 Timer 1 aka Root Counter 1 (Sysclk or H-blank)
 6 IRQ6 TMR2 Timer 2 aka Root Counter 2 (Sysclk or Sysclk/8)
 7 IRQ7 Controller and Memory Card - Byte Received Interrupt
 8 IRQ8 SIO
 9 IRQ9 SPU
 10 IRQ10 Controller - Lightpen Interrupt. Also shared by PIO and DTL cards.
 11-15 Not used (always zero)
 16-31 Garbage

8. Interrupts

- 114/1136 -

Observe that the I_STAT bits are edge-triggered (they get set only on High-to-Low, or

False-to-True edges). The correct acknowledge order is:

When doing it vice-versa, the hardware may miss further IRQs (eg. when first setting

JOY_CTRL.4=1, then a new IRQ may occur in JOY_STAT.4 within a single clock cycle,

thereafter, setting I_STAT.7=0 would successfully reset I_STAT.7, but, since JOY_STAT.4 is

already set, there'll be no further edge, so I_STAT.7 won't be ever set in future).

COP0 Interrupt Handling

Relevant COP0 registers are cop0r13 (CAUSE, reason flags), and cop0r12 (SR, control

flags), and cop0r14 (EPC, return address), and, cop0cmd=10h (aka RFE opcode) is used

to prepare the return from interrupts. For more info, see

COP0 - Exception Handling

PSX specific COP0 Notes

COP0 has six hardware interrupt bits, of which, the PSX uses only cop0r13.bit10 (the

other ones, cop0r13.bit11-15 are always zero). cop0r13.bit10 is NOT a latch, ie. it gets

automatically cleared as soon as "(I_STAT AND I_MASK)=zero", so there's no need to do

an acknowledge at the cop0 side. COP0 additionally has two software interrupt bits,

cop0r13.bit8-9, which do exist in the PSX, too, these bits are read/write-able latches

which can be set/cleared manually to request/acknowledge exceptions by software.

PS2 IOP interrupts

The PS2's IOP has the same interrupt controller as the PS1 but with more channels. For

more details, see:

ps2tek - IOP Interrupts

 First, acknowledge I_STAT (eg. I_STAT.bit7=0)
 Then, acknowledge corresponding I/O port (eg. JOY_CTRL.bit4=1)

8. Interrupts

- 115/1136 -

https://psi-rockin.github.io/ps2tek/#iopint

9. DMA Channels

DMA Register Summary

These ports control DMA at the CPU-side. In most cases, you'll additionally need to

initialize an address (and transfer direction, transfer enabled, etc.) at the remote-side

(eg. at the GPU-side for DMA2).

1F801080h+N*10h - D#_MADR - DMA base address (Channel 0..6) (R/W)

In SyncMode=0, the hardware doesn't update the MADR registers (it will contain the start

address even during and after the transfer) (unless Chopping is enabled, in that case it

does update MADR, same does probably also happen when getting interrupted by a

higher priority DMA channel).

In SyncMode=1 and SyncMode=2, the hardware does update MADR (it will contain the

start address of the currently transferred block; at transfer end, it'll hold the end-address

in SyncMode=1, or the end marker in SyncMode=2)

Notes: Address bits 0-1 are writeable, but any updated current/end addresses are word-

aligned with bits 0-1 forced to zero.

The address counter wraps around when counting down from 000000h to FFFFFCh,

leading to words after wraparound not being written to RAM (as FFFFFCh is past the

default 8 MB main RAM region).

1F801084h+N*10h - D#_BCR - DMA Block Control (Channel 0..6) (R/W)

For SyncMode=0 (ie. for OTC and CDROM):

 1F80108xh DMA0 channel 0 MDECin (RAM to MDEC)
 1F80109xh DMA1 channel 1 MDECout (MDEC to RAM)
 1F8010Axh DMA2 channel 2 GPU (lists + image data)
 1F8010Bxh DMA3 channel 3 CDROM (CDROM to RAM)
 1F8010Cxh DMA4 channel 4 SPU
 1F8010Dxh DMA5 channel 5 PIO (Expansion Port)
 1F8010Exh DMA6 channel 6 OTC (reverse clear OT) (GPU related)
 1F8010F0h DPCR - DMA Control register
 1F8010F4h DICR - DMA Interrupt register

 0-23 Memory Address where the DMA will start reading from/writing to
 24-31 Not used (always zero)

9. DMA Channels

- 116/1136 -

For SyncMode=1 (ie. for MDEC, SPU, and GPU-vram-data):

For SyncMode=2 (ie. for GPU-command-lists):

BC/BS/BA can be in range 0001h..FFFFh (or 0=10000h). For BS, take care not to set the

blocksize larger than the buffer of the corresponding unit can hold. (GPU and SPU both

have a 16-word buffer). A larger blocksize means faster transfer.

SyncMode=1 decrements BA to zero, SyncMode=0 with chopping enabled decrements BC

to zero (aside from that two cases, D#_BCR isn't changed during/after transfer).

1F801088h+N*10h - D#_CHCR - DMA Channel Control (Channel 0..6) (R/W)

 0-15 BC Number of words (0001h..FFFFh) (or 0=10000h words)
 16-31 0 Not used (usually 0 for OTC, or 1 ("one block") for CDROM)

 0-15 BS Blocksize (words) ;for GPU/SPU max 10h, for MDEC max 20h
 16-31 BA Amount of blocks ;ie. total length = BS*BA words

 0-31 0 Not used (should be zero) (transfer ends at END-CODE in list)

 0 Transfer direction (0=device to RAM, 1=RAM to device)
 1 MADR increment per step (0=+4, 1=-4)
 2-7 Unused
 8 When 1:
 -Burst mode: enable "chopping" (cycle stealing by CPU)
 -Slice mode: Causes DMA to hang
 -Linked-list mode: Transfer header before data?
 9-10 Transfer mode (SyncMode)
 0=Burst (transfer data all at once after DREQ is first asserted)
 1=Slice (split data into blocks, transfer next block whenever DREQ is asserted)
 2=Linked-list mode
 3=Reserved
 11-15 Unused
 16-18 Chopping DMA window size (1 << N words)
 19 Unused
 20-22 Chopping CPU window size (1 << N cycles)
 23 Unused
 24 Start transfer (0=stopped/completed, 1=start/busy)
 25-27 Unused
 28 Force transfer start without waiting for DREQ
 29 In forced-burst mode, pauses transfer while set.
 In other modes, stops bit 28 from being cleared after a slice is transferred.
 No effect when transfer was caused by a DREQ.
 30 Perform bus snooping (allows DMA to read from -nonexistent- cache?)
 31 Unused

9. DMA Channels

- 117/1136 -

Bit 28 is automatically cleared upon BEGIN of the transfer, this bit needs to be set only in

SyncMode=0 (setting it in other SyncModes would force the first block to be transferred

instantly without DREQ, which isn't desired).

Bit 24 is automatically cleared upon COMPLETION of the transfer, this bit must be always

set for all SyncModes when starting a transfer.

For DMA6/OTC there are some restrictions, D6_CHCR has only three read/write-able bits:

24,28,30. All other bits are read-only: bit 1 is always 1 (increment=-4), and the other

bits are always 0.

1F8010F0h - DPCR - DMA Control Register (R/W)

Initial value on reset is 07654321h. If two or more channels have the same priority

setting, then the priority is determined by the channel number (DMA0=Lowest,

DMA6=Highest, CPU=higher than DMA6?).

1F8010F4h - DICR - DMA Interrupt Register (R/W)

 0-2 DMA0, MDECin Priority (0..7; 0=Highest, 7=Lowest)
 3 DMA0, MDECin Master Enable (0=Disable, 1=Enable)
 4-6 DMA1, MDECout Priority (0..7; 0=Highest, 7=Lowest)
 7 DMA1, MDECout Master Enable (0=Disable, 1=Enable)
 8-10 DMA2, GPU Priority (0..7; 0=Highest, 7=Lowest)
 11 DMA2, GPU Master Enable (0=Disable, 1=Enable)
 12-14 DMA3, CDROM Priority (0..7; 0=Highest, 7=Lowest)
 15 DMA3, CDROM Master Enable (0=Disable, 1=Enable)
 16-18 DMA4, SPU Priority (0..7; 0=Highest, 7=Lowest)
 19 DMA4, SPU Master Enable (0=Disable, 1=Enable)
 20-22 DMA5, PIO Priority (0..7; 0=Highest, 7=Lowest)
 23 DMA5, PIO Master Enable (0=Disable, 1=Enable)
 24-26 DMA6, OTC Priority (0..7; 0=Highest, 7=Lowest)
 27 DMA6, OTC Master Enable (0=Disable, 1=Enable)
 28-30 CPU memory access priority (0..7; 0=Highest, 7=Lowest)
 31 No effect, should be CPU memory access enable (R/W)

 0-6 Controls channel 0-6 completion interrupts in bits 24-30.
 When 0, an interrupt only occurs when the entire transfer completes.
 When 1, interrupts can occur for every slice and linked-list transfer.
 No effect if the interrupt is masked by bits 16-22.
 7-14 Unused
 15 Bus error flag. Raised when transferring to/from an address outside of RAM.
Forces bit 31. (R/W)
 16-22 Channel 0-6 interrupt mask. If enabled, channels cause interrupts as per bits
0-6.
 23 Master channel interrupt enable.
 24-30 Channel 0-6 interrupt flags. (R, write 1 to reset)
 31 Master interrupt flag (R)

9. DMA Channels

- 118/1136 -

IRQ flags in bit (24+n) are set upon DMAn completion - but caution - they are set ONLY if

enabled in bit (16+n) (unlike interrupt flags in I_STAT, which are always set regardless of

whether the respective IRQ is masked).

Bit 31 is a simple readonly flag that follows the following rules:

Upon 0-to-1 transition of Bit 31, the IRQ3 flag in I_STAT gets set.

Bits 24-30 are acknowledged (reset to zero) when writing a "1" to that bits (and

additionally, IRQ3 must be acknowledged via I_STAT).

1F8010F8h (usually 7FFAC68Bh? or 0BFAC688h)

1F8010FCh (usually 00FFFFF7h) (...maybe OTC fill-value)

Contains strange read-only values (but not the usual "Garbage").

Not yet tested during transfer, might be remaining length and address?

Commonly used DMA Control Register values for starting DMA transfers

XXX: DMA2 values 01000201h (VramWrite), 01000401h (List) aren't 100% confirmed to

be used by ALL existing games. All other values are always used as listed above.

Linked List DMA

GPU commands are usually sent from RAM to GP0 using DMA2 in linked list mode. In

this mode, the DMA controller transfers words in "nodes", with the first node starting in

the address indicated by D2_MADR.

Each node is composed of a header word (the very first word in the node) and some

 IF b15=1 OR (b23=1 AND (b16-22 AND b24-30)>0) THEN b31=1 ELSE b31=0

 (changes to 7FE358D1h after DMA transfer)

 (stays so even after DMA transfer)

 DMA0 MDEC.IN 01000201h (always)
 DMA1 MDEC.OUT 01000200h (always)
 DMA2 GPU 01000200h (VramRead), 01000201h (VramWrite), 01000401h (List)
 DMA3 CDROM 11000000h (normal), 11400100h (chopped, rarely used)
 DMA4 SPU 01000201h (write), 01000200h (read, rarely used)
 DMA5 PIO 11150100h (System 573 ATAPI read), ? (System 573 ATAPI write)
 DMA6 OTC 11000002h (always)

9. DMA Channels

- 119/1136 -

extra words to be DMA'd before moving on to the next node. The node header is

formatted like this:

The transfer is stopped once an end marker is reached. On some (earlier?) CPU revisions

any address with bit 23 set will be interpreted as an end marker, while on other

revisions all bits must be set (i.e. the address must be FFFFFF). This change was

probably necessary as later CPU versions added support for up to 16 MB RAM

addressing, which made addresses in the 800000-FFFFFC range valid.

DMA Transfer Rates

MDEC decompression time is still unknown (may vary on RLE and color/mono).

GPU polygon rendering time is unknown (may be quite slow for large polys).

GPU vram read/write time is unknown (may vary on horizontal screen resolution).

CDROM BIOS default is 24 clks, for some reason most games change it to 40 clks.

SPU transfer is unknown (may have some extra delays).

XXX is SPU really only 4 clks (theoretically SPU access should be slower)?

PIO is only used on some arcade systems (and configured with different timings).

OTC is just writing to RAM without extra overload.

CDROM/SPU/PIO timings can be configured via Memory Control registers.

DRAM Hyper Page mode

DMA is using DRAM Hyper Page mode, allowing it to access DRAM rows at 1 clock cycle

per word (effectively around 17 clks per 16 words, due to required row address loading,

probably plus some further minimal overload due to refresh cycles). This is making DMA

much faster than CPU memory accesses (CPU DRAM access takes 1 opcode cycle plus 6

waitstates, ie. 7 cycles in total)

 0-23 Address of the next node (or end marker)
 24-31 Number of extra words to transfer for this node

 DMA0 MDEC.IN 1 clk/word ;0110h clks per 100h words ;\plus whatever
 DMA1 MDEC.OUT 1 clk/word ;0110h clks per 100h words ;/decompression time
 DMA2 GPU 1 clk/word ;0110h clks per 100h words ;-plus ...
 DMA3 CDROM/BIOS 24 clks/word ;1800h clks per 100h words ;\plus single/double
 DMA3 CDROM/GAMES 40 clks/word ;2800h clks per 100h words ;/speed sector rate
 DMA4 SPU 4 clks/word ;0420h clks per 100h words ;-plus ...
 DMA5 PIO 20 clks/word ;1400h clks per 100h words ;-not actually used
 DMA6 OTC 1 clk/word ;0110h clks per 100h words ;-plus nothing

9. DMA Channels

- 120/1136 -

CPU Operation during DMA

CPU is running during DMA within very strict rules. It can be kept running when

accessing only cache, scratchpad, COP0 and GTE.

It can also make use of the 4 entry Write queue for both RAM and I/O registers, see:

Write queue

Any read access from RAM or I/O registers or filling more than 4 entries into the write

queue will stall the CPU until the DMA is finished.

Additionally, the CPU operation resumes during periods when DMA gets interrupted (ie.

after SyncMode 1 blocks, after SyncMode 2 list entries) (or in SyncMode 0 with Chopping

enabled).

PS2 IOP DMA

The PS2's IOP has an extended DMA unit with more channels, new control registers and

an additional chain mode (SyncMode=3). For more details, see:

ps2tek - IOP DMA

9. DMA Channels

- 121/1136 -

https://psi-rockin.github.io/ps2tek/#iopdma

10. Timers

1F801100h+N*10h - Timer 0..2 Current Counter Value (R/W)

This register is automatically incrementing. It is write-able (allowing to set it to any

value). It gets forcefully reset to 0000h on any write to the Counter Mode register and

when reaching counter overflow condition (either when reaching FFFFh, or when reaching

the selected target value).

Writing a Current value larger than the Target value will not trigger the condition of Mode

Bit4, but make the counter run until FFFFh and wrap around to 0000h once, before using

the target value.

1F801104h+N*10h - Timer 0..2 Counter Mode (R/W)

 0-15 Current Counter value (incrementing)
 16-31 Garbage

 0 Synchronization Enable (0=Free Run, 1=Synchronize via Bit1-2)
 1-2 Synchronization Mode (0-3, see lists below)
 Synchronization Modes for Counter 0:
 0 = Pause counter during Hblank(s)
 1 = Reset counter to 0000h at Hblank(s)
 2 = Reset counter to 0000h at Hblank(s) and pause outside of Hblank
 3 = Pause until Hblank occurs once, then switch to Free Run
 Synchronization Modes for Counter 1:
 Same as above, but using Vblank instead of Hblank
 Synchronization Modes for Counter 2:
 0 or 3 = Stop counter at current value (forever, no h/v-blank start)
 1 or 2 = Free Run (same as when Synchronization Disabled)
 3 Reset counter to 0000h (0=After Counter=FFFFh, 1=After Counter=Target)
 4 IRQ when Counter=Target (0=Disable, 1=Enable)
 5 IRQ when Counter=FFFFh (0=Disable, 1=Enable)
 6 IRQ Once/Repeat Mode (0=One-shot, 1=Repeatedly)
 7 IRQ Pulse/Toggle Mode (0=Short Bit10=0 Pulse, 1=Toggle Bit10 on/off)
 8-9 Clock Source (0-3, see list below)
 Counter 0: 0 or 2 = System Clock, 1 or 3 = Dotclock
 Counter 1: 0 or 2 = System Clock, 1 or 3 = Hblank
 Counter 2: 0 or 1 = System Clock, 2 or 3 = System Clock/8
 10 Interrupt Request (0=Yes, 1=No) (Set after Writing) (W=1) (R)
 11 Reached Target Value (0=No, 1=Yes) (Reset after Reading) (R)
 12 Reached FFFFh Value (0=No, 1=Yes) (Reset after Reading) (R)
 13-15 Unknown (seems to be always zero)
 16-31 Garbage (next opcode)

10. Timers

- 122/1136 -

In one-shot mode, the IRQ is pulsed/toggled only once (one-shot mode doesn't stop the

counter, it just suppresses any further IRQs until a new write to the Mode register occurs;

if both IRQ conditions are enabled in Bit4-5, then one-shot mode triggers only one of

those conditions; whichever occurs first).

Normally, Pulse mode should be used (Bit10 is permanently set, except for a few clock

cycles when an IRQ occurs). In Toggle mode, Bit10 is set after writing to the Mode

register, and becomes inverted on each IRQ (in one-shot mode, it remains zero after the

IRQ) (in repeat mode it inverts Bit10 on each IRQ, so IRQ4/5/6 are triggered only each

2nd time, ie. when Bit10 changes from 1 to 0).

The "free run" mode is simply saying that the counter will not reset at a given threshold

value.

1F801108h+N*10h - Timer 0..2 Counter Target Value (R/W)

When the Target flag is set (Bit3 of the Control register), the counter increments up to

(including) the selected target value, and does then restart at 0000h.

Dotclock/Hblank

For more info on dotclock and hblank timings, see:

GPU Timings

Caution: Reading the Current Counter Value can be a little unstable (when using dotclk

or hblank as clock source); the GPU clock isn't in sync with the CPU clock, so the timer

may get changed during the CPU read cycle. As a workaround: repeat reading the timer

until the received value is the same (or slightly bigger) than the previous value.

Reset and Wrap

When resetting the Counter by writing the Mode register, it will stay at 0000h for 2 clock

cycles before counting up.

When writing the Current value, it will stay at the written value for 2 clock cycles before

counting up or checking against Target overflows.

When wrapping around at FFFFh(Mode Bit3 not set), it will stay at 0000h for only 1 clock

cycle.

When being reset to 0000h by reaching the Target value(Mode Bit3 set), it will stay at

 0-15 Counter Target value
 16-31 Garbage

10. Timers

- 123/1136 -

0000h for 2 clock cycles.

Example behavior with Target Value of 0001h and Mode Bit3 set:

clock cycle 0 - Counter Value = 0000h
clock cycle 1 - Counter Value = 0000h
clock cycle 2 - Counter Value = 0001h
clock cycle 3 - Counter Value = 0000h
clock cycle 4 - Counter Value = 0000h
clock cycle 5 - Counter Value = 0001h

10. Timers

- 124/1136 -

11. CDROM Drive

Playstation CDROM I/O Ports

CDROM Controller I/O Ports

Playstation CDROM Commands

CDROM Controller Command Summary

CDROM - Control Commands

CDROM - Seek Commands

CDROM - Read Commands

CDROM - Status Commands

CDROM - CD Audio Commands

CDROM - Test Commands

CDROM - Secret Unlock Commands

CDROM - Video CD Commands

CDROM - Mainloop/Responses

CDROM - Response Timings

CDROM - Response/Data Queueing

General CDROM Disk Format

CDROM Format

CDROM File Formats

CDROM Video CDs (VCD)

Playstation CDROM Coprocessor

CDROM Internal Info on PSX CDROM Controller

11.1 CDROM Controller I/O Ports

The CD-ROM drive is made up of several chips. The CPU only has direct access to the

sector buffer/decoder chip's "host" interface, which provides mailboxes to communicate

with the drive's microcontroller, a data port for reading sectors and audio configuration

11. CDROM Drive

- 125/1136 -

registers. The interface is bank switched and consists of four banks of four 8-bit

registers each.

The following registers are available when reading:

The following registers are available when writing:

Official documentation for these registers is available in the "host interface" section of

the CXD1199 decoder's datasheet. Later console revisions use different decoders,

however they all seem to be variants of the CXD1199 (just merged with other CD-ROM

chips, and possibly trimmed down by removing unused features such as the sound map

functionality).

0x1f801800 (read, all banks): HSTS

0x1f801800 (write, all banks): ADDRESS

0x1f801801 (write, bank 0): COMMAND

Bank 0x1f801800 0x1f801801 0x1f801802 0x1f801803

0, 2 HSTS RESULT RDDATA HINTMSK

1, 3 HSTS RESULT RDDATA HINTSTS

Bank 0x1f801800 0x1f801801 0x1f801802 0x1f801803

0 ADDRESS COMMAND PARAMETER HCHPCTL

1 ADDRESS WRDATA HINTMSK HCLRCTL

2 ADDRESS CI ATV0 ATV1

3 ADDRESS ATV2 ATV3 ADPCTL

 0-1 RA Current register bank (R/W)
 2 ADPBUSY ADPCM busy (R, 1=playing XA-ADPCM)
 3 PRMEMPT Parameter empty (R, 1=parameter FIFO empty)
 4 PRMWRDY Parameter write ready (R, 1=parameter FIFO not full)
 5 RSLRRDY Result read ready (R, 1=result FIFO not empty)
 6 DRQSTS Data request (R, 1=one or more RDDATA reads or WRDATA writes
pending)
 7 BUSYSTS Busy status (R, 1=HC05 busy acknowledging command)

 0-7 Command Byte

11.1 CDROM Controller I/O Ports

- 126/1136 -

Writing to this address sends the command byte to the HC05, which will proceed to drain

the parameter FIFO, process the command, push any return values into the result FIFO

and fire INT3 (or INT5 if an error occurs).

Command/Parameter processing is indicated by BUSYSTS.

When that bit gets zero, the response can be read immediately (immediately for MOST

commands, but not ALL commands; so better wait for the IRQ).

Alternately, you can wait for an IRQ (which seems to take place MUCH later), and then

read the response.

If there are any pending cdrom interrupts, these MUST be acknowledged before sending

the command (otherwise BUSYSTS will stay set forever).

0x1f801802 (write, bank 0): PARAMETER

Before sending a command, write any parameter byte(s) to this address. The FIFO can

hold up to 16 bytes; once full, the decoder will clear the PRMWRDY flag.

Note: the CXD1199 datasheet incorrectly states the parameter FIFO is 8 bytes deep,

however the longest CD-ROM command has a 13-byte parameter.

0x1f801803 (write, bank 0): HCHPCTL

Note: in the original nocash documentation, SMEN is described as "Want Command Start

Interrupt on Next Command". This is actually a side effect to the decoder firing the

BFWRDY interrupt, not an intended feature.

0x1f801802 (read, all banks): RDDATA

After ReadS/ReadN commands have generated INT1, software must set the BFRD flag,

then wait until DRQSTS is set, the datablock (disk sector) can be then read from this

register.

 0-7 Parameter Byte(s) to be used for next Command

 0-4 - Reserved (should be 0)
 5 SMEN Sound map (manual XA-ADPCM playback) enable
 6 BFWR Request sector buffer write (1=prepare for writes to WRDATA)
 7 BFRD Request sector buffer read (1=prepare for reads from RDDATA)

 0-7 Data 8bit (one byte), or alternately,
 0-15 Data 16bit (LSB=First byte, MSB=Second byte)

11.1 CDROM Controller I/O Ports

- 127/1136 -

The PSX hardware allows to read 800h-byte or 924h-byte sectors, indexed as [000h..

7FFh] or [000h..923h], when trying to read further bytes, then the PSX will repeat the

byte at index [800h-8] or [924h-4] as padding value.

RDDATA can be accessed with 8bit or 16bit reads (ie. to read a 2048-byte sector, one can

use 2048 load-byte opcodes, or 1024 load halfword opcodes, or, more conventionally, a

512 word DMA transfer; the actual CDROM databus is only 8bits wide, so the CPU's bus

interface handles splitting the reads).

0x1f801801 (read, all banks): RESULT

The result FIFO can hold up to 16 bytes (most or all responses are less than 16 bytes).

The decoder clears RSLRRDY after the last byte of the HC05's response is read from this

register.

When reading further bytes: The buffer is padded with 00h's to the end of the 16-bytes,

and does then restart at the first response byte (that, without receiving a new response,

so it'll always return the same 16 bytes, until a new command/response has been sent/

received).

0x1f801803 (read, banks 1 and 3): HINTSTS

Bits 0-2 are supposed to be used as three separate IRQ flags, however the HC05 misuses

them as a single 3-bit "interrupt type" value, which always assumes one of the following

values:

The response interrupts are queued, for example, if the 1st response is INT3, and the

second INT5, then INT3 is delivered first, and INT5 is not delivered until INT3 is

 0-7 Response Byte(s) received after sending a Command

 0-2 INTSTS Interrupt "flags" from HC05
 3 BFEMPT Sound map XA-ADPCM buffer empty (1=decoder ran out of sectors to play)
 4 BFWRDY Sound map XA-ADPCM buffer write ready (1=decoder is ready for next sector)
 5-7 - Reserved (always 1)

 INT0 NoIntr No interrupt pending
 INT1 DataReady New sector (ReadN/ReadS) or report packet (Play) available
 INT2 Complete Command finished processing (some commands, after INT3 is fired)
 INT3 Acknowledge Command received and acknowledged (all commands)
 INT4 DataEnd Reached end of disc (or end of track if auto-pause enabled)
 INT5 DiskError Command error, read error, license string error or lid opened
 INT6 -
 INT7 -

11.1 CDROM Controller I/O Ports

- 128/1136 -

acknowledged (ie. the response interrupts are NOT ORed together to produce INT7 or so).

BFEMPT and BFWRDY however can be ORed with the lower bits (i.e. BFWRDY + INT3

would give 13h).

All interrupts are always fired in response to a command with the exception of INT5,

which may also be triggered at any time by opening the lid.

0x1f801803 (read, banks 0 and 2): HINTMSK

0x1f801802 (write, bank 1): HINTMSK

The CD-ROM drive fires an interrupt whenever (HINTMSK & HINTSTS) is non-zero. This

register is typically set to 1Fh, allowing any of the flags to trigger an IRQ (even though

BFEMPT and BFWRDY are never used).

0x1f801803 (write, bank 1): HCLRCTL

Setting bits 0-4 resets the corresponding flags in HINTSTS; normally one should write

07h to reset the HC05 interrupt flags, or 1Fh to acknowledge all IRQs. Acknowledging

individual HC05 flags (e.g. writing 01h to change INT3 to INT2) is possible, if completely

useless. After acknowledge, the result FIFO is drained and if there's been a pending

command, then that command gets send to the controller.

Setting CHPRST will result in a complete reset of the decoder. Unclear if this also reboots

the HC05 and CD-ROM DSP (the decoder has an "external reset" pin which is pulled low

when setting CHPRST).

Caution - Unstable IRQ Flag polling

IRQ flag changes aren't synced with the MIPS CPU clock. If more than one bit gets set

(and the CPU is reading at the same time) then the CPU does occassionally see only one

 0-2 ENINT Enable IRQ on respective INTSTS bits
 3 ENBFEMPT Enable IRQ on BFEMPT
 4 ENBFWRDY Enable IRQ on BFWRDY
 5-7 - Reserved (should be 0 when written, always 1 when read)

 0-2 CLRINT Acknowledge HC05 interrupt "flags" (0=no change, 1=clear)
 3 CLRBFEMPT Acknowledge BFEMPT (0=no change, 1=clear)
 4 CLRBFWRDY Acknowledge BFBFWRDY (0=no change, 1=clear)
 5 SMADPCLR Clear sound map XA-ADPCM buffer (0=no change, 1=clear/stop playback)
 6 CLRPRM Clear parameter FIFO (0=no change, 1=clear)
 7 CHPRST Reset decoder chip (0=no change, 1=reset)

11.1 CDROM Controller I/O Ports

- 129/1136 -

of the newly bits:

As workaround, do something like:

The problem applies only when manually polling the IRQ flags (an actual IRQ handler will

get triggered when the flags get nonzero, and the flags will have stabilized once when the

IRQ handler is reading them) (except, a combination of IRQ10h followed by IRQ3 can also

have unstable LSBs within the IRQ handler).

The problem occurs only on older consoles (like LATE-PU-8), not on newer consoles (like

PSone).

0x1f801802 (write, bank 2): ATV0 (L->L volume)

0x1f801803 (write, bank 2): ATV1 (L->R volume)

0x1f801801 (write, bank 3): ATV2 (R->R volume)

0x1f801802 (write, bank 3): ATV3 (R->L volume)

Allows to configure the CD for mono/stereo output (eg. values "80h,0,80h,0" produce

normal stereo volume, values "40h,40h,40h,40h" produce mono output of equivalent

volume).

When using bigger values, the hardware does have some incomplete saturation support;

the saturation works up to double volume (eg. overflows that occur on "FFh,0,FFh,0" or

"80h,80h,80h,80h" are clipped to min/max levels), however, the saturation does NOT

work properly when exceeding double volume (eg. mono with quad-volume

"FFh,FFh,FFh,FFh").

 0 ----------> 3 ;99.9% normal case INT3's
 0 ----------> 5 ;99% normal case INT5's
 0 ---> 1 ---> 3 ;0.1% glitch: occurs about once per thousands of INT3's
 0 ---> 4 ---> 5 ;1% glitch: occurs about once per hundreds of INT5's

 @@polling_lop:
 irq_flags = [1F801803h] AND 07h ;<-- 1st read (may be still unstable)
 if irq_flags = 00h then goto @@polling_lop
 irq_flags = [1F801803h] AND 07h ;<-- 2nd read (should be stable now)
 handle irq_flags and acknowledge them

 0-7 Volume Level (00h..FFh) (00h=Off, FFh=Max/Double, 80h=Default/Normal)

11.1 CDROM Controller I/O Ports

- 130/1136 -

After changing these registers, the CHNGATV flag in ADPCTL must be set.

Unknown if any existing games are actually supporting mono output. Resident Evil 2 uses

these ports to produce fade-in/fade-out effects (although, for that purpose, it should be

much easier to use Port 1F801DB0h).

0x1f801803 (write, bank 3): ADPCTL

0x1f801801 (write, bank 1): WRDATA

Used to upload sectors to the decoder for sound map XA-ADPCM playback.

This register seems to be restricted to 8bit bus, unknown if/how the PSX DMA controller

can write to it (it might support only 16bit data for CDROM).

0x1f801801 (write, bank 2): CI

Used to configure the decoder for sound map XA-ADPCM playback (does not affect

playback of XA-ADPCM sectors from the disc). Uses the same format as the "codinginfo"

field in XA sector headers.

BUSYSTS flag

Indicates ready-to-send-new-command,

 0 ADPMUTE Mute XA-ADPCM (1=mute)
 1-4 - Reserved (should be 0)
 5 CHNGATV Apply ATV0-ATV3 changes (0=no change, 1=apply)
 6-7 - Reserved (should be 0)

 0-7 Data

 0 S/M Channel count (0=mono, 1=stereo)
 1 - Reserved (should be 0)
 2 FS Sample rate (0=37800Hz, 1=18900Hz)
 3 - Reserved (should be 0)
 4 BITLNGTH Bits per sample (0=4bit, 1=8bit)
 5 - Reserved (should be 0)
 6 EMPHASIS Emphasis filter (0=off, 1=on)
 7 - Reserved (should be 0)

 0=Ready to send a new command
 1=Busy sending a command/parameters

11.1 CDROM Controller I/O Ports

- 131/1136 -

Trying to send a new command in the Busy-phase causes malfunction (the older

command seems to get lost, the newer command executes and returns its results and

triggers an interrupt, but, thereafter, the controller seems to hang). So, always wait until

BUSYSTS goes off before sending a command.

When BUSYSTS goes off, a new command can be send immediately (even if the response

from the previous command wasn't received yet), however, the new command stays in

the Busy-phase until the IRQ from the previous command is acknowledged, at that point

the actual transmission of the new command starts, and BUSYSTS goes off (once when

the transmission completes).

Will not drop any of the two commands, thus execute sequentially.

Will drop the second response of Stop(), and then execute the next command.

Misc

Performing a 32-bit read from 1F801800h will return the HSTS register's value repeated

four times, as the "auto increment" flag in the BIU configuration register for the CD-ROM

(at 1F801018h) is disabled by default. Enabling it will restore the correct behavior but

will also break CD-ROM DMA reads, which rely on the bus interface splitting each 32-bit

word transfer into four sequential byte reads from RDDATA.

To init the CD

Pause -> Wait for INT3 IRQ -> clear IRQ (write 0x1f to HCLRCTL) -> SetMode/Pause/Stop/
SetMode/SeekL/...

ReadN/ReadS -> Wait for INT3 IRQ -> clear IRQ (write 0x1f to HCLRCTL) -> SetMode/
SetLoc/...

Stop -> Wait for INT3 IRQ -> clear IRQ (write 0x1f to HCLRCTL) -> SetMode/Pause/...

 -Flush all IRQs
 -HCHPCTL=0
 -Com_Delay=4901 (=1325h) (Port 1F801020h) (means 16bit or 32bit write?)
 (the write seems to be 32bit, clearing the upper16bit of the register)
 -Send two Nop commands
 -Send Command 0Ah (Init)
 -Demute

11.1 CDROM Controller I/O Ports

- 132/1136 -

Seek-Busy Phase

Warning: most or all of the info in the sentence below appear to incorrect (either that, or

I didn't understand that rather confusing sentence).

REPORTEDLY:

"You should not send some commands while the CD is seeking (ie. Nop returns with bit6

set). Thing is that stat only gets updated after a new command. I haven't tested this for

other command, but for the play command (03h) you can just keep repeating the

[which?] command and checking stat returned by that, for bit6 to go low (and bit7 to go

high in this case). If you don't and try to do a getloc [GetlocP and/or GetlocL?] directly

after the play command reports it's done [what done? meaning sending start-to-play

was "done"? or meaning play reached end-of-disc?], the CD will stop. (I guess the CD

can't get it's current location while it's seeking, so the logic stops the seek to get an

exact fix, but never restarts..)"

Sound Map Flowchart

Sound Map mode allows to output XA-ADPCM from Main RAM (rather than from

CDROM).

Sound Map mode may be very useful for testing XA-ADPCM directly from within an exe

file (without needing a cdrom with ADPCM sectors). And, Sound Map supports both 4bit

and 8bit compression (the SPU supports only 4bit).

Caution: If ADPCM wasn't playing, and one sends one 900h-byte block, then it will get

stored in one of three 900h-byte slots in SRAM, and one would expect that slot to be

played when the ADPCM output starts - however, actually, the hardware will more or less

randomly play one of the three slots; not necessarily the slot that was updated most

recently.

 SPU: Init Master Volume Left/Right (Port 1F801D80h/1F801D82h)
 SPU: Init CD Audio Volume Left/Right (Port 1F801DB0h/1F801DB2h)
 SPU: Enable CD Audio (Port 1F801DAAh.Bit0=1)
 CDROM/CMD: send Stop command (probably better to avoid conflicts)
 CDROM/CMD: send Demute command (if muted) (but works only if disc inserted)
 CDROM/HOST: init CI register with XA-ADPCM coding info
 CDROM/HOST: enable ADPCM (ADPMUTE=0) ;probably needed?
 ... set dummy addr/len with DISHXFRC=1 ? <-- NOT required !
 ... set SMEN ... and dummy BFWR? <-- BOTH bits required ?
 transfer 900h bytes (same format as ADPCM sectors) (WRDATA)
 Note: Before sending a byte, one should wait for DRQSTS
 Note: ADPCM output doesn't start until the last (900h'th) byte is transferred

11.1 CDROM Controller I/O Ports

- 133/1136 -

11.2 CDROM Controller Command Summary

Command Summary

11.2 CDROM Controller Command Summary

- 134/1136 -

Opcode Command Parameters Acknowledge response Completion response Notes

0x00 Unused INT5: 0x11 , 0x40

0x01 Nop INT3: status

0x02 Setloc min, sec, frame INT3: status

0x03 Play track (optional) INT3: status

0x04 Forward INT3: status Error if disc is spun down

0x05 Backward INT3: status Error if disc is spun down

0x06 ReadN INT3: status

0x07 Standby INT3: status INT2: status

0x08 Stop INT3: status INT2: status

0x09 Pause INT3: status INT2: status

0x0a Init INT3: status (late) INT2: status

0x0b Mute INT3: status

0x0c Demute INT3: status

0x0d Setfilter file, channel INT3: status

0x0e Setmode mode INT3: status

0x0f Getparam INT3: status, mode, 0x00 , file, channel

0x10 GetlocL INT3: min, sec, frame, mode, file, channel, sm, ci Error if disc is spun down

0x11 GetlocP INT3: track, index, rmin, rsec, rframe, min, sec, frame Error if disc is spun down

0x12 Setsession session INT3: status INT2: status

0x13 GetTN INT3: status, first, last

0x14 GetTD track INT3: status, min, sec

0x15 SeekL INT3: status INT2: status

0x16 SeekP INT3: status INT2: status

0x17-0x18 Unused INT5: 0x11 , 0x40

0x19 Test * sub, ... INT3: ...

0x1a GetID * INT3: status INT2/INT5: status, flag, type, atip, "SCEx"

0x1b ReadS INT3: status

0x1c Reset INT3: status Reboots HC05, requires delay after sending

0x1d GetQ * adr, point INT3: status INT2: subq[10], peakl Version 0xc1 +, error if disc is spun down

0x1e ReadTOC * INT3: status (late) INT2: status Version 0xc1 +

0x1f VideoCD * sub, ... INT3: status, ... SCPH-5903 only

0x20-0x4f Unused INT5: 0x11 , 0x40 Version 0xc1 +, does nothing on Japanese models

0x50 Unlock0 * INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

11.2 CDROM Controller Command Summary

- 135/1136 -

The following commands generate additional responses while reading:

* denotes commands that are not officially documented.

sub_function numbers (for command 19h)

Test commands are invoked with command number 19h, followed by a sub_function

number as first parameter byte. The Kernel seems to be using only sub_function 20h (to

detect the CDROM Controller version).

Opcode Command Parameters Acknowledge response Completion response Notes

0x51 Unlock1 * "Licensed by" INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x52 Unlock2 * "Sony" INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x53 Unlock3 * "Computer" INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x54 Unlock4 * "Entertainment" INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x55 Unlock5 * "<region>" INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x56 Unlock6 * INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x57 Lock * INT5: 0x11 , 0x40 (even when successful) Version 0xc1 +, does nothing on Japanese models

0x58-0x5f Unused Crashes the HC05

0x60-0xff Unused INT5: 0x11 , 0x40

Opcode Command Data responses

0x03 Play INT1: status, track, index, (r)min, (r)sec, (r)frame, peakl, peakh

0x04 Forward INT1: status, track, index, (r)min, (r)sec, (r)frame, peakl, peakh

0x05 Backward INT1: status, track, index, (r)min, (r)sec, (r)frame, peakl, peakh

0x06 ReadN INT1: status (sector data must be read separately via RDDATA or DMA)

0x1b ReadS INT1: status (sector data must be read separately via RDDATA or DMA)

 sub params response ;Effect
 00h - INT3(stat) ;Force motor on, clockwise, even if door open
 01h - INT3(stat) ;Force motor on, anti-clockwise, super-fast
 02h - INT3(stat) ;Force motor on, anti-clockwise, super-fast
 03h - INT3(stat) ;Force motor off (ignored during spin-up)
 04h - INT3(stat) ;Start SCEx reading and reset counters
 05h - INT3(total,success);Stop SCEx reading and get counters
 06h * n INT3(old) ;\early ;Adjust balance in RAM, send CX(30+n XOR 7)
 07h * n INT3(old) ; PSX ;Adjust gain in RAM, send CX(38+n XOR 7)
 08h * n INT3(old) ;/only ;Adjust balance in RAM only
 06h..0Fh - INT5(11h,10h) ;N/A (11h,20h when NONZERO number of params)
 10h - INT3(stat) ;CX(..) ;Force motor on, anti-clockwise, super-fast
 11h - INT3(stat) ;CX(03) ;Move Lens Up (leave parking position)

11.2 CDROM Controller Command Summary

- 136/1136 -

* sub_functions 06h..08h, 30h..31h, and 4xh are supported only in vC0 and vC1.

** sub_function 51h is supported only in BIOS version vC2 and up.

*** sub_functions 22h..25h, 71h..76h supported only in BIOS version vC1 and up.

Unsupported GetQ,VCD,SecretUnlock (command 1Dh,1Fh,5xh)

INT5 will be returned if the command is unsupported. That, WITHOUT removing the

Parameters from the FIFO, so the parameters will be accidently passed to the NEXT

command. To avoid that: clear the parameter FIFO by setting CLRPRM in HCLRCTL after

receiving the INT5 error.

 12h - INT3(stat) ;CX(02) ;Move Lens Down (enter parking position)
 13h - INT3(stat) ;CX(28) ;Move Lens Outwards
 14h - INT3(stat) ;CX(2C) ;Move Lens Inwards
 15h - INT3(stat) ;CX(22) ;If motor on: Move outwards,inwards,motor off
 16h - INT3(stat) ;CX(23) ;No effect?
 17h - INT3(stat) ;CX(E8) ;Force motor on, clockwise, super-fast
 18h - INT3(stat) ;CX(EA) ;Force motor on, anti-clockwise, super-fast
 19h - INT3(stat) ;CX(25) ;No effect?
 1Ah - INT3(stat) ;CX(21) ;No effect?
 1Bh..1Fh - INT5(11h,10h) ;N/A (11h,20h when NONZERO number of params)
 20h - INT3(yy,mm,dd,ver) ;Get cdrom BIOS date/version (yy,mm,dd,ver)
 21h - INT3(n) ;Get Drive Switches (bit0=POS0, bit1=DOOR)
 22h *** - INT3("for ...") ;Get Region ID String
 23h *** - INT3("CXD...") ;Get Chip ID String for Servo Amplifier
 24h *** - INT3("CXD...") ;Get Chip ID String for Signal Processor
 25h *** - INT3("CXD...") ;Get Chip ID String for Decoder/FIFO
 26h..2Fh - INT5(11h,10h) ;N/A (11h,20h when NONZERO number of params)
 30h * i,x,y INT3(stat) ;Prototype/Debug stuff ;\supported on
 31h * x,y INT3(stat) ;Prototype/Debug stuff ; early PSX only
 4xh * i INT3(x,y) ;Prototype/Debug stuff ;/
 30h..4Fh .. INT5(11h,10h) ;N/A always 11h,10h (no matter of params)
 50h a[,b[,c]] INT3(stat) ;Servo/Signal send CX(a:b:c)
 51h ** 39h,xx INT3(stat,hi,lo) ;Servo/Signal send CX(39xx) with response
 51h..5Fh - INT5(11h,10h) ;N/A
 60h lo,hi INT3(databyte) ;HC05 SUB-CPU read RAM and I/O ports
 61h..70h - INT5(11h,10h) ;N/A
 71h *** adr INT3(databyte) ;Decoder Read one register
 72h *** adr,dat INT3(stat) ;Decoder Write one register
 73h *** adr,len INT3(databytes..);Decoder Read multiple registers, bugged
 74h *** adr,len,..INT3(stat) ;Decoder Write multiple registers, bugged
 75h *** - INT3(lo,hi,lo,hi);Decoder Get Host Xfer Info Remain/Addr
 76h *** a,b,c,d INT3(stat) ;Decoder Prepare Transfer to/from SRAM
 77h..FFh - INT5(11h,10h) ;N/A
 80h..8Fh a,b ? ;seem to do something on PS2

11.2 CDROM Controller Command Summary

- 137/1136 -

11.3 CDROM - Control Commands

Sync - Command 00h --> INTx(stat+1,40h) (?)

Reportedly "command does not succeed until all other commands complete. This can be

used for synchronization - hence the name."

Uh, actually, returns error code 40h = Invalid Command...?

Setfilter - Command 0Dh,file,channel --> INT3(stat)

Automatic ADPCM (CD-ROM XA) filter ignores sectors except those which have the same

channel and file numbers in their subheader. This is the mechanism used to select which

of multiple songs in a single .XA file to play.

Setfilter does not affect actual reading (sector reads still occur for all sectors).

XXX err... that is... does not affect reading of non-ADPCM sectors (normal "data" sectors

are kept received regardless of Setfilter).

Setmode - Command 0Eh,mode --> INT3(stat)

The "Ignore Bit" does reportedly force a sector size of 2328 bytes (918h), however, that

doesn't seem to be true. Instead, Bit4 seems to cause the controller to ignore the sector

size in Bit5 (instead, the size is kept from the most recent Setmode command which

didn't have Bit4 set). Also, Bit4 seems to cause the controller to ignore the \<exact>

Setloc position (instead, data is randomly returned from the "Setloc position minus 0..3

sectors"). And, Bit4 causes INT1 to return status.Bit3=set (IdError). Purpose of Bit4 is

unknown?

Init - Command 0Ah --> INT3(stat) --> INT2(stat)

Multiple effects at once. Sets mode=20h, activates drive motor, Standby, abort all

commands.

 7 Speed (0=Normal speed, 1=Double speed)
 6 XA-ADPCM (0=Off, 1=Send XA-ADPCM sectors to SPU Audio Input)
 5 Sector Size (0=800h=DataOnly, 1=924h=WholeSectorExceptSyncBytes)
 4 Ignore Bit (0=Normal, 1=Ignore Sector Size and Setloc position)
 3 XA-Filter (0=Off, 1=Process only XA-ADPCM sectors that match Setfilter)
 2 Report (0=Off, 1=Enable Report-Interrupts for Audio Play)
 1 AutoPause (0=Off, 1=Auto Pause upon End of Track) ;for Audio Play
 0 CDDA (0=Off, 1=Allow to Read CD-DA Sectors; ignore missing EDC)

11.3 CDROM - Control Commands

- 138/1136 -

Reset - Command 1Ch,(...) --> INT3(stat) --> Delay(1/8 seconds)

Resets the drive controller, reportedly, same as opening and closing the drive door. The

command executes no matter if/how many parameters are used (tested with 0..7

params). INT3 indicates that the command was started, but there's no INT that would

indicate when the command is finished, so, before sending any further commands, a

delay of 1/8 seconds (or 400000h clock cycles) must be issued by software.

Note: Executing the command produces a click sound in the drive mechanics, maybe it's

just a rapid motor on/off, but it might something more serious, like ignoring the /POS0

signal...?

MotorOn - Command 07h --> INT3(stat) --> INT2(stat)

Activates the drive motor, works ONLY if the motor was off (otherwise fails with

INT5(stat,20h); that error code would normally indicate "wrong number of parameters",

but means "motor already on" in this case).

Commands like Read, Seek, and Play are automatically starting the Motor when needed

(which makes the MotorOn command rather useless, and it's rarely used by any games).

Myth: Older homebrew docs are referring to MotorOn as "Standby", claiming that it

would work similar as "Pause", that is wrong: the command does NOT pause anything (if

the motor is on, then it does simply trigger INT5, but without pausing reading or

playing).

Note: The game "Nightmare Creatures 2" does actually attempt to use MotorOn to

"pause" after reading files, but the hardware does simply ignore that attempt (aside

from doing the INT5 thing).

Stop - Command 08h --> INT3(stat) --> INT2(stat)

Stops motor with magnetic brakes (stops within a second or so) (unlike power-off where

it'd keep spinning for about 10 seconds), and moves the drive head to the begin of the

first track. Official way to restart is command 0Ah, but almost any command will restart

it.

The first response returns the current status (this already with bit5 cleared), the second

response returns the new status (with bit1 cleared).

 Caution: Not supported on DTL-H2000 (v01)

11.3 CDROM - Control Commands

- 139/1136 -

Pause - Command 09h --> INT3(stat) --> INT2(stat)

Aborts Reading and Playing, the motor is kept spinning, and the drive head maintains

the current location within reasonable error.

The first response returns the current status (still with bit5 set if a Read command was

active), the second response returns the new status (with bit5 cleared).

Data/ADPCM Sector Filtering/Delivery

The PSX CDROM BIOS is first trying to send sectors to the ADPCM decoder, and, if that

didn't work out, then it's trying to send them to the main CPU (and if that didn't work

out either, then it's silently ignoring the sector).

BUG: Note that the data delivery is done in two different attempts: The first one

regardless of file/channel, and the second one only on matching file/channel (if filtering is

enabled).

11.4 CDROM - Seek Commands

Setloc - Command 02h,amm,ass,asect --> INT3(stat)

Sets the seek target - but without yet starting the seek operation. The actual seek is

invoked by certain commands: SeekL (Data) and SeekP (Audio) are doing plain seeks

(and do Pause after completion). ReadN/ReadS are similar to SeekL (and do start

reading data after the seek operation). Play is similar to SeekP (and does start playing

audio after the seek operation).

The amm,ass,asect parameters refer to the entire disk (not to the current track). To

 try_deliver_as_adpcm_sector:
 reject if CD-DA AUDIO format
 reject if sector isn't MODE2 format
 reject if adpcm_disabled(setmode.6)
 reject if filter_enabled(setmode.3) AND selected file/channel doesn't match
 reject if submode isn't audio+realtime (bit2 and bit6 must be both set)
 deliver: send sector to xa-adpcm decoder when passing above cases
 try_deliver_as_data_sector:
 reject data-delivery if "try_deliver_as_adpcm_sector" did do adpcm-delivery
 reject if filter_enabled(setmode.3) AND submode is audio+realtime (bit2+bit6)
 1st delivery attempt: send INT1+data, unless there's another INT pending
 delay, and retry at later time... but this time with file/channel checking!
 reject if filter_enabled(setmode.3) AND selected file/channel doesn't match
 2nd delivery attempt: send INT1+data, unless there's another INT pending

11.4 CDROM - Seek Commands

- 140/1136 -

seek to a specific location within a specific track, use GetTD to get the start address of

the track, and add the desired time offset to it.

SeekL - Command 15h --> INT3(stat) --> INT2(stat)

Seek to Setloc's location in data mode (using data sector header position data, which

works/exists only on Data tracks, not on CD-DA Audio tracks).

After the seek, the disk stays on the seeked location forever (namely: when seeking

sector N, it does stay at around N-8..N-0 in single speed mode, or at around N-5..N+2

in double speed mode). This command will stop any current or pending ReadN or ReadS.

Trying to use SeekL on Audio CDs passes okay on the first response, but (after two

seconds or so) the second response will return an error (stat+4,04h), and stop the drive

motor... that error doesn't appear ALWAYS though... works in some situations... such

like when previously reading data sectors or so...?

SeekP - Command 16h --> INT3(stat) --> INT2(stat)

Seek to Setloc's location in audio mode (using the Subchannel Q position data, which

works on both Audio on Data disks).

After the seek, the disk stays on the seeked location forever (namely: when seeking

sector N, it does stay at around N-9..N-1 in single speed mode, or at around N-2..N in

double speed mode). This command will stop any current or pending ReadN or ReadS.

Note: Some older docs claim that SeekP would recurse only "MM:SS" of the "MM:SS:FF"

position from Setloc - that is wrong, it does seek to MM:SS:FF (verified on a PSone).

After the seek, status is stat.bit7=0 (ie. audio playback off), until sending a new Play

command (without parameters) to start playback at the seeked location.

SetSession - Command 12h,session --> INT3(stat) --> INT2(stat)

Seeks to session (ie. moves the drive head to the session, with stat bit6 set during the

seek phase).

When issued during active-play, the command returns error code 80h.

When issued during play-spin-up, play is aborted.

 ___Errors___
 session = 00h causes error code 10h. ;INT5(03h,10h), no 2nd/3rd response
 ___On a non-multisession-disk___
 session = 01h passes okay. ;INT3(stat), and once INT2(stat)
 session = 02h or higher cause seek error ;INT3(stat), and twice INT5(06h,40h)
 ___On a multisession-disk with N sessions___

11.4 CDROM - Seek Commands

- 141/1136 -

after seek error --> disk stops spinning at 2nd response, then restarts spinning for 1

second or so, then stops spinning forever... and following gettn/gettd/getid/getlocl/

getlocp fail with error 80h...

The command does automatically read the TOC of the new session. BUG: Older CD

Firmwares (16 May 1995 and older) don't clear the old TOC when loading Session 1, in

that case SetSession(1) may update some (not all) TOC entries; ending up with a mixup

of old and new TOC entries.

There seems to be no way to determine the current sessions number (via Getparam or

so), and more important, no way to determine if the disk is a multi-session disk or not...

except by trial... which would stop the drive motor on seek errors on single-session

disks...?

For setloc, one must probably specifiy minutes within the 1st track of the new session

(the 1st track of 1st session usually/always starts at 00:02:00, but for other sessions one

would need to use GetTD)...?

11.5 CDROM - Read Commands

ReadN - Command 06h --> INT3(stat) --> INT1(stat) --> datablock

Read with retry. The command responds once with "stat,INT3", and then it's repeatedly

sending "stat,INT1 --> datablock", that is continued even after a successful read has

occured; use the Pause command to terminate the repeated INT1 responses.

Unknown which responses are sent in case of read errors?

====

ReadN and ReadS cause errors if you're trying to read an unlicensed CD or CD-R without

a mod chip. Sectors on Audio CDs can be read only when CDDA is enabled via Setmode

(otherwise error code 40h is returned).

====

Actually, Read seems to work on unlicensed CD-R's, but the returned data is the whole

sector or so (the 2048 data bytes preceeded by a 12byte header, and probably/maybe

followed by error-correction info; in fact the total received data in the Data Fifo is 4096

bytes; the last some bytes probably being garbage) (however error correction is NOT

performed by hardware, so the 2048 data bytes may be trashy) (however, if the error

correction info IS received, then error correction could be performed by software) (also

Setloc doesn't seem to work accurately on unlicensed CD-R's).

 session = 01h..N+1 passes okay ;where N+1 moves to the END of LAST session
 session = N+2 or higher cause seek error ;2nd response = INT5(06h,20h)

11.5 CDROM - Read Commands

- 142/1136 -

====

After receiving INT1, the Kernel does,

and then,

then,

thereafter,

ReadS - Command 1Bh --> INT3(stat) --> INT1(stat) --> datablock

Read without automatic retry. Not sure what that means... does WHAT on errors? Maybe

intended for continous streaming video output (to skip bad frames, rather than to

interrupt the stream by performing read-retrys).

 ;Read occasionally returns 11h,40h ..? when TOC isn't loaded?

 [1F801800h]=00h
 00h=[1F801800h]
 [1F801803h]=00h
 00h=[1F801803h]
 [1F801800h]=00h
 [1F801803h]=80h

 [1F801018h]=00020943h ;cdrom_delay
 [1F801020h]=0000132Ch ;com_delay

 x=[1F8010F4h] AND 00FFFFFFh ;result is 00840000h
 [1F8010F4h] = x OR 00880000h
 [1F8010F0h] = [1F8010F0h] OR 00008000h
 [1F8010B0h] = A0010000h ;addr
 [1F8010B4h] = 00010200h ;LSBs=num words, MSBs=ignored/bullshit
 [1F8010B4h] = 11000000h ;DMA control

 [1F801800h]=01h
 [1F801803h]=40h ;reset parameter fifo
 [0]=00000000h
 [0]=00000001h
 [0]=00000002h
 [0]=00000003h
 [1F801800h]=00h
 [1F801801h]=09h ;command9 (pause)

11.5 CDROM - Read Commands

- 143/1136 -

ReadN/ReadS

Both ReadN/ReadS are reading data sequentially, starting at the sector specified with

Setloc, and then automatically reading the following sectors.

CDROM Incoming Data / Buffer Overrun Timings

The Read commands are continously receiving 75 sectors per second (or 150 sectors at

double speed), and, basically, the software must be fast enough to process that amount

of incoming data. However, the PSX hardware includes a buffer that can hold up to a

handful (exact number is unknown?) of sectors, so, occasional delays of more than 1/75

seconds between processing two sectors aren't causing lost sectors, unless the delay(s)

are summing up too much. The relevant steps for receiving data are:

The Data Request accepts the data for the currently pending interrupt, it should be

usually issued between receiving/acknowledging INT1 (however, it can be also issued

shortly after the acknowledge; even if there are further sectors in the buffer, there seems

to be a small delay between the acknowledge and the next interrupt, and Data Requests

during that period are still treated to belong to the old interrupt).

If a buffer overrun has occured \<before> issuing the Data Request, then wrong data will

be received, ie. some sectors will be skipped (the hardware doesn't seem to support a

buffer-overrun error flag? Anyways, see GetlocL description for a possible way to detect

buffer-overruns).

If a buffer overrun occurs \<after> issuing the Data Request, then the requested data can

be still read via I/O or DMA intactly, ie. the requested data is "locked", and the overrun

will affect only the following sectors.

ReadTOC - Command 1Eh --> INT3(stat) --> INT2(stat)

Reread the Table of Contents of current session without reset. The command is rather

slow, the second response appears after about 1 second delay. The command itself

returns only status information (to get the actual TOC info, use GetTD and GetTN

commands).

 Wait for Interrupt Request (INT1) ;indicates that data is available
 Send Data Request (BFRD=1) ;accept data
 Acknowledge INT1 ;
 Copy Data to Main RAM (via I/O or DMA) ;read data

 Caution: Supported only in BIOS version vC1 and up. Not supported in vC0.

11.5 CDROM - Read Commands

- 144/1136 -

Note: The TOC contains information about the tracks on the disk (not file names or so,

that kind of information is obtained via Read commands). The TOC is read automatically

on power-up, when opening/closing the drive door, and when changing sessions (so,

normally, it isn't required to use this command).

Setloc, Read, Pause

A normal CDROM access (such like reading a file) consists of three commands:

Normally one shouldn't mess up the ordering of those commands, but if one does,

following rules do apply:

Setloc is memorizing the wanted target, and marks it as unprocessed, and has no other

effect (it doesn't start reading or seeking, and doesn't interrupt or redirect any active

reads).

If Read is issued with an unprocessed Setloc, then the drive is automatically seeking the

Setloc location (and marks Setloc as processed).

If Read is issued without an unprocessed Setloc, the following happens: If reading is

already in progress then it just continues reading. If Reading was Paused, then reading

resumes at the most recently received sector (ie. returning that sector once another

time).

11.6 CDROM - Status Commands

Status code (stat)

The 8bit status code is returned by Nop command (and many other commands), the

meaning of the separate stat bits is:

If the shell is closed, then bit4 is automatically reset to zero after reading stat with the

Nop command (most or all other commands do not reset that bit after reading). If stat

 Setloc, Read, Pause

 7 Play Playing CD-DA ;\only ONE of these bits can be set
 6 Seek Seeking ; at a time (ie. Read/Play won't get
 5 Read Reading data sectors ;/set until after Seek completion)
 4 ShellOpen Once shell open (0=Closed, 1=Is/was Open)
 3 IdError (0=Okay, 1=GetID denied) (also set when Setmode.Bit4=1)
 2 SeekError (0=Okay, 1=Seek error) (followed by Error Byte)
 1 Spindle Motor (0=Motor off, or in spin-up phase, 1=Motor on)
 0 Error Invalid Command/parameters (followed by Error Byte)

11.6 CDROM - Status Commands

- 145/1136 -

bit0 or bit2 is set, then the normal respons(es) and interrupt(s) are not send, and,

instead, INT5 occurs, and an error-byte is send as second response byte, with the

following values:

80h appears on some commands (02h..09h, 0Bh..0Dh, 10h..16h, 1Ah, 1Bh?, and 1Dh)

when the disk is missing, or when the drive unit is disconnected from the mainboard.

When the shell is opened, INT5 is triggered regardless of whether a command was

executing or not. When this happens, all bits except shell open and error are cleared in

the status register. The error byte in the INT5 is set to 08h.

Some games send a Stop command before changing discs, but others just wait for the

user to open the shell, causing the disc to stop. The game can then send Nop

commands, looping until bit 4 is cleared to detect when the new disc has been inserted.

Stat Seek/Play/Read bits

There's is only max ONE of the three Seek/Play/Read bits set at a time, ie. during Seek,

ONLY the seek bit is set (and Read or Play doesn't get until seek completion), that is

important for Gran Turismo 1, which checks for seek completion by waiting for READ

getting set (rather than waiting for SEEK getting cleared).

Nop - Command 01h --> INT3(stat)

Returns stat (like many other commands), and additionally does reset the shell open

flag (for the following commands; unless the shell is still opened). This is different as for

most or all other commands (which may return stat, but which do not reset the shell

open flag).

In official docs, the command is eventually referred to as "Nop", believing that it does

nothing than returning stat (ignoring the fact that it's having the special shell open reset

feature).

 ___These values appear in the FIRST response; with stat.bit0 set___
 10h - Invalid Sub_function (for command 19h), or invalid parameter value
 20h - Wrong number of parameters
 40h - Invalid command
 80h - Cannot respond yet (eg. required info was not yet read from disk yet)
 (namely, TOC not-yet-read or so)
 (also appears if no disk inserted at all)
 ___These values appear in the SECOND response; with stat.bit2 set___
 04h - Seek failed (when trying to use SeekL on Audio CDs)
 ___These values appear even if no command was sent; with stat.bit2 set___
 08h - Drive door became opened

11.6 CDROM - Status Commands

- 146/1136 -

Getparam - Command 0Fh --> INT3(stat,mode,null,file,channel)

Returns stat (see Nop above), mode (see Setmode), a null byte (always 00h), and file/

channel filter values (see Setfilter).

GetlocL - Command 10h --> INT3(amm,ass,asect,mode,file,channel,sm,ci)

Retrieves 4-byte sector header, plus 4-byte subheader of the current sector. GetlocL can

be send during active Read commands (but, mind that the GetlocL-INT3-response can't

be received until any pending Read-INT1's are acknowledged).

The PSX hardware can buffer a handful of sectors, the INT1 handler receives the

\<oldest> buffered sector, the GetlocL command returns the header and subheader of

the \<newest> buffered sector. Note: If the returned \<newest> sector number is much

bigger than the expected \<oldest> sector number, then it's likely that a buffer overrun

has occured.

GetlocL fails (with error code 80h) when playing Audio CDs (or Audio Tracks on Data

CDs). These errors occur because Audio sectors don't have any header/subheader

(instead, equivalent data is stored in Subchannel Q, which can be read with GetlocP).

GetlocL also fails (with error code 80h) when the drive is in Seek phase (such like

shortly after a new ReadN/ReadS command). In that case one can retry issuing GetlocL

(until it passes okay, ie. until the seek has completed). During Seek, the drive seems to

decode only Subchannel position data (but no header/subheader data), accordingly

GetlocL won't work during seek (however, GetlocP does work during Seek).

GetlocP - Command 11h - INT3(track,index,mm,ss,sect,amm,ass,asect)

Retrieves 8 bytes of position information from Subchannel Q with ADR=1. Mainly

intended for displaying the current audio position during Play. All results are in BCD.

Note: GetlocP is also used for reading the LibCrypt protection data:

CDROM Protection - LibCrypt

 track: track number (AAh=Lead-out area) (FFh=unknown, toc, none?)
 index: index number (Usually 01h)
 mm: minute number within track (00h and up)
 ss: second number within track (00h to 59h)
 sect: sector number within track (00h to 74h)
 amm: minute number on entire disk (00h and up)
 ass: second number on entire disk (00h to 59h)
 asect: sector number on entire disk (00h to 74h)

11.6 CDROM - Status Commands

- 147/1136 -

GetTN - Command 13h --> INT3(stat,first,last) ;BCD

Get first track number, and last track number in the TOC of the current Session. The

number of tracks in the current session can be calculated as (last-first+1). The first

track number is usually 01h in the first (or only) session, and "last track of previous

session plus 1" in further sessions.

GetTD - Command 14h,track --> INT3(stat,mm,ss) ;BCD

For a disk with NN tracks, parameter values 01h..NNh return the start of the specified

track, parameter value 00h returns the end of the last track, and parameter values

bigger than NNh return error code 10h.

The GetTD values are relative to Index=1 and are rounded down to second boundaries

(eg. if track=N Index=0 starts at 12:34:56, and Track=N Index=1 starts at 12:36:56,

then GetTD(N) will return 12:36, ie. the sector number is truncated, and the Index=0

region is skipped).

GetQ - Command 1Dh,adr,point --> INT3(stat) --> INT2(10bytesSubQ,peak_lo)

Allows to read 10 bytes from Subchannel Q in Lead-In (see CDROM Subchannels chapter

for details). Unlike GetTD, this command allows to receive the exact MM:SS:FF address of

the point'ed Track (GetTD reads a memorized MM:SS value from RAM, whilst GetQ reads

the full MM:SS:FF from the disk, which is slower than GetTD, due to the disk-access).

With ADR=1, point can be a any point number for ADR=1 in Lead-in (eg. 01h..99h=Track

N, A2h=Lead-Out). The returned 10 bytes are raw SubQ data (starting with the ADR/

Control value; of which the lower 4bits are always ADR=1).

The 11th returned byte is the Peak LSB (similar as in Play+Report, but in this case only

the LSB is transferred, which is apparently a bug in CDROM BIOS, the programmer

probably wanted to send 10 bytes without peak, or 12 bytes with full peak; although peak

wouldn't be too useful, as it should always zero during Lead-In... but some discs do seem

return non-zero values for whatever reason).

Aside from ADR=1, a value of ADR=5 can be used on multisession disks (eg. with point

B0h, C0h). Not sure if any other ADR values can be used (ADR=3, ISRC is usually not in

the Lead-In, ADR=2, EAN may be in the lead-in, but one may need to specify point equal

to the first EAN byte).

If the ADR/Point combination isn't found, then a timeout occurs after circa 6 seconds (to

 Caution: Supported only in BIOS version vC1 and up. Not supported in vC0.
 Caution: When unsupported, Parameter Fifo isn't cleared after the command.

11.6 CDROM - Status Commands

- 148/1136 -

avoid this, use GetTN to see which tracks/points exist). After the timeout, the command

starts playing track 1. If the controller wasn't already in audio mode before sending the

command, then it does switch off the drive motor for a moment (that, after the timeout,

and before starting playback).

In case of timeout, the normal INT3/INT2 responses are replaced by INT3/INT5/INT5

(INT3 at command start, 1st INT5 at timeout/stop, and 2nd INT5 at restart/play).

Note: GetQ sends scratch noise to the SPU while seeking to the Lead-In area.

GetID - Command 1Ah --> INT3(stat) --> INT2/5 (stat,flags,type,atip,"SCEx")

The status byte (ie. the first byte in the responses), may differ in some cases; values

shown above are typically received when issuing GetID shortly after power-up; however,

shortly after the detect-busy phase, seek-busy flag (bit6) bit may be set, and, after

issuing commands like Play/Read/Stop, bit7,6,5,1 may differ. The meaning of the

separate 2nd response bytes is:

The fourth letter of the "SCEx" string contains region information: "SCEI" (Japan/NTSC),

"SCEA" (America/NTSC), "SCEE" (Europe/PAL). The "SCEx" string is displayed in the intro,

and the PSX refuses to boot if it doesn't match up for the local region.

With a modchip installed, the same response is sent for Mode1 and Audio disks (except

for Audio disks with very short TOCs (eg. singles) because SCEX reading is aborted

immediately after reading all TOC entries on Audio disks); whether it is Audio or Mode1

 Drive Status 1st Response 2nd Response
 Door Open INT5(11h,80h) N/A
 Spin-up INT5(01h,80h) N/A
 Detect busy INT5(03h,80h) N/A
 No Disk INT3(stat) INT5(08h,40h, 00h,00h, 00h,00h,00h,00h)
 Audio Disk INT3(stat) INT5(0Ah,90h, 00h,00h, 00h,00h,00h,00h)
 Unlicensed:Mode1 INT3(stat) INT5(0Ah,80h, 00h,00h, 00h,00h,00h,00h)
 Unlicensed:Mode2 INT3(stat) INT5(0Ah,80h, 20h,00h, 00h,00h,00h,00h)
 Unlicensed:Mode2+Audio INT3(stat) INT5(0Ah,90h, 20h,00h, 00h,00h,00h,00h)
 Debug/Yaroze:Mode2 INT3(stat) INT2(02h,00h, 20h,00h, 20h,20h,20h,20h)
 Licensed:Mode2 INT3(stat) INT2(02h,00h, 20h,00h, 53h,43h,45h,4xh)
 Modchip:Audio/Mode1 INT3(stat) INT2(02h,00h, 00h,00h, 53h,43h,45h,4xh)

 1st byte: stat (as usually, but with bit3 same as bit7 in 2nd byte)
 2nd byte: flags (bit7=denied, bit4=audio... or reportedly import, uh?)
 bit7: Licensed (0=Licensed Data CD, 1=Denied Data CD or Audio CD)
 bit6: Missing (0=Disk Present, 1=Disk Missing)
 bit4: Audio CD (0=Data CD, 1=Audio CD) (always 0 when Modchip installed)
 3rd byte: Disk type (from TOC Point=A0h) (eg. 00h=Audio or Mode1, 20h=Mode2)
 4th byte: Usually 00h (or 8bit ATIP from Point=C0h, if session info exists)
 that 8bit ATIP value is taken form the middle 8bit of the 24bit ATIP value
 5th-8th byte: SCEx region (eg. ASCII "SCEE" = Europe) (0,0,0,0 = Unlicensed)

11.6 CDROM - Status Commands

- 149/1136 -

can be checked by examining Subchannel Q ADR/Control.Bit6 (eg. via command 19h,60h,

50h,00h).

Yaroze does return "SCEA" for SCEA discs, but, for SCEI,SCEE,SCEW discs it does return

four ASCII spaces (20h).

11.7 CDROM - CD Audio Commands

To play CD-DA Audio CDs, init the following SPU Registers: CD Audio Volume, Main

Volume, and SPU Control Bit0. Then send Demute command, and Play command.

Mute - Command 0Bh --> INT3(stat)

Turn off audio streaming to SPU (affects both CD-DA and XA-ADPCM).

Even when muted, the CDROM controller is internally processing audio sectors (as seen

in 1F801800h.Bit2, which works as usually for XA-ADPCM), muting is just forcing the CD

output volume to zero.

Mute is used by Dino Crisis 1 to mute noise during modchip detection.

Demute - Command 0Ch --> INT3(stat)

Turn on audio streaming to SPU (affects both CD-DA and XA-ADPCM). The Demute

command is needed only if one has formerly used the Mute command (by default, the

PSX is demuted after power-up (...and/or after Init command?), and is demuted after

cdrom-booting).

Play - Command 03h (,track) --> INT3(stat) --> optional INT1(report bytes)

Starts CD Audio Playback. The parameter is optional, if there's no parameter given (or if

it is 00h), then play either starts at Setloc position (if there was a pending unprocessed

Setloc), or otherwise starts at the current location (eg. the last point seeked, or the

current location of the current song; if it was already playing). For a disk with N songs,

Parameters 1..N are starting the selected track. Parameters N+1..99h are restarting the

begin of current track. The motor is switched off automatically when Play reaches the

end of the disk, and INT4(stat) is generated (with stat.bit7 cleared).

The track parameter seems to be ignored when sending Play shortly after power-up (ie.

when the drive hasn't yet read the TOC).

===

"Play is almost identical to CdlReadS, believe it or not. The main difference is that this

does not trigger a completed read IRQ. CdlPlay may be used on data sectors. However,

11.7 CDROM - CD Audio Commands

- 150/1136 -

all sectors from data tracks are treated as 00, so no sound is played. As CdlPlay is

reading, the audio data appears in the sector buffer, but is not reliable. Game Shark

"enhancement CDs" for the 2.x and 3.x versions used this to get around the PSX copy

protection."

Hmmm, what/where is the sector buffer... in the SPU?

And, what/who are the 2.x and 3.x versions?

Forward - Command 04h --> INT3(stat) --> optional INT1(report bytes)

Backward - Command 05h --> INT3(stat) --> optional INT1(report bytes)

After sending the command, the drive is in fast forward/backward mode, skipping every

some sectors. The skipping rate is fixed (it doesn't increase after some seconds)

(however, it increases when (as long as) sending the command again and again). The

sound becomes (obviously) non-continous, and also rather very silent, muffled, and

almost inaudible (that's making it rather useless; unless it's combined with a track/

minute/second display). To terminate forward/backward, send a new Play command

(with no parameters, so play starts at the "searched" location). Backward automatically

switches to Play when reaching the begin of Track 1. Forward automatically Stops the

drive motor with INT4(stat) when reaching the end of the last track.

Forward/Backwards work only if the drive was in Play state, and only if Play had already

started (ie. not shortly/immediately after a Play command); if the drive was not in Play

state, then INT5(stat+1,80h) occurs.

Setmode bits used for Play command

During Play, only bit 7,2,1 of Setmode are used, all other Setmode bits are ignored

(that, including bit0, ie. during Play the drive is always in CD-DA mode, regardless of

that bit).

Bit7 (double speed) should be usually off, although it can be used for a fast forward

effect (with audible output). Bit2 (report) activates an optional interrupt for Play,

Forward, and Backward commands (see below). Bit1 (autopause) pauses play at the end

of the track.

Report --> INT1(stat,track,index,mm/amm,ss+80h/ass,sect/asect,peaklo,peakhi)

With report enabled via Setmode, the Play, Forward, and Backward commands do

repeatedly generate INT1 interrupts, with eight bytes response length. The interrupt

isn't generated on ALL sectors, and the response changes between absolute time, and

11.7 CDROM - CD Audio Commands

- 151/1136 -

time within current track (the latter one indicated by bit7 of ss):

The last two response bytes (peaklo,peakhi) contain the Peak value, as received from the

CXD2510Q Signal Processor. That is: An unsigned absolute peak level in lower 15bit, and

an L/R flag in upper bit. The L/R bit is toggled after each SUBQ read, however the PSX

Report mode does usually forward SUBQ only every 10 frames (but does read SUBQ in

\<every> frame), so L/R will stay stuck in one setting (but may toggle after one second;

ie. after 75 frames). And, peak is reset after each read, so 9 of the 10 frames are lost.

Note: Report mode affects only CD Audio (not Data, nor XA-ADPCM sectors).

AutoPause --> INT4(stat)

Autopause can be enabled/disabled via Setmode.bit1:

End of Track is determined by sensing a track number transition in SubQ position info.

After autopause, the disc stays at the \<end> of the old track, NOT at the \<begin> of

the next track (so trying to resume playing by sending a new Play command without new

Seek/Setloc command will instantly pause again).

Caution: SubQ track transitions may pause instantly when accidently starting to play at

the end of the previous track rather than at begin of desired track (this \<might> happen

due to seek inaccuracies, for example, GetTD does round down TOC entries from

MM:SS:FF to MM:SS:00, which may be off by 0.99 seconds, although this error should be

usually compensated by the leading 2-second pregap/index0 region at the begin of each

track, unfortunately there are a few .CUE sheet files that do lack both PREGAP and INDEX

00 entries on audio tracks, which might cause problems with autopause).

AutoPause is used by Rayman and Tactics Ogre.

Playing XA-ADPCM Sectors (compressed audio data)

Aside from normal uncompressed CD Audio disks, the PSX can also play XA-ADPCM

compressed sectors. XA-ADPCM sectors are organized in Files (not in tracks), and are

"played" with Read command (not Play command).

To play XA-ADPCM, initialize the SPU for CD Audio input (as described above), enable

 amm/ass/asect are returned on asect=00h,20h,40h,60h ;-absolute time
 mm/ss+80h/sect are returned on asect=10h,30h,50h,70h ;-within current track
 (or, in case of read errors, report may be returned on other asect's)

 Setmode.bit1=1: AutoPause=On --> Issue INT4(stat) and PAUSE at end of TRACK
 Setmode.bit1=0: AutoPause=Off --> Issue INT4(stat) and STOP at end of DISC

11.7 CDROM - CD Audio Commands

- 152/1136 -

ADPCM via Setmode, then select the sector via Setloc, and issue a Read command

(typically ReadS).

XA-ADPCM sectors are interleaved, ie. only each Nth sector should be played (where "N"

depends on the Motor Speed, mono/stereo format, and sample rate). If the "other"

sectors do contain XA-ADPCM data too, then the Setfilter command (and XA-Filter

enable flag in Setmode) must be used to select the desired sectors. If the "other"

sectors do contain code or data (eg. MDEC video data) which is wanted to be send to the

CPU, then SetFilter isn't required to be enabled (although it shouldn't disturb reading

even if it is enabled).

If XA-ADPCM (and/or XA-Filter) is enabled via Setmode, then INT1 is generated only for

non-ADPCM sectors.

The Setmode sector-size selection is don't care for forwarding XA-ADPCM sectors to the

SPU (the hardware does always decompress all 900h bytes).

11.8 CDROM - Test Commands

CDROM - Test Commands - Version, Switches, Region, Chipset, SCEx

CDROM - Test Commands - Test Drive Mechanics

CDROM - Test Commands - Prototype Debug Transmission

CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports

CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

11.9 CDROM - Test Commands - Version, Switches, Region,

Chipset, SCEx

19h,20h --> INT3(yy,mm,dd,ver)

Indicates the date (Year-month-day, in BCD format) and version of the HC05 CDROM

controller BIOS. Known/existing values are:

 (unknown) ;DTL-H2000 (with SPC700 instead HC05)
 94h,09h,19h,C0h ;PSX (PU-7) 19 Sep 1994, version vC0 (a)
 94h,11h,18h,C0h ;PSX (PU-7) 18 Nov 1994, version vC0 (b)
 94h,11h,28h,01h ;PSX (DTL-H2000) 28 Nov 1994, version v01 (debug)
 95h,05h,16h,C1h ;PSX (LATE-PU-8) 16 May 1995, version vC1 (a)
 95h,07h,24h,C1h ;PSX (LATE-PU-8) 24 Jul 1995, version vC1 (b)
 95h,07h,24h,D1h ;PSX (LATE-PU-8,debug ver)24 Jul 1995, version vD1 (debug)
 96h,08h,15h,C2h ;PSX (PU-16, Video CD) 15 Aug 1996, version vC2 (VCD)
 96h,08h,18h,C1h ;PSX (LATE-PU-8,yaroze) 18 Aug 1996, version vC1 (yaroze)

11.8 CDROM - Test Commands

- 153/1136 -

19h,21h --> INT3(flags)

Returns the current status of the POS0 and DOOR switches.

19h,22h --> INT3("for Europe")

Indicates the region that console is to be used in:

The CDROMs must contain a matching SCEx string accordingly.

The string "for Europe" does also suggest 50Hz PAL/SECAM video hardware.

The Yaroze accepts any normal SCEE,SCEA,SCEI discs, plus special SCEW discs.

19h,23h --> INT3("CXD2940Q/CXD1817Q/CXD2545Q/CXD1782BR") ;Servo Amplifier

19h,24h --> INT3("CXD2940Q/CXD1817Q/CXD2545Q/CXD2510Q") ;Signal Processor

19h,25h --> INT3("CXD2940Q/CXD1817Q/CXD1815Q/CXD1199BQ") ;Decoder/FIFO

Indicates the chipset that the CDROM controller is intended to be used with. The strings

aren't always precisely correct (CXD1782BR is actually CXA1782BR, ie. CXA, not CXD)

 96h,09h,12h,C2h ;PSX (PU-18) (japan) 12 Sep 1996, version vC2 (a.jap)
 97h,01h,10h,C2h ;PSX (PU-18) (us/eur) 10 Jan 1997, version vC2 (a)
 97h,08h,14h,C2h ;PSX (PU-20) 14 Aug 1997, version vC2 (b)
 98h,06h,10h,C3h ;PSX (PU-22) 10 Jun 1998, version vC3 (a)
 99h,02h,01h,C3h ;PSX/PSone (PU-23, PM-41) 01 Feb 1999, version vC3 (b)
 A1h,03h,06h,C3h ;PSone/late (PM-41(2)) 06 Jun 2001, version vC3 (c)
 (unknown) ;PS2, xx xxx xxxx, late PS2 models...?

 Bit0 = HeadIsAtPos0 (0=No, 1=Pos0)
 Bit1 = DoorIsOpen (0=No, 1=Open)
 Bit2 = EjectButtonOrOutSwOrSo? (DTL-H2000 only) (always 0 on retail)
 Bit3-7 = AlwaysZero

 Caution: Supported only in BIOS version vC1 and up. Not supported in vC0.

 INT5(11h,10h) --> NTSC, Japan (vC0) --> requires "SCEI" discs
 INT3("for Europe") --> PAL, Europe --> requires "SCEE" discs
 INT3("for U/C") --> NTSC, North America --> requires "SCEA" discs
 INT3("for Japan") --> NTSC, Japan / NTSC, Asia --> requires "SCEI" discs
 INT3("for NETNA") --> Region-free yaroze version--> requires "SCEx" discs
 INT3("for US/AEP") --> Region-free debug version --> accepts unlicensed CDRs

 Caution: Supported only in BIOS version vC1 and up. Not supported in vC0.

11.9 CDROM - Test Commands - Version, Switches, Region, Chipset, SCEx

- 154/1136 -

(and CXD1199BQ chips exist on PU-7 boards, but later PU-8 boards do actually use

CXD1815Q) (and CXD1817Q is actually CXD1817R) (and newer PSones are using

CXD2938Q or possibly CXD2941R chips, but nothing called CXD2940Q).

Note: Yaroze responds by CXD1815BQ instead of CXD1199BQ (but not by CXD1815Q).

19h,04h --> INT3(stat) ;Read SCEx string (and force motor on)

Resets the total/success counters to zero, and does then try to read the SCEx string

from the current location (the SCEx is stored only in the Lead-In area, so, if the drive

head is elsewhere, it will usually not find any strings, unless a modchip is permanently

simulating SCEx strings).

This is a raw test command (the successful or unsuccessful results do not lock/unlock

the disk). The results can be read with command 19h,05h (which will terminate the

SCEx reading), or they can be read from RAM with command 19h,60h,lo,hi (which

doesn't stop reading). Wait 1-2 seconds before expecting any results.

Note: Like 19h,00h, this command forces the drive motor to spin at standard speed

(synchronized with the data on the disk), works even if the shell is open (but stops

spinning after a while if the drive is empty).

19h,05h --> INT3(total,success) ;Get SCEx Counters

Returns the total number of "Sxxx" strings received (where at least the first byte did

match), and the number of full "SCEx" strings (where all bytes did match). Typically, the

values are "01h,01h" for Licensed PSX Data CDs, or "00h,00h" for disk missing,

unlicensed data CDs, Audio CDs.

The counters are reset to zero, and SCEx receive mode is active for a few seconds after

booting a new disk (on power up, on closing the drive door, on sending a Reset

command, and on sub_function 04h). The disk is unlocked if the "success" counter is

nonzero, the only exception is sub_function 04h which does update the counters, but

does not lock/unlock the disk.

11.10 CDROM - Test Commands - Test Drive Mechanics

Signal Processor and Servo Amplifier

11.10 CDROM - Test Commands - Test Drive Mechanics

- 155/1136 -

19h,50h,msb[,mid,[lsb[,xlo]]] --> INT3(stat)

Sends an 8bit/16bit/24bit command to the hardware, depending on number of

parameters:

19h,51h,msb[,mid,[lsb]] --> INT3(stat,hi,lo) ;BIOS vC2/vC3 only

Supported by newer CDROM BIOSes only (such that use CXD2545Q or newer chips).

Works same as 19h,50h, but does additionally receive a response.

The command is always sending a 24bit CX(Xxxxxx) command, but it doesn't verify the

number of parameter bytes (when using more than 3 bytes: extra bytes are ignored,

when using less than 3 bytes: garbage is appended, which is somewhat valid because

8bit/16bit commands can be padded to 24bit size by appending "don't care" bits).

The command can be used to send any CX(..) command, but actually it does make

sense only for the get-status commands, see below "19h,51h,39h,xxh" description.

19h,51h,39h,xxh --> INT3(stat,hi,lo) ;BIOS vC2/vC3 only

Supported by newer CDROM BIOSes only (such that use CXD2545Q or newer chips).

Sends CX(39xx) to the hardware, and receives a response (the response.hi byte is

usually 00h for 8bit responses, or 00h..01h for 9bit responses). For example, this can be

used to dump the Coefficient RAM.

19h,03h --> INT3(stat) ;force motor off

Forces the motor to stop spinning (ignored during spin-up phase).

 1 byte --> send CX(Xx) ;short 8bit command
 2 bytes --> send CX(Xxxx) ;longer 16bit command
 3 bytes --> send CX(Xxxxxx) ;full 24bit command
 4 bytes --> send CX(Xxxxxxxx) ;extended 32bit command (BIOS vC3 only)
 4..15 bytes: acts same as max (3 or 4 bytes) (extra bytes are ignored)
 0 bytes or more than 15 bytes: generates an error

11.10 CDROM - Test Commands - Test Drive Mechanics

- 156/1136 -

19h,17h --> INT3(stat) ;force motor on, clockwise, super-fast

19h,01h --> INT3(stat) ;force motor on, anti-clockwise, super-fast

19h,02h --> INT3(stat) ;force motor on, anti-clockwise, super-fast

19h,10h --> INT3(stat) ;force motor on, anti-clockwise, super-fast

19h,18h --> INT3(stat) ;force motor on, anti-clockwise, super-fast

Forces the drive motor to spin at maximum speed (which is much faster than normal or

double speed), in normal (clockwise), or reversed (anti-clockwise) direction. The

commands work even if the shell is open. The commands do not try to synchronize the

motor with the data on the disk (and do thus work even if no disk is inserted).

19h,00h --> INT3(stat) ;force motor on, clockwise (even if shell open)

This command seems to have effect only if the drive motor was off. If it was off, it does

FFh-fills the TOC entries in RAM, and seek to the begin of the TOC at 98:30:00 or so

(where minute=98 means minus two). From that location, it follows the spiral on the

disk, although it does occassionally jump back some seconds. After clearing the TOC,

the command does not write new data to the TOC buffer in RAM.

Note: Like 19h,04h, this command forces the drive motor to spin at standard speed

(synchronized with the data on the disk), works even if the shell is open (but stops

spinning after a while if the drive is empty).

19h,11h --> INT3(stat) ;Move Lens Up (leave parking position)

19h,12h --> INT3(stat) ;Move Lens Down (enter parking position)

19h,13h --> INT3(stat) ;Move Lens Outwards (away from center of disk)

19h,14h --> INT3(stat) ;Move Lens Inwards (towards center of disk)

Moves the laser lens. The inwards/outwards commands do move ONLY the lens (ie.

unlike as for Seek commands, the overall-laser-unit remains in place, only the lens is

moved).

11.10 CDROM - Test Commands - Test Drive Mechanics

- 157/1136 -

19h,15h - if motor on: move head outwards + inwards + motor off

Moves the drive head to outer-most and inner-most position. Note that the drive doesn't

have a switch that'd tell the controller when it has reached the outer-most position (so

it'll forcefully hit against the outer edge) (ie. using this command too often may destroy

the drive mechanics).

Note: The same destructive hit-outer-edge effect happens when using Setloc/Seek with

too large values (like minute=99h).

19h,16h --> INT3(stat) ;Unknown / makes some noise if motor is on

19h,19h --> INT3(stat) ;Unknown / no effect

19h,1Ah --> INT3(stat) ;Unknown / makes some noise if motor is on

Seem to have no effect?

19h,16h seems to Move Lens Inwards, too.

19h,06h,new --> INT3(old) ;Adjust balance in RAM, and apply it via CX(30+n)

19h,07h,new --> INT3(old) ;Adjust gain in RAM, and apply it via CX(38+n)

19h,08h,new --> INT3(old) ;Adjust balance in RAM only

These commands are supported only by older CDROM BIOS versions (those with

CXA1782BR Servo Amplifier).

Later BIOSes will respond with INT5(11h,20h) when trying to use these commands

(because CXD2545Q and later Servo Amplifiers don't support the CX(30/38+n)

commands).

11.11 CDROM - Test Commands - Prototype Debug Transmission

Serial Debug Messages

Older CDROM BIOSes are supporting debug message transmission via serial bus, using

lower 3bit of the HC05 "databus" combined with the so-called "ROMSEL" pin (which

apparently doesn't refer to Read-Only-Memory, but rather something like Runtime-

Output-Message, or whatever).

Data is transferred in 24bit units (8bit command/index from HC05, followed by 16bit

11.11 CDROM - Test Commands - Prototype Debug Transmission

- 158/1136 -

data to/from HC05), bigger messages are divided into multiple such 24bit snippets.

There are no connectors for external debug hardware on any PSX mainboards, so the

whole stuff seems to be dating back to prototypes. And it seems to be removed from

later BIOSes (which appear to use "ROMSEL" as "SCLK"; for receiving status info from

the new CXD2545Q chips).

19h,30h,index,dat1,dat2 --> INT3(stat) ;Prototype/Debug stuff

19h,31h,dat1,dat2 --> INT3(stat) ;Prototype/Debug stuff

19h,4xh,index --> INT3(dat1,dat2) ;Prototype/Debug stuff

These functions are supported on older CDROM BIOS only; later BIOSes respond by

INT5(11h,10h).

The functions do not affect the CDROM operation (they do simple allow to transfer data

between Main CPU and external debug hardware).

Sub functions 30h and 31h may fail with INT5(11h,80h) when receiving wrong signals

on the serial input line.

Sub function "4xh" value can be 40h..4Fh (don't care).

INT5 Debug Messages

Alongsides to INT5 errors, the BIOS is usually also sending information via the above

serial bus (the error info is divided into multiple 8bit+16bit snippets, and contains stat,

error code, mode, current SubQ position, and most recently issued command).

11.12 CDROM - Test Commands - Read/Write Decoder RAM and

I/O Ports

Caution: Below commands 19h,71h..76h are supported only in BIOS version vC1 and

up. Not supported in vC0.

19h,71h,index --> INT3(databyte) ;Read single register

index can be 00h..1Fh, bigger values seem to be mirrored to "index AND 1Fh", with one

exception: index 13h in NOT mirrored, instead, index 33h, 53h, 93h, B3h, D3h, F3h

return INT5(stat+1,10h), and index 73h returns INT5(stat+1,20h).

Aside from returning a value, the commands seem to DO something (like moving the

11.12 CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports

- 159/1136 -

drive head when a disk is inserted). Return values are usually:

19h,72h,index,databyte --> INT3(stat) ;Write single register

19h,73h,index,len --> INT3(databytes...) ;Read multiple registers (bugged)

19h,74h,index,len,databytes --> INT3(stat) ;Write multiple registers (bugged)

Same as read/write single register, but trying to transfer multiple registers at once.

BUG: The transfer should range from 00h to len-1, but the loop counter is left

uninitialized (set to X=48h aka "command number 19h-minus-1-mul-2" instead of

X=00h). Causing to the function to read/write garbage at index 48h..FFh, it does then

wrap to 00h and do the correct intended transfer, but the preceeding bugged part may

have smashed RAM or I/O ports.

19h,75h --> INT3(remain.lo,remain.hi,addr.lo,addr.hi) ;Get Host Xfer Info

Returns a 4-byte value. In my early tests, on the first day it returned B1h,CEh,4Ch,01h,

on the next day 2Ch,E4h,95h,D5h, and on all following days 00h,C0h,00h,00h (no idea

 index value
 00h 04h ;04h=empty, 8Eh=licensed, 24h=audio
 01h [0B1h] ;DCh=empty/licensed, DDh=audio
 02h 00h
 03h 00h ;or variable when disk inserted
 04h 00h
 05h 80h ;or 86h or 89h when disk inserted
 06h C0h
 07h 02h
 08h 8Ah
 09h C0h
 0Ah 00h
 0Bh C0h
 0Ch [1F2h]
 0Dh [1F3h]
 0Eh 00h ;or 8Eh or E6h when disk inserted ;D4h/audio
 0Fh 00h ;or sometimes 01h when disk inserted ;50h/audio
 10h C0h
 11h E0h
 12h 71h
 13h stat
 14h FFh
 15h..1Fh C0h-filled ;or 17h --> DEh

 ;other response on param xx16h,xx18h with xx>00h

11.12 CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports

- 160/1136 -

why/where the earlier values came from).

The first byte seems to be always 00h; no matter of [1F0h].

The second byte seems to be always C0h; no matter of [1F1h].

The third,fourth bytes are [1F2h,1F3h].

That two bytes are 0Ch,08h after Read commands.

19h,76h,len_lo,len_hi,addr_lo,addr_hi --> INT3(stat) ;Prepare SRAM Transfer

Prepare Transfer to/from 32K SRAM.

After INT3, data can be read (same way as sector data after INT1).

11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM

and I/O Ports

19h,60h,addr_lo,addr_hi --> INT3(data) ;Read one byte from Drive RAM or I/O

Reads one byte from the controller's RAM or I/O area, see the memory map below for

more info. Among others, the command allows to read Subchannel Q data, eg. at

[200h..209h], including ADR=2/UPC/EAN and ADR=3/ISRC values (which are

suppressed by GetlocP). Eg. wait for ADR\<>2, then for ADR=2, then read the

remaining 9 bytes (because of the delayed IRQs, this works only at single speed) (at

double speed one can read only 5 bytes before the values get overwritten by new data).

Unknown if older boards (with 4.00MHz oscillators) are fast enough to read all 10 SubQ

bytes.

CDROM Controller I/O Area and RAM Memory Map

First 40h bytes are I/O ports (as in MC68HC05 datasheet):

 The first bytes are NOT affected by:
 destroying [1F0h] via too-many-parameters in command-buffer,
 changes to [1F1h] which may occur after read command (eg. may be 20h)

 000h 4 FF 7B 00 FF (other when disk inserted)
 004h 5 11 00 20 20 0C
 009h 1 00 (when disk inserted: changes between 00 or 80)
 00Ah 2 71 00
 00Ch 1 00 (when disk inserted: changes between 00 or 80)
 00Dh 3 20 20 20
 010h 8 02 80 00 60 00 00 99(orBB) 98
 018h 4 changes randomly (even when no disk inserted)

11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

- 161/1136 -

Next 200h bytes are RAM:

 01Ch 3 40 00 41
 01Fh 1 changes randomly (even when no disk inserted)
 020h 30 20h-filled
 03Eh 2 82h 20h

 040h 4 08 00 00 00 ;or 98 07 xx 0B when disk inserted ;[40].Bit1=MUTE
 044h 4 00h-filled
 048h 3 40 20 00 ;or 58 71 0F when disk inserted
 04Bh 1 changes randomly (nodisk: 00 or 80 / disk: BFh)
 04Ch 1 Zero (or C0h)
 04Dh 3 MM:SS:FF (begin of current track MM:SS:00h) (or increasing addr)
 050h 10 Subchannel Q (adjusted position values)
 05Ah 2 ...
 05Ch 1 00h (or 64h)
 05Dh 3 MM:SS:FF (current read address) (sticky address during pause)
 060h 1 increments at circa 16Hz or so (or other rate when spinning)
 061h 12 00h-filled ;or else when disk inserted
 06Dh 1 01 ;or 0C when disk inserted
 06Eh 2 SetFilter setting (file,channel)
 070h 16 00h-filled ;or else when disk inserted
 080h 8 00h-filled
 088h 3 03:SS:FF (three, second, fraction)
 08Bh 3 03:SS:FF (three, second, fraction)
 08Eh 2 01 FF (or other values)
 090h 1 00h (or 91h when disk inserted + spinning)
 091h 13 Zero
 09Eh 1 00h (or 01h when disk inserted + spinning)
 09Fh 1 Zero
 0A0h 1 Always 23h
 0A1h 1 09h (5Dh when disk inserted)
 0A2h 7 00h-filled
 0A9h 1 40
 0AAh 4 00h-filled
 0AEh 1 00 (no disk) or 01 (disk) or so
 0AFh 1 00 ;or 06 when disk inserted
 0B0h 7 00 DC 00 02 00 E0 08 ;\or else when disk inserted
 0B7h 1 20 ;Bit6+7=MUTE ;
 0B8h 3 DE 00 00 ;/
 0BBh 1 SetMode setting (mode)
 0BCh 1 \ setting (stat)
 0BDh 3 00h-filled
 0C0h 6 FFh-filled ;stack... ;\
 0C6h 1 Usually DFh ;sometimes [0EBh and up] are non-FFh, too
 0C7h 15 FFh-filled ;(depending on disk or commands or so)
 0D6h 1 Usually FDh (or FFh) ; ;
 0D7h 24 FFh-filled ; stack
 0EFh 4 on power-up FFh-filled, other once when disk read ;
 0F3h 7 changes randomly (even when no disk inserted) ;
 0FAh 6 2E 3C 2A D6 10 95 ;/
 100h 2x99 TOC Entries for Start of Track 1..99 (MM:SS)
 1C6h 1 TOC First Track number (usually 01h)

11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

- 162/1136 -

 1C7h 1 TOC Last Track number (usually 01h or higher)
 1C8h 3 TOC Entry for Start of Lead-Out (MM:SS:FF)
 1CBh 2 Zero
 1CDh 1 Depends on disk (01 or 02 or 06) (or 00 when no disk)
 1CEh 1 Zero
 1CFh 1 Depends on disk (NULL minus N*6) (or 00 when no disk)
 (maybe reflection level / laser intensity or so)
 [1CDh..1CFh]
 01 00 E8 --> licensed/metalgear/kain
 01 00 EE --> licensed/alone2
 06 00 E2 or 00 00 02 00 E8 --> licensed/wipeout
 02 00 DC --> unlicensed/elo
 02 00 D6 --> unlicensed/driver
 00 00 EE --> audio/lola
 00 00 FA --> audio/marilyn
 00 00 F4 --> audio/westen
 00 00 00 --> disk missing
 last byte is always in steps of 6
 1D0h 4 SCEx String
 1D4h 4 Zero
 1D8h 2 SCEx Counters (total,success) ;for command 19h,05h
 1DAh 6 00h-filled (or ... SS:FF)
 1E0h 6 Command Buffer (usually 19h,60h,E2h,01h = Read RAM Command)
 1E6h 7 00h-filled (unless destroyed by more-than-6-byte-commands)
 1EDh 3 Setloc setting (MM:SS:FF)
 1F0h 1 00h (unless destroyed by more-than-6-byte-commands)
 1F1h 3 C0h 00h 00h ;or 20h,0Ch,50h or C0h,0Ch,08h ;for command(19h,75h)
 ;or 00h,00h,00h for audio
 ;or 80h,00h,00h for disk missing
 1F4h 4 00h-filled ... or SCEx string
 1F8h 1 00h
 1F9h 1 Selected Target (parameter from Play and SetSession commands)
 1FAh 5 00h-filled ;01 01 00 8B 00 00 ;or 01 02 8B 00 00
 01 00 8B 00 00 -- audio/unlicensed
 01 01 00 00 00 -- licensed
 1FFh 1 00h-on power up, changes when disk inserted ;or 01 = Playing
 1FDh 3 MM:SS:FF (only during command 19h,00h) (MM=98..99=TOC)
 200h 10 Subchannel Q (real values)
 20Ah 2 whatever
 20Ch 1 Zero
 20Dh 1 Desired Session (from SetSession command)
 20Eh 1 Current Session (actual location of drive head)
 20Fh 1 Zero
 210h 10 Subchannel Q (adjusted position values)
 21Ah 6 00h-filled
 220h 4 Data Sector Header (MM:SS:FF:Mode)
 224h 4 Data Sector CD-XA Subheader (file,channel,sm,ci)
 228h 1 00h
 229h 1 Usually 00h (shortly other value on power-up, and maybe on seek)
 22Ah 1 10h (or 00h when no disk)
 22Bh 3 00h-filled
 22Eh 2 01,03 or 0A,00 or 03,01 (or else for other disk)
 230h 3 00h-filled (or other during spin-up / read-toc or so)
 233h 0Dh 00h-filled (unused RAM)

11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

- 163/1136 -

Other/invalid addresses are:

DTL-H2000 Memory Map

This version allows to read the whole 64Kbyte memory space (withou mirroring

everything to first 300h bytes). I/O Ports and Variables are at different locations:

Writing to RAM

There is no command for writing to RAM. Except that, one can write to the command/

parameter buffer at 1E0h and up. Normally, the longest known command should have 6

bytes (19h,76h,a,b,c,d), and longer commands results in "bad number of parameters"

response - however, despite of that error message, the controller does still store ALL

parameter bytes in RAM (at address 1E1h..2E0h, then wrapping back to 1E1h).

Whereas, writing more than 16 bytes (FIFO storage size) will mirror the FIFO content

twice, and more than 32 bytes (FIFO counter size) will work only when feeding extra

data into the FIFO during transmission. Anyways, writing to 1E1h and up doesn't allow

to do interesting things (such like manipulating the stack and executing custom code on

the CPU).

Subchannel Q Notes

The "adjusted position values" at 050h, 210h, 310h contain only position information

(with ADR=1) (the PSX seems to check only the lower 2bit of the 4bit ADR value, so it

also treats ADR=5 as ADR=1, too). Additionally, during Lead-In, bytes 7..9 are

overwritten by the position value from bytes 3..5. The "real values" contain unadjusted

data, including ADR=2 and ADR=3 etc.

 240h..2FFh - Invalid (00h-filled) (no ROM, RAM, or I/O mapped here)
 300h..3FFh - Mirror of 200h..2FFh ;\the BIOS is doing that
 400h..FFFFh - Mirrors of 000h..3FFh ;/mirroring by software

 000h..0DFh RAM Part 1 (C0h bytes)
 0E0h..0FFh I/O Area
 100h..1DFh RAM Part 2 (C0h bytes)
 1E0h..1FFh I/O Area
 200h..2DFh RAM Part 3 (100h bytes)
 2E0h..7FFFh Unknown
 8000h-BFFFh Unknown (lower 16K of 32K EPROM) (or unused?)
 C000h-FFFFh Firmware (upper 16K of 32K EPROM)

11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

- 164/1136 -

11.14 CDROM - Secret Unlock Commands

SecretUnlockPart1 - Command 50h --> INT5(11h,40h)

SecretUnlockPart2 - Command 51h,"Licensed by" --> INT5(11h,40h)

SecretUnlockPart3 - Command 52h,"Sony" --> INT5(11h,40h)

SecretUnlockPart4 - Command 53h,"Computer" --> INT5(11h,40h)

SecretUnlockPart5 - Command 54h,"Entertainment" --> INT5(11h,40h)

SecretUnlockPart6 - Command 55h,\<region> --> INT5(11h,40h)

SecretUnlockPart7 - Command 56h --> INT5(11h,40h)

Sending these commands with the correct strings (in order 50h through 56h) does disable

the "SCEx" protection. The region can be detected via test command 19h,22h, and must

be translated to the following \<region> string:

In the unlocked state, ReadN/ReadS are working for unlicensed CD-Rs, and for imported

CDROMs from other regions (both without needing modchips). However there are some

cases which may still cause problems: The GetID command (1Ah) does still identify the

disc as being unlicensed, same for the Get SCEx Counters test command (19h,05h). And,

if a game should happen to send the Reset command (1Ch) for some weird reason, then

the BIOS would forget the unlocking, same for games that set the "HCRISD" I/O port bit.

On the contrary, opening/closing the drive door does not affect the unlocking state.

The commands have been discovered in September 2013, and appear to be supported by

all CDROM BIOS versions (from old PSXes up to later PSones).

Note that the commands do always respond with INT5 errors (even on successful

unlocking).

 Caution: Supported only in BIOS version vC1 and up. Not supported in vC0.
 Caution: Supported only in Europe/USA. Nonfunctional in Japan/Asia.
 Caution: When unsupported, Parameter Fifo isn't cleared after the command.

 "of America" ;for NTSC/US ;\
 "(Europe)" ;for PAL/Europe ; handled, and actually working
 "World wide" ;for Yaroze ;/
 "Inc." ;for NTSC/JP ;-non-functional

11.14 CDROM - Secret Unlock Commands

- 165/1136 -

Japanese consoles are internally containing code for processing the Secret Unlock

commands, but they are not actually executing that code, and even if they would do so:

they are ignoring the resulting unlocking flag, making the commands nonfunctional in

Japan/Asia regions.

SecretLock - Command 57h --> INT5(11h,40h)

Undoes the unlocking and restores the normal locked state (same happens when

sending the Unlocking commands in wrong order or with wrong parameters).

SecretCrash - Command 58h..5Fh --> Crash

Jumps to a data area and executes random code. Results are more or less unpredictable

(as they involve executing undefined opcodes). Eventually the CPU might hit a RET

opcode and recover from the crash.

11.15 CDROM - Video CD Commands

VideoCdSio - Cmd 1Fh,01h,JoyL,JoyH,State,Task,0 --> INT3(stat,req,mm,ss,ff,x)

The JoyL/JoyH bytes contain 16bit button (and drive door) bits:

 Caution: Supported only on SCPH-5903, not supported on any other consoles.
 Caution: When unsupported, Parameter Fifo isn't cleared after the command.

 1Fh VideoCD sub,a,b,c,d,e INT3(stat,a,b,c,d,e) ;<-- SCPH-5903 only
 1Fh..4Fh - - INT5(11h,40h) ;-Unused/invalid

 0 Drive Door (0=Open) (from CDROM stat bit4) ;Open
 1 Button /\ (0=Pressed) (from PSX pad bit12) ;N/A ;PBC: Back/LevelUp
 2 Button [] (0=Pressed) (from PSX pad bit15) ;Enter Menu
 3 Button () (0=Pressed) (from PSX pad bit13) ;Leave Menu ;PBC: Confirm
 4 Button >< (0=Pressed) (from PSX pad bit14) ;N/A
 5 Start (0=Pressed) (from PSX pad bit3) ;Play/Pause
 6 Select (0=Pressed) (from PSX pad bit0) ;Stop (prompt restart/resume)
 7 Always 0 (0) (fixed) ;N/A
 8 DPAD Up (0=Pressed) (from PSX pad bit4) ;Menu Up ;PBC: +1
 9 DPAD Right (0=Pressed) (from PSX pad bit5) ;Menu Right/change ;PBC: +10
 10 DPAD Down (0=Pressed) (from PSX pad bit6) ;Menu Down ;PBC: -1
 11 DPAD Left (0=Pressed) (from PSX pad bit7) ;Menu Left/change ;PBC: -10
 12 Button R1 (0=Pressed) (from PSX pad bit11) ;Prev Track/Restart Track
 13 Button R2 (0=Pressed) (from PSX pad bit9) ;Fast Forward (slowly)

11.15 CDROM - Video CD Commands

- 166/1136 -

The State byte can be:

The Task byte can be:

The req byte in the INT3 response can be:

VideoCdSwitch - Cmd 1Fh,02h,flag,x,x,x,x --> INT3(stat,0,0,x,x,x)

Some findings on the SC430924 firmware...

The version/date is "15 Aug 1996, version C2h", although the "C2h" is misleading: The

firmware is nearly identical to version "C1h" from PU-8 boards (the stuff added in

normal "C2h" versions would be for PU-18 boards with different cdrom chipset).

Compared to the original C1h version, there are only a few changes: A initialization

function for initializing port F on power-up. And new command (command 1Fh, inserted

in the various command tables), with two subfunctions (01h and 02h):

 14 Button L1 (0=Pressed) (from PSX pad bit10) ;Next Track (if any)
 15 Button L2 (0=Pressed) (from PSX pad bit8) ;Fast Backward (slowly)

 00h Motor Off (or spin-up) (when stat.bit1=0)
 01h Playing (when stat.bit7=1)
 02h Paused (and not seeking) (when stat.bit6=0)
 (note: State remains unchanged when seeking)

 00h = Confirms that "Tocread" (aka setsession 1) request was processed
 01h = Detect VCD Disc (used on power-up, and after door open) (after spin-up)
 02h = Handshake (request ack response)
 0Ah = Door opened during play (int5/door error)
 80h = No disc
 FFh = No change (nop)

 00h Normal (no special event occured and no action requested)
 01h Request CD to Seek_and_play (using mm:ss:ff response parameter bytes)
 02h Request CD to Pause ;cmd(09h) -->int3(stat),int2(stat)
 03h Request CD to Stop ;cmd(08h) -->int3(stat),int2(stat)
 04h Request CD to Tocread (setsession1);cmd(12h,01h)-->int3(stat),int2(stat)
 05h Handshake Command was processed, and this is the "ack" response
 06h Request CD to Fast Forward ;cmd(04h) -->int3(stat)
 07h Request CD to Fast Backward ;cmd(05h) -->int3(stat)
 80h Detect Command was processed, and disc was detected as VCD
 81h Detect Command was processed, and disc was detected as Non-VCD

 00h = Normal PSX Mode (PortF.3=LOW) (Audio/Video from GPU/SPU chips)
 01h..FFh = Special VCD Mode (PortF.3=HIGH) (Audio/Video from MDEC/OSD chips)

11.15 CDROM - Video CD Commands

- 167/1136 -

- Command 1Fh,01h,a,b,c,d,e --> INT3(stat,a,b,c,d,e) Serial 5-byte read-write

- Command 1Fh,02h,v,x,x,x,x --> INT3(stat,0,0,x,x,x) Toggle 1bit (port F.bit3)

Whereas,

The Port F bits are:

And that's about all. Ie. essentially, the only change is that the new command controls

Port F. There is no interaction with the remaining firmware (ie. reading, seeking, and

everything is working as usually, without any video-cd related changes).

The SCEx stuff is also not affected (ie. Video CDs would be seen as unlicensed discs, so

the PSX couldn't read anything from those discs, aside from Sub-Q position data, of

course). The SCEx region is SCEI aka "Japan" (or actually for Asia in this case).

Note

The SPU MUTE Flag (SPUCNT.14) does also affect VCD Audio (mute is applied to the final

analog audio amplifier). All other SPUCNT bits can be zero for VCD.

11.16 CDROM - Mainloop/Responses

SUB-CPU Mainloop

The SUB-CPU is running a mainloop that is handling hardware events (by simple polling,

not by IRQs):

 x = don't care/garbage
 v = toggle state (00h=normal=PortF.3=LOW, 01h..FFh=special=PortF.3=HIGH)
 (toggle gpu vs mpeg maybe?)
 a,b,c,d,e = five bytes sent serially, and five bytes response received
 serially (send/receive done simultaneously)

 Port F.Bit0 = Serial Data In
 Port F.Bit1 = Serial Data Out
 Port F.Bit2 = Serial Clock Out
 Port F.Bit3 = Toggle (0=Normal, 1=Special)

 check for incoming sectors (from CDROM decoder)
 check for incoming commands (from Main CPU)
 do maintenance stuff on the drive mechanics

11.16 CDROM - Mainloop/Responses

- 168/1136 -

There is no fixed priority: if both incoming sector and incoming command are present,

then the SUB-CPU may handle either one, depending on which portion of the mainloop it

is currently executing.

There is no fixed timing: if the mainloop is just checking for a specific event, then a new

event may be processed immediately, otherwise it may take whole mainloop cycle until

the SUB-CPU sees the event.

Whereas, the mainloop cycle execution time isn't constant: It may vary depending on

various details. Especially, some maintenance stuff is only handled approximately around

15 times per second (so there are 15 slow mainloop cycles per second).

The order of steps that happen when sending a command to the CD controller look

roughly like this:

Responses

The PSX can deliver one INT after another. Instead of using a real queue, it's merely

using some flags that do indicate which INT(s) need to be delivered. Basically, there

seem to be two flags: One for Second Response (INT2), and one for Data/Report

Response (INT1). There is no flag for First Response (INT3); because that INT is

generated immediately after executing a command.

The flag mechanism means that the SUB-CPU cannot hold more than one undelivered

INT1. That, although the CDROM Decoder does notify the SUB-CPU about all newly

received sectors, and it can hold up to eight sectors in the 32K SRAM. However, the

SUB-CPU BIOS merely sets a sector-delivery-needed flag (instead of memorizing which/

how many sectors need to be delivered, and, accordingly, the PSX can use only three of

the available eight SRAM slots: One for currently pending INT1, one for undelivered

INT1, and one for currently/incompletely received sector).

First Response (INT3) (or INT5 if failed)

The first response is sent immediately after processing a command. In detail:

The mainloop checks for incoming commands once every some clock cycles, and

executes commands under following condition:

e.g. SetMode:
1. Command busy flag set immediately.
2. Response FIFO is populated.
3. Command is being processed.
4. Command busy flag is unset and parameter fifo is cleared.
5. Shortly after (around 1000-6000 cycles later), CDROM IRQ is fired.

11.16 CDROM - Mainloop/Responses

- 169/1136 -

Once when the command gets executed it will sent the first response immediately after

the command execution (which may only take a few clock cycles, or some more cycles,

for example Init/ReadTOC do include some time consuming initializations). Anyways,

there will be no other INTs generated during command execution, so once when the

command execution has started, it's guaranteed that the next INT will contain the first

response.

Second Responses (INT2) (or INT5 if failed)

Some commands do send a second response after actual command execution:

In some cases (like seek or spin-up), it may take more than a second until the 2nd

response is sent.

It should be highly recommended to WAIT until the second response is generated BEFORE

sending a new command (it wouldn't make too much sense to send a new command

between first and second response, and results would be unknown, and probably totally

unpredictable).

Error Notes: If the command has been rejected (INT5 sent as 1st response) then the 2nd

response isn't sent (eg. on wrong number of parameters, or if disc missing). If the

command fails at a later stage (INT5 as 2nd response), then there are cases where

another INT5 occurs as 3rd response (eg. on SetSession=02h on non-multisession-disk).

Data/Report Responses (INT1)

 Main CPU has sent a command, AND, there is no INT pending
 (if an INT is pending, then the command won't be executed yet, but will be
 executed in following mainloop cycles; once when INT got acknowledged)
 (even if no INT is pending, the mainloop may generate INT1/INT2 before
 executing the command, if so, as said above, the command won't execute yet)

 07h MotorOn E - INT3(stat), INT2(stat)
 08h Stop E - INT3(stat), INT2(stat)
 09h Pause E - INT3(stat), INT2(stat)
 0Ah Init - INT3(late-stat), INT2(stat)
 12h SetSession E session INT3(stat), INT2(stat)
 15h SeekL E - INT3(stat), INT2(stat) ;\use prior Setloc
 16h SeekP E - INT3(stat), INT2(stat) ;/to set target
 1Ah GetID E - INT3(stat), INT2/5(stat,flg,typ,atip,"SCEx")
 1Dh GetQ E adr,point INT3(stat), INT2(10bytesSubQ,peak_lo)
 1Eh ReadTOC - INT3(late-stat), INT2(stat)

 03h Play E (track) INT3(stat), optional INT1(report bytes)
 04h Forward E - INT3(stat), optional INT1(report bytes)
 05h Backward E - INT3(stat), optional INT1(report bytes)

11.16 CDROM - Mainloop/Responses

- 170/1136 -

11.17 CDROM - Response Timings

Here are some response timings, measured in 33MHz units on a PAL PSone. The CDROM

BIOSes mainloop is doing some maintenance stuff once and when, meaning that the

response time will be higher in such mainloop cycles (max values), and less in normal

cycles (min values). The maintenance timings do also depend on whether the motor is

on or off (and probably on various other factors like seeking).

First Response

The First Response interrupt is sent almost immediately after processing the command

(that is, when the mainloop sees a new command without any old interrupt pending).

For Nop, timings are as so:

Timings for most other commands should be similar as above. One exception is the Init

command, which is doing some initialization before sending the 1st response:

The ReadTOC command is doing similar initialization, and should have similar timing as

Init command. Some (rarely used) Test commands include things like serial data

transfers, which may be also quite slow.

Second Response

 06h ReadN E - INT3(stat), INT1(stat), datablock
 1Bh ReadS E?- INT3(stat), INT1(stat), datablock

 Command Average Min Max
 Nop (normal) 000c4e1h 0004a73h..003115bh
 Nop (when stopped) 0005cf4h 000483bh..00093f2h

 Init 0013cceh 000f820h..00xxxxxh

 Command Average Min Max
 GetID 0004a00h 0004922h..0004c2bh
 Pause (single speed) 021181ch 020eaefh..0216e3ch ;\time equal to
 Pause (double speed) 010bd93h 010477Ah..011B302h ;/about 5 sectors
 Pause (when paused) 0001df2h 0001d25h..0001f22h
 Stop (single speed) 0d38acah 0c3bc41h..0da554dh
 Stop (double speed) 18a6076h 184476bh..192b306h
 Stop (when stopped) 0001d7bh 0001ce8h..0001eefh

11.17 CDROM - Response Timings

- 171/1136 -

Moreover, Seek/Play/Read/SetSession/MotorOn/Init/ReadTOC are sending second

responses which depend on seek time (and spin-up time if the motor was off). The seek

timings are still unknown, and they are probably quite complicated:

The CDROM BIOS seems to split seek distance somehow into coarse steps (eg. minutes)

and fine steps (eg. seconds/sectors), so 1-minute seek distance may have completely

different timings than 59-seconds distance.

The amount of data per spiral winding increases towards ends of the disc (so the drive

head will need to be moved by shorter distance when moving from minute 59 to 60 as

than moving from 00 to 01).

The CDROM BIOS contains some seek distance table, which is probably optimized for 72-

minute discs (or whatever capacity is used on original PSX discs). 80-minute CDRs may

have tighter spiral windings (the above seek table is probably causing the drive head to

be moved too far on such discs, which will raise the seek time as the head needs to be

moved backwards to compensate that error).

INT1 Rate

The INT1 rate needs to be precise for CD-DA and CD-XA Audio streaming, exact clock

cycle values should be: SystemClock*930h/4/44100Hz for Single Speed (and half as

much for Double Speed) (the "Average" values are AVERAGE values, not exact values).

11.18 CDROM - Response/Data Queueing

[Below are some older/outdated test cases]

Sector Buffer

The CDROM sector buffer is 32Kx8 SRAM (IC303). The buffer is apparently divided into 8

slots, theoretically allowing to buffer up to 8 sectors.

BUG: The drive controller seems to allow only 2 of those 8 sectors (the oldest sector,

and the current/newest sector).

Ie. after processing the INT1 for the oldest sector, one would expect the controller to

generate another INT1 for next newer sector - but instead it appears to jump directly to

INT1 for the newest sector (skipping all other unprocessed sectors). There is no known

way to get around that effect.

 Command Average Min Max
 Read (single speed) 006e1cdh 00686dah..0072732h
 Read (double speed) 0036cd2h 00322dfh..003ab2bh

11.18 CDROM - Response/Data Queueing

- 172/1136 -

So far, the big 32Kbyte buffer is entirely useless (the two accessible sectors could have

been as well stored in a 8Kbyte chip) (unless, maybe the 32Kbytes have been intended

for some error-correction "read-ahead" purposes, rather than as "look-back" buffer for

old sectors; one of the unused slots might be also used for XA-ADPCM sectors).

The bottom line is that one should process INT1's as soon as possible (ie. before the

cdrom controller receives and skips further sectors). Otherwise sectors would be lost

without notice (there appear to be absolutely no overrun status flags, nor overrun error

interrupts).

Sector Buffer Test Cases

Above shows the normal flow when processing INT1's as they arise. Now, inserting delays

(and not processing INT1's during that delays):

Above suggests that the CDROM buffer can hold max 2 sectors (the oldest and current

one). However, using a longer delay:

Above indicates that sector buffer can hold 8 sectors (as the sector 1 slot is overwritten

by sector 9). And, another test with even longer delay:

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Process INT1 --> receives sector header for 0:2:1
 Process INT1 --> receives sector header for 0:2:2
 Process INT1 --> receives sector header for 0:2:3

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 delay(1)
 Process INT1 --> receives sector header for 0:2:1 (oldest sector)
 Process INT1 --> receives sector header for 0:2:6 (newest sector)
 Process INT1 --> receives sector header for 0:2:7 (next sector)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 delay(2)
 Process INT1 --> receives sector header for 0:2:9 (oldest/overwritten)
 Process INT1 --> receives sector header for 0:2:11 (newest sector)
 Process INT1 --> receives sector header for 0:2:12 (next sector)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 delay(3)
 Process INT1 --> receives sector header for 0:2:17 (currently received)
 Process INT1 --> receives sector header for 0:2:16 (newest full sector)

11.18 CDROM - Response/Data Queueing

- 173/1136 -

Above is a special case where sector 17 appears twice; the first one is the sector 1 slot

(which was overwritten by sector 9, and apparently then half overwritten by sector 17).

Sector Buffer VS GetlocL Response Tests

Another test, with Delay BEFORE Getloc:

Another test, with Delay AFTER Getloc:

Another test, with Delay BEFORE and AFTER Getloc:

 Process INT1 --> receives sector header for 0:2:17 (next sector)
 Process INT1 --> receives sector header for 0:2:18 (next sector)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 GetlocL
 Process INT3 --> receives getloc info for 0:2:0
 Process INT1 --> receives sector header for 0:2:1
 Process INT1 --> receives sector header for 0:2:2
 Process INT1 --> receives sector header for 0:2:3

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 GetlocL
 Process INT1 --> receives sector header for 0:2:1
 Process INT3 --> receives getloc info for 0:2:6
 Process INT1 --> receives sector header for 0:2:6
 Process INT1 --> receives sector header for 0:2:7

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 GetlocL
 Delay(1)
 Process INT3 --> receives getloc info for 0:2:0
 Process INT1 --> receives sector header for 0:2:5
 Process INT1 --> receives sector header for 0:2:6
 Process INT1 --> receives sector header for 0:2:7

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 GetlocL
 Delay(1)
 Process INT1 --> receives sector header for 0:2:9
 Process INT1 --> receives sector header for 0:2:11
 Process INT3 --> receives getloc info for 0:2:12

11.18 CDROM - Response/Data Queueing

- 174/1136 -

Sector Buffer VS Pause Response Tests

Another test, with Delay BEFORE Pause:

Another test, with Delay AFTER Pause:

Another test, with Delay BEFORE and AFTER Pause:

For above: Note that, despite of Pause, the CDROM is still writing to the internal buffer

(and overwrites slot 1 by sector 9) (this might be because the Pause command isn't

processed at all until INT1 is processed).

Double Commands (Getloc then Pause)

 Process INT1 --> receives sector header for 0:2:12
 Process INT1 --> receives sector header for 0:2:13

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Pause
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 Pause
 Process INT1 --> receives sector header for 0:2:1 (oldest)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Pause
 Delay(1)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 Pause
 Delay(1)
 Process INT1 --> receives sector header for 0:2:9 (oldest/overwritten)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

11.18 CDROM - Response/Data Queueing

- 175/1136 -

Another test,

Another test,

Another test,

Double Commands (Pause then Getloc)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 GetlocL
 Pause
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 GetlocL
 Pause
 Process INT1 --> receives sector header for 0:2:1
 Process INT1 --> receives sector header for 0:2:6
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 GetlocL
 Delay(1)
 Pause
 Process INT3 --> receives getloc info for 0:2:0 (first getloc response)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 GetlocL
 Delay(1)
 Pause
 Process INT1 --> receives sector header for 0:2:9 (oldest/overwritten)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Pause
 GetlocL
 Process INT3 --> receives getloc info for 0:2:0 (first getloc response)

11.18 CDROM - Response/Data Queueing

- 176/1136 -

Another test,

Another test,

Another test,

Another test,

 Process INT1 --> receives sector header for 0:2:1
 Process INT1 --> receives sector header for 0:2:2
 Process INT1 --> receives sector header for 0:2:3

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 Pause
 GetlocL
 Process INT1 --> receives sector header for 0:2:1
 Process INT3 --> receives getloc info for 0:2:6 (first getloc response)
 Process INT1 --> receives sector header for 0:2:6
 Process INT1 --> receives sector header for 0:2:7

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Pause
 Delay(1)
 GetlocL
 Process INT3 --> receives stat=22h (first pause response)
 Process INT3 --> receives getloc info for 0:2:6 (first getloc response)
 (No further INT's, ie. read is paused, but second-pause-response is lost).

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Pause
 Delay(1)
 GetlocL
 Delay(1)
 Process INT3 --> receives stat=22h (first pause response)
 Process INT3 --> receives getloc info for 0:2:6 (first getloc response)
 Process INT2 --> receives stat=02h (second pause response)

 Setloc(0:2:0)+Read
 Process INT1 --> receives sector header for 0:2:0
 Delay(1)
 Pause
 Delay(1)
 GetlocL
 Process INT1 --> receives sector header for 0:2:9
 Process INT1 --> receives sector header for 0:2:11
 Process INT3 --> receives getloc info for 0:2:12 (first getloc response)

11.18 CDROM - Response/Data Queueing

- 177/1136 -

 Process INT1 --> receives sector header for 0:2:12
 Process INT1 --> receives sector header for 0:2:13

11.18 CDROM - Response/Data Queueing

- 178/1136 -

12. CDROM Format

General CDROM Disk Format

CDROM Disk Format

CDROM Subchannels

CDROM Sector Encoding

CDROM Scrambling

CDROM XA Subheader, File, Channel, Interleave

CDROM XA Audio ADPCM Compression

CDROM ISO Volume Descriptors

CDROM ISO File and Directory Descriptors

CDROM ISO Misc

CDROM File Formats

CDROM Video CDs (VCD)

Playstation CDROM Protection

CDROM Protection - SCEx Strings

CDROM Protection - Bypassing it

CDROM Protection - Modchips

CDROM Protection - Chipless Modchips

CDROM Protection - LibCrypt

12.1 CDROM Disk Format

Overview

The PSX uses a ISO 9660 filesystem, with data stored on CD-XA (Mode2) Sectors. ISO

9660 is standard for CDROM disks, although newer CDROMs may use extended

filesystems, allowing to use long filenames and lowercase filenames, the PSX Kernel

doesn't support such stuff, and, in fact, it's putting some restrictions on the ISO

standard: it's limiting file names to MSDOS-style 8.3 format, and it's allowing only a

limited number of files and directories per disk.

CDROM Filesystem (ISO 9660 aka ECMA-119)

12. CDROM Format

- 179/1136 -

CDROM Extended Architecture (CD-ROM XA aka CD-XA)

Physical Audio/CDROM Disk Format (ISO/IEC 10149 aka ECMA-130)

Available Documentation

ISO documents are commercial standards (not available for download), however, they

are based on ECMA standards (which are free for download, however, the ECMA stuff is

in PDF format, so one may treat it as commercial bullshit, too). CD-ROM XA is

commercial only (not available for download), and, CD-XA doesn't seem to have become

very popular outside of the PSX-world, so there's very little information available,

portions of CD-XA are also used in the CD-i standard (which may be a little better or

worse documented).

Stuff

 Originally intended for Mode1 Sectors (but is also used for CD-XA Mode2)
 Supports "FILENAME.EXT;VERSION" filenames (version is usually "1")
 Supports all-uppercase filenames and directory names (0-9, A-Z, underscore)
 For PSX: Max 8-character filenames with max 3-character extensions
 For PSX: Max 8-character directory names, without extension
 For PSX: Max one sector per directory (?)
 For PSX: Max one sector (or less?) per path table (?)

 Uses Mode2 Sectors (see Sector Encoding chapter)
 Allows 800h or 914h byte data per sector (with/without error correction)
 Allows to break interleaved data into separate files/channels
 Supports XA-ADPCM compressed audio data
 Stores "CD-XA001" at 400h Primary Volume Descriptor (?)
 Stores 14 extra bytes in System Use area (LEN_SU) of Directory Entries

 Defines physical metrics of the CDROM and Audio disks
 Defines Sub-channels and Track.Index and Minute.Second.Fraction numbering
 Defines 14bit-per-byte encoding, and splits sectors into frames
 Defines ECC and EDC (error correction and error detection codes)

 sessions one or more sessions per disk
 tracks 99 tracks per disk (01h..99h) (usually only 01h on Data Disks)
 index 99 indices per track (01h..99h) (rarely used, usually always 01h)
 minutes 74 minutes per disk (00h..73h) (or more, with some restrictions)
 seconds 60 seconds per minute (00h..59h)
 sectors 75 sectors per second (00h..74h)
 frames 98 frames per sector

12.1 CDROM Disk Format

- 180/1136 -

Track.Index (stored in subchannel, in BCD format)

Multiple Tracks are usually used only on Audio Disks (one track for each song, numbered

01h and up), a few Audio Disks may also split Tracks into separate fragments with

different Index values (numbered 01h and up, but most tracks have only Index 01h). A

simple Data Disk would usually contain only one Track (all sectors marked Track=01h

and Index=01h), although some more complex Data Disks may have multiple Data

tracks and/or Audio tracks.

Minute.Second.Sector (stored in subchannel, and in Data sectors, BCD format)

The sectors on CDROMs and CD Audio disks are numbered in Minutes, Seconds, and

1/75 fragments of a second (where a "second" is referring to single-speed drives, ie. the

normal CD Audio playback speed).

Minute.Second.Sector is stored twice in the subchannel (once the "absolute" time, and

once the "local" time).

The "absolute" sector number (counted from the begin of the disk) is mainly relevant for

Seek purposes (telling the controller if the drive head is on the desired location, or if it

needs to move the head backwards or forwards).

The "local" sector number (counted from the begin of the track) is mainly relevant for

Audio Players, allowing to pass the data directly to the Minute:Second display, without

needing to subtract the start address of the track.

Data disks are additionally storing the "absolute" values in their Data Areas, basically

that's just the subchannel data duplicated, but more precisely assigned - the problem

with the subchannel data is that the CD Audio standard seems to lack a clear definition

that would assign the begin of the sub-channel block to the exact begin of a sector; so,

when using only the subchannel data, some Drive Controllers may assign the begin of a

new sector to another location as than other Controllers do, for Audio Disks that isn't too

much of a problem, but for Data Disks it'd be fatal.

Subchannels

Each frame contains 8 subchannel bits (named P,Q,R,S,T,U,V,W). So, a sector (with 98

frames) contains 98 bits (12.25 bytes) for each subchannel.

CDROM Subchannels

 bytes 33 bytes per frame (24+1+8 = data + subchannel + error correction)
 bits 14 bits per byte (256 valid combinations, and many invalid ones)

12.1 CDROM Disk Format

- 181/1136 -

Error Correction

Each Frame contains 8 bytes Error Correction information, which is mainly used for

Audio Disks, but it isn't 100% fail-proof, for that reason, Data Disks are containing

additional Error Correction in the 930h-byte data area (the audio correction is probably

focusing on repairing the MSBs of the 16bit samples, and gives less priority on the

LSBs). Error Correction is some kind of a huge complex checksum, which allows to

detect the location of faulty bytes, and to fix them.

930h-Byte Sectors

The "user" area for each sector is 930h bytes (2352 bytes). That region is combined of

the 24-byte data per frame (and excludes the 8-byte audio error correction info, and the

1-byte subchannel data).

Most CDROM Controllers are only giving access to this 930h-byte region (ie. there's no

way to read the audio error correction info by software, and only limited access to the

subchannel data, such like allowing to read only the Q-channel for showing track/

minute/second in audio playback mode).

On Audio disks, the 930h bytes are plain data, on Data disks that bytes are containing

headers, error correction, and usually only 800h bytes user data (for more info see

Sector Encoding chapter).

Sessions

Multi-Sessions are mainly used on CDR's, allowing to append newer data at the end of

the disk at a later time. First of, the old session must contain a flag indicating that there

may be a newer session, telling the CDROM Controller to search if one such exists (and

if that is equally flagged, to search for an even newer session, and so on until reaching

the last and newest session).

Each session contains a complete new ISO Volume Descriptor, and may additionally

contain new Path Tables, new Directories, and new Files. The Driver Controller is usually

recursing only the Volume Descriptor of the newest session. However, the various

Directory Records of the new session may refer to old files or old directories from

previous sessions, allowing to "import" the older files, or to "rename" or "delete" them

by assigning new names to that files, or by removing them from the directory.

The PSX is reportedly not supporting multi-session disks, but that doesn't seem to be

correct, namely, the Setsession command is apparently intended for that purpose...

though not sure if the PSX Kernel is automatically searching the newest session...

12.1 CDROM Disk Format

- 182/1136 -

otherwise the boot executable in the first session would need to do that manually by

software, and redirect control to the boot executable in the last session.

12.2 CDROM Subchannels

Subchannel P

Subchannel P contains some kind of a Pause flag (to indicate muted areas between

Audio Tracks). This subchannel doesn't have any checksum, so the data cannot be

trusted to be intact (unless when sensing a longer stream of all-one's, or all zero's).

Theoretically, the 98 pause bits are somehow associated to the 98 audio frames (with 24

audio bytes each) of the sector. However, reportedly, Subchannel P does contain two

sync bits, if that is true, then there'd be only 96 pause flags for 98 audio frames.

Strange.

Note: Another way to indicate "paused" regions is to set Subchannel Q to ADR=1 and

Index=00h.

Subchannel Q

contains the following information:

Possible values for the ADR/Control field are:

The 72bit data regions are, depending on the ADR value...

Subchannel Q with ADR=1 during Lead-In -- Table of Contents (TOC)

 Bits Expl.
 2 Sub-channel synchronization field
 8 ADR/Control (see below)
 72 Data (content depends on ADR)
 16 CRC-16-CCITT error detection code (big-endian: bytes ordered MSB, LSB)

 Bit0-3 ADR (0=No data, 1..3=see below, 4..0Fh=Reserved)
 Bit4 Audio Preemphasis (0=No, 1=Yes) (Audio only, must be 0 for Data)
 Bit5 Digital Copy (0=Prohibited, 1=Allowed)
 Bit6 Data (0=Audio, 1=Data)
 Bit7 Four-Channel Audio (0=Stereo, 1=Quad) (Audio only, must be 0 for Data)

 8 Track number (fixed, must be 00h=Lead-in)
 8 Point (01h..99h or A0h..A2h, see last three bytes for more info)
 24 MSF address (incrementing address within the Lead-in area)

12.2 CDROM Subchannels

- 183/1136 -

When Point=01h..99h (Track 1..99) or Point=A2h (Lead-Out):

When Point=A0h (First Track Number):

When Point=A1h (Last Track Number):

ADR=1 should exist in 3 consecutive lead-in sectors.

Subchannel Q with ADR=1 in Data region -- Position

ADR=1 is required to exist in at least 9 out of 10 consecutive data sectors.

Subchannel Q with ADR=1 during Lead-Out -- Position

ADR=1 should exist in 3 consecutive lead-out sectors (and may then be followed by

ADR=5 on multisession disks).

Subchannel Q with ADR=2 -- Catalogue number of the disc (UPC/EAN barcode)

 Note: On some disks, these values are choosen so that the lead-in
 <starts> at 00:00:00, on other disks so that it <ends> at 99:59:74.
 8 Reserved (00h)

 24 MSF address (absolute address, start address of the "Point" track)

 8 First Track number (BCD)
 8 Disk Type Byte (00h=CD-DA or CD-ROM, 10h=CD-I, 20h=CD-ROM-XA)
 8 Reserved (00h)

 8 Last Track number (BCD)
 16 Reserved (0000h)

 8 Track number (01h..99h=Track 1..99)
 8 Index number (00h=Pause, 01h..99h=Index within Track)
 24 Track relative MSF address (decreasing during Pause)
 8 Reserved (00h)
 24 Absolute MSF address

 8 Track number (fixed, must be AAh=Lead-Out)
 8 Index number (fixed, must be 01h) (there's no Index=00h in Lead-Out)
 24 Track relative MSF address (increasing, 00:00:00 and up)
 8 Reserved (00h)
 24 Absolute MSF address

12.2 CDROM Subchannels

- 184/1136 -

If the first digit of the EAN-13 number is "0", then the remaining digits are a UPC-A

barcode number. Either the 13-digit EAN-13 number, or the 12-digit UPC-A number should

be printed as barcode on the rear-side of the CD package.

The first some digits contain a country code (EAN only, not UPC), followed by a

manufacturer code, followed by a serial number. The last digit contains a checksum,

which can be calculated as 250 minus the sum of the first 12 digits, minus twice the sum

of each second digit, modulated by 10.

ADR=2 isn't included on all CDs, and, many CDs do have ADR=2, but the 13 digits are all

zero. Most CDROM drives do not allow to read EAN/UPC numbers.

If present, ADR=2 should exist in at least 1 out of 100 consecutive sectors. ADR=2 may

occur also in Lead-in.

Subchannel Q with ADR=3 -- ISRC number of the current track

(ISO 3901 and DIN-31-621):

Most CDROM drives for PC's do not allow to read ISRC numbers (or even worse, they may

accidently return the same ISRC number on every two tracks).

If present, ADR=3 should exist in at least 1 out of 100 consecutive sectors. However,

reportedly, ADR=3 should not occur in Lead-in.

Subchannel Q with ADR=5 in Lead-in -- Multisession Lead-In Info

When Point=B0h:

 52 EAN-13 barcode number (13-digit BCD)
 12 Reserved (000h)
 8 Absolute Sector number (BCD, 00h..74h) (always 00h during Lead-in)

 12 Country Code (two 6bit characters) (ASCII minus 30h) ;eg. "US"
 18 Owner Code (three 6bit characters) (ASCII minus 30h)
 2 Reserved (zero)
 8 Year of recording (2-digit BCD) ;eg. 82h for 1982
 20 Serial number (5-digit BCD) ;usually increments by 1 or 10 per track
 4 Reserved (zero)
 8 Absolute Sector number (BCD, 00h..74h) (always 00h during Lead-in)

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT = B0h (multi-session disc)
 24 MM:SS:FF = the start time for the next possible session's program area,
 a final session is indicated by FFh:FFh:FFh,
 or when the ADR=5 / Point=B0h is absent.

12.2 CDROM Subchannels

- 185/1136 -

When Point=C0h:

And, optionally, when Point=C1h:

Subchannel Q with ADR=5 in Lead-Out -- Multisession Lead-Out Info

Present in 3 consequtive sectors (3x ADR=1, 3x ADR=5, 3x ADR=1, 3x ADR=5, etc).

Subchannel Q with ADR=5 in Lead-in -- CDR/CDRW Skip Info (Audio Only)

When Point=01h..40h:

When Point=B1h:

 8 Number of different Mode-5 pointers present.
 24 MM:SS:FF = the maximum possible start time of the outermost Lead-out

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT = C0h (Identifies a Multisession disc, together with POINT=B0h)
 24 ATIP values from Special Information 1, ID=101
 8 Reserved (must be 00h)
 24 MM:SS:FF = Start time of the first Lead-in area of the disc

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT=C1h
 8x7 Copy of information from A1 point in ATIP

 8 Track number (fixed, must be AAh=Lead-out)
 8 POINT = D1h (Identifies a Multisession lead-out)
 24 Usually zero (or maybe ATIP as in Lead-In with Point=C0h...?)
 8 Seems to be the session number?
 24 MM:SS:FF = Absolute address of the First data sector of the session

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT=01h..40h (This identifies a specific playback skip interval)
 24 MM:SS:FF Skip interval stop time in 6 BCD digits
 8 Reserved (must be 00h)
 24 MM:SS:FF Skip interval start time in 6 BCD digits

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT=B1h (Audio only: This identifies the presence of skip intervals)
 8x4 Reserved (must be 00h,00h,00h,00h)
 8 the number of skip interval pointers in POINT=01h..40h
 8 the number of skip track assignments in POINT=B2h..B4h
 8 Reserved (must be 00h)

12.2 CDROM Subchannels

- 186/1136 -

When Point=B2h,B3h,B4h:

Note: Skip intervals are seldom written by recorders and typically ignored by readers.

Subchannel R..W

Subchannels R..W are usually unused, except for some extended formats:

Most CDROM drives do not allow to read these subchannels. CD-TEXT was designed by

Sony and Philips in 1997, so it should be found only on (some) newer discs. Most CD/DVD

players don't support it (the only exception is that CD-TEXT seems to be popular for car

hifi equipment). Most record labels don't support CD-TEXT, even Sony seems to have

discontinued it on their own records after some years (so CD-TEXT is very rare on original

disks, however, CDR software does often allow to write CD-TEXT on CDRs).

Subchannel R..W, when used for CD-TEXT in the Lead-In area

CD-TEXT is stored in the six Subchannels R..W. Of the 12.25 bytes (98 bits) per

subchannel, only 12 bytes are used. Together, all 6 subchannels have a capacity of 72

bytes (6x12 bytes) per sector. These 72 bytes are divided into four CD-TEXT fragments

(of 18 bytes each). The format of these 18 bytes is:

ID1 - Pack Type Indicator:

 8 Track number (fixed, must be 00h=Lead-in)
 8 POINT=B2h,B3h,B4h (This identifies tracks that should be skipped)
 8 1st Track number to skip upon playback (01h..99h, must be nonzero)
 8 2nd Track number to skip upon playback (01h..99h, or 00h=None)
 8 3rd Track number to skip upon playback (01h..99h, or 00h=None)
 8 Reserved (must be 00h)... unclear... OR... 4th (of 7) skip info's...?
 8 4th Track number to skip upon playback (01h..99h, or 00h=None)
 8 5th Track number to skip upon playback (01h..99h, or 00h=None)
 8 6th Track number to skip upon playback (01h..99h, or 00h=None)

 CD-TEXT in the Lead-In area (see below)
 CD-TEXT in the Data area (rarely used)
 CD plus Graphics (CD+G) (rarely used)

 00h 1 Header Field ID1: Pack Type Indicator
 01h 1 Header Field ID2: Track Number
 02h 1 Header Field ID3: Sequence Number
 03h 1 Header Field ID4: Block Number and Character Position Indicator
 04h 12 Text/Data Field
 10h 2 CRC-16-CCITT (big-endian) (across bytes 00h..0Fh)

12.2 CDROM Subchannels

- 187/1136 -

ID2 - Track Number:

ID3 - Sequence Number:

ID4 - Block Number and Character Position Indicator:

Example Data (generated with CDRWIN):

 80h Titel (TEXT)
 81h Performer (TEXT)
 82h Songwriter (TEXT)
 83h Composer (TEXT)
 84h Arranger (TEXT)
 85h Message (TEXT)
 86h Disc ID (TEXT?) (content/format/purpose unknown?)
 87h Genre (BINARY) (ID codes unknown?)
 88h TOC (BINARY) (content/format/purpose unknown?)
 89h TOC2 (BINARY) (content/format/purpose unknown?)
 8Ah Reserved for future
 8Bh Reserved for future
 8Ch Reserved for future
 8Dh Reserved for "content provider" aka "closed information"
 8Eh UPC/EAN and ISRC Codes (TEXT) (content/format/purpose unknown?)
 8Fh Blocksize (BINARY) (see below)

 00h Title/Performer/etc. for the Disc
 01h..63h Title/Performer/etc. for Track 1..99 (Non-BCD) (Bit7=Extension)

 00h..FFh Incrementing Number (00h=First 18-byte fragment, 01h=Second, etc.)

 Bit7 Character Set (0=8bit, 1=16bit)
 Bit6-4 Block Number (0..7 = Language number, as set by "Blocksize")
 Bit3-0 Character Position (0..0Eh=Position, 0Fh=Append to prev fragment)

 ID TR SQ CH <------------Text/Data------------> -CRC- <---Text--->
 80 00 00 00 54 65 73 74 44 69 73 6B 54 69 74 6C E2 22 TestDiskTitl
 80 00 01 0C 65 00 54 65 73 74 54 72 61 63 6B 54 C9 1B e.TestTrackT
 80 01 02 0A 69 74 6C 65 31 00 54 65 73 74 54 72 40 3A itle1.TestTr
 80 02 03 06 61 63 6B 54 69 74 6C 65 32 00 00 00 80 E3 ackTitle2...
 81 00 04 00 54 65 73 74 44 69 73 6B 50 65 72 66 03 DF TestDiskPerf
 81 00 05 0C 6F 72 6D 65 72 00 54 65 73 74 54 72 12 A5 ormer.TestTr
 81 01 06 06 61 63 6B 50 65 72 66 6F 72 6D 65 72 BC 5B ackPerformer
 81 01 07 0F 31 00 54 65 73 74 54 72 61 63 6B 50 AC 41 1.TestTrackP
 81 02 08 0A 65 72 66 6F 72 6D 65 72 32 00 00 00 64 1A erformer2...
 8F 00 09 00 01 01 02 00 04 05 00 00 00 00 00 00 6D E2
 8F 01 0A 00 00 00 00 00 00 00 00 03 0B 00 00 00 CD 0C
 8F 02 0B 00 00 00 00 00 09 00 00 00 00 00 00 00 FC 8C
 00 ;<--- for some reason, CDRWIN stores an ending 00h byte in .CDT files

12.2 CDROM Subchannels

- 188/1136 -

Each Text string is terminated by a 00h byte (or 0000h for 16bit character set). If there's

still room in the 12-byte data region, then first characters for the next Text string (for the

next track) are appended after the 00h byte (if there's no further track, then the

remaining bytes should be padded with 00h).

The "Blocksize" (ID1=8Fh) consists of three packs with 24h bytes of data (first 0Ch bytes

stored with ID2=00h, next 0Ch bytes with ID2=01h, and last 0Ch bytes with ID2=02h):

Character Set values (for ID1=8Fh, ID2=00h, DATA[0]=charset):

"In case the same character stings is used for consecutive tracks, character 09h (or

0909h for 16bit charset) may be used to indicate the same as previous track. It shall not

used for the first track."

adjust_crc_16_ccitt(addr_len) ;for CD-TEXT and Subchannel Q

12.3 CDROM Sector Encoding

Audio

 00h 1 Character set (00h,01h,80h,81h,82h = see below)
 01h 1 First track number (usually/always 01h)
 02h 1 Last track number (01h..63h)
 03h 1 1bit-cd-text-in-data-area-flag, 7bit-copy-protection-flags
 04h 16 Number of 18-byte packs for ID1=80h..8Fh
 14h 8 Last sequence number of block 0..7 (or 00h=none)
 1Ch 8 Language codes for block 0..7 (definitions are unknown)

 00h ISO 8859-1
 01h ISO 646, ASCII
 80h MS-JIS
 81h Korean character code
 82h Mandarin (standard) Chinese character code
 Other = reserved

 lsb=00h, msb=00h ;-initial value (zero for both CD-TEXT and Sub-Q)
 for i=0 to len-1 ;-len (10h for CD-TEXT, 0Ah for Sub-Q)
 x = [addr+i] xor msb
 x = x xor (x shr 4)
 msb = lsb xor (x shr 3) xor (x shl 4)
 lsb = x xor (x shl 5)
 next i
 [addr+len+0]=msb xor FFh, [addr+len+1]=lsb xor FFh ;inverted / big-endian

12.3 CDROM Sector Encoding

- 189/1136 -

Mode0 (Empty)

Mode1 (Original CDROM)

Mode2/Form1 (CD-XA)

Mode2/Form2 (CD-XA)

encode_sector

 000h 930h Audio Data (2352 bytes) (LeftLsb,LeftMsb,RightLsb,RightMsb)

 000h 0Ch Sync (00h,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,00h)
 00Ch 4 Header (Minute,Second,Sector,Mode=00h)
 010h 920h Zerofilled

 000h 0Ch Sync (00h,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,00h)
 00Ch 4 Header (Minute,Second,Sector,Mode=01h)
 010h 800h Data (2048 bytes)
 810h 4 EDC (checksum across [000h..80Fh])
 814h 8 Zerofilled
 81Ch 114h ECC (error correction codes)

 000h 0Ch Sync (00h,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,00h)
 00Ch 4 Header (Minute,Second,Sector,Mode=02h)
 010h 4 Sub-Header (File, Channel, Submode AND DFh, Codinginfo)
 014h 4 Copy of Sub-Header
 018h 800h Data (2048 bytes)
 818h 4 EDC (checksum across [010h..817h])
 81Ch 114h ECC (error correction codes)

 000h 0Ch Sync (00h,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,00h)
 00Ch 4 Header (Minute,Second,Sector,Mode=02h)
 010h 4 Sub-Header (File, Channel, Submode OR 20h, Codinginfo)
 014h 4 Copy of Sub-Header
 018h 914h Data (2324 bytes)
 92Ch 4 EDC (checksum across [010h..92Bh]) (or 00000000h if no EDC)

 sector[000h]=00h,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh,00h
 sector[00ch]=bcd(adr/75/60) ;0..7x
 sector[00dh]=bcd(adr/75 MOD 60) ;0..59
 sector[00eh]=bcd(adr MOD 75) ;0..74
 sector[00fh]=mode
 if mode=00h then
 sector[010h..92Fh]=zerofilled

12.3 CDROM Sector Encoding

- 190/1136 -

calc_parity(sector,offs,len,j0,step1,step2)

calc_p_parity(sector) = calc_parity(sector,0,43,19,2*43,2)

calc_q_parity(sector) = calc_parity(sector,43*4,26,0,2*44,2*43)

adjust_edc(addr,len)

init_tables

 if mode=01h then
 adjust_edc(sector+0, 800h+10h)
 sector[814h..817h]=00h,00h,00h,00h,00h,00h,00h,00h
 calc_p_parity(sector)
 calc_q_parity(sector)
 if mode=02h and form=1
 sector[012h]=sector[012h] AND (NOT 20h) ;indicate not form2
 sector[014h..017h]=sector[010h..013h] ;copy of sub-header
 adjust_edc(sector+10h,800h+8)
 push sector[00ch] ;\temporarily clear header
 sector[00ch]=00000000h ;/
 calc_p_parity(sector)
 calc_q_parity(sector)
 pop sector[00ch] ;-restore header
 if mode=02h and form=2
 sector[012h]=sector[012h] OR 20h ;indicate form2
 sector[014h..017h]=sector[010h..013h] ;copy of sub-header
 adjust_edc(sector+10h,914h+8) ;edc is optional for form2

 src=00ch, dst=81ch+offs, srcmax=dst
 for i=0 to len-1
 base=src, x=0000h, y=0000h
 for j=j0 to 42
 x=x xor GF8_PRODUCT[j,sector[src+0]]
 y=y xor GF8_PRODUCT[j,sector[src+1]]
 src=src+step1, if (step1=2*44) and (src>=srcmax) then src=src-2*1118
 sector[dst+2*len+0]=x AND 0FFh, [dst+0]=x SHR 8
 sector[dst+2*len+1]=y AND 0FFh, [dst+1]=y SHR 8
 dst=dst+2, src=base+step2

 x=00000000h
 for i=0 to len-1
 x=x xor byte[addr+i], x=(x shr 8) xor edc_table[x and FFh]
 word[addr+len]=x ;append EDC value (little endian)

 for i=0 to FFh
 x=i, for j=0 to 7, x=x shr 1, if carry then x=x xor D8018001h
 edc_table[i]=x
 GF8_LOG[00h]=00h, GF8_ILOG[FFh]=00h, x=01h

12.3 CDROM Sector Encoding

- 191/1136 -

subfunc(a,b)

12.4 CDROM Scrambling

Scrambling

Scambling does XOR the data sectors with random values (done to avoid regular

patterns). The scrambling is applied to Data sector bytes[00Ch..92Fh] (not to CD-DA

audio sectors, and not to the leading 12-byte Sync mark in Data sectors).

The (de-)scrambling is done automatically by the CDROM controller, so disc images

should usually contain unscrambled data (there are some exceptions such like CD-i discs

that have audio and data sectors mixed inside of the same track; which may confuse the

CDROM controller about whether or not to apply scrambling to which sectors; so one

may need to manually XOR the faulty sectors in the disc image).

The scrambling pattern is derived from a 15bit polynomial counter (much like a noise

generator in sound chips). The data bits are XORed with the counters low bit, and the

counters lower 2bit are XORed with each other, and shifted in to the counters upper bit.

To compute 8 bits and once, and store them in a 924h-byte table:

 for i=00h to FEh
 GF8_LOG[x]=i, GF8_ILOG[i]=x
 x=x SHL 1, if carry8bit then x=x xor 1dh
 for j=0 to 42
 xx=GF8_ILOG[44-j], yy=subfunc(xx xor 1,19h)
 xx=subfunc(xx,01h), xx=subfunc(xx xor 1,18h)
 xx=GF8_LOG[xx], yy = GF8_LOG[yy]
 GF8_PRODUCT[j,0]=0000h
 for i=01h to FFh
 x=xx+GF8_LOG[i], if x>=255 then x=x-255
 y=yy+GF8_LOG[i], if y>=255 then y=y-255
 GF8_PRODUCT[j,i]=GF8_ILOG[x]+(GF8_ILOG[y] shl 8)

 if a>0 then
 a=GF8_LOG[a]-b, if a<0 then a=a+255
 a=GF8_ILOG[a]
 return(a)

 poly=0001h ;init 15bit polynomial counter
 for i=0 to 924h-1
 scramble_table[i]=poly AND FFh
 poly=(((poly XOR poly/2) AND 0FFh)*80h) XOR (poly/100h)
 next i

12.4 CDROM Scrambling

- 192/1136 -

The resulting table content should be:

After scrambling, the data is reportedly "shuffled and byte-swapped". Unknown what

shuffling means. And unknown what/where/why byte-swapping is done (it does

reportedly swap each two bytes in the whole(?) 930h-byte (data-?) sector; which might

date back to different conventions for disc images to contain "16bit audio samples" in big-

or little-endian format).

12.5 CDROM XA Subheader, File, Channel, Interleave

The Sub-Header for normal data sectors is usually 00h,00h,08h,00h (some PSX sectors

have 09h instead 08h, indicating the end of "something" or so?

1st Subheader byte - File Number (FN)

2nd Subheader byte - Channel Number (CN)

Whilst not officially allowed, PSX Ace Combat 3 Electrosphere does use Channel=FFh for

unused gaps in interleaved streaming sectors.

3rd Subheader byte - Submode (SM)

The EOR bit is set in all Volume Descriptor sectors, the last sector (ie. the Volume

Descriptor Terminator) additionally has the EOF bit set. Moreover, EOR and EOF are set in

 01h,80h,00h,60h,00h,28h,00h,1Eh,80h,08h,60h,06h,A8h,02h,FEh,81h,
 80h,60h,60h,28h,28h,1Eh,9Eh,88h,68h,66h,AEh,AAh,FCh,7Fh,01h,E0h,
 etc.

 0-7 File Number (00h..FFh) (for Audio/Video Interleave, see below)

 0-4 Channel Number (00h..1Fh) (for Audio/Video Interleave, see below)
 5-7 Should be always zero

 0 End of Record (EOR) (all Volume Descriptors, and all sectors with EOF)
 1 Video ;\Sector Type (usually ONE of these bits should be set)
 2 Audio ; Note: PSX .STR files are declared as Data (not as Video)
 3 Data ;/
 4 Trigger (for application use)
 5 Form2 (0=Form1/800h-byte data, 1=Form2, 914h-byte data)
 6 Real Time (RT)
 7 End of File (EOF) (or end of Directory/PathTable/VolumeTerminator)

12.5 CDROM XA Subheader, File, Channel, Interleave

- 193/1136 -

the last sector of each Path Table, and last sector of each Directory, and last sector of

each File.

4th Subheader byte - Codinginfo (CI)

When used for Data sectors:

When used for XA-ADPCM audio sectors:

Audio/Video Interleave (Multiple Files/Channels)

The CDROM drive mechanics are working best when continously following the data spiral

on the disk, that works fine for uncompressed Audio Data at normal speed, but

compressed Audio Data the disk is spinning much too fast. To avoid the drive to need to

pause reading or to do permanent backwards seeking, CD-XA allows to store data

interleaved in separate files/channels. With common interleave values like so:

For example, 1/8 means that the controller processes only each 8th sector (each having

the same File Number and Channel Number), and ignores the next 7 sectors (which must

have other File Number and/or other Channel Number). There are various ways to

arrange multiple files or channels, for example,

 0-7 Reserved (00h)

 0-1 Mono/Stereo (0=Mono, 1=Stereo, 2-3=Reserved)
 2-2 Sample Rate (0=37800Hz, 1=18900Hz, 2-3=Reserved)
 4-5 Bits per Sample (0=Normal/4bit, 1=8bit, 2-3=Reserved)
 6 Emphasis (0=Normal/Off, 1=Emphasis)
 7 Reserved (0)

 Interleave Data Format
 1/1 (none) 44100Hz Stereo CD Audio at normal speed
 1/8 37800Hz Stereo ADPCM compressed Audio at double speed
 1/16 18900Hz Stereo ADPCM compressed Audio at double speed
 1/16 37800Hz Mono ADPCM compressed Audio at double speed
 1/32 18900Hz Mono ADPCM compressed Audio at double speed
 7/8 15fps 320x224 pixel MDEC compressed Videos at double speed
 Unknown if 1/16 and 1/32 interleaves are actually possible (the PSX cdrom
 controller seems to overwrite the IC303 sector buffer entries once every
 eight sectors, so ADPCM data may get destroyed on interleaves above 1/8).
 (Crash Team Racing uses 37800Hz Mono at Double speed, so 1/16 must work).

 one file with eight 1/8 audio channels
 one file with one 1/8 audio channels, plus one 7/8 video channel (*)
 one file with one 1/8 audio channels, plus 7 unused channels

12.5 CDROM XA Subheader, File, Channel, Interleave

- 194/1136 -

(*) If the Audio and Video data belongs together then both should use the SAME channel.

Note: Above interleave values are assuming that PSX Game Disks are always running at

double speed (that's fastest for normal data files, and ADPCM files are usually using the

same speed; otherwise it'd be neccessary to change the drive speed everytime when

switching between Data to ADPCM modes).

Note: The file/channel numbers can be somehow selected with the Setfilter command. No

idea if the controller is automatically switching to the next channel or so when reaching

the end of the file?

Unused sectors in Interleave

There are different ways to mark unused sectors in interleaved streams. Ace Combat 3

uses Channel=FFh=Invalid. Tron Bonne uses Submode=00h=Nothing (notably, that

game has a 74Mbyte XA file that leaves about 75% unused).

Real Time Streaming

With the above Interleave, files can be played continously at real time - that, unless

read-errors do occur. In that case the drive controller would usually perform time-

consuming error-correction and/or read-retries. For video/audio streaming the resulting

delay would be tendencially more annoying as than processing or skipping the incorrect

data.

In such cases the drive controller is allowed to ignore read errors; that probably on

sectors that have the Real Time (RT) flag set in their subheaders. The controller is

probably doing some read-ahead buffering (so, if it has buffered enough data, then it

may still perform read retries and/or error correction, as long as it doesn't affect real

time playback).

12.6 CDROM XA Audio ADPCM Compression

CD-ROM XA ADPCM is used for Audio data compression. Each 16bit sample is encoded in

4bit nibbles; so the compression rate is almost 1:4 (only almost 1:4 because there are

 eight different files with one 1/8 audio channel each
 etc.

 Subheader bytes: 01h,FFh,64h,01h ;Ace Combat 3 Electrosphere
 Subheader bytes: 01h,00h,00h,00h ;Misadventures of Tron Bonne (XA*.XA)

12.6 CDROM XA Audio ADPCM Compression

- 195/1136 -

16 header bytes within each 128-byte portion). The data is usually/always stored on

914h-byte sectors (without error correction).

Subheader

The Subheader (see previous chapter) contains important info for ADPCM: The file/

channel numbers for Interleaved data, and the codinginfo flags: mono/stereo flag,

37800Hz/18900Hz sampling rate, 4bit/8bit format, and emphasis.

ADPCM Sectors

Each sector consists of 12h 128-byte portions (=900h bytes) (the remaining 14h bytes

of the sectors 914h-byte data region are 00h filled).

The separate 128-byte portions consist of a 16-byte header,

followed by twentyeight data words (4x28-bytes),

and then followed by the next 128-byte portion.

The "Copy" bytes are allowing to repair faulty headers (ie. if the CDROM controller has

sensed a read-error in the header then it can eventually replace it by the copy of the

header).

XA-ADPCM Header Bytes

 00h..03h Copy of below 4 bytes (at 04h..07h)
 04h Header for 1st Block/Mono, or 1st Block/Left
 05h Header for 2nd Block/Mono, or 1st Block/Right
 06h Header for 3rd Block/Mono, or 2nd Block/Left
 07h Header for 4th Block/Mono, or 2nd Block/Right
 08h Header for 5th Block/Mono, or 3rd Block/Left ;\unknown/unused
 09h Header for 6th Block/Mono, or 3rd Block/Right ; for 8bit ADPCM
 0Ah Header for 7th Block/Mono, or 4th Block/Left ; (maybe 0, or maybe
 0Bh Header for 8th Block/Mono, or 4th Block/Right ;/copy of above)
 0Ch..0Fh Copy of above 4 bytes (at 08h..0Bh)

 10h..13h 1st Data Word (packed 1st samples for 2-8 blocks)
 14h..17h 2nd Data Word (packed 2nd samples for 2-8 blocks)
 18h..1Bh 3rd Data Word (packed 3rd samples for 2-8 blocks)
 ... Nth Data Word (packed Nth samples for 2-8 blocks)
 7Ch..7Fh 28th Data Word (packed 28th samples for 2-8 blocks)

 0-3 Shift (0..12) (0=Loudest) (13..15=Reserved/Same as 9)
 4-5 Filter (0..3) (only four filters, unlike SPU-ADPCM which has five)
 6-7 Unused (should be 0)

12.6 CDROM XA Audio ADPCM Compression

- 196/1136 -

Note: The 4bit (or 8bit) samples are expanded to 16bit by left-shifting them by 12 (or 8),

that 16bit value is then right-shifted by the selected 'shift' amount. For 8bit ADPCM shift

should be 0..8 (values 9..12 will cut-off the LSB(s) of the 8bit value, this works, but isn't

useful). For both 4bit and 8bit ADPCM, reserved shift values 13..15 will act same as

shift=9).

XA-ADPCM Data Words (32bit, little endian)

or, for 8bit ADPCM format:

decode_sector(src)

decode_28_nibbles(src,blk,nibble,dst,old,older)

 0-3 Nibble for 1st Block/Mono, or 1st Block/Left (-8h..+7h)
 4-7 Nibble for 2nd Block/Mono, or 1st Block/Right (-8h..+7h)
 8-11 Nibble for 3rd Block/Mono, or 2nd Block/Left (-8h..+7h)
 12-15 Nibble for 4th Block/Mono, or 2nd Block/Right (-8h..+7h)
 16-19 Nibble for 5th Block/Mono, or 3rd Block/Left (-8h..+7h)
 20-23 Nibble for 6th Block/Mono, or 3rd Block/Right (-8h..+7h)
 24-27 Nibble for 7th Block/Mono, or 4th Block/Left (-8h..+7h)
 28-31 Nibble for 8th Block/Mono, or 4th Block/Right (-8h..+7h)

 0-7 Byte for 1st Block/Mono, or 1st Block/Left (-80h..+7Fh)
 8-15 Byte for 2nd Block/Mono, or 1st Block/Right (-80h..+7Fh)
 16-23 Byte for 3rd Block/Mono, or 2nd Block/Left (-80h..+7Fh)
 24-31 Byte for 4th Block/Mono, or 2nd Block/Right (-80h..+7Fh)

 src=src+12+4+8 ;skip sync,header,subheader
 for i=0 to 11h
 for blk=0 to 3
 IF stereo ;left-samples (LO-nibbles), plus right-samples (HI-nibbles)
 decode_28_nibbles(src,blk,0,dst_left,old_left,older_left)
 decode_28_nibbles(src,blk,1,dst_right,old_right,older_right)
 ELSE ;first 28 samples (LO-nibbles), plus next 28 samples (HI-nibbles)
 decode_28_nibbles(src,blk,0,dst_mono,old_mono,older_mono)
 decode_28_nibbles(src,blk,1,dst_mono,old_mono,older_mono)
 ENDIF
 next blk
 src=src+128
 next i
 src=src+14h+4 ;skip padding,edc

 shift = 12 - (src[4+blk*2+nibble] AND 0Fh)
 filter = (src[4+blk*2+nibble] AND 30h) SHR 4
 f0 = pos_xa_adpcm_table[filter]

12.6 CDROM XA Audio ADPCM Compression

- 197/1136 -

Pos/neg Tables

Note: XA-ADPCM supports only four filters (0..3), unlike SPU-ADPCM which supports five

filters (0..4).

Old/Older Values

The incoming old/older values are usually that from the previous part, or garbage (in

case of decoding errors in the previous part), or whatever (in case there was no

previous part) (ie. maybe zero on power-up?) (and maybe there's also a way to reset

the values to zero at the begin of a new file, or *maybe* it's silently done automatically

when issuing seek commands?).

25-point Zigzag Interpolation

The CDROM decoder is applying some weird 25-point zigzag interpolation when

resampling the 37800Hz XA-ADPCM output to 44100Hz. This part is different from SPU-

ADPCM (which uses 4-point gaussian pitch interpolations). For example, XA-ADPCM

interpolation applied to a square wave looks like this:

 f1 = neg_xa_adpcm_table[filter]
 for j=0 to 27
 t = signed4bit((src[16+blk+j*4] SHR (nibble*4)) AND 0Fh)
 s = (t SHL shift) + ((old*f0 + older*f1+32)/64);
 s = MinMax(s,-8000h,+7FFFh)
 halfword[dst]=s, dst=dst+2, older=old, old=s
 next j

 pos_xa_adpcm_table[0..4] = (0, +60, +115, +98, +122)
 neg_xa_adpcm_table[0..4] = (0, 0, -52, -55, -60)

 . .
 .--------------. | | | |
 | | .'.'.'----'.'.'.
 | | | | | |
 | | | |
 | Decompressed | | Final |
 | XA-ADPCM | | XA-ADPCM |
 | Waveform | | Output |
 | | | | | |
 | | ---.'.'.' '.'.'.---
 --------' '-------- | | | |
 ' '

12.6 CDROM XA Audio ADPCM Compression

- 198/1136 -

The zigzagging does produce some (inaudible) 22050Hz noise, and does produce some

low-pass (?) filtering ("sinc filter"). The effect can be reproduced somewhat like so:

The above formula/table gives nearly correct results, but with small rounding errors in

some cases - possibly due to actual rounding issues, or due to factors with bigger

 Output37800Hz(sample):
 ringbuf[p AND 1Fh]=sample, p=p+1, sixstep=sixstep-1
 if sixstep=0
 sixstep=6
 Ouput44100Hz(ZigZagInterpolate(p,Table1))
 Ouput44100Hz(ZigZagInterpolate(p,Table2))
 Ouput44100Hz(ZigZagInterpolate(p,Table3))
 Ouput44100Hz(ZigZagInterpolate(p,Table4))
 Ouput44100Hz(ZigZagInterpolate(p,Table5))
 Ouput44100Hz(ZigZagInterpolate(p,Table6))
 Ouput44100Hz(ZigZagInterpolate(p,Table7))
 endif
 ZigZagInterpolate(p,TableX):
 sum=0
 for i=1 to 29, sum=sum+(ringbuf[(p-i) AND 1Fh]*TableX[i])/8000h, next i
 return MinMax(sum,-8000h,+7FFFh)
 Table1, Table2, Table3, Table4, Table5, Table6, Table7 ;Index
 0 , 0 , 0 , 0 , -0001h, +0002h, -0005h ;1
 0 , 0 , 0 , -0001h, +0003h, -0008h, +0011h ;2
 0 , 0 , -0001h, +0003h, -0008h, +0010h, -0023h ;3
 0 , -0002h, +0003h, -0008h, +0011h, -0023h, +0046h ;4
 0 , 0 , -0002h, +0006h, -0010h, +002Bh, -0017h ;5
 -0002h, +0003h, -0005h, +0005h, +000Ah, +001Ah, -0044h ;6
 +000Ah, -0013h, +001Fh, -001Bh, +006Bh, -00EBh, +015Bh ;7
 -0022h, +003Ch, -004Ah, +00A6h, -016Dh, +027Bh, -0347h ;8
 +0041h, -004Bh, +00B3h, -01A8h, +0350h, -0548h, +080Eh ;9
 -0054h, +00A2h, -0192h, +0372h, -0623h, +0AFAh, -1249h ;10
 +0034h, -00E3h, +02B1h, -05BFh, +0BCDh, -16FAh, +3C07h ;11
 +0009h, +0132h, -039Eh, +09B8h, -1780h, +53E0h, +53E0h ;12
 -010Ah, -0043h, +04F8h, -11B4h, +6794h, +3C07h, -16FAh ;13
 +0400h, -0267h, -05A6h, +74BBh, +234Ch, -1249h, +0AFAh ;14
 -0A78h, +0C9Dh, +7939h, +0C9Dh, -0A78h, +080Eh, -0548h ;15
 +234Ch, +74BBh, -05A6h, -0267h, +0400h, -0347h, +027Bh ;16
 +6794h, -11B4h, +04F8h, -0043h, -010Ah, +015Bh, -00EBh ;17
 -1780h, +09B8h, -039Eh, +0132h, +0009h, -0044h, +001Ah ;18
 +0BCDh, -05BFh, +02B1h, -00E3h, +0034h, -0017h, +002Bh ;19
 -0623h, +0372h, -0192h, +00A2h, -0054h, +0046h, -0023h ;20
 +0350h, -01A8h, +00B3h, -004Bh, +0041h, -0023h, +0010h ;21
 -016Dh, +00A6h, -004Ah, +003Ch, -0022h, +0011h, -0008h ;22
 +006Bh, -001Bh, +001Fh, -0013h, +000Ah, -0005h, +0002h ;23
 +000Ah, +0005h, -0005h, +0003h, -0001h, 0 , 0 ;24
 -0010h, +0006h, -0002h, 0 , 0 , 0 , 0 ;25
 +0011h, -0008h, +0003h, -0002h, +0001h, 0 , 0 ;26
 -0008h, +0003h, -0001h, 0 , 0 , 0 , 0 ;27
 +0003h, -0001h, 0 , 0 , 0 , 0 , 0 ;28
 -0001h, 0 , 0 , 0 , 0 , 0 , 0 ;29

12.6 CDROM XA Audio ADPCM Compression

- 199/1136 -

fractional portions, or due to a completely different formula...

Probably, the hardware does actually do the above stuff in two steps: first, applying a zig-

zag filter (with only around 21-points) to the 37800Hz output, and then doing 44100Hz

interpolation (2-point linear or 4-point gaussian or whatever) in a second step.

That two-step theory would also match well for 18900Hz resampling (which has lower-

pitch zigzag, and gets spread across about fifty 44100Hz samples).

XA-ADPCM Emphasis

With XA-Emphasis enabled in Sub-header, output will appear as so:

The exact XA-Emphasis formula is unknown (maybe it's just same as for CD-DA's SUBQ

emphasis). Additionally, zig-zag interpolation is applied (somewhere before or after

applying the emphasis stuff).

Note: The Emphasis feature isn't used by any known PSX games.

Uninitialized Six-step Counter

The hardware does contain some six-step counter (for interpolating 37800Hz to

44100Hz, ie. to insert one extra sample after each six samples). The 900h-byte sectors

contain a multiple of six samples, so the counter will be always same before & after

playing a sector. However, the initial counter value on power-up is uninitialized random

(and the counter will fallback to that initial random setting after each 900h-byte sector).

RIFF Headers (on PCs)

When reading files that consist of 914h-byte sectors on a PC, the PC seems to

automatically insert a 2Ch-byte RIFF fileheader. Like so, for ADPCM audio files:

 .------------. -----.
 | | .'' |
 | Raw | .' XA |
 | ADPCM | | Emphasis '.
 | Waveform | | Output '..
 --------' '---------- --------' ''''---

 00h 4 "RIFF"
 04h 4 Total Filesize (minus 8)
 08h 8 "CDXAfmt "
 10h 4 Size of below stuff (10h)
 14h 14 Stuff (looks like the "LEN_SU" region from XA-Directory Record)
 22h 2 Zero (probably just dummy padding for 32bit alignment)

12.6 CDROM XA Audio ADPCM Compression

- 200/1136 -

That RIFF stuff isn't stored on the CDROM (at least not in the file area) (however, some of

that info, like the "=UXA" stuff, is stored in the directory area of the CDROM).

After the RIFF header, the normal sector data is appended, that, with the full 930h bytes

per sector (ie. the 914h data bytes preceeded by sync bytes, header, subheader, and

followed by the EDC value).

The Channel Interleave doesn't seem to be resolved, ie. the Channels are kept arranged

as how they are stored on the CDROM. However, File Interleave \<should> be resolved,

ie. other Files that "overlap" the file shouldn't be included in the file.

12.7 CDROM ISO Volume Descriptors

System Area (prior to Volume Descriptors)

The first 16 sectors on the first track are the system area, for a Playstation disk, it

contains the following:

Of which, the Licence String in sector 4 is,

The Playstation Logo in sectors 5..11 contains data like so,

the Logo contains a .TMD header, polygons, vertices and normals for the "PS" logo (which

is displayed when booting from CDROM). Some BIOS versions are comparing these 3278h

bytes against an identical copy in ROM, and refuse to boot if the data isn't 1:1 the same:

 24h 4 "data"
 28h 4 Size of following data (usually N*930h)

 Sector 0..3 - Zerofilled (Mode2/Form1, 4x800h bytes, plus ECC/EDC)
 Sector 4 - Licence String
 Sector 5..11 - Playstation Logo (3278h bytes) (remaining bytes FFh-filled)
 Sector 12..15 - Zerofilled (Mode2/Form2, 4x914h bytes, plus EDC)

 000h 32 Line 1 (" Licensed by ")
 020h 32+6 Line 2 (EU) ("Sony Computer Entertainment Euro"," pe ") ;\either
 020h 32+1 Line 2 (JP) ("Sony Computer Entertainment Inc.",0Ah) ; one of
 020h 32+6 Line 2 (US) ("Sony Computer Entertainment Amer"," ica ") ;/these
 041h 1983 Empty (JP) (filled by repeating pattern 62x30h,1x0Ah, 1x30h)
 046h 1978 Empty (EU/US) (filled by 00h-bytes)

 0000h .. 41h,00h,00h,00h,00h,00h,00h,00h,01h,00h,00h,00h,1Ch,23h,00h,00h
 0010h .. 51h,01h,00h,00h,A4h,2Dh,00h,00h,99h,00h,00h,00h,1Ch,00h,00h,00h
 0020h
 3278h 588h FF-filled (remaining bytes on sector 11)

12.7 CDROM ISO Volume Descriptors

- 201/1136 -

- NTSC US/ASIA BIOS always accepts changed logos.

- PAL EU BIOS accepts changed logos up to v3.0E (and refuses in v4.0E and up).

- NTSC JP BIOS never accepts changed logos (and/or changed license strings?).

Note: A region-patch-modchip causes PAL BIOS to behave same as US/ASIA BIOS.

Volume Descriptors (Sector 16 and up)

Playstation disks usually have only two Volume Descriptors,

Primary Volume Descriptor (sector 16 on PSX disks)

 Sector 16 - Primary Volume Descriptor
 Sector 17 - Volume Descriptor Set Terminator

 000h 1 Volume Descriptor Type (01h=Primary Volume Descriptor)
 001h 5 Standard Identifier ("CD001")
 006h 1 Volume Descriptor Version (01h=Standard)
 007h 1 Reserved (00h)
 008h 32 System Identifier (a-characters) ("PLAYSTATION")
 028h 32 Volume Identifier (d-characters) (max 8 chars for PSX?)
 048h 8 Reserved (00h)
 050h 8 Volume Space Size (2x32bit, number of logical blocks)
 058h 32 Reserved (00h)
 078h 4 Volume Set Size (2x16bit) (usually 0001h)
 07Ch 4 Volume Sequence Number (2x16bit) (usually 0001h)
 080h 4 Logical Block Size in Bytes (2x16bit) (usually 0800h) (1 sector)
 084h 8 Path Table Size in Bytes (2x32bit) (max 800h for PSX)
 08Ch 4 Path Table 1 Block Number (32bit little-endian)
 090h 4 Path Table 2 Block Number (32bit little-endian) (or 0=None)
 094h 4 Path Table 3 Block Number (32bit big-endian)
 098h 4 Path Table 4 Block Number (32bit big-endian) (or 0=None)
 09Ch 34 Root Directory Record (see next chapter)
 0BEh 128 Volume Set Identifier (d-characters) (usually empty)
 13Eh 128 Publisher Identifier (a-characters) (company name)
 1BEh 128 Data Preparer Identifier (a-characters) (empty or other)
 23Eh 128 Application Identifier (a-characters) ("PLAYSTATION")
 2BEh 37 Copyright Filename ("FILENAME.EXT;VER") (empty or text)
 2E3h 37 Abstract Filename ("FILENAME.EXT;VER") (empty)
 308h 37 Bibliographic Filename ("FILENAME.EXT;VER") (empty)
 32Dh 17 Volume Creation Timestamp ("YYYYMMDDHHMMSSFF",timezone)
 33Eh 17 Volume Modification Timestamp ("0000000000000000",00h)
 34Fh 17 Volume Expiration Timestamp ("0000000000000000",00h)
 360h 17 Volume Effective Timestamp ("0000000000000000",00h)
 371h 1 File Structure Version (01h=Standard)
 372h 1 Reserved for future (00h-filled)
 373h 141 Application Use Area (00h-filled for PSX and VCD)
 400h 8 CD-XA Identifying Signature ("CD-XA001" for PSX and VCD)
 408h 2 CD-XA Flags (unknown purpose) (00h-filled for PSX and VCD)
 40Ah 8 CD-XA Startup Directory (00h-filled for PSX and VCD)

12.7 CDROM ISO Volume Descriptors

- 202/1136 -

Volume Descriptor Set Terminator (sector 17 on PSX disks)

Boot Record (none such on PSX disks)

Supplementary Volume Descriptor (none such on PSX disks)

In practice, this is used for Joliet:

CDROM Extension Joliet

Volume Partition Descriptor (none such on PSX disks)

 412h 8 CD-XA Reserved (00h-filled for PSX and VCD)
 41Ah 345 Application Use Area (00h-filled for PSX and VCD)
 573h 653 Reserved for future (00h-filled)

 000h 1 Volume Descriptor Type (FFh=Terminator)
 001h 5 Standard Identifier ("CD001")
 006h 1 Terminator Version (01h=Standard)
 007h 2041 Reserved (00h-filled)

 000h 1 Volume Descriptor Type (00h=Boot Record)
 001h 5 Standard Identifier ("CD001")
 006h 1 Boot Record Version (01h=Standard)
 007h 32 Boot System Identifier (a-characters)
 027h 32 Boot Identifier (a-characters)
 047h 1977 Boot System Use (not specified content)

 000h 1 Volume Descriptor Type (02h=Supplementary Volume Descriptor)
 001h .. Same as for Primary Volume Descriptor (see there)
 007h 1 Volume Flags (8bit)
 008h .. Same as for Primary Volume Descriptor (see there)
 058h 32 Escape Sequences (32 bytes)
 078h .. Same as for Primary Volume Descriptor (see there)

 000h 1 Volume Descriptor Type (03h=Volume Partition Descriptor)
 001h 5 Standard Identifier ("CD001")
 006h 1 Volume Partition Version (01h=Standard)
 007h 1 Reserved (00h)
 008h 32 System Identifier (a-characters) (32 bytes)
 028h 32 Volume Partition Identifier (d-characters) (32 bytes)
 048h 8 Volume Partition Location (2x32bit) Logical Block Number
 050h 8 Volume Partition Size (2x32bit) Number of Logical Blocks
 058h 1960 System Use (not specified content)

12.7 CDROM ISO Volume Descriptors

- 203/1136 -

Reserved Volume Descriptors (none such on PSX disks)

12.8 CDROM ISO File and Directory Descriptors

The location of the Root Directory is described by a 34-byte Directory Record being

located in Primary Volume Descriptor entries 09Ch..0BDh. The data therein is: Block

Number (usually 22 on PSX disks), LEN_FI=01h, Name=00h, and, LEN_SU=00h (due to

the 34-byte limit).

Format of a Directory Record

LEN_SU can be calculated as "LEN_DR-(33+LEN_FI+Padding)". For CD-XA disks (as used

in the PSX), LEN_SU is 14 bytes:

 000h 1 Volume Descriptor Type (04h..FEh=Reserved, don't use)
 001h 2047 Reserved (don't use)

 00h 1 Length of Directory Record (LEN_DR) (33+LEN_FI+pad+LEN_SU) (0=Pad)
 01h 1 Extended Attribute Record Length (usually 00h)
 02h 8 Data Logical Block Number (2x32bit)
 0Ah 8 Data Size in Bytes (2x32bit)
 12h 7 Recording Timestamp (yy-1900,mm,dd,hh,mm,ss,timezone)
 19h 1 File Flags 8 bits (usually 00h=File, or 02h=Directory)
 1Ah 1 File Unit Size (usually 00h)
 1Bh 1 Interleave Gap Size (usually 00h)
 1Ch 4 Volume Sequence Number (2x16bit, usually 0001h)
 20h 1 Length of Name (LEN_FI)
 21h LEN_FI File/Directory Name ("FILENAME.EXT;1" or "DIR_NAME" or 00h or 01h)
 xxh 0..1 Padding Field (00h) (only if LEN_FI is even)
 xxh LEN_SU System Use (LEN_SU bytes) (see below for CD-XA disks)

 00h 2 Owner ID Group (whatever, usually 0000h, big endian)
 02h 2 Owner ID User (whatever, usually 0000h, big endian)
 04h 2 File Attributes (big endian):
 0 Owner Read (usually 1)
 1 Reserved (0)
 2 Owner Execute (usually 1)
 3 Reserved (0)
 4 Group Read (usually 1)
 5 Reserved (0)
 6 Group Execute (usually 1)
 7 Reserved (0)
 8 World Read (usually 1)
 9 Reserved (0)
 10 World Execute (usually 1)
 11 IS_MODE2 (0=MODE1 or CD-DA, 1=MODE2)

12.8 CDROM ISO File and Directory Descriptors

- 204/1136 -

Directory sectors do usually have zeropadding at the end of each sector:

Names are alphabetically sorted, no matter if the names refer to files or directories (ie.

SUBDIR would be inserted between STRFILE.EXT and SYSFILE.EXT). The first two entries

(with non-ascii names 00h and 01h) are referring to current and parent directory.

Path Tables

The Path Table contain a summary of the directory names (the same information is also

stored in the directory records, so programs may either use path tables or directory

records; the path tables are allowing to read the whole directory tree quickly at once,

without neeeding to seek from directory to directory).

Path Table 1 is in Little-Endian format, Path Table 3 contains the same data in Big-

Endian format. Path Table 2 and 4 are optional copies of Table 1 and 3. The size and

location of the tables is stored in Volume Descriptor entries 084h..09Bh. The format of

the separate entries within a Path Table is,

 12 IS_MODE2_FORM2 (0=FORM1, 1=FORM2)
 13 IS_INTERLEAVED (0=No, 1=Yes...?) (by file and/or channel?)
 14 IS_CDDA (0=Data or ADPCM, 1=CD-DA Audio Track)
 15 IS_DIRECTORY (0=File or CD-DA, 1=Directory Record)
 Commonly used Attributes are:
 0D55h=Normal Binary File (with 800h-byte sectors)
 1555h=Uncommon (fade to black .DPS and .XA files)
 2555h=Uncommon (wipeout .AV files) (MODE1 ??)
 4555h=CD-DA Audio Track (wipeout .SWP files, alone .WAV file)
 3D55h=Streaming File (ADPCM and/or MDEC or so)
 8D55h=Directory Record (parent-, current-, or sub-directory)
 06h 2 Signature ("XA")
 08h 1 File Number (Must match Subheader's File Number)
 09h 5 Reserved (00h-filled)

 - Directory sizes are always rounded up to N*800h-bytes.
 - Directory entries should not cross 800h-byte sector boundaries.
 There may be further directory entries on the next sector after the padding.
 To deal with that, skip 00h-bytes until finding a nonzero LEN_DR value (or
 slightly faster, upon a 00h-byte, directly jump to next sector instead of
 doing a slow byte-by-byte skip).
 Note: Padding between sectors does rarely happen on PSX discs because the
 PSX kernel supports max 800h bytes per directory (one exception is PSX Hot
 Shots Golf 2, which has an ISO directory with more than 800h bytes; it does
 use a lookup file instead of actually parsing the while ISO directory).

 00h 1 Length of Directory Name (LEN_DI) (01h..08h for PSX)
 01h 1 Extended Attribute Record Length (usually 00h)
 02h 4 Directory Logical Block Number
 06h 2 Parent Directory Number (0001h and up)

12.8 CDROM ISO File and Directory Descriptors

- 205/1136 -

The first entry (directory number 0001h) is the root directory, the root doesn't have a

name, nor a parent (the name field contains a 00h byte, rather than ASCII text, LEN_DI

is 01h, and parent is 0001h, making the root it's own parent; ignoring the fact that incest

is forbidden in many countries).

The next entries (directory number 0002h and up) (if any) are sub-directories within the

root (sorted in alphabetical order, and all having parent=0001h). The next entries are

sub-directories (if any) of the first sub-directory (also sorted in alphabetical order, and all

having parent=0002h). And so on.

PSX disks usually contain all four tables (usually on sectors 18,19,20,21).

Format of an Extended Attribute Record (none such on PSX disks)

If present, an Extended Attribute Record shall be recorded over at least one Logical

Block. It shall have the following contents.

Unknown WHERE that data is located... the Directory Records can specify the Extended

Attribute Length, but not the location... maybe it's meant to be located in the first some

bytes or blocks of the File or Directory...?

 08h LEN_DI Directory Name (d-characters, d1-characters) (or 00h for Root)
 xxh 0..1 Padding Field (00h) (only if LEN_FI is odd)

 00h 4 Owner Identification (numerical value) ;\used only if
 04h 4 Group Identification (numerical value) ; File Flags Bit4=1
 08h 2 Permission Flags (16bit, little-endian) ;/
 0Ah 17 File Creation Timestamp ("YYYYMMDDHHMMSSFF",timezone)
 1Bh 17 File Modification Timestamp ("0000000000000000",00h)
 2Ch 17 File Expiration Timestamp ("0000000000000000",00h)
 3Dh 17 File Effective Timestamp ("0000000000000000",00h)
 4Eh 1 Record Format (numerical value)
 4Fh 1 Record Attributes (numerical value)
 50h 4 Record Length (numerical value)
 54h 32 System Identifier (a-characters, a1-characters)
 74h 64 System Use (not specified content)
 B4h 1 Extended Attribute Record Version (numerical value)
 B5h 1 Length of Escape Sequences (LEN_ESC)
 B6h 64 Reserved for future standardization (00h-filled)
 F6h 4 Length of Application Use (LEN_AU)
 FAh LEN_AU Application Use
 xxh LEN_ESC Escape Sequences

12.8 CDROM ISO File and Directory Descriptors

- 206/1136 -

12.9 CDROM ISO Misc

Both Byte Order

All 16bit and 32bit numbers in the ISO region are stored twice, once in Little-Endian

order, and then in Big-Endian Order. For example,

Exceptions are the 16bit Permission Flags which are stored only in Little-Endian format

(although the flags are four 4bit groups, so that isn't a real 16bit number), and, the Path

Tables are stored in both formats, but separately, ie. one table contains only Little-Endian

numbers, and the other only Big-Endian numbers.

d-characters (Filenames)

a-characters

Ie. all ASCII characters from 20h..5Fh except "#$@[]^"

SEPARATOR 1 = 2Eh (aka ".") (extension; eg. "EXT")

SEPARATOR 2 = 3Bh (aka ";") (file version; "1".."32767")

Fixed Length Strings/Filenames

The Volume Descriptors contain a number fixed-length string/filename fields (unlike the

Directory Records and Path Tables which have variable lengths). These fields should be

padded with SPACE characters if they are empty, or if the string is shorter than the

maximum length.

Filename fields in Volume Descriptors are referring to files in the Root Directory. On PSX

disks, the filename fields are usually empty, but some disks are mis-using the Copyright

Filename to store the Company Name (although no such file exists on the disk).

 2x16bit value 1234h ---> stored as 34h,12h,12h,34h
 2x32bit value 12345678h ---> stored as 78h,56h,34h,12h,12h,34h,56h,78h

 "0..9", "A..Z", and "_"

 "0..9", "A..Z", SPACE, "!"%&'()*+,-./:;<=>?_"

12.9 CDROM ISO Misc

- 207/1136 -

Volume Descriptor Timestamps

The various timestamps occupy 17 bytes each, in form of

The first 16 bytes are ASCII Date and Time digits (Year, Month, Day, Hour, Minute,

Second, and 1/100 Seconds. The last byte is Offset from Greenwich Mean Time in number

of 15-minute steps from -48 (West) to +52 (East); or actually: to +56 when recursing

Kiribati's new timezone.

Note: PSX games manufactured in year 2000 were accidently marked to be created in

year 0000.

Recording Timestamps

Occupy only 7 bytes, in non-ascii format

The year ranges from 1900+0 to 1900+255.

File Flags

If this Directory Record identifies a directory then bit 2,3,7 shall be set to ZERO.

If no Extended Attribute Record is associated with the File Section identified by this

Directory Record then bit positions 3 and 4 shall be set to ZERO.

 "YYYYMMDDHHMMSSFF",timezone
 "0000000000000000",00h ;empty timestamp

 year-1900,month,day,hour,minute,second,timezone
 00h,00h,00h,00h,00h,00h,00h ;empty timestamp

 0 Existence (0=Normal, 1=Hidden)
 1 Directory (0=File, 1=Directory)
 2 Associated File (0=Not an Associated File, 1=Associated File)
 3 Record
 If set to ZERO, shall mean that the structure of the information in
 the file is not specified by the Record Format field of any associated
 Extended Attribute Record (see 9.5.8).
 If set to ONE, shall mean that the structure of the information in
 the file has a record format specified by a number other than zero in
 the Record Format Field of the Extended Attribute Record (see 9.5.8).
 4 Restrictions (0=None, 1=Restricted via Permission Flags)
 5 Reserved (0)
 6 Reserved (0)
 7 Multi-Extent (0=Final Directory Record for the file, 1=Not final)

12.9 CDROM ISO Misc

- 208/1136 -

Permission Flags (in Extended Attribute Records)

This is a bit bizarre, an upper-class owner is "an owner who is a member of a group of the

System class of user". An upper-class user is "any user who is a member of the group

specified by the Group Identification field". The separate 4bit permission codes are:

12.10 CDROM Extension Joliet

Typical Joliet Disc Header

The discs contains two separate filesystems, the ISO one for backwards compatibilty,

and the Joliet one with longer filenames and Unicode characters.

There is no way to determine which ISO name belongs to which Joliet name (except,

filenames do usually point to the same file data sectors, but that doesn't work for empty

files, and doesn't work for folder names).

The ISO names can be max 31 chars (or shorter for compatibility with DOS short names:

Nero does truncate them to max 14 chars "FILENAME.EXT;1", all uppercase, with

underscores instead of spaces, and somehow assigning names like "FILENAMx.EXT;1" in

case of duplicated short names).

Secondary Volume Descriptor (aka Supplementary Volume Descriptor)

This is using the same format as ISO Primary Volume Descriptor (but with some

changed entries).

 0-3 Permissions for upper-class owners
 4-7 Permissions for normal owners
 8-11 Permissions for upper-class users
 12-15 Permissions for normal users

 Bit0 Permission to read the file (0=Yes, 1=No)
 Bit1 Must be set (1)
 Bit2 Permission to execute the file (0=Yes, 1=No)
 Bit3 Must be set (1)

 Sector 16 - Primary Volume Descriptor (with 8bit uppercase ASCII ISO names)
 Sector 17 - Secondary Volume Descriptor (with 16bit Unicode Joliet names)
 Sector 18 - Volume Descriptor Set Terminator
 Sector .. - Path Tables and Directory Records (for ISO)
 Sector .. - Path Tables and Directory Records (for Joliet)
 Sector .. - File Data Sectors (shared for ISO and Joliet)

12.10 CDROM Extension Joliet

- 209/1136 -

CDROM ISO Volume Descriptors

Changed entries are:

The Escape Sequences entry contains three ASCII chars (plus 29-byte zeropadding),

indicating the ISO 2022 Unicode charset:

Directory Records and Path Tables

This is using the standard ISO format (but with 16bit Unicode characters instead of 8bit

ASCII chars).

CDROM ISO File and Directory Descriptors

File and Directory Name Characters

All characters are stored in 16bit Big Endian format. The LEN_FI filename entry contains

the length in bytes (ie. numchars*2). Charaters 0000h/0001h are current/parent

directory. Characters 0020h and up can be used for file/directory names, except six

reserved characters: */:;?\

All names must be sorted by their character numbers, padded with zero (without

attempting to merge uppercase, lowercase, or umlauts to nearby locations).

File and Directory Name Length

Joliet Filenames include ISO-style version suffices (usually ";1", so the actual filename

lengths are two chars less than shown above).

The original 64-char limit was perhaps intended to leave space for future extensions in

 000h 1 Volume Descriptor Type (02h=Supplementary instead of 01h=Primary)
 007h 1 Volume Flags (whatever, instead of Reserved)
 008h 2x32 Identifier Strings (16-char Unicode instead 32-char ASCII)
 058h 32 Escape Sequences (see below, instead of Reserved)
 08Ch 4x4 Path Tables (point to new tables with Unicode chars)
 09Ch 34 Root Directory Record (point to root with Unicode chars)
 0BEh 4x128 Identifier Strings (64-char Unicode instead 128-char ASCII)
 2BEh 3x37 Filename Strings (18-char Unicode instead 37-char ASCII)

 %/@ UCS-2 Level 1
 %/C UCS-2 Level 2
 %/E UCS-2 Level 3

 max 64 chars according to original Joliet specs from 1995
 max 110 chars (on standard CDROMs, with LEN_SU=0)
 max 103 chars (on CD-XA discs, with LEN_SU=14)

12.10 CDROM Extension Joliet

- 210/1136 -

the LEN_SU region. The 64-char limit can cause problems with verbose names (eg.

"Interprete - Title (version).mp3"). Microsoft later changed the limit to up to 110 chars.

The 110/103-char limit is caused by the 8bit "LEN_DR=(33+LEN_FI+pad+LEN_SU)" entry

in the Directory Records.

Joliet allows to exceed the 8-level ISO directory nesting limit, however, it doesn't allow to

exceed the 240-byte (120-Unicode-char) limit in ISO 9660 section 6.8.2.1 for the total

"path\filename" lengths.

Official Specs

Joliet Specification, CD-ROM Recording Spec ISO 9660:1988, Extensions for Unicode

Version 1; May 22, 1995, Copyright 1995, Microsoft Corporation

12.11 CDROM Protection - SCEx Strings

SCEx String

The heart of the PSX copy-protection is the four-letter "SCEx" string, encoded in the

wobble signal of original PSX disks, which cannot be reproduced by normal CD writers.

The last letter varies depending on the region:

If the string is missing (or if it doesn't match up for the local region) then the PSX refuses

to boot. The verification is done by the Firmware inside of the CDROM Controller (not by

the PSX BIOS, so there's no way to bypass it by patching the BIOS ROM chip).

Wobble Groove and Absolute Time in Pregroove (ATIP) on CD-R's

A "blank" CDR contains a pre-formatted spiral on it. The number of windings in the spiral

varies depending on the number of minutes that can be recorded on the disk. The spiral

isn't made of a straight line (------), but rather a wobbled line (/\/\/), which is used to

adjust the rotation speed during recording; at normal drive speed, wobble should

produce a 22050Hz sine wave.

Additionally, the CDR wobble is modulated to provide ATIP information, ATIP is used for

 http://littlesvr.ca/isomaster/resources/JolietSpecification.html

 "SCEI" for Japan
 "SCEA" for America (and all other NTSC countries except Japan)
 "SCEE" for Europe (and all other PAL countries like Australia)

12.11 CDROM Protection - SCEx Strings

- 211/1136 -

locating and positioning during recording, and contains information about the

approximate laser power necessary for recording, the last possible time location that

lead out can start, and the disc application code.

Wobble is commonly used only on (recordable) CDRs, ie. usually NOT on (readonly)

CDROMs and Audio Disks. The copyprotected PSX CDROMs are having a short CDR-style

wobble period in the first some seconds, which seems to contain the "SCEx" string

instead of ATIP information.

Other Protections

Aside from the SCEx string, PSX disks are required to contain region and licence strings

(in the ISO System Area, and in the .EXE file headers), and the "PS" logo (in the System

Area, too). This data can be reproduced with normal CD writers, although it may be

illegal to distribute unlicensed disks with licence strings.

12.12 CDROM Protection - Bypassing it

Modchips

A modchip is a small microcontroller which injects the "SCEx" signal to the mainboard,

so the PSX can be booted even from CDRs which don't contain the "SCEx" string. Some

modchips are additionally patching region checks contained in the BIOS ROM.

Note: Although regular PSX disks are black, the hardware doesn't verify the color of the

disks, and works also with normal silver disks.

Disk-Swap-Trick

Once when the PSX has recognized a disk with the "SCEx" signal, it'll be satisfied until a

new disk is inserted, which is sensed by the SHELL_OPEN switch. When having that

switch blocked, it is possible to insert a CDR without the PSX noticing that the disk was

changed.

Additionally, the trick requires some boot software that stops the drive motor (so the

new disk can be inserted, despite of the PSX thinking that the drive door is still closed),

and that does then start the boot executable on the new disk.

The boot software can be stored on a special boot-disk (that do have the "SCEx" string

on it). Alternately, a regular PSX game disk could be used, with the boot software stored

somewhere else (eg. on Expansion ROM, or BIOS ROM replacement, or Memory Card).

12.12 CDROM Protection - Bypassing it

- 212/1136 -

Booting via BIOS ROM or Expansion ROM

The PSX can be quite easily booted via Expansion ROM, or BIOS ROM replacements,

allowing to execute code that is stored in the ROM, or that is received via whatever

serial or parallel cable connection from a PC.

However, even with a BIOS replacement, the protection in the CDROM controller is still

active, so the ROM can't read "clean" data from the CDROM Drive (unless the Disk-Swap

trick is used).

Whereas, no "clean" data doens't mean no data at all. The CDROM controller does still

seem to output "raw" data (without removing the sector header, and without handling

error correction, and with only limited accuracy on the sector position). So, eventually, a

customized BIOS could convert the "raw" data to "clean" data.

Secret Unlock Commands

There is an "official" backdoor that allows to disable the SCEx protection by software via

secret commands (for example, sending those commands can be done via BIOS

patches, nocash BIOS clone, or Expansion ROMs).

CDROM - Secret Unlock Commands

Booting via Memory Card

Some games that load data from memory cards may get confused if the save data isn't

formatted as how they expect it - with some fine tuning you can get them to "crash" in a

manner that they do accidently execute bootcode stored on the memory card. This is

how tonyhax's game exploits and FreePSXBoot's BIOS shell exploit work.

Requires a tools to write to the memory card (eg. parallel port cable), and the memory

card data customized for a specific game, and an original CDROM with that specific

game. Once when the memory card code is booted, the Disk-Swap trick can be used.

12.13 CDROM Protection - Modchips

Modchip Source Code

The Old Crow mod chip source code works like so:

 entrypoint: ;at power_up
 gate=input/highz
 data=input/highz
 wait 50 ms

12.13 CDROM Protection - Modchips

- 213/1136 -

That is, 62 bits per transfer at 250bps = circa 4 transfers per second.

Connection for the data/gate/sync signals:

For older PSX boards (data/gate):

For newer PSX and PSone boards (data/sync):

On the mainboard should be a big SMD capacitor (connected to the "data" pin), and a big

testpoint (connected to the "sync" pin); it's easier to connect the signals to that locations

than to the tiny CXD-chip pins.

gate and data must be tristate outputs, or open-collector outputs (or normal high/low

outputs passed through a diode).

 data=output/low
 wait 850 ms
 gate=output/low
 wait 314 ms
 loop:
 wait 72 ms ;pause (eighteen "1=low" bits)
 sendbyte("S") ;1st letter
 sendbyte("C") ;2nd letter
 sendbyte("E") ;3rd letter
 sendbyte(...) ;4th letter (A, E, or I, depending on region)
 goto loop
 sendbyte(char):
 sendbit(0) ;one start bit (0=highz)
 for i=0 to 7
 sendbit(char AND 1) ;output data (LSB first)
 char=char/2
 next i
 sendbit(1) ;1st stop bit (1=low)
 sendbit(1) ;2nd stop bit (1=low)
 return
 sendbit(bit):
 if bit=1 then data=output/low elseif bit=0 then data=input/highz
 wait 4 ms ;4ms per bit = 250 bits per second
 return

 Board data gate
 PU-xx unknown? unknown? ;older PSX boards

 Board data sync
 PU-23, PM-41 CXD2938Q.Pin42 CXD2938Q.Pin5 ;newer PSX and older PSone
 PM-41(2) CXD2941R.Pin36 CXD2941R.Pin76 ;newer PSone boards

12.13 CDROM Protection - Modchips

- 214/1136 -

Note on "data" pin (all boards)

Transfers the "SCEx" data. Note that the signal produced by the modchip is looking

entirly different than the signal produced by original disks, the real signal would be

modulated 22050Hz wobble, while the modchip is simply dragging the signal

permanently LOW throughout "1" bits, and leaves it floating for "0" bits. Anyways the

"faked" signal seems to be accurate enough to work.

Note on "gate" pin (older PSX boards only)

The "gate" pin needs to be LOW only for use with original licensed disks (reportedly

otherwise the SCEx string on that disks would conflict with the SCEx string from the

modchip).

At the mainboard side, the "gate" signal is an input, and "data" is an inverted output of

the gate signal (so dragging gate to low, would cause data to go high).

Note on "sync" pin (newer PSX and PSone boards only)

The "sync" pin is a testpoint on the mainboard, which does (at single speed) output a

frequency of circa 44.1kHz/6 (of which some clock pulses seem to be longer or shorter,

probably to indicate adjustments to the rotation speed).

Some modchips are connected directly to "sync" (so they are apparently synchronizing

the data output with that signal; which is not implemented in the above source code).

Anyways, other modchips are using a more simplified connection: The modchip itself

connects only to the "data" pin, and "sync" is required to be wired to IC723.Pin17.

Note on Multi-Region chips

Modchips that are designed to work in different regions are sending a different string

(SCEA, SCEE, SCEI) in each loop cycle. Due to the slow 250bps transfer rate, it may

take a while until the PSX has received the correct string, so this multi-region technique

may cause a noticeable boot-delay.

Stealth (hidden modchip)

The Stealth connection is required for some newer games with anti-modchip protection,

ie. games that refuse to run if they detect a modchip. The detection relies on the fact

that the SCEx signal is normally received only when booting the disk, whilst older

modchips were sending that signal permanently. Stealth modchips are sending the

signal only on power-up (and when inserting a new disk, which can be sensed via

12.13 CDROM Protection - Modchips

- 215/1136 -

SHELL_OPEN signal).

Modchip detection reportedly works like so (not too sure if all commands are required,

some seem to be rather offtopic):

If GetSCExInfo returns nonzero values, then the console is equipped with a modchip, and

if so, anti-modchip games would refuse to work (no matter if the disk is an illegal copy, or

not).

NTSC-Boot BIOS Patch

Typically connects to two or three BIOS address/data lines, apparently watching that

signals, and dragging a data line LOW at certain time, to skip software based region

checks (eg. allowing to play NTSC games on PAL consoles).

Aside from the modchip connection, that additionally requires to adjust the video signal

(in 60Hz NTSC mode, the PSX defaults to generate a NTSC video signal) (whilst most

PAL screens can handle 60Hz refresh, they can't handle NTSC colors) (on PSone boards,

this can be fixed simply by grounding the /PAL pin; IC502.Pin13) (on older PSX boards it

seems to be required to install an external color clock generator).

MODCHIP Connection Example

Connection for 8pin "12C508" mod chip from fatcat.co.nz for a PAL PSone with PM-41

board (ie. with 208pin SPU CXD2938Q, and 52pin IC304 "C 3060, SC430943PB"):

 1. Com 19h,20h ;Retrieve CDROM Controller timestamp
 2. Com 01h ;CdlNop: Get CD status
 3. Com 07h ;CdlMotorOn: Make CD-ROM drive ready (blah?)
 4. Com 02h,1,1,1 ;CdlSetloc(01:01:01) (sector that does NOT have SCEx data)
 5. Com 0Eh,1 ;CdlSetmode: Turn on CD-DA read mode
 6. Short Delay
 7. Com 16h ;CdlSeekP: Seek to Setloc's parameters (4426)
 8. Com 0Bh ;CdlMute: Turn off sound so CdlPlay is inaudible
 9. Com 03h ;CdlPlay: Start playing CD-DA.
 10. Com 19h,04h ;ResetSCExInfo (reset GetSCExInfo response to 0,0)
 11. Long Delay ;wait until the modchip (if any) has output SCEx data
 12. Com 19h,05h ;GetSCExInfo (returns total,success counters)
 13. Com 09h ;CdlPause: Stop command 19h.

 1 3.5V (supply)
 2 IC304.Pin44 (unknown?) (XLAT)
 3 BIOS.Pin15 (D2)
 4 BIOS.Pin31 (A18)
 5 SPU.Pin5 ("sync")
 6 SPU.Pin42 ("data")

12.13 CDROM Protection - Modchips

- 216/1136 -

The chip can be used in a Basic connection (with only pin1,5,6,8 connected), or Stealth

and NTSC-Boot connection (additionally pin2,3,4,7 connected). Some other modchips

(such without internal oscillator) are additionally connected to a 4MHz or 4.3MHz signal

on the mainboard. Some early modchips also connected to a bunch of additional pins that

were reportedly for power-on timings (whilst newer chips use hardcoded power-on

delays).

Nocash BIOS "Modchip" Feature

The nocash PSX bios outputs the "data" signal on the A20 address line, so (aside from

the BIOS chip) one only needs to install a 1N4148 diode and two wires to unlock the

CDROM:

With the "sync" connection, the SCEx signal from the disk is disabled (ie. even original

licensed disks are no longer recognized, unless SCEx is output via A20 by software). For

more variants, see:

CDROM Protection - Chipless Modchips

12.14 CDROM Protection - Chipless Modchips

The nocash kernel clone outputs a SCEX signal via A20 and A21 address lines, (so one

won't need a separate modchip/microprocessor):

When using the clone bios as internal ROM replacement, A20 can be used with simple

wires/diodes. Doing that with external expansion ROMs would cause the console to stop

working when unplugging the ROM, hence needing a slightly more complex circuit with

transistors/logic chips.

External Expansion ROM version, for older boards (PU-7 through PU-20):

 7 IC304.Pin19 (SHELL_OPEN)
 8 GND (supply)

 SPU.Pin42 "data" -------|>|------ CPU.Pin149 (A20)
 SPU.Pin5 "sync" ---------------- IC723.Pin17

 A20 = the normal SCEX signal (inverted ASCII, eg. "A" = BEh) ;all boards
 A21 = uninverted SCEX signal (uninverted ASCII, eg. "A" = 41h) ;PU-7..PU-20
 A21 = always 1 during SCEX output ;PU-22 and up

12.14 CDROM Protection - Chipless Modchips

- 217/1136 -

External Expansion ROM version, for newer boards (PU-22):

Internal Kernel ROM version, for older boards (PU-7 through PU-20):

Internal Kernel ROM version, for newer boards (PU-22 through PM-41(2)):

What pin is where...

GATE on PU-18 is usually IC706.Pin7 (but IC706.Pin10 reportedly works, too).

GATE on PU-20 is usually IC706.Pin10 (but IC706.Pin7 might work, too).

 .--------.-. .--------.-.
 GATE--------|C NPN | . DATA--------|C NPN | .
 A20--[10K]--|B BC | | A21--[10K]--|B BC | |
 GND---------|E 547 | ' GND---------|E 547 | '
 '--------'-' '--------'-'

 .-------------------.
 A21----|OE1,OE2 |
 A20----|IN1 74HC126 OUT1|--- DATA
 WFCK---|IN2 OUT2|--- SYNC
 '-------------------'

 GATE---------GND
 DATA---------A20

 SYNC--------WFCK
 DATA---|>|---A20

 GATE is IC703.Pin2 (?) (8pin chip with marking "082B") ;PU-7? .. PU-16
 GATE is IC706.Pin7/10 (16pin "118" (uPC5023GR-118) ;PU-18 .. PU-20
 SYNC is IC723.Pin17(TEO)(20pin "SONY CXA2575N") ;PU-22 .. PM-41(2)
 DATA is IC???.Pin7 (CG) (8pin chip with marking "2903") ;PU-7? .. PU-16
 DATA is IC706.Pin1 (CG) (16pin "118" (uPC5023GR-118) ;PU-18 .. PU-20
 DATA is HC05.Pin17 (CG) (52pin "SONY SC4309xxPB") ;PU-7 .. EARLY-PU-8
 DATA is HC05.Pin32 (CG) (80pin "SONY E35D, 4246xx 185") ;LATE-PU-8 .. PU-20
 DATA is SPU.Pin42 (CEI) (208pin "SONY CXD2938Q") ;PU-22 .. PM-41
 DATA is SPU.Pin36?(CEI) (176pin "SONY CXD2941R") ;PM-41(2)
 WFCK is SPU.Pin5 (WFCK) (208pin "SONY CXD2938Q") ;PU-22 .. PM-41
 WFCK is SPU.Pin84(WFCK) (176pin "SONY CXD2941R") ;PM-41(2)
 A20 is CPU.Pin149(A20) (208-pin CPU CXD8530 or CXD8606) ;PU-7 .. PM-41(2)
 A20 is EXP.Pin28 (A20) (68-pin Expansion Port) ;PU-7 .. PU-22
 A21 is CPU.Pin150(A21) (208-pin CPU CXD8530 or CXD8606) ;PU-7 .. PM-41(2)
 A21 is EXP.Pin62 (A21) (68-pin Expansion Port) ;PU-7 .. PU-22

12.14 CDROM Protection - Chipless Modchips

- 218/1136 -

12.15 CDROM Protection - LibCrypt

LibCrypt is an additional copy-protection, used by about 100 PSX games. The protection

uses a 16bit decryption key, which is stored as bad position data in Subchannel Q. The

16bit key is then used for a simple XOR-decryption on certain 800h-byte sectors.

Protected sectors generation schemas

There are some variants on how the Subchannel Q data is modified:

Anyways, the relevant part is that the modified sectors have wrong CRCs (which means

that the PSX cdrom controller will ignore them, and the GetlocP command will keep

returning position data from the previous sector).

LibCrypt sectors

The modified sectors could be theoretically located anywhere on the disc, however, all

known protected games are having them located on the same sectors:

 1. 2 bits from both MSFs are modified,
 CRC-16 is recalculated and XORed with 0x0080.
 Games: MediEvil (E).
 2. 2 bits from both MSFs are modified,
 original CRC-16 is XORed with 0x8001.
 Games: CTR: Crash Team Racing (E) (No EDC), CTR: Crash Team Racing (E)
 (EDC), Dino Crisis (E), Eagle One: Harrier Attack (E) et al.
 3. Either 2 bits or none from both MSFs are modified,
 CRC-16 is recalculated and XORed with 0x0080.
 Games: Ape Escape (S) et al.

 No. <------- Minute=03/Normal -------> <------- Minute=09/Backup ------->
 Bit15 14105 (03:08:05) 14110 (03:08:10) 42045 (09:20:45) 42050 (09:20:50)
 Bit14 14231 (03:09:56) 14236 (03:09:61) 42166 (09:22:16) 42171 (09:22:21)
 Bit13 14485 (03:13:10) 14490 (03:13:15) 42432 (09:25:57) 42437 (09:25:62)
 Bit12 14579 (03:14:29) 14584 (03:14:34) 42580 (09:27:55) 42585 (09:27:60)
 Bit11 14649 (03:15:24) 14654 (03:15:29) 42671 (09:28:71) 42676 (09:29:01)
 Bit10 14899 (03:18:49) 14904 (03:18:54) 42813 (09:30:63) 42818 (09:30:68)
 Bit9 15056 (03:20:56) 15061 (03:20:61) 43012 (09:33:37) 43017 (09:33:42)
 Bit8 15130 (03:21:55) 15135 (03:21:60) 43177 (09:35:52) 43182 (09:35:57)
 Bit7 15242 (03:23:17) 15247 (03:23:22) 43289 (09:37:14) 43294 (09:37:19)
 Bit6 15312 (03:24:12) 15317 (03:24:17) 43354 (09:38:04) 43359 (09:38:09)
 Bit5 15378 (03:25:03) 15383 (03:25:08) 43408 (09:38:58) 43413 (09:38:63)
 Bit4 15628 (03:28:28) 15633 (03:28:33) 43634 (09:41:59) 43639 (09:41:64)
 Bit3 15919 (03:32:19) 15924 (03:32:24) 43963 (09:46:13) 43968 (09:46:18)
 Bit2 16031 (03:33:56) 16036 (03:33:61) 44054 (09:47:29) 44059 (09:47:34)
 Bit1 16101 (03:34:51) 16106 (03:34:56) 44159 (09:48:59) 44164 (09:48:64)
 Bit0 16167 (03:35:42) 16172 (03:35:47) 44312 (09:50:62) 44317 (09:50:67)

12.15 CDROM Protection - LibCrypt

- 219/1136 -

Each bit is stored twice on Minute=03 (five sectors apart). For some reason, there is also

a "backup copy" on Minute=09 (however, the libcrypt software doesn't actually support

using that backup stuff, and, some discs don't have the backup at all (namely, discs with

less than 10 minutes on track 1?)).

A modified sector means a "1" bit, an unmodified means a "0" bit. The 16bit keys of the

existing games are always having eight "0" bits, and eight "1" bits (meaning that there

are 16 modified sectors on Minute=03, and, if present, another 16 ones one Minute=09).

Example (Legacy of Kain)

Legacy of Kain (PAL) is reading the LibCrypt data during the title screen, and does then

display GOT KEY!!! on TTY terminal (this, no matter if the correct 16bit key was

received).

The actual protection jumps in a bit later (shortly after learning to glide, the game will

hang when the first enemies appear if the key isn't okay). Thereafter, the 16bit key is

kept used once and when to decrypt 800h-byte sector data via simple XORing.

The 16bit key (and some other related counters/variables) aren't stored in RAM, but

rather in COP0 debug registers (which are mis-used as general-purpose storage in this

case), for example, the 16bit key is stored in LSBs of the "cop0r3" register.

In particular, the encryption is used for some of the BIGFILE.DAT folder headers:

CDROM File Archive BIGFILE.DAT (Soul Reaver)

12.15 CDROM Protection - LibCrypt

- 220/1136 -

13. CDROM File Formats

Official PSX File Formats

CDROM File Official Sony File Formats

Executables

CDROM File Playstation EXE and SYSTEM.CNF

CDROM File PsyQ .CPE Files (Debug Executables)

CDROM File PsyQ .SYM Files (Debug Information)

Video Files

CDROM File Video Texture Image TIM/PXL/CLT (Sony)

CDROM File Video Texture/Bitmap (Other)

CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

CDROM File Video STR Streaming and BS Picture Compression (Sony)

Audio Files

CDROM File Audio Single Samples VAG (Sony)

CDROM File Audio Sample Sets VAB and VH/VB (Sony)

CDROM File Audio Sequences SEQ/SEP (Sony)

CDROM File Audio Other Formats

CDROM File Audio Streaming XA-ADPCM

CDROM File Audio CD-DA Tracks

Virtual Filesystem Archives

PSX titles are quite often using virtual filesystems, with numerous custom file archive

formats.

CDROM File Archives with Filename

CDROM File Archives with Offset and Size

CDROM File Archives with Offset

CDROM File Archives with Size

CDROM File Archives with Chunks

13. CDROM File Formats

- 221/1136 -

CDROM File Archives with Folders

CDROM File Archives in Hidden Sectors

More misc stuff...

CDROM File Archive HED/DAT/BNS/STR (Ape Escape)

CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)

CDROM File Archive BIGFILE.BIG (Gex)

CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)

CDROM File Archive FF9 DB (Final Fantasy IX)

CDROM File Archive Ace Combat 2 and 3

CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

CDROM File Archive DRACULA.DAT (Dracula)

CDROM File Archive Croc 1 (DIR, WAD, etc.)

CDROM File Archive Croc 2 (DIR, WAD, etc.)

CDROM File Archive Headerless Archives

Using archives can avoid issues with the PSX's poorly implemented ISO filesystem: The

PSX kernel supports max 800h bytes per directory, and lacks proper caching for most

recently accessed directories (additionally, some archives can load the whole file/

directory tree from continous sectors, which could be difficult in ISO filesystems).

Compression

CDROM File Compression

Misc

CDROM File XYZ and Dummy/Null Files

General CDROM Disk Images

CDROM Disk Images CCD/IMG/SUB (CloneCD)

CDROM Disk Images CDI (DiscJuggler)

CDROM Disk Images CUE/BIN/CDT (Cdrwin)

CDROM Disk Images MDS/MDF (Alcohol 120%)

CDROM Disk Images NRG (Nero)

CDROM Disk Image/Containers CDZ

CDROM Disk Image/Containers ECM

CDROM Subchannel Images

CDROM Disk Images Other Formats

13. CDROM File Formats

- 222/1136 -

FILENAME.EXT

The BIOS seems to support only (max) 8-letter filenames with 3-letter extension,

typically all uppercase, eg. "FILENAME.EXT". Eventually, once when the executable has

started, some programs might install drivers for long filenames(?)

The PSX uses the standard CDROM ISO9660 filesystem without any encryption (ie. you

can put an original PSX CDROM into a DOS/Windows computer, and view the content of

the files in text or hex editors without problems).

Note

MagDemoNN is short for "Official U.S. Playstation Magazine Demo Disc NN"

13.1 CDROM File Official Sony File Formats

Official Sony File Formats

https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Filefrmt.pdf - Sony 1998

 File Formats
 (c) 1998 Sony Computer Entertainment Inc.
 Publication date: November 1998
 Chapter 1: Streaming Audio and Video Data
 STR: Streaming (Movie) Data 1-3
 BS: MDEC Bitstream Data 1-8
 XA: CD-ROM Voice Data 1-31
 Chapter 2: 3D Graphics
 RSD: 3D Model Data [RSD,PLY,MAT,GRP,MSH,PVT,COD,MOT,OGP] 2-3
 TMD: Modeling Data for OS Library 2-24
 PMD: High-Speed Modeling Data 2-35
 TOD: Animation Data 2-40
 HMD: Hierarchical 3D Model, Animation and Other Data 2-49
 Chapter 3: 2D Graphics
 TIM: Screen Image Data 3-3
 SDF: Sprite Editor Project File 3-8
 PXL: Pixel Image Data 3-11
 CLT: Palette Data 3-14
 ANM: Animation Information 3-16
 TSQ: Animation Time Sequence 3-22
 CEL: Cell Data 3-23
 BGD: BG Map Data 3-27
 Chapter 4: Sound
 SEQ: PS Sequence Data 4-3
 SEP: PS Multi-Track Sequence Data 4-3
 VAG: PS Single Waveform Data 4-5
 VAB: PS Sound Source Data [VAB and VH/VB] 4-5

13.1 CDROM File Official Sony File Formats

- 223/1136 -

https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Filefrmt.pdf

Most games are using their own custom file formats. However, VAG, VAB/VH(VB, STR/XA,

and TIM are quite popular (because they are matched to the PSX low-level data

encoding). Obviously, EXE is also very common (although not included in the above

document).

13.2 CDROM File Playstation EXE and SYSTEM.CNF

SYSTEM.CNF

Contains boot info in ASCII/TXT format, similar to the CONFIG.SYS or AUTOEXEC.BAT

files for MSDOS. A typical SYSTEM.CNF would look like so:

The first line specifies the executable to load, from the "cdrom:" drive, "\" root directory,

filename "abcd_123.45" (case-insensitive, the real name in the disk directory would be

uppercase, ie. "ABCD_123.45"), and, finally ";1" is the file's version number (a rather

strange ISO-filesystem specific feature) (the version number should be usually/always 1).

Additionally, "arg" may contain an optional 128-byte command line argument string,

which is copied to address 00000180h, where it may be interpreted by the executable

(most or all games don't use that feature).

Each line in the file should be terminated by 0Dh,0Ah characters... not sure if it's also

working with only 0Dh, or only 0Ah...?

ABCD_123.45

This is a normal executable (exactly as for the .EXE files, described below), however, the

filename/extension is taken from the game code (the "ABCD-12345" text that is printed

on the CD cover), but, with the minus replaced by an underscore, and due to the 8-

letter filename limit, the last two characters are stored in the extension region.

That "XXXX_NNN.NN" naming convention seems to apply for all official licensed PSX

games. Wild Arms does unconventionally have the file in a separate folder,

"EXE\SCUS_946.06".

 DA: CD-DA Data 4-7
 Chapter 5: PDA and Memory Card
 FAT: Memory Card File System Specification 5-3

 BOOT = cdrom:\abcd_123.45;1 arg ;boot exe (drive:\path\name.ext;version)
 TCB = 4 ;HEX (=4 decimal) ;max number of threads
 EVENT = 10 ;HEX (=16 decimal) ;max number of events
 STACK = 801FFF00 ;HEX (=memtop-256)

13.2 CDROM File Playstation EXE and SYSTEM.CNF

- 224/1136 -

PSX.EXE (Boot-Executable) (default filename when SYSTEM.CNF doesn't exist)

XXXX_NNN.NN (Boot-Executable) (with filename as specified in SYSTEM.CNF)

FILENAME.EXE (General-Purpose Executable)

PSX executables are having an 800h-byte header, followed by the code/data.

The code/data is simply loaded to the specified destination address, ie. unlike as in

MSDOS .EXE files, there is no relocation info in the header.

Note: In bootfiles, SP is usually 801FFFF0h (ie. not 801FFF00h as in system.cnf). When

SP is 0, the unmodified caller's stack is used. In most cases (except when manually

calling DoExecute), the stack values in the exeheader seem to be ignored though (eg.

replaced by the SYSTEM.CNF value).

The memfill region is zerofilled by a "relative" fast word-by-word fill (so address and size

must be multiples of 4) (despite of the word-by-word filling, still it's SLOW because the

memfill executes in uncached slow ROM).

The reserved region at [038h-04Bh] is internally used by the BIOS to memorize the

caller's RA,SP,R30,R28,R16 registers (for some bizarre reason, this information is saved in

the exe header, rather than on the caller's stack).

Additionally to the initial PC,R28,SP,R30 values that are contained in the header, two

parameter values are passed to the executable (in R4 and R5 registers) (however, usually

that values are simply R4=1 and R5=0).

 000h-007h ASCII ID "PS-X EXE"
 008h-00Fh Zerofilled
 010h Initial PC (usually 80010000h, or higher)
 014h Initial GP/R28 (usually 0)
 018h Destination Address in RAM (usually 80010000h, or higher)
 01Ch Filesize (must be N*800h) (excluding 800h-byte header)
 020h Data section Start Address (usually 0)
 024h Data Section Size in bytes (usually 0)
 028h BSS section Start Address (usually 0) (when below Size=None)
 02Ch BSS section Size in bytes (usually 0) (0=None)
 030h Initial SP/R29 & FP/R30 Base (usually 801FFFF0h) (or 0=None)
 034h Initial SP/R29 & FP/R30 Offs (usually 0, added to above Base)
 038h-04Bh Reserved for A(43h) Function (should be zerofilled in exefile)
 04Ch-xxxh ASCII marker
 "Sony Computer Entertainment Inc. for Japan area"
 "Sony Computer Entertainment Inc. for Europe area"
 "Sony Computer Entertainment Inc. for North America area"
 (or often zerofilled in some homebrew files)
 (the BIOS doesn't verify this string, and boots fine without it)
 xxxh-7FFh Zerofilled
 800h... Code/Data (loaded to entry[018h] and up)

13.2 CDROM File Playstation EXE and SYSTEM.CNF

- 225/1136 -

Like normal functions, the executable can return control to the caller by jumping to the

incoming RA address (provided that it hasn't destroyed the stack or other important

memory locations, and that it has pushed/popped all registers) (returning works only for

non-boot executables; if the boot executable returns to the BIOS, then the BIOS will

simply lockup itself by calling the "SystemErrorBootOrDiskFailure" function.

Relocatable EXE

Fade to Black (CINE.EXR) contains ID "PS-X EXR" (instead "PS-X EXE") and string "PSX

Relocable File - Delphine Software Int.", this is supposedly some custom relocatable exe

file (unsupported by the PSX kernel).

MSDOS.EXE and WINDOWS.EXE Files

Some PSX discs contain DOS or Windows .EXE files (with "MZ" headers), eg. devkit

leftovers, or demos/gimmicks.

13.3 CDROM File PsyQ .CPE Files (Debug Executables)

Fileheader

Chunk 00h: End of File

Chunk 01h: Load Data

Theoretically, this could contain the whole EXE body in a single chunk. However, the PsyQ

files are usually containing hundreds of small chunks (with each function and each data

item in a separate chunk). For converting CPE to EXE, use "ExeOffset = (CpeAddress AND

1FFFFFFFh)-10000h+800h".

 00h 4 File ID (01455043h aka "CPE",01h)

 00h 1 Chunk ID (00h)

 00h 1 Chunk ID (01h)
 01h 4 Address (usually 80010000h and up)
 05h 4 Size (LEN)
 09h LEN Data (binary EXE code/data)

13.3 CDROM File PsyQ .CPE Files (Debug Executables)

- 226/1136 -

Chunk 02h: Run Address (whatever, optional, usually not used in CPE files)

Unknown what this is. It's not the entrypoint (which is set via chunk 03h). Maybe

intended to change the default load address (usually 80010000h)?

Chunk 03h: Set Value 32bit (LEN=4) (used for entrypoint)

Chunk 04h: Set Value 16bit (LEN=2) (unused)

Chunk 05h: Set Value 8bit (LEN=1) (unused)

Chunk 06h: Set Value 24bit (LEN=3) (unused)

Chunk 07h: Select Workspace (whatever, optional, usually not used in CPE)

Chunk 08h: Select Unit (whatever, usually first chunk in CPE file)

Example from LameGuy's sample.cpe:

 00h 1 Chunk ID (02h)
 01h 4 Address

 00h 1 Chunk ID (03h..06h)
 01h 2 Register (usually 0090h=Initial PC, aka Entrypoint)
 03h LEN Value (8bit..32bit)

 00h 1 Chunk ID (07h)
 01h 4 Workspace number (usually 00000000h)

 00h 1 Chunk ID (08h)
 01h 1 Unit (usually 00h)

 0000h 4 File ID ("CPE",01h)
 0004h 2 Select Unit 0 (08h,00h)
 0006h 7 Set Entrypoint 8001731Ch (03h,0090h,8001731Ch)
 000Dh 0Dh Load (01h,800195F8h,00000004h,0,0,0,0)
 001Ah .. Load (01h,80010000h,0000002Bh,...)
 004Eh .. Load (01h,8001065Ch,00000120h,...)
 0177h ... Load (01h,8001077Ch,0000012Ch,...)
 02ACh ... Load (01h,800108A8h,000000A4h,...)
 Load (...)
 98F4h ... Load (01h,800195F0h,00000008h,...)
 9905h 1 End (00h)

13.3 CDROM File PsyQ .CPE Files (Debug Executables)

- 227/1136 -

13.4 CDROM File PsyQ .SYM Files (Debug Information)

PsyQ .SYM Files contain debug info, usually bundled with PsyQ .MAP and Psy .CPE files.

Those files are generated by PsyQ tools, which appear to be still in use for homebrew

PSX titles.

The files are occassionally also found on PSX CDROMs:

Fileheader .SYM

Symbol Chunks

CHUNK 01H: SYMBOL (IMMEDIATE, EG. MEMSIZE, OR MEMBASE)

CHUNK 02H: SYMBOL (FUNCTION ADDRESS FOR INTERNAL & EXTERNAL FUNCTIONS)

CHUNK 05H: SYMBOL (?)

CHUNK 06H: SYMBOL (?)

Source Code Line Chunks

CHUNK 80H: SOURCE CODE LINE NUMBERS: ADDRESS FOR 1 LINE

CHUNK 82H: SOURCE CODE LINE NUMBERS: ADDRESS FOR N LINES (8BIT)

 Legacy of Kain PAL version (\DEGUG\NTSC\KAIN2.SYM+MAP+CPE)
 RC Revenge (\RELEASE.SYM)
 Twisted Metal: Small Brawl (MagDemo54: TMSB\TM.SYM)
 Jackie Chan Stuntmaster (GAME_REL.SYM+CPE)
 SnoCross Championship Racing (MagDemo37: SNOCROSS\SNOW.TOC\SNOW.MAP)
 Sled Storm (MagDemo24: DEBUG\MAIN.MAP)
 E.T. Interplanetary Mission (MagDemo54: MEGA\MEGA.CSH* has SYM+CPE+MAP)

 00h 4 File ID ("MND",01h)
 04h 4 Whatever (0,0,0,0) ;TOMB5: 0,02h,0,0
 08h .. Chunks (see below)

 00h 4 Address/Value
 04h 1 Chunk ID (01h/02h/05h/06h)
 05h 1 Symbol Length (LEN)
 06h LEN Symbol (eg. "VSync")

 00h 4 Address (for 1 line, starting at current line)
 04h 1 Chunk ID (80h)

13.4 CDROM File PsyQ .SYM Files (Debug Information)

- 228/1136 -

CHUNK 84H: SOURCE CODE LINE NUMBERS: ADDRESS FOR NN LINES (16BIT)

CHUNK 86H: SOURCE CODE LINE NUMBERS: ADDRESS FOR LINE NNN (32BIT?)

CHUNK 88H: SOURCE CODE LINE NUMBERS: START WITH FILENAME

CHUNK 8AH: SOURCE CODE LINE NUMBERS: END OF SOURCE CODE

Internal Function Chunks

CHUNK 8CH: INTERNAL FUNCTION: START WITH FILENAME

CHUNK 8EH: INTERNAL FUNCTION: END OF FUNCTION (END OF CHUNK 8CH)

 00h 4 Address (for N lines, starting at current line)
 04h 1 Chunk ID (82h)
 05h 1 Number of Lines (00h=None, or 02h and up?)

 00h 4 Address (for N lines, starting at current line)
 04h 1 Chunk ID (84h)
 05h 2 Number of Lines (?)

 00h 4 Address (for 1 line, starting at newly assigned current line)
 04h 1 Chunk ID (84h)
 05h 4 Absolute Line Number (rather than number of lines) (?)

 00h 4 Address (start address)
 04h 1 Chunk ID (88h=Filename)
 05h 4 First Line Number (after comments/definitions) (32bit?)
 09h 1 Filename Length (LEN)
 0Ah LEN Filename (eg. "C:\path\main.c")

 00h 4 Address (end address)
 04h 1 Chunk ID (8Ah)

 00h 4 Address
 04h 1 Chunk ID (8Ch)
 05h 4 Whatever (1Eh,00h,20h,00h) ;or 1Eh,00h,18h,00h
 09h 4 Whatever (00h,00h,1Fh,00h)
 0Dh 4 Whatever (00h,00h,00h,C0h)
 11h 4 Whatever (FCh,FFh,FFh,FFh) ;mask? neg.offset?
 15h 4 Whatever (10h,00h,00h,00h) <-- line number (32bit?)
 19h 1 Filename Length (LEN1)
 1Ah LEN1 Filename (eg. "C:\path\main.c")
 xxh 1 Symbol Length (LEN2)
 xxh LEN2 Symbol (eg. "VSync")

13.4 CDROM File PsyQ .SYM Files (Debug Information)

- 229/1136 -

CHUNK 90H: INTERNAL FUNCTION:WHATEVER90H... FIRST INSTRUCTION IN MAIN FUNC?

CHUNK 92H: INTERNAL FUNCTION:WHATEVER92H... LAST INSTRUCTION IN MAIN FUNC?

Maybe line numbers? Or end of definitions for incoming parameters?

Class/Type Chunks

CHUNK 94H: TYPE/SYMBOL (SIMPLE TYPES?)

CHUNK 96H: TYPE/SYMBOL (COMPLEX STRUCTURES/ARRAYS?)

Class/Type Values

CLASS DEFINITION (IN CHUNK 94H) (AND SOMEWHAT SAME/SIMILAR IN CHUNK 96H)

(looks same/similar as C_xxx class values in COFF files!)

 00h 4 Address
 04h 1 Chunk ID (8Eh)
 05h 4 Line Number <-- line number (32bit?)

 00h 4 Address
 04h 1 Chunk ID (90h/92h)
 05h 4 Whatever (1Fh,00h,00h,00h) <-- line number relative to main.start?

 00h 4 Offset (when used within a structure, or stack-N, or otherwise zero)
 04h 1 Chunk ID (94h)
 05h 2 Class (000Dh=Type.alias, 000Ah=Address, 0001h=Stack, 0002h=Addr)
 07h 2 Type (XX = 8bit,16bit,signed,etc.?)
 09h 4 Zero, or Size in Bytes (for "memblocks")
 0xh 1 Symbol Name Length (LEN)
 0xh LEN Symbol Name (eg. "size_t")

 00h 4 Offset (when used within a structure, otherwise zero)
 04h 1 Chunk ID (96h)
 05h 2 Class (02h=Array,08h=RefToStruct,0Dh=DefineAlias,66h=StructEnd)
 07h 2 Type (0xh=Small, 3xh=WithArrayStuff?) (same/similar as in chunk 94h)
 09h 4 Struct Size in Bytes
 0Dh 2 Array Dimensions (DIM) (0=none) ;eg. [3][4] --> 0002h
 0Fh DIM*4 Array Entries per Dimension ;eg. [3][4] --> 00000003h,00000004h
 xxh 1 Internal Fake Name Length (LEN1) (0=none)
 xxh LEN1 Internal Fake Name (eg. ".1fake")
 xxh 1 Symbol Name Length (LEN2)
 xxh LEN2 Symbol Name (eg. "r")

13.4 CDROM File PsyQ .SYM Files (Debug Information)

- 230/1136 -

TYPE DEFINITION (IN CHUNK 94H/96H)

(maybe lower 4bit=type, and next 4bit=usage/variant?)

(looks same/similar as T_xxx type values in COFF files!)

.MAP File

PSYQ .MAP FILE

The .SYM file is usually bundled with a .MAP file, which is containing a summary of the

symbolic info as ASCII text (but without info on line numbers or data types). For

example:

 0001h = Local variable (with Offset = negative stack offset)
 0002h = Global variable or Function (with Offset = address)
 0008h = Item in Structure (with Offser = offset within struct)
 0009h = Incoming Function param (with Offset = index; 0,4,8,etc.)
 000Ah = Type address / struc start? (with Offset = zero)
 000Dh = Type alias (with Offset = zero)

 0000h =
 0001h =
 0002h =
 0003h = (16bit signed?)
 0004h = int (32bit signed?)
 0005h =
 0006h =
 0007h =
 0008h = (address) (32bit unsigned?) (with Definition=000Ah)
 0009h =
 000Ah =
 000Bh =
 000Ch = u_char (8bit unsigned?)
 000Dh = u_short,ushort (16bit unsigned?)
 000Eh = u_int (32bit unsigned?)
 000Fh = u_long (64bit unsigned?) (or rather SAME as above?)
 0021h = function with 0 params, and/or return="nothing"?
 0024h = main function with 2 params, and/or return="int"?
 0052h = argv (string maybe?)
 0038h = GsOT (huh?)
 00F8h = GsOT_TAG (huh?)
 00FCh = PACKET (huh?)
 ?? = float,bool,string,ptr,packet,(un-)signed8/16/32/64bit,etc
 ?? = custom type/struct (using value 000xh plus "fake" name, or so?)

 Start Stop Length Obj Group Section name
 80010000 80012D5B 00002D5C 80010000 text .rdata
 80012D5C 800C8417 000B56BC 80012D5C text .text
 800C8418 800CDAB7 000056A0 800C8418 text .data

13.4 CDROM File PsyQ .SYM Files (Debug Information)

- 231/1136 -

13.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)

TIM/PXL/CLT are standard formats from Sony's devkit. TIM is used by many PSX games.

TIM Format

The Type in Flags.bit0-2 can be 0=4bpp, 1=8bpp, 2=16bpp, 3=24bpp, 4=Mixed.

NFL Blitz 2000 (MagDemo26: B2000\DATA\ARTD_G.BIN) does additionally use Type

5=8bit.

The Type value value is only a hint on how to view the Pixel data (the data is copied to

VRAM regardless of the type; 4=Mixed is meant to indicate that the data contains

different types, eg. both 4bpp & 8bpp textures).

 800CDAB8 800CFB63 000020AC 800CDAB8 text .sdata
 800CFB64 800D5C07 000060A4 800CFB64 bss .sbss
 800D5C08 800DD33F 00007738 800D5C08 bss .bss

 Address Names alphabetically
 800CFE80 ACE_amount
 800CFB94 AIMenu
 800CDE5C AXIS_LENGTH
 8005E28C AddClippedTri
 8005DFEC AddVertex
 ...

 Address Names in address order
 00000000 _cinemax_obj
 00000000 _cinemax_header_org
 00000000 _cinemax_org
 00000000 _mcardx_sbss_size
 00000000 _mcardx_org
 ...

 .TIM contains Pixel data, and (optional) CLUT data ;-all in one file
 .PXL contains Pixel data only ;\in two separate files
 .CLT contains CLUT data only (if any) ;/

 000h 1 File ID (always 10h=TIM)
 001h 1 Version (always 00h)
 002h 2 Reserved (always 0000h) (or 1 or 2 for Compressed TIM, see below)
 004h 4 Flags (bit0-2=Type; see below, bit3=HasCLUT, bit4-31=Reserved/zero)
 Data Section for CLUT (Palette), only exists if Flags.bit3=1, HasCLUT
 Data Section for Pixels (Bitmap/Texture)

13.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)

- 232/1136 -

Type 3=24bpp is quite rare, but does exist (eg. Colony Wars (MagDemo02:

CWARS\GAME.RSC\DEMO.TIM).

The format of the CLUT and Pixel Data Section(s) is:

Note: Above is usually a multiple of 4 bytes, but not always:

Shadow Madness (MagDemo18: SHADOW\DATA\ANDY\LOADSAVE*.TIM) contains TIM

bitmaps with 27x27 or 39x51 halfwords; those files have odd section size & odd total

filesize. Gran Turismo 2 (GT2.VOL\arcade\arc_other.tim\0000) also has odd size.

Unknown if the CLUT can also have odd size (which would misalign the following Bitmap

section).

Bust A Groove (MagDemo18: BUSTGR_A\G_COMMON.DFS\0005) has 0x0 pixel Bitmaps

(with CLUT data).

PXL/CLT Format

PXL/CLT is very rare. And oddly, with swapped ID values (official specs say 11h=PXL,

12h=CLT, but the existing games do use 11h=CLT, 12h=PXL).

Used by Granstream Saga (MagDemo10 GS\)

Used by Bloody Roar 1 (MagDemo06: BL\)

Used by Bloody Roar 2 (MagDemo22: ASC,CMN,EFT,LON,SND,ST5,STU*)

CLT Format

The .CLT Type should be always 2 (meant to indicate 16bit CLUT entries).

PXL Format

 000h 4 Size of Data Section (Xsiz*2*Ysiz+0Ch) ;maybe rounded to 4-byte?
 004h 4 Destination Coord (YyyyXxxxh) ;Xpos counted in halfwords
 008h 4 Width+Height (YsizXsizh) ;Xsiz counted in halfwords
 00Ch .. VRAM Data (to be DMAed to frame buffer)

 000h 1 File ID (11h=CLT) (although Sony's doc says 12h)
 001h 1 Version (00h)
 002h 2 Reserved (always 0000h)
 004h 4 Flags (bit0-1=Type=2; bit2-31=Reserved/zero)
 Data Section for CLUT (Palette)

 000h 1 File ID (always 12h=PXL) (although Sony's doc says 11h)
 001h 1 Version (always 00h)
 002h 2 Reserved (always 0000h)

13.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)

- 233/1136 -

This does probably support the same 5 types as in .TIMs (though official Sony docs claim

the .PXL type to be only 1bit wide, but netherless claim that PXL can be 4bpp, 8bpp, or

16bpp).

Compressed TIMs

Ape Escape (Sony 1999) is using a customized TIM format with 4bpp compression:

CDROM File Compression TIM-RLE4/RLE8

Other than that, TIMs can be compressed via generic compression functions (like LZSS,

GZIP), or via bitmap dedicated compression formats (like BS, JPG, GIF).

Malformed Files

MALFORMED TIMS IN BIGFILE.DAT

Malformed TIMs contain texture data preceeded by a dummy 14h-byte TIM header with

following constant values:

The malformed entries include:

Also, destination yloc should be 0..1FFh, but PSX "Lemmings & Oh No! More

Lemmings" (FILES\GFX*.TIM) has yloc=200h (that game also has vandalized .BMP

headers with 2-byte alignment padding after ID "BM", whilst pretending that those extra

bytes aren't there in data offset and total size entries).

OVERSIZED TIMS

Has 200x200h pix, but section size (and filesize) are +2 bigger than that:

 004h 4 Flags (bit0-?=Type; see below, bit?-31=Reserved/zero)
 Data Section for Pixels (Bitmap/Texture)

 Used by Legacy of Kain: Soul Reaver (eg. BIGFILE.DAT\folder04h\file13h)
 Used by Gex - Enter the Gecko (eg. BIGFILE.DAT\file0Fh\LZcompressed)

 10 00 00 00 02 00 00 00 04 00 08 00 00 02 00 00 00 02 00 02 ;<-- this
 10 00 00 00 02 00 00 00 04 00 08 00 00 00 00 00 00 02 00 02 ;<-- or this

 [04h]=Type should indicated the color depth, but it's always 02h=16bpp.
 [08h]=Width*2*Height+0Ch should be 8000Ch, but malformed is 80004h.
 Total filesize should be 80014h, but Gecko files are often MUCH smaller.

 Used by Pong (MagDemo24: LES02020**.TIM)

13.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)

- 234/1136 -

MISCOMPUTED SECTION SIZE

NBA Basketball 2000 (MagDemo28: FOXBB\TIM*.TIM) has TIMs with section size

"0Ch+Xsiz*Ysiz" instead of "0Ch+Xsiz*2*Ysiz".

NONTIMS IN BLOODY ROAR 1 AND 2

This looks somehow TIM-inspired, but has ID=13h.

OTHER UNCOMMON/MALFORMED TIM VARIANTS

And, Heart of Darkness has a TIM with Size entry set to Xsiz*2*Ysiz+0Eh (instead of

+0Ch) (that malformed TIM is found inside of the RNC compressed IMAGES\US.TIM

file).

Also, NFL Gameday '99 (MagDemo17: GAMEDAY\PHOTOS.FIL) contains a TIM cropped

to 800h-byte size (containing only the upper quarter of the photo).

Also, not directly malformed, but uncommon: Final Fantasy IX contains 14h-byte 0x0

pixel TIMs (eg. FF9.IMG\dir04\file0046\1B-0000\04-0001).

Klonoa (MagDemo08: KLONOA\FILE.IDX\3\2\0..1) has 0x0pix TIM (plus palette).

MALFORMED CLTS

ID is 10h=TIM, Flags=10101009h (should be ID=12h, Flags=02h).

13.6 CDROM File Video Texture/Bitmap (Other)

Apart from Sony's TIM (and PXL/CLT) format, there are a bunch of other texture/bitmap

formats:

 10 00 00 00 02 00 00 00 0E 00 08 00 C0 01 00 00 00 02 00 02 ;Pong *.TIM
 10 00 00 00 02 00 00 00 0E 00 07 00 00 02 00 00 C0 01 00 02 ;Pong WORLD.TIM
 10 00 00 00 02 00 00 00 0E 80 03 00 00 02 00 01 C0 01 00 01 ;Pong ZONE*.TIM

 Bloody Roar 1 (CMN\INIT.DAT\000Eh)
 Bloody Roar 2 (CMN\SE00.DAT, CMD\SEL00.DAT\0030h and CMN\VS\VS.DAT\0000h)

 13 00 00 00 02 00 00 00 0C 20 00 00 00 00 F8 01 00 01 10 00 ;Bloody Roar 1
 13 00 00 00 02 00 00 00 0C 20 00 00 00 00 00 00 00 01 10 00 ;Bloody Roar 2

 Used by Secret of Mana, WM\WEFF*.CLT

13.6 CDROM File Video Texture/Bitmap (Other)

- 235/1136 -

Compressed Bitmaps

Uncompressed Bitmaps

Targa TGA and Paintbrush PCX

CDROM File Video Texture/Bitmap (TGA)

CDROM File Video Texture/Bitmap (PCX)

PSI bitmap - Power Spike (MagDemo43: POWER\GAME.IDX\.BIZ\.PSI)

 .BS used by several games (and also in most .STR videos)
 .GIF used by Lightspan Online Connection CD
 .JPG used by Lightspan Online Connection CD
 .BMP with RLE4 used by Lightspan Online Connection CD (MONOFONT, PROPFONT)
 .BMP with RLE8+Delta also used by Online Connection CD (PROPFONT\ARIA6.BMP)
 .PCX with RLE used by Jampack Vol. 1 (MDK\CD.HED*.pcx)

 .BMP
 .BMP used by Mat Hoffman's Pro BMX (MagDemo39: BMX\BMXCD.HED*)
 .BMP used by Mat Hoffman's Pro BMX (MagDemo48: MHPB\BMXCD.HED*)
 .BMP used by Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS*.ZAL)
 .BMP used by Dave Mirra Freestyle BMX (MagDemo36,46: BMX\ASSETS*.ZAL)
 .VRM .IMG .TEX .TIM .RAW .256 .COL .4B .15B .R16 .TPG - raw VRAM data
 "SC" memory card icons

 000h 10h Name 1 ("FILENAME.BMP", zeropadded)
 010h 10h Name 2 ("FILENAME.PSI", zeropadded)
 020h 4 Bits per pixel (usually 4, 8, or 16)
 024h 2 Bitmap VRAM Dest.X ?
 026h 2 Bitmap VRAM Dest.Y ?
 028h 2 Bitmap Width in pixels
 02Ah 2 Bitmap Height in pixels
 02Ch 2 Palette VRAM Dest.X ? ;\zero for 16bpp
 02Eh 2 Palette VRAM Dest.Y ? ;/
 030h 2 Bitmap Width in Halfwords (PixelWidth*bpp/16)
 032h 2 Palette Size in Halfwords (0, 10h, 100h for 16bpp,4npp,8bpp)
 034h 4 Maybe Bitmap present flag (always 1)
 038h 4 Maybe Palette present flag (0=16bpp, 1=4bpp/8bpp)
 03Ch .. Bitmap pixels
 Palette (if any, for 4bpp: 16x16bit, for 8bpp: 256x16bit)

13.6 CDROM File Video Texture/Bitmap (Other)

- 236/1136 -

JumpStart Wildlife Safari Field Trip (MagDemo52: DEMO\DATA.DAT*.DAT+*.PSX)

This game does use two different (but nearly identical) bitmap formats (with either

palette or bitmap data stored first).

To detect the "palette first" format, check for these conditions(s):

Note: The bitmaps are vertically mirrored (starting with bottom-most scanline).

WxH Bitmap (Width*Height)

Used by Alone in the Dark The New Nightmare (FAT.BIN\BOOK,DOC,INTRO,MENU\)

Used by Rayman (RAY\JUN,MON,MUS\) (but seems to contain map data, not pixels)

RAWP Bitmap

Used by Championship Motocross (MagDemo25: SMX\RESHAD.BIN*) ("RAWP")

 000h 4 Total Filesize (Width*Height+20Ch)
 004h 2 Bitmap Width
 006h 2 Bitmap Height
 008h 4 Unknown, always 1 (maybe 1=8bpp?)
 In .DAT files (512x192 or 256x64 pix), palette first:
 00Ch 200h Palette data
 20Ch .. Bitmap data
 In .PSX files (64x64 pix), bitmap first:
 00Ch .. Bitmap data
 ... 200h Palette data

 Filename extension is ".DAT"
 Bitmap Width<>Height (non-square)
 [00Ch..20Bh] has AllMSBs>=80h, and SomeLSBs<80h

 000h 2 Width (W) ;\usually 320x240 (or 512x240 or 80x13)
 002h 2 Height (H) ;/
 004h .. Bitmap 16bpp (W*H*2 bytes)

 000h 4 ID "RAWP" (this variant has BIG-ENDIAN width/height!)
 004h 2 Width (usually 280h=640pix or 140h=320pix) (big-endian!!!)
 006h 2 Height (usually 1E0h=480pix or F0h=240pix) (big-endian!!!)
 008h .. Bitmap data, 16bpp (width*height*2 bytes)

13.6 CDROM File Video Texture/Bitmap (Other)

- 237/1136 -

XYWH Bitmap/Palette (X,Y,Width*Height) (.BIT and .CLT)

Used by CART World Series (MagDemo04: CART\.BIT and *.BIN\)

Used by NFL Gameday '98 (MagDemo04: GAMEDAY\BUILD\GRBA.FIL\)

Used by NFL Gameday '99 (MagDemo17: GAMEDAY\.BIT and *.FIL\)

Used by NFL Gameday 2000 (MagDemo27: GAMEDAY\.BIT)

Used by NCAA Gamebreaker '98 (MagDemo05: GBREAKER\.BIT and UFLA.BIN\)

Used by NCAA Gamebreaker 2000 (MagDemo27: GBREAKER\.BIT and *.FIL\)

Used by Twisted Metal 4 (MagDemo30: TM4DATA\.MR,*.IMG\.bit,*.clt)

Doom (PSXDOOM\ABIN\PSXDOOM.WAD\\)

Most files have Hotspot X=0,Y=0, WAD\LOADING has X=FF80h,Y=FF8Ah, and WAD\S*

has X=0..Width, Y=0..Height+1Ah (eg. S\BKEY*, S\BFG*, S\PISFA0 have large Y).

The files do not contain any palette info... maybe 2800h-byte PLAYPAL does contain the

palette(s)?

Lemmings & Oh No! More Lemmings (FILES\GFX\.BOB, FILES\SMLMAPS\.BOB)

Apart from .BOB, the FILES\GFX folder also has vandalized .BMP (with ID "BM",00h,00h)

and corrupted .TIM (with VRAM.Y=200h).

Perfect Assassin (DATA.JFS\DATA*.BM)

 000h 2 VRAM.X (X) (0..3FFh)
 002h 2 VRAM.X (Y) (0..1FFh)
 004h 2 Width in halfwords (W) (1..400h)
 006h 2 Height (H) (1..200h)
 008h .. Bitmap or Palette data (W*H*2 bytes)

 000h 2 Hotspot X (signed) (usually 0)
 002h 2 Hotspot Y (signed) (usually 0)
 004h 2 Width in bytes
 006h 2 Height
 008h .. Bitmap 8bpp (Width*Height bytes)

 000h 2 Width
 002h 2 Height
 004h 100h*3 Palette 24bit RGB888
 304h .. Bitmap 8bpp (Width*Height bytes)
 .. (1700h) Unknown (only in SMLMAPS*.BOB, not in GFX*.BOB)

13.6 CDROM File Video Texture/Bitmap (Other)

- 238/1136 -

One (DIRFILE.BIN*.VCF)

One (DIRFILE.BIN*.VCK and DIRFILE.BIN\w*\sect*.bin\TEXTURE 001)

File List entries:

Note: VRAM.Slots are 20h*40h halfwords.

Bitmaps can either have newly defined palettes (when PaletteID=FileNo), or re-use

previously defined "old" palettes (when PaletteID\<FileNo).

The Blank flag allows to define a blank region (for whatever purpose), the file doesn't

contain any bitmap/palette data for such blank regions.

 000h 4 Format 1 (0=8bpp, 1=16bpp)
 004h 4 Format 2 (1=8bpp, 2=16bpp)
 008h 4 Width in pixels
 00Ch 4 Height in pixels
 010h .. Bitmap Data
 ... (300h) Palette 18bit RGB666 (R,G,B range 00h..3Fh) (only if format 8bpp)

 000h 4 Unknown (always 1)
 004h 4 Unknown (always 8)
 008h 4 Unknown (always 2) (maybe 2=16bpp?)
 00Ch 4 Width in pixels (3Ah, 140h, or 280h)
 010h 4 Height (3Ah, or F0h)
 014h .. Bitmap 16bpp (Width*Height*2 bytes)

 000h 2 Number if Files (N)
 002h 2 Number of VRAM.Slots (less or equal than Number of Files)
 004h 4 ID "BLK0"
 008h N*10h File List
 1st File Bitmap
 1st File Palette (20h/200h/0 bytes for 4bpp/8bpp/16bpp)
 2nd File Bitmap
 2nd File Palette (only if PaletteID=FileNo=1)
 3rd File Bitmap
 3rd File Palette (only if PaletteID=FileNo=2)
 etc.

 000h 2 VRAM.X in halfwords (0..1Fh, +bit15=Blank) ;\within current
 002h 2 VRAM.Y (0..3Fh) ;/VRAM.Slot
 004h 2 Width in pixels (max 80h/40h/20h for 4bpp/8bpp/16bpp)
 006h 2 Height (max 40h)
 008h 2 VRAM.Slot (0,1,2,3,...,NumSlots-1)
 00Ah 2 Unknown (0,1,2,4 in *.vck, 4 in sect*.bin)
 00Ch 2 Color Depth (0=4bpp, 1=8bpp, 2=16bpp)
 00Eh 2 Palette ID (0..FileNo-1=Old, FileNo=New, FFFFh=None/16bpp)
 NumFiles-1, or ID of already used palette)

13.6 CDROM File Video Texture/Bitmap (Other)

- 239/1136 -

BMR Bitmaps

These are 16bpp bitmaps, stored either in uncompressed .BMR files, or in

compressed .RLE files:

CDROM File Compression RLE_16

The width/height for known filesizes are:

Most of the older BMR files (in Apocalypse) have valid 8-byte headers:

Most or all newer BMR files (in Apocalypse "loadlogo.rle", and in all files in Spider-Man 1,

Spider-Man-2, Tony Hawk's Pro Skater) have the 8-byte header replaced by unused 8-

byte at end of file:

BUG: The bitmaps in all .BMR files (both with/without header) are distorted: The last 4-

byte (rightmost 2pix) of each scanline should be actually located at the begin of the

scanline, and the last scanline is shifted by an odd amount of bytes (resulting in nonsense

16bpp pixel colors); Spider-Man is actually displaying the bitmap in that distorted form

(although it does mask off some glitches: one of the two bad rightmost pixels is replaced

by a bad black leftmost pixel, and glitches in upper/lower lines aren't visible on 224-line

NTSC screens).

 Apocalypse (MagDemo16: APOC\CD.HED*.RLE and *.BMR)
 Spider-Man 1 older version (MagDemo31: SPIDEY\CD.HED*.RLE)
 Spider-Man 1 newer version (MagDemo40: SPIDEY\CD.HED*.RLE and .BMR)
 Spider-Man 2 (MagDemo50: HARNESS\CD.HED*.RLE)
 Tony Hawk's Pro Skater (MagDemo22: PROSKATE\CD.HED*.BMR)

 33408h bytes --> 512x205pix, 16bpp (Apocalypse warning.rle)
 3C008h bytes --> 512x240pix, 16bpp (most common)
 96008h bytes --> 640x480pix, 16bpp (tony hawk's pro skater)

 000h 2 Unknown (FFA0h) (ID for files with valid headers?)
 002h 2 Dest.Y (usually 0) (11h=(240-205)/2 in Apocalypse warning.rle)
 004h 2 Width (usually 200h=512pix)
 006h 2 Height (usually F0h=240pix) (CDh=205pix in Apocalypse warning.rle)
 008h .. Bitmap data, 16bpp (width*height*2 bytes)

 000h .. Bitmap data, 16bpp (width*height*2 bytes)
 .. 8 Unused (garbage or extra pixels, not transferred to VRAM)

13.6 CDROM File Video Texture/Bitmap (Other)

- 240/1136 -

Croc 1 (retail: *.IMG) (retail only, not in MagDemo02 demo version)

Croc 2 (MagDemo22: CROC2\CROCII.DIR*.IMG)

Disney's The Emperor's New Groove (MagDemo39: ENG\KINGDOM.DIR*.IMG)

Disney's Aladdin in Nasira's Rev. (MagDemo46: ALADDIN\ALADDIN.DIR*.IMG)

Contains raw 16bpp bitmaps, with following sizes:

Note: The .IMG format is about same as .BMR files (but without the 8-byte header, and

without distorted scanlines).

Mat Hoffman's Pro BMX (MagDemo39: BMX\FE.WAD+STR*.BIN) (Activision)

Mat Hoffman's Pro BMX (MagDemo48: MHPB\FE.WAD+STR*.BIN) (Shaba/Activision)

The trailing alignment padding exists only in old demo version (eg. size of 78x49x8bpp

"coreypp.bin" is old=10F8h, new=10F6h).

E.T. Interplanetary Mission (MagDemo54: MEGA\MEGA.CSH*)

Palette is 00h-or-CCh-padded when 4bpp, or CCh-filled when 16bpp.

Note: Some files contain two or more such bitmaps (of same or different sizes) badged

together.

 25800h bytes = 12C00h pixels (320x240) ;Croc 1 (retail version)
 3C000h bytes = 1E000h pixels (512x240)
 96000h bytes = 4B000h pixels (640x480)

 000h 2 Bits per pixel (4 or 8)
 002h 2 Bitmap Width in pixels
 004h 2 Bitmap Height in pixels
 006h 2 Zero
 008h N*2 Palette (with N=(1 SHL bpp))
 Bitmap (with Width*Height*bpp/8 bytes)
 ... (..) Zeropadding to 4-byte boundary (old version only)

 000h 2 Type (0=4bpp, 1=8bpp, 2=16bpp)
 002h 2 Unknown (usually 0000h, or sometimes CCCCh)
 004h 2 Bitmap Width in pixels
 006h 2 Bitmap Height in pixels
 008h 200h Palette (always 200h-byte, even for 4bpp or 16bpp)
 208h .. Bitmap (Width*Height*bpp/8 bytes)

13.6 CDROM File Video Texture/Bitmap (Other)

- 241/1136 -

EA Sports: Madden NFL '98 (MagDemo02: TIBURON\.DAT\)

EA Sports: Madden NFL 2000 (MagDemo27: MADN00\.DAT\)

EA Sports: Madden NFL 2001 (MagDemo39: MADN01\.DAT\)

This format is used in various EA Sports Madden .DAT archives, it contains standard

TIMs with extra Headers/Footers.

Purpose is unknown; the 8bit Width/Height entries might be TexCoords.

The PORTRAITS.DAT archives are a special case:

Those PORTRAITS.DAT don't have any archive header, instead they do contain several

images in the above format, each one zeropadded to 2000h-byte size.

989 Sports: NHL Faceoff '99 (MagDemo17: FO99\.KGB\.TEX)

989 Sports: NHL Faceoff 2000 (MagDemo28: FO2000*.TEX)

989 Sports: NCAA Final Four 2000 (MagDemo30: FF00*.TEX)

 000h 4 Offset to TIM (1Ch) (Hdr size) (1Ch) ;\
 004h 4 Offset to Footer (Hdr+TIM size)(123Ch,1A3Ch,1830h) ;
 008h 2 Bitmap Width in pixels (40h or 60h or 30h) ;
 00Ah 2 Bitmap Height in pixels (40h) ;
 00Ch 4 Unknown, always 01h (01h) ; Header
 010h 4 Unknown, always 23h (23h) ; 1Ch bytes
 014h 2 Unknown, always 0101h (101h) ;
 016h 1 Bitmap Width in pixels (40h or 60h or 30h) ;
 017h 1 Bitmap Height in pixels (40h) ;
 018h 4 Unknown, always 00h (0) ;/
 01Ch .. TIM (Texture, can be 4bpp, 8bpp, 16bpp) ;-TIM
 ... 4 Unknown, always C0000222h (C0000222h) ;\
 ... 2 Unknown, always 0001h (0001h) ;
 ... 1 Bitmap Width in pixels (40h or 60h or 30h) ; Footer
 ... 1 Bitmap Height in pixels (40h) ; 12h bytes
 ... 4 Unknown, always 78000000h (78000000h) ;
 ... 6 Unknown (0,0,80h,0,0,0) ;/

 Madden NFL '98 (MagDemo02: TIBURON\PORTRAIT.DAT) (48x64, 16bpp)
 Madden NFL 2000 (MagDemo27: MADN00\PORTRAIT.DAT) (96x64, 8bpp plus palette)
 Madden NFL 2001 (MagDemo39: MADN01\PORTRAIT.DAT) (64x64, 8bpp plus palette)

 000h 0Ch ID "TEX PSX ",01h,00h,00h,00h ;used in 989 Sports games
 00Ch 4 Number of Textures
 010h 4 Total Filesize

13.6 CDROM File Video Texture/Bitmap (Other)

- 242/1136 -

The .TEX files may be in ISO folders, KGB archives, DOTLESS archives. And, some are

stored in headerless .DAT/.CAT archives (which start with ID "TEX PSX ", but seem to

have further files appended thereafter).

Electronic Arts .PSH (SHPP)

FIFA - Road to World Cup 98 (with chunk C0h/C1h = RefPack compression)

NCAA March Madness 2000 (MagDemo32: MM2K\.PSH)

Need for Speed 3 Hot Pursuit (*.PSH, ZLOAD*.QPS\RefPack.PSH)

ReBoot (DATA\.PSH) (with chunk 6Bh)

Sled Storm (MagDemo24: DEBUG,ART,ART2,ART3,SOUND\.PSH) (with Comment,

Mipmap)

WCW Mayhem (MagDemo28: WCWDEMO\.BIG*.PSH) (with chunk C0h/C1h = RefPack)

 014h 4 Common Palette Size (0=200h, 1=None, 2=20h)
 018h (..) Common Palette, if any (0,20h,200h bytes)
 Texture(s)
 Texture format:
 000h 10h Filename (eg. "light1", max 16 chars, zeropadded if shorter)
 010h 4 Width in pixels (eg. 40h)
 014h 4 Height (eg. 20h or 40h)
 018h 4 Unknown (always 0)
 01Ch 4 Number of Colors (eg. 10h, 20h or 100h)
 020h .. Bitmap (4bpp when NumColors<=10h, 8bpp when NumColors>10h)
 ... (..) Palette (NumColors*2 bytes, only present if Common Palette=None)

 000h 4 ID "SHPP"
 004h 4 Total Filesize (or Filesize-0Ch, eg. FIFA'98 ZLEG*.PSH)
 008h 4 Number of Textures (N)
 00Ch 4 ID "GIMX"
 010h N*8 File List
 Data (each File contains a Bitmap chunk, and Palette chunk, if any)
 File List entries:
 000h 4 Name (ascii) (Mipmaps use the same name for each mipmap level)
 004h 4 Offset from begin of archive to first Chunk of file
 Caution: Most PSH files do have the above offsets sorted in increasing order,
 but some have UNSORTED offsets, eg. Sled Storm (MagDemo24: ART3\LOAD1.PSH),
 so one cannot easily compute sizes as NextOffset-CurrOffset.
 Note: Mipmap textures consist of two files with same name and different
 resolution, eg. in Sled Storm (MagDemo24: ART\WORLD0x.PSH)
 Bitmap Chunk:
 000h 1 Chunk Type (40h=PSX/4bpp, 41h=PSX/8bpp, 42h=PSX/16bpp)
 001h 3 Offset from current chunk to next chunk (000000h=None)
 004h 2 Bitmap Width in pixels (can be odd, pad lines to 2-byte boundary)
 006h 2 Bitmap Height
 008h 2 Center X (whatever that is)
 00Ah 2 Center Y (whatever that is)
 00Ch 2 Position X (whatever that is, plus bit12-15=flags?)
 00Eh 2 Position Y (whatever that is, plus bit12-15=flags?)

13.6 CDROM File Video Texture/Bitmap (Other)

- 243/1136 -

The whole .PSH file or the bitmap chunks can be compressed:

CDROM File Compression EA Methods

Variants of the .PSH format are also used on PC, PS2, PSP, XBOX (with other Chunk Types

for other texture/palette formats, and for optional extra data). For details, see: http://

wiki.xentax.com/index.php/EA_SSH_FSH_Image

Destruction Derby Raw (MagDemo35: DDRAW*.PCK,*.FNT,*.SPR)

This format can contain one single Bitmap, or a font with several small character

bitmaps.

 010h .. Bitmap data (each scanline is padded to 2-byte boundary)
 Padding to 8-byte boundary
 Compressed Bitmap Chunk:
 000h 1 Chunk Type (C0h=PSX/4bpp, C1h=PSX/8bpp, and probably C2h=PSX/16bpp)
 001h 0Fh Same as in Chunk 40h/41h/42h (see there)
 010h .. Compressed Bitmap data (usually/always with Method=10FBh)
 Padding to 8-byte boundary
 Palette Chunk (if any) (only for 4bpp/8bpp bitmaps, not for 16bpp):
 000h 1 Chunk Type (23h=PSX/Palette)
 001h 3 Offset from current chunk to next chunk (000000h=None)
 004h 2 Palette Width in halfwords (10h or 100h)
 006h 2 Palette Height (1)
 008h 2 Unknown (usually same as Width) (or 80D0h or 9240h)
 00Ah 2 Unknown (usually 0000h) (or 0001h or 0002h)
 00Ch 2 Unknown (usually 0000h)
 00Eh 2 Unknown (usually 00F0h)
 010h .. Palette data (16bit per color)
 Note: The odd 80D0h,0001h values occur in Sled Storm ART\WORKD00.PSH\TBR1)
 Unknown Chunk (eg. ReBoot (DATA\AREA15.PSH\sp*))
 000h 1 Chunk Type (6Bh)
 001h 3 Offset from current chunk to next chunk (000000h=None)
 004h 8 Unknown (2C,00,00,3C,03,00,00,00)
 00Ch - For whatever reason, there is no 8-byte padding here
 Comment Chunk (eg. Sled Storm (MagDemo24: ART\WORLD0x.PSH))
 000h 1 Chunk Type (6Fh=PSX/Comment)
 001h 3 Offset from current chunk to next chunk (000000h=None)
 004h .. Comment ("Saved in Photoshop Plugin made by PEE00751@...",00h)
 Zeropadding to 8-byte boundary
 Unknown Chunk (eg. Sled Storm (MagDemo24: ART\WORLD09.PSH\ADAA))
 000h 1 Chunk Type (7Ch)
 001h 3 Offset from current chunk to next chunk (000000h=None)
 004h 2Ch Unknown (reportedly Hot spot / Pix region, but differs on PSX?)

 000h 2 ID "BC" ;\
 002h 1 Color Depth (1=4bpp, 2=8bpp, 4=16bpp) ; Header
 003h 1 Type (40h=Bitmap, C0h=Font) ;/
 ... (2) Palette Unknown (0 or 1) ;\only if Bitmap
 ... (2) Palette Unknown (1) ; 4bpp or 8bpp
 ... (..) Palette data (20h or 200h bytes for 4bpp/8bpp) ;/

13.6 CDROM File Video Texture/Bitmap (Other)

- 244/1136 -

http://wiki.xentax.com/index.php/EA_SSH_FSH_Image
http://wiki.xentax.com/index.php/EA_SSH_FSH_Image

All bitmap scanlines are padded to 2-byte boundary, eg. needed for:

The BC files are usually compressed (either in PCK file, or in the compressed DAT portion

of a PTH+DAT archive).

Cool Boarders 2 (MagDemo02: CB2\DATA**.FBD)

The bitmap data seems to be 4bpp and/or 8bpp, but it's hard to know the correct palette

(some files have more than 16 or 256 palette colors, or don't have any palette at all).

13.7 CDROM File Video Texture/Bitmap (TGA)

Targa TGA

 ... 2 Bitmap Number of Bitmaps-1 (N-1) ;\
 ... 2 Bitmap Width in pixels ;
 ... 2 Bitmap Height in pixels ; Bitmap(s)
 ... N*1 Bitmap Tilenumbers (eg. "ABCDEFG..." for Fonts);
 ... N*1 Bitmap Proportional Font widths? (0xh or FFh) ;
 ... N*BMP Bitmap(s) for all characters ;/
 ... (20h) Palette Data (20h bytes for 4bpp) ;-only if Font/4bpp

 INGAME1\BOWL2.PTH\SPRITES.PTH\ST.SPR 30x10x4bpp: 15 --> 16 bytes/line
 INGAME1\BOWL2.PTH\SPRITES.PTH\STOPW.SPR 75x40x4bpp: 37.5 --> 38 bytes/line

 000h 2 ID ("FB") ;\File Header
 002h 2 Always 1 (version? 4bpp? num entries?) ;/
 004h 2 Palette VRAM Dest X (eg. 300h) ;\
 006h 2 Palette VRAM Dest Y (eg. 1CCh,1EDh,1FFh) ; Palette Header
 008h 2 Palette Width in halfwords (eg. 100h) ; (all zero when unused)
 00Ah 2 Palette Height (eg. 1 or 0Dh) ;/
 00Ch 2 Bitmap VRAM Dest X (eg. 140h or 200h) ;\
 00Eh 2 Bitmap VRAM Dest Y (eg. 0 or 100h) ; Bitmap Header
 010h 2 Bitmap Width in halfwords ;
 012h 2 Bitmap Height ;/
 Palette Data (if any) ;-Palette Data
 Bitmap Data ;-Bitmap Data

 000h 1 Image ID Size (00h..FFh, usually 0=None) ;0
 001h 1 Palette Present Flag (0=None, 1=Present) ;0 iv=1
 002h 1 Data Type code (0,1,2,3,9,10,11,32,33) ;NEBULA=2 iv=1
 003h 2 Palette First Color (usually 0) ;0 iv=0
 005h 2 Palette Number of Colors (usually 100h) ;0 iv=100h
 007h 1 Palette Bits per Color (16,24,32, usually 24) ;0 iv=18h
 008h 2 Bitmap X origin (usually 0) ;0
 00Ah 2 Bitmap Y origin (usually 0) ;0

13.7 CDROM File Video Texture/Bitmap (TGA)

- 245/1136 -

Data Type [02h]:

The official specs do list the above 9 types, but do describe only 4 types in detail (type

01h,02h,09h,0Ah).

TGA's are used by a couple of PSX games/demos (all uncompressed):

For whatever reason, TGA is still in use on newer consoles:

 00Ch 2 Bitmap Width ;NEBULA=20h LOGO=142h
 00Eh 2 Bitmap Height ;NEBULA=20h
 010h 1 Bitmap Bits per Pixel (8,16,24,32 exist?) ;NEBULA=18h iv=8
 011h 1 Image Descriptor (usually 0) ;0
 012h .. Image ID Data (if any, len=[00h], usually 0=None)
 Palette
 Bitmap
 ... 1Ah Footer (8x00h, "TRUEVISION-XFILE.", 00h) (not present in iview)

 00h = No image data included ;-Unknown purpose
 01h = Color-mapped image ;\
 02h = RGB image ; Uncompressed
 03h = Black and white image ;/
 09h = Color-mapped image ;\Runlength
 0Ah = RGB image ;/
 0Bh = Black and white image ;-Unknown compression method
 20h = Color-mapped image ;-Huffman+Delta+Runlength
 21h = Color-mapped image ;-Huffman+Delta+Runlength+FourPassQuadTree

 Type 01h and 09h lack details on supported bits per pixel (8bpp with 100h
 colors does exist; unknown if less (or more) than 8bpp are supported,
 and if so, in which bit order.
 Type 02h and 0Ah are more or less well documented.
 Type 03h has unknown bit-order, also unknown if/how it differs from type
 01h with 1bpp.
 Type 0Bh, 20h, 21h lack any details on the compression method.

 16bpp: Tomb Raider 2 (MagDemo01: TOMBRAID*.RAW)
 24bpp: Tomb Raider 2 (MagDemo05: TOMB2*.TGA)
 24bpp: Colony Wars Venegance (MagDemo14: CWV\GAME.RSC\NEBULA*.TGA, *SKY.TGA)
 24bpp: Colony Wars Red Sun (MagDemo31: CWREDSUN\GAME.RSC\000A*)
 16bpp: Colony Wars Venegance (MagDemo14: CWV\GAME.RSC\LOGO.DAT)
 16bpp: X-Men: Mutant Academy (MagDemo50: XMEN2*)
 16bpp: Disney's Tarzan (MagDemo42: TARZAN*)
 8bpp+Wrong8bitAttr: SnoCross Championship Racing (MagDemo37: SNOCROSS*.TGA)
 16bpp+WrongYflip: SnoCross Championship Racing (MagDemo37: SNOCROSS*.TGA)

 32bpp: 3DS AR Games (RomFS:\i_ar\tex\hm*.lz77

13.7 CDROM File Video Texture/Bitmap (TGA)

- 246/1136 -

13.8 CDROM File Video Texture/Bitmap (PCX)

PC Paintbrush .PCX files (ZSoft)

Default extension is .PCX (some tools did use .PCX for the "main" image, and .PCC for

smaller snippets that were clipped/cropped/copied from from a large image).

Decoding PCX files is quite a hardcore exercise due to a vast amount of versions,

revisions, corner cases, incomplete & bugged specifications, and inofficial third-party

glitches.

PCX Versions

NOTE: Version[01h]=05h with PaletteInfo[44h]=0001h..0002h is Paintbrush IV?

 000h 1 File ID (always 0Ah=PCX/ZSoft)
 001h 1 Version (0,2,3,4,5)
 002h 1 Compression (always 01h=RLE) (or inofficial: 00h=Uncompressed)
 003h 1 Bits per Pixel (per Plane) (1, 2, 4, or 8)
 004h 2 Window X1 ;\
 006h 2 Window Y1 ; Width = X2+1-X1
 008h 2 Window X2 ; Height = Y2+1-Y1
 00Ah 2 Window Y2 ;/
 00Ch 2 Horizontal Resolution in DPI ;\often square, but can be also zero,
 00Eh 2 Vertical Resolution in DPI ;/or screen size, or other values
 010h 30h EGA/VGA Palette (16 colors, 3-byte per color = R,G,B) (or garbage)
 010h 1 CGA: Bit7-4=Background Color (supposedly IRGB1111 ?)
 013h 1 CGA: Bit7:0=Color,1=Mono,Bit6:0=Yellow,1=White,Bit5:0=Dim,1=Bright
 014h 1 Paintbrush IV: New CGA Color1 Green ;\weird new way to encode CGA
 015h 1 Paintbrush IV: New CGA Color1 Red ;/palette in these two bytes
 040h 1 Reserved (00h) (but is 96h in animals.pcx)
 041h 1 Number of color planes (1=Palette, 3=RGB, or 4=RGBI)
 042h 2 Bytes per Line (per plane) (must be N*2) (=(Width*Bits+15)/16*2)
 044h 2 PaletteInfo? (0000h/xxxxh=Normal, 0001h=Color/BW, 0002h=Grayscale)
 046h 2 Horizontal screen size in pixels ;\New fields, found only
 048h 2 Vertical screen size in pixels ;/in Paintbrush IV/IV Plus
 04Ah 36h Reserved (zerofilled) (or garbage in older files, custom in MGS)
 080h .. Bitmap data (RLE compressed)
 ... 1 VGA Palette ID (0Ch=256 colors) ;\when 8bpp
 .. 300h VGA Palette (256 colors, 3-byte per color = R,G,B) ;/

 00h = Version 2.5 whatever ancient stuff
 02h = Version 2.8 with custom 16-color palette
 03h = Version 2.8 without palette (uses fixed CGA/EGA palette)
 04h = Version ?.? without palette (uses fixed CGA/EGA palette)
 05h = Version 3.0 with custom 16-color or 256-color palette or truecolor

13.8 CDROM File Video Texture/Bitmap (PCX)

- 247/1136 -

Known PCX Color Depths

Width and Height

These are normally calculated as so:

However, a few PCX files do accidentally want them to be calculated as so:

Files with bugged width can be (sometimes) detected as so:

Files with bugged height can be detected during decompression:

Bugged sample files are SAMPLE.DCX, marbles.pcx and gmarbles.pcx. RLE decompression

may crash when not taking care of such files.

Color Planes and Palettes

The official ZSoft PCX specs are - wrongly - describing planes as:

 planes=1, bits=1 P1 ;1bit, HGC 2 color (iview and paint shop pro 2)
 planes=1, bits=2 P2 ;2bit, CGA 4 color (with old/new palette info)
 planes=3, bits=1 RGB111 ;3bit, EGA 8 color (official samples) ;\version
 planes=4, bits=1 IRGB1111 ;4bit, EGA 16 color (paint shop pro 2) ;/03h..04h
 planes=1, bits=4 P4 ;4bit, BMP 16 color (iview)
 planes=1, bits=8 P8 ;8bit, VGA 256 color palette
 planes=1, bits=8 I8 ;8bit, VGA 256 level grayscale (gmarbles.pcx)
 planes=3, bits=8 BGR888 ;24bit, truecolor (this is official 24bit format)
 ;planes=1, bits=24 BGR888 ? ;24bit, reportedly exists? poor compression
 ;planes=4, bits=4 ABGR4444 ;16bit, wikipedia-myth? unlikely to exist
 ;planes=4, bits=8 ABGR8888 ;32bit, truecolor+alpha (used in abydos.dcx*)

 Width = X2+1-X1 ;width for normal files
 Height = Y2+1-Y1 ;height for normal files

 Width = X2-X1 ;width for bugged files
 Height = Y2-Y1 ;height for bugged files

 (Width*Bits+15)/16*2) > BytesPerLine

 BeginOfLastScanline >= Filesize (or Filesize-301h for files with palette)

 plane0 = red ;\
 plane1 = green ; this is WRONG, NONSENSE, does NOT exist
 plane2 = blue ;
 plane3 = intensity ;/

13.8 CDROM File Video Texture/Bitmap (PCX)

- 248/1136 -

The 8-color and 16-color EGA images are actually using plane0,1,2,(3) as bit0,1,2,(3) of

the EGA color number; which implies plane0=blue (ie. red/blue are opposite of the ZSoft

document).

The truecolor and truecolor+alpha formats have plane0..2=red,green,blue (as described

by ZSoft), but they don't have any intensity plane (a few files are using plane3=alpha).

Mono 2-Color Palette

This format was intended for 640x200pix 2-color CGA graphics, it's also common for

higher resolution FAX or print images. The general rule for these files is to use this

colors:

There are rumours that color1 could be changed to any of the 16 CGA colors (supposedly

via [10h].bit7-4, but most older & newer 2-color files have that byte set to 00h, so one

would end up with black-on-black).

Some newer 2-color files contain RGB palette entries [10h]=000000h, [13h]=FFFFFFh

(and [16h..3Fh]=00h-filled or FFh-filled).

Iview does often display 2-color images with color1=dark green (somewhat mysteriously;

it's doing that even for files that don't contain any CGA color numbers or RGB palette

values that could qualify as dark green).

4-Color Palettes

This format was intended for 320x200pix 4-color CGA graphics, and the palette is closely

bound to colors available in CGA graphics modes. Color0 is defined in [10h], and

Color1-3 were originally defined in [13h], and later in

 color0=black
 color1=white

 color0=[10h].bit7-4 ;(Color0 IRGB) ;CGA Port 3D9h.bit3-0 (usually 0=black)
 bright=[13h].bit5 ;CGA Port 3D9h.bit4 ;\
 palette=[13h].bit6 ;CGA Port 3D9h.bit5 ; old method
 if [13h].bit7 then palette=2 ;CGA Port 3D8h.bit2 ;/
 if [01h]=05h and [44h]=0001h then ;\new "smart"
 if [14h]>200 or [15h]>200 then bright=1, else bright=0 ; method used in
 if [14h]>[15h] then palette=0 else palette=1 :/Paintbrush IV
 if palette=0 and bright=0 then color1..3=02h,04h,06h ;\green-red-yellow
 if palette=0 and bright=1 then color1..3=0Ah,0Ch,0Eh ;/
 if palette=1 and bright=0 then color1..3=03h,05h,07h ;\cyan-magenta-white
 if palette=1 and bright=1 then color1..3=0Bh,0Dh,0Fh ;/
 if palette=2 and bright=0 then color1..3=03h,04h,07h ;\cyan-red-white
 if palette=2 and bright=1 then color1..3=0Bh,0Ch,0Fh ;/

13.8 CDROM File Video Texture/Bitmap (PCX)

- 249/1136 -

Palette=2 uses some undocumented CGA glitch, it was somewhat intended to output

grayscale by disabling color burst on CGA hardware with analog composite output, but

actually most or all CGA hardware is having digital 4bit IRGB output, which outputs cyan-

red-white.

The new "smart" method is apparently trying to detect if [13h-1Bh] contains RGB values

with Color1=Green or Cyan, and to select the corresponding CGA palette; unfortunately

such PCX files are merely setting 14h,15h to match up with the "smart" formula, without

actually storing valid RGB values in [13h-1Bh].

8-Color and 16-Color, with fixed EGA Palettes (version=03h or 04h)

These images have 3 or 4 planes. Plane0-3 correspond to bit0-3 of the EGA color

numbers (ie. blue=plane0, green=plane1, red=plane2, and either intensity=plane3 for

16-color, or intensity=0 for 8-color images).

Some 8-Color sample images (with version=03h and 04h) can be found bundled with PC

Paintbrush Plus 1.22 for Windows. A 16-color sample called WINSCR.PCX can be found

elsewhere in internet.

Caution 1: Official ZSoft specs are wrongly claiming plane0=red and plane2=blue; this is

wrong (although Paint Shop Pro 2 is actually implementing it that way) (whilst MS Paint

for Win95b can properly display them) (most other tools are trying to read a palette

from [10h..3Fh], which is usually garbage filled in version=03h..04h).

Caution 2: The standard EGA palette is used for version=03h..04h (many docs claim it

to be used for version=03h only).

16-Color, with custom EGA/VGA Palettes (version=02h or 05h)

These can have 1 plane with 4 bits, or 4 planes with 1 bit. Header[10h..3Fh] contains a

custom 16-color RGB palette with 3x8bit per R,G,B.

Classic VGA hardware did only use the upper 6bit of the 8bit values.

Classic EGA hardware did only use the upper 2bit of the 8bit values (that, only when

having a special EGA monitor with support for more than 16 colors).

256-Color VGA Palettes (version=05h)

These have 1 plane with 8 bits. And a 256-color RGB palette with 3x8bit per R,G,B

appended at end of file.

The appended 256-color palette should normally exist only in 256-color images, some

PCX tools are reportedly always appending the extra palette to all version=05h files

(even for 2-color files).

13.8 CDROM File Video Texture/Bitmap (PCX)

- 250/1136 -

256-Level Grayscale Images (version=05h and [44h]=0002h)

The most obvious and reliable way is to use a palette with grayscale RGB values.

However, Paintbrush IV is explicetly implementing (or ignoring?) an obscure grayscale

format with following settings:

That settings are used in a file called gmarbles.pcx (which does contain a 256-color RGB

palette with gray RGB values, ie. one can simply ignore the special settings, and display it

as normal 256-color image).

Default 16-color CGA/EGA Palettes

Some notes on number of colors:

CGA is using a 4pin IRGB1111 signal for up to 16 colors in text mode (max 4 colors in

graphics mode), and CGA monitors contain some circuitry to convert "dark yellow" to

"brown" (though cheap CGA clones may display it as "dark yellow").

EGA can display CGA colors (with all 16 colors in graphics mode). EGA-with-special-EGA-

monitor uses 6pin RGB222 signals for up to 64 colors (but not more than 16 colors at

once).

 [01h]=version=05h, and [44h]=0002h=grayscale

 Color Name IRGB1111 RGB222 RGB888 Windows
 00h dark black 0000 000 000000 000000
 01h dark blue 0001 002 0000AA 000080
 02h dark green 0010 020 00AA00 008000
 03h dark cyan 0011 022 00AAAA 008080
 04h dark red 0100 200 AA0000 800000
 05h dark magenta 0101 202 AA00AA 800080
 06h dark yellow (brown) 0110 210!! AA5500!! 808000
 07h dark white (light gray) 0111 222 AAAAAA C0C0C0!!
 08h bright black (dark gray) 1000 111 555555 808080!!
 09h bright blue 1001 113 5555FF 0000FF
 0Ah bright green 1010 131 55FF55 00FF00
 0Bh bright cyan 1011 133 55FFFF 00FFFF
 0Ch bright red 1100 311 FF5555 FF0000
 0Dh bright magenta 1101 313 FF55FF FF00FF
 0Eh bright yellow 1110 331 FFFF55 FFFF00
 0Fh bright white 1111 333 FFFFFF FFFFFF

 CGA supports 16 colors in text mode (but only max 4 colors in graphics mode).
 EGA supports the same 16 colors as CGA in both text and graphics mode.
 EGA-with-special-EGA-monitor supports 64 colors (but only max 16 at once).
 VGA supports much colors (but can mimmick CGA/EGA colors, or similar colors)

13.8 CDROM File Video Texture/Bitmap (PCX)

- 251/1136 -

Windows is also using those 16 standard colors (when not having any VGA driver

installed, and also in 256-color VGA mode, in the latter case the 16 standard colors are

held to always available (even if different tasks are trying to simultanously display

different images with different palettes).

However, Windows has dropped brown, and uses non-pastelized bright colors.

PCX files in PSX games

PCX files in PSX Metal Gear Solid (MGS)

MGS is storing some extra data at [4Ah..57h] (roughly resembling the info in TIM files).

MGS has filesize padded to 4-byte boundary. That is causing problems for files with 256-

color palette: The official way to find the palette is to stepback 301h bytes from end of

file, which won't work with padding. To find the MGS palette, one must decompress the

whole bitmap, and then expect the 301h-byte palette to be located after the compressed

data.

As an extra oddity, MGS uses non-square ultra-high DPI values.

DCX Archives

DCX archives contain multiple PCX files (eg. multi-page FAX documents). The standard

format is as so:

 .PCX with RLE used by Jampack Vol. 1 (MDK\CD.HED*.pcx)
 .PCX with RLE used by Hot Wheels Extreme Racing (MagDemo52: US_01293\MISC*)
 .PCX with RLE used by Metal Gear Solid (slightly corrupted PCX files)

 04Ah 2 Custom MGS ID (always 3039h)
 04Ch 2 Display Mode? (08h/18h=4bit, 09h/19h=8bit)
 04Eh 2 Bitmap X-coordinate in VRAM (reportedly "divided by 2" ???)
 050h 2 Bitmap Y-coordinate in VRAM
 052h 2 Palette X-coordinate in VRAM
 054h 2 Palette Y-coordinate in VRAM
 056h 2 Palette number of actually used colors (can be less than 16/256)
 058h 28h Reserved (zerofilled)
 080h .. Bitmap data (RLE compressed)
 ... 1 VGA Palette ID (0Ch=256 colors) ;\when 8bpp
 .. 300h VGA Palette (256 colors, 3-byte per color = R,G,B) ;/
 Padding to 4-byte boundary, ie. palette isn't at filesize-301h !!!

 0000h 4 ID (3ADE68B1h) (987654321 decimal)
 0004h 4000h File List (32bit offsets) (max 1023 files, plus 0=End of List)
 1004h .. File Data area (PCX files)

13.8 CDROM File Video Texture/Bitmap (PCX)

- 252/1136 -

However, some files have the first PCX at offset 1000h (ie. the list is only 3FFCh bytes

tall). Reportedly there are also files that start with yet smaller offsets (for saving space

when the file list contains fewer entries).

The PCX filesize is next-curr offset (or total-curr for last file).

References

https://www.fileformat.info/format/pcx/egff.htm

13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF

(Sony)

CEL/BGD/TSQ/ANM/SDF

CEL: Cell Data (official format with 8bit header entries)

This does merely translate Tile Numbers to VRAM Addresses and Attributes (with the

actual VRAM bitmap data usually being stored in .TIM files).

Cell Data:

 000h 1 File ID (22h)
 001h 1 Version (3)
 002h 2 Flag (bit15=WithAttr, bit14=AttrDataSize:0=8bit,1=16bit, bit13-0=0)
 004h 2 Number of cell data items (in cell units) (N)
 006h 1 Sprite Editor Display Window Width (in cell units)
 007h 1 Sprite Editor Display Window Height (in cell units)
 008h .. Cell Data[N] (64bit entries)
 Cell Attr[N] (0bit/8bit/16bit user data? depending on Flag)

 0-7 Tex Coord X (8bit)
 8-15 Tex Coord Y (8bit)
 16-21 Clut X (6bit)
 22-30 Clut X (9bit)
 31 Semi-transparency enable ;-only in Version>=3
 32 Vertical Reversal (Y-Flip) ;\only in Version=0 and Version>=2
 33 Horizontal Reversal (X-Flip) ;/
 34-47 Unused
 48-52 Texture Page (5bit)
 53-54 Semi Transparency (0=B/2+F/2, 1=B+F, 2=B-F, 3=B+F/4)
 55-56 Texture page colors (0=4bit, 1=8bit, 2=15bit, 3=Reserved)
 57-60 Sprite Editor Color Set Number ;\
 61 Unused ; only in Version>=3
 62-63 Sprite Editor TIM Bank ;/ XXX else hardcoded?

13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

- 253/1136 -

https://www.fileformat.info/format/pcx/egff.htm

This is used in R-Types, CG.1\file3Dh\file00h, but [6,7] are 16bit wide! And there are a

LOT of ZEROes appended (plus FFh-padding due to CG.1 archive size units).

Used by R-Types (CG.1\file07h\file01h, size 08h*04h, with 8bit attr)

Used by R-Types (CG.1\file07h\file03h, size 10h*08h, with 16bit attr)

Used by R-Types (CG.1\file07h\file05h, size 04h*04h, with 16bit attr)

Used by Tiny Tank (MagDemo23: TINYTANK\TMD05.DSK*.CEL, size 08h*05h)

CEL16: Inofficial CEL hack with 16bit entries and more extra data (R-Types)

This is an inofficial hack used by R-Types, the game does use both the official CEL and

inofficial CEL16 format.

Used by R-Types (CG.1\file12h\file00h, size 0120h*000Fh with 192bit attr)

Used by R-Types (CG.1\file15h\file00h, size 0168h*000Fh with ? attr)

Used by R-Types (CG.1\file1Ch\file00h, size 00D8h*000Fh with ? attr)

BGD: BG Map Data (official format with 8bit header entries)

Used by R-Types (CG.1\file07h\file00h, official BGD format)

Used by Cardinal Syn (MagDemo03,09: SYN\SONY\KROLOGO.WAD\.BGD)

Used by Tiny Tank (MagDemo23: TINYTANK\TMD05.DSK\.BGD, with 8bit entries).

 000h 1 File ID (22h) ;\same as in official CEL version
 001h 1 Version (3) ;/
 002h 2 Flag (...unknown meaning in this case...?) ;<-- ?
 004h 2 Number of cell data items (in cell units) (N)
 006h 2 Sprite Editor Display Window Width (in cell units) ;<-- 16bit!
 008h 2 Sprite Editor Display Window Height (in cell units) ;<-- 16bit!
 00Ah .. Cell Data[N] (64bit entries)
 Cell Attr[N] (16bit/192bit user data, depending on Flag or so...?)

 000h 1 File ID (23h)
 001h 1 Version (0)
 002h 2 Flag (bit15=WithAttr, bit14=AttrDataSize:0=8bit,1=16bit, bit13-0=0)
 004h 1 BG Map Width (in cell units) (W)
 005h 1 BG Map Height (in cell units) (H)
 006h 1 Cell Width (in pixels)
 007h 1 Cell Height (in pixels)
 008h .. BG Map Data[W*H] (16bit cell numbers)
 BG Map Attr[W*H] (0bit/8bit/16bit user data? depending on Flag)

13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

- 254/1136 -

BGD16: Inofficial BGD hack with 16bit entries (R-Types)

This is an inofficial hack used by R-Types, the game does use both the official BGD and

inofficial BGD16 format. Apparently invented to support bigger BG Map Widths for huge

sidescrolling game maps.

Used by R-Types (CG.1\file3Ch\file00h, inofficial BGD16 format)

TSQ: Animation Time Sequence

Sequence Data:

There aren't any known games using .TSQ files.

ANM: Animation Information

 000h 1 File ID (23h) ;\same as in official BGD version
 001h 1 Version (0) ;/
 002h 2 Flag (bit15=WithAttr, bit14=AttrDataSize:0=8bit,1=16bit, bit13-0=0)
 004h 2 BG Map Width (in cell units) (W) ;<-- 16bit!
 006h 2 BG Map Height (in cell units) (H) ;<-- 16bit!
 008h 2 Cell Width (in pixels) ;<-- 16bit!
 00Ah 2 Cell Height (in pixels) ;<-- 16bit!
 00Ch .. BG Map Data[W*H] (16bit cell numbers)
 BG Map Attr[W*H] (0bit/8bit/16bit user data? depending on Flag)
 FFh-padding (in case being stored in R-Types' DOT1 archives)

 000h 1 File ID (24h)
 001h 1 Version (1)
 002h 2 Number of Sequence data entries (N)
 004h N*8 Sequence Data (64bit entries)

 0-15 Sprite Group Number to be displayed
 16-23 Display Time
 24-27 Unused
 28-31 Attribute (user defined) (only in Version>=1)
 32-47 Hotspot X Coordinate
 48-63 Hotspot Y Coordinate

 000h 1 File ID (21h)
 001h 1 Version (3=normal) (but see below notes on older versions)
 002h 2 Flag (bit0-1=TPF, bit2-11=0, bit12-15=CLT)
 0-1 TPF PixFmt (0=4bpp, 1=8bpp, 2/3=Reserved) ;version>=2 only
 2-11 - Reserved (0)
 12-15 CLT Number of CLUT Groups, for color animation
 004h 2 Number of Sprites Groups
 006h 2 Number of Sequences (N) (can be 0=None)
 008h N*8 Sequence(s) (64bit per entry) ;Num=[004h]

13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

- 255/1136 -

Sequence entries:

Sprite Group entries:

CLUT Group entries:

 Sprite Group(s) ;Num=[006h]
 CLUT Group(s) ;Num=[002h].bit12-15

 000h 2 Sprite Group Number to be displayed (range 0..AnimHdr[004h]-1)
 002h 1 Display Time (can be 00h or 0Ah or whatever)
 003h 1 Attribute (bit0-3=Unused/Zero, bit4-7=User defined) ;version>=3 only
 004h 2 Hotspot X Coordinate (usually 0, or maybe can be +/-NN ?)
 006h 2 Hotspot Y Coordinate (usually 0, or maybe can be +/-NN ?)

 Each "Group" seems to represent one animation frame.
 Each "Group" can contain one or more sprites (aka metatiles).
 Below stuff is "4+N*14h" bytes, that seems to repeat "AnmHeader[004h] times"
 XXX... actually below can be "4+N*10h" or "4+N*14h" bytes
 XXX... so, maybe maybe some entries like width/height are optional?
 000h 4 Number of Sprites in this Sprite Group ("sprites per metatile"?)
 004h 14h*N Sprite(s) (see below)
 Sprites:
 000h 1 Tex Coord X (8bit)
 001h 1 Tex Coord Y (8bit)
 002h 1 Offset X from Hotspot within frame (maybe vertex x ?)
 003h 1 Offset Y from Hotspot within frame (maybe vertex y ?)
 004h 2 CBA Clut Base (bit0-5=ClutX, Bit6-14=ClutY, bit15=SemiTransp)
 006h 2 FLAGs (bit0-4, bit5-6, bit7-8, bit9, bit10, bit11, bit12-15)
 0-4 TPN Texture Page Number
 5-6 ABR Semi-Transparency Rate
 7-8 TPF Pixel depth (0=4bpp, 1=8bpp, 2=16bpp)
 9 - Reserved
 10 RSZ Scaling (0=No, 1=Scaled)
 11 ROT Rotation (0=No, 1=Rotated)
 12-15 THW Texture Width/Height div8 (0=Other custom width/height)
 008h (2) Texture Width "of optional size" (uh?) ;\only present if
 00Ah (2) Texture Height "of optional size" (uh?) ;/FLAGs.bit12-15=0 ?)
 00Ch 2 Angle of Rotation (in what units?)
 00Eh 2 Sprite Editor info (bit0-7=Zero, bit8-13=ClutNo, bit14-15=TimBank)
 010h 2 Scaling X (for Vertex?) (as whatever fixed point number) (eg. 1000h)
 012h 2 Scaling Y (for Vertex?) (as whatever fixed point number) (eg. 1000h)

 000h 4 CLUT size in bytes (Width*Height*2+0Ch)
 004h 2 Clut X Coordinate
 006h 2 Clut Y Coordinate
 008h 2 Clut Width
 00Ah 2 Clut Height
 00Ch .. CLUT entries (16bit per entry, Width*Height*2 bytes)

13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)

- 256/1136 -

Note: ALICE.PAC\MENU.PAC\CON00.ANM has NumSequences=0 and

NumSpriteGroups=2Dh (unknown if/how that is animated, maybe it has 2Dh static

groups? or the groups are played in order 0..2Ch with display time 1 frame each?).

Used by Alice in Cyberland (ALICE.PAC*.ANM) (ANM v3)

Unknown if there are any other games are using that format.

SDF: Sprite Editor Project File

This is an ASCII text file for "artist boards" with following entries:

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD

(Sony)

TMD - Modeling Data for OS Library

Object List entries:

 TIM0 file0.tim ;\
 TIM1 file1.pxl file1.clt ; four TIM banks (with TIM or PXL/CLT files)
 TIM2 ; (or no filename for empty banks)
 TIM3 ;/
 CEL0 file0.cel ;-one CEL (with CEL, or no filename if none)
 MAP0 file0.bgd ;\
 MAP1 file1.bgd ; four BG MAP banks (with BGD filenames)
 MAP2 ; (or no filename for empty banks)
 MAP3 ;/
 ANM0 file0.anm ;-one ANM (with ANM, or no filename if none)
 DISPLAY n ;0-3=256/320/512/640x240, 4-7=256/320/512/640x480
 COLOR n ;0=4bpp, 1=8bpp ;docs are unclear, is it COLORn or COLOR n?
 ADDR0 texX texY clutX clutY numColorSets ;\
 ADDR1 texX texY clutX clutY numColorSets ; four texture/palette offsets
 ADDR2 texX texY clutX clutY numColorSets ; for the corresponding TIM banks
 ADDR3 texX texY clutX clutY numColorSets ;/ (or whatever for empty banks?)

 000h 4 ID (00000041h)
 004h 4 Flags (bit0=FIXP, bit1-31=Reserved/zero)
 008h 4 Number of Objects (N) ;"integral value" uh?
 00Ch N*1Ch Object List (1Ch-byte per entry)
 Data (Vertices, Normals, Primitives)

 000h 4 Start address of a Vertex ;\Address values depend on the
 004h 4 Number of Vertices ; file header's FIXP flag:
 008h 4 Start address of a Normal ; FIXP=0 Addr from begin of Object
 00Ch 4 Number of Normals ; FIXP=0 Addr from begin of TMD File
 010h 4 Start address of a Primitive ;

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 257/1136 -

Vertex entries (8-byte):

Normal entries (8-byte) (if any, needed only for computing light directions):

Primitive entries (variable length):

Packet Data (for Polygons)

 014h 4 Number of Primitives ;/
 018h 4 Scale (signed shift value, Pos=SHL, Neg=SHR) (not used by LIBGS)

 000h 2 Vertex X (signed 16bit)
 002h 2 Vertex Y (signed 16bit)
 004h 2 Vertex Z (signed 16bit)
 006h 2 Unused

 000h 2 Normal X (fixed point 1.3.12)
 002h 2 Normal Y (fixed point 1.3.12)
 004h 2 Normal Z (fixed point 1.3.12)
 006h 2 Unused

 000h 1 Output Size/4 of the GPU command (after GTE conversion)
 001h 1 Input Size/4 of the Packet Data in the TMD file
 002h 1 Flag
 0 Light source calculation (0=On, 1=Off)
 1 Clip Back (0=Clip, 1=Don't clip) (for Polygons only)
 2 Shading (0=Flat, 1=Gouraud)
 (Valid only for the polygon not textured,
 subjected to light source calculation)
 3-7 Reserved (0)
 003h 1 Mode (20h..7Fh) (same as GP0(20h..7Fh) command value in packet)
 004h .. Packet Data

 000h 4 GPU Command+Color for that packet (CcBbGgRrh), see GP0(20h..3Fh)
 ... (4) Texcoord1+Palette (ClutYyXxh) ;\
 ... (4) Texcoord2+Texpage (PageYyXxh) ; only if Mode.bit2=1
 ... (4) Texcoord3 (0000YyXxh) ;
 ... (4) Texcoord4 (0000YyXxh) ;-quad only ;/
 ... (4) Color2 (00BbGgRrh) ;\
 ... (4) Color3 (00BbGgRrh) ; only if Flag.bit2=1
 ... (4) Color4 (00BbGgRrh) ;-quad only ;/
 ... (2) Normal1 (index in Normal list?) ;always, unless Flag.bit0=1
 ... 2 Vertex1 (index in Vertex list?)
 ... (2) Normal2 (index in Normal list?) ;-only if Mode.bit4=1
 ... 2 Vertex2 (index in Vertex list?)
 ... (2) Normal3 (index in Normal list?) ;-only if Mode.bit4=1
 ... 2 Vertex3 (index in Vertex list?)
 ... (2) Normal4 (index in Normal list?) ;\quad only ;-only if Mode.bit4=1
 ... 2 Vertex4 (index in Vertex list?) ;/
 ... (2) Unused zeropadding (to 4-byte boundary)

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 258/1136 -

Packet Data (for Lines)

Packet Data (for Rectangle/Sprites)

Note: Objects should usually contain Primitives and Vertices (and optionally Normals),

however, N2O\SHIP.TMD does contain some dummy Objects with Number of Vertices/

Normals/Primitives all set to zero.

Used by Playstation Logo (in sector 5..11 on all PSX discs, 3278h bytes)

Used by ...???model???... (MagDemo54: MODEL\.BIN\.TMD)

Used by Alice in Cyberland (ALICE.PAC\xxx_TM*.FA\.TMD)

Used by Armored Core (MagDemo02: AC10DEMP\MS\MENU_TMD.T\)

Used by Bloody Roar 1 (MagDemo06: CMN\EFFECT.DAT\0005h)

Used by Deception III Dark Delusion (MagDemo33: DECEPT3\K3_DAT.BIN\056A,0725\)

Used by Gundam Battle Assault 2 (DATA\.PAC\)

Used by Hear It Now (Playstation Developer's Demo) (*.TMD and FISH.DAT).

Used by Jersey Devil (MagDemo10: JD\.BZZ\)

Used by Klonoa (MagDemo08: KLONOA\FILE.IDX\)

Used by Legend of Dragoon (MagDemo34: LOD\DRAGN0.BIN\16xxh)

Used by Macross VF-X 2 (MagDemo23: VFX2\DATA01\.TMD)

Used by Madden NFL '98 (MagDemo02: TIBURON\MODEL01.DAT\)

Used by No One Can Stop Mr. Domino (MagDemo18: DATA\, .TMD and DOT1\TMD)

Used by O.D.T. (MagDemo17: ODT\.LNK\)

Used by Parappa (MagDemo01: PARAPPA\COMPO01.INT\3\.TMD)

Used by Resident Evil 1 (PSX\ITEM_M1\.DOR\0001)

Used by Starblade Alpha (FLT\SB2.DAT\ and TEX\SB2.DAT\)

Used by Tiny Tank (MagDemo23: TINYTANK\TMD*.DSK\.TMD)

Used by WCW/nWo Thunder (MagDemo19: THUNDER\RING\.TMD)

Used by Witch of Salzburg (the MODELS\.MDL\.TMD)

Used by Scooby Doo and the Cyber Chase (MagDemo54: MODEL*)

 000h 4 GPU Command+Color for that packet (CcBbGgRrh), see GP0(40h,50h)
 ... (4) Color2 (00BbGgRrh) ;-only if Mode.bit4=1
 ... 2 Vertex1 (index in Vertex list?)
 ... 2 Vertex2 (index in Vertex list?)

 000h 4 GPU Command+Color for that packet (CcBbGgRrh), see GP0(60h..7Fh)
 Unknown, reportedy "with 3-D coordinates and the drawing
 content is the same as a normal sprite."

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 259/1136 -

PMD - High-Speed Modeling Data

This is about same as TMD, with less features, intended to work faster.

Vertex entries (8-byte):

Objects:

Primitives:

Packet entries, when Type.bit3=0 (independent vertex):

Packet entries, when Type.bit3=1 (shared vertex):

 000h 4 ID (00000042h)
 004h 4 Offset to Primitives
 008h 4 Offset to Shared Vertices (or 0=None)
 00Ch 4 Number of Objects
 010h .. Objects (4+N*4 bytes each, with offsets to Primitives)
 Primitives
 Shared Vertices (8-bytes each, if any)

 000h 2 Vertex X (signed 16bit)
 002h 2 Vertex Y (signed 16bit)
 004h 2 Vertex Z (signed 16bit)
 006h 2 Unused

 000h 4 Number of Primitives
 004h N*4 Offsets to Primitives ... maybe relative to hdr[004h] ?

 000h 2 Number of Packets
 002h 2 Type flags
 0 Polygon (0=Triangle, 1=Quadrilateral)
 1 Shading (0=Flat, 1=Gouraud) ;uh, with ONE color?
 2 Texture (0=Texture-On, 1=Texture-Off) ;uh, withoutTexCoord?
 3 Shared (0=Independent vertex, 1=Shared vertex)
 4 Light source calculation (0=Off, 1=On) ;uh, withoutNormal?
 5 Clip (0=Back clip, 1=No back clip)
 6-15 Reserved for system
 004h ... Packet(s)

 000h 4 GPU Command+Color for that packet (CcBbGgRrh), see GP0(20h..7Fh)
 004h 8 Vertex1 (Xxxxh,Yyyyh,Zzzzh,0000h)
 00Ch 8 Vertex2 (Xxxxh,Yyyyh,Zzzzh,0000h)
 014h 8 Vertex3 (Xxxxh,Yyyyh,Zzzzh,0000h)
 01Ch (8) Vertex4 (Xxxxh,Yyyyh,Zzzzh,0000h) ;<-- only when Type.bit0=1 (quad)

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 260/1136 -

Unknown if/how Texture/Light is implemented... without TexCoords/Normals?

Unknown if/how Gouraud is implemented... with ONE color and without Normals?

Used only by a few games:

Unknown if/which other games are using the PMD format.

TOD - Animation Data

Frames:

Packet:

XXX... in Sony's doc.

Used by Witch of Salzburg (ANIM\ANM0\ANM0.TOD) (oddly with [02h]=0000h)

Used by Parappa (MagDemo01: PARAPPA\COMPO01.INT\3\.TOD)

Used by Macross VF-X 2 (MagDemo23: VFX2\DATA01\.TOD and *.TOX)

 000h 4 GPU Command+Color for that packet (CcBbGgRrh), see GP0(20h..7Fh)
 004h 4 Offset to Shared Vertex1 ;offsets are
 008h 4 Offset to Shared Vertex2 ;"from the start of a row"
 00Ch 4 Offset to Shared Vertex3 ;aka from "Packet+04h" ?
 010h (4) Offset to Shared Vertex4 ;<-- only when Type.bit0=1(quad)

 Cool Boarders 2 (MagDemo02: CB2\DATA3*.PMD)
 Cardinal Syn (MagDemo03,09: SYN**.WAD*.PMD) (4-byte hdr plus PMD file)
 Sesame Streets Sports (MagDemo52: SSS\LV**MRG*) (4-byte hdr plus PMD file)

 000h 1 ID (50h)
 001h 1 Version (0)
 002h 2 Resolution (time per frame in 60Hz units, can be 0) (60Hz on PAL?)
 004h 4 Number of Frames
 008h .. Frame1
 Frame2
 Frame3
 etc.

 000h 2 Frame Size in words (ie. size/4)
 002h 2 Number of Packets (can be 0=None, ie. do nothing this frame)
 004h 4 Frame Number (increasing 0,1,2,3,..)
 008h ... Packet(s)

 000h 2 Object ID
 002h 1 Type/Flag (bit0-3=Type, bit4-7=Flags)
 003h 1 Packet Size ("in words (4 bytes)")
 004h ... Packet Data

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 261/1136 -

Used by Alice in Cyberland (ALICE.PAC\xxx_T*.FA*.TOD)

Unknown if/which other games are using the TOD format.

HMD - Hierarchical 3D Model, Animation and Other Data

This format is very complicated, see Sony's "File Formats" document for details.

.HMD used by Brunswick Bowling (MagDemo13: THQBOWL\).

.HMD used by Soul of the Samurai (MagDemo22: RASETSU\0\OPT01T.BIN\0\0\)

.HMD used by Bloody Roar 2 (MagDemo22: LON\LON*.DAT*, ST5\ST*.DAT\02h..03h)

.HMD used by Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\6Bh..EFh)

Unknown if/which games other are using the HMD format.

RSD Files (RSD,PLY,MAT,GRP,MSH,PVT,COD,MOT,OGP)

RSD files consist of a set of several files (RSD,PLY,MAT,etc). The files contain the

"polygon source code" in ASCII text format, generated from Sony's "SCE 3D Graphics

Tool". For use on actual hardware, the "RSDLINK" utility can be used to convert them to

binary (TMD, PMD, TOD?, HMB?) files.

All of the above files are in ASCII text format. Each file is starting with a "@typYYMMDD"

string in the first line of the file, eg. "@RSD970401" for RSD version 3. Vertices are

defined as floating point values (as ASCII strings).

There's more info in Sony's "File Formats" document, but the RSD stuff isn't used on retail

discs. Except:

 000h 4 ID (00000050h) ;same as in TOD, which CAN ALSO have MSBs=zero(!)
 004h 4 MAP FLAG (0 or 1, set when mapped via GsMapUnit() function)
 008h 4 Primitive Header Section pointer (whut?)
 00Ch 4 Number of Blocks
 010h 4*N Pointers to Blocks
 ... Primitive Header section (required)
 ... Coordinate section (optional)
 ... Primitive section (required)

 RSD Main project file
 PLY Polygon Vertices (Vertices, Normals, Polygons)
 MAT Polygon Material (Color, Blending, Texture)
 GRP Polygon Grouping
 MSH Polygon Linking ;\
 PVT Pivot Rotation center offsets ; New Extended
 COD Vertex Coordinate Attributes ; (since RSD version 3)
 MOT Animation Information ;/
 OGP Vertex Object Grouping ;-Sub-extended

13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)

- 262/1136 -

13.11 CDROM File Video STR Streaming and BS Picture

Compression (Sony)

STR Files (movie streams)

CDROM File Video Streaming STR (Sony)

CDROM File Video Streaming STR Variants

CDROM File Video Streaming Framerate

CDROM File Video Streaming Audio

CDROM File Video Streaming Chunk-based formats

CDROM File Video Streaming Mis-mastered files

Apart from the 20h-byte STR headers, movies basically consist of a series of BS files

(see below).

BS Files (Huffman compressed MDEC codes)

BS stands for bitstream, which might refer to the use in STR files, or to the Huffman

bitstreams.

CDROM File Video BS Compression Versions

CDROM File Video BS Compression Headers

The header is followed by the bitstream...

For each block, the bitstream contains one DC value, up to 63 AC values, terminated by

EOB (end of block).

CDROM File Video BS Compression DC Values

CDROM File Video BS Compression AC Values

Apart from being used in STR movies, BS can be also used to store single pictures:

CDROM File Video BS Picture Files

Wacwac (similar as BS, but with completely different Huffman codes)

CDROM File Video Wacwac MDEC Streams

 RSD/GRP/MAT/PLY (and DXF=whatever?) used on Yaroze disc (DTL-S3035)

 v1/v2/v3/ea/iki --> first bit in bit15 of first halfword (good for psx)
 v0 --> first bit in bit7 of first byte (not so good for psx)
 (to use the same decoder for all version: swap each 2 bytes in v0)

13.11 CDROM File Video STR Streaming and BS Picture Compression (Sony)

- 263/1136 -

Credits

Thanks to Michael Sabin for info on various STR and BS variants:

https://github.com/m35/jpsxdec/

13.12 CDROM File Video Streaming STR (Sony)

.STR Sectors (with 20h-byte headers) (for MDEC Movies, or User data)

The default file extension .STR is used by various games (though some games use other

extensions, the .FMV files in Tomb Raider do also contain standard 20h-byte .STR sector

headers).

Video Frames

The video frames consist of BS compressed images (that is, all sectors have STR

headers at 000h..01Fh, and the first sector of each frame does additionally contain a

standard BS fileheader at offset 020h..027h).

Less common, there is also a format for streaming polygon animations instead of BS

compressed bitmaps:

CDROM File Video Polygon Streaming

 000h 2 StStatus (0160h) (RV6Rh; R=Reserved=0, V=Version=1, 6=Fixed ID)
 002h 2 StType (0000h..7FFFh=User Defined, 8000h..FFFFh=System; 8001h=MDEC)
 004h 2 StSectorOffset (Sector number in the frame, 0=First)
 006h 2 StSectorSize (Number of sectors in the frame) (eg. 4 or 5)
 008h 4 StFrameNo (Frame number, 1=First) (except Viewpoint=0)
 00Ch 4 StFrameSize (in bytes, in this frame, excluding headers/padding)
 When StType=0000h..7FFFh:
 010h 10h StUser (user defined data)
 020h 7E0h User data (more user defined data)
 When StType=8001h=MDEC (the only system defined type) (with StStatus=0160h):
 010h 2 StMovieWidth (eg. 0140h)
 012h 2 StMovieHeight (eg. 00F0h)
 014h 4 StHeadM (reserved for system) (eg. 38000720h) ;\same as [020h-027h]
 018h 4 StHeadV (reserved for system) (eg. 00020001h) ;/from 1st STR sector
 01Ch 4 Unspecified (eg. 00000000h) (except Viewpoint<>0)
 020h 7E0h Data (in BS format) (or padding, when image is smaller than frame)

 See "CDROM File Video BS Compression" chapters

13.12 CDROM File Video Streaming STR (Sony)

- 264/1136 -

https://github.com/m35/jpsxdec/

STR Resolution

The Width/Height entries are almost always multiples of 16 pixels. But there are a few

exceptions:

For such videos, the width/height of MDEC decompression buffer in RAM must be rounded

up to multiples of 16 pixels (and the decompressed picture should be cropped to the STR

header width/height before forwarding it to VRAM).

Note: The extra scanlines are usually padded with the bottom-most scanline (except,

Gran Turismo 1 has gray-padding in lower/right pixels). Ideally, one would repeat the

bottom-most pixels in zigzag order.

Subtitles

Metal Gear Solid MGS\ZMOVIE.STR contains subtitles as text strings: The first sector of

the .STR file is something custom (without STR header), the remaining movie consists of

STR sectors with StType=0001h for subtitles and StType=8001h for picture frames.

Unknown if other games are using the same method, or other methods.

Obviously, subtitles could be also displayed as part of the compressed image, but text

strings are much smaller, have better quality, and would also allow to support multiple

languages.

13.13 CDROM File Video Streaming STR Variants

STR ID Values

 Height=260 (104h) in Star Wars Rebel Assault II, NTSC (S1\L01_PLAY.STR)
 Height=200 (0C8h) in Perfect Assassin (DATA.JFS\CDV*.STR)
 Height=40 (028h) in Gran Turismo 1 (TITLE.DAT*, MagDemo10 and MagDemo15)
 Width=232 (0E8h) in Gran Turismo 1 (TITLE.DAT*, MagDemo10 only)

 2-byte 0160h ;Standard STR header
 1-byte 01h ;Ace Combat 3 Electrosphere
 4-byte "SMJ",01h ;Final Fantasy 8, Video
 4-byte "SMN",01h ;Final Fantasy 8, Audio/left
 4-byte "SMR",01h ;Final Fantasy 8, Audio/righ
 4-byte 0000000xh ;Judge Dredd
 4-byte DDCCBBAAh ;Crusader: No Remorse, older Electronic Arts
 4-byte 08895574h ;Chunk header in 1st sector only, Best Sports (demo)
 4-byte "VLC0" ;Chunk header in 1st sector only, newer Electronic Arts
 4-byte "VMNK" ;Chunk header in 1st sector only, Policenauts

13.13 CDROM File Video Streaming STR Variants

- 265/1136 -

STR Type values (for videos that do have STR ID=0160h):

The official definition from Sony's File Formats document is as so;

In practice, the following values are used (of which, 8001h is most common).

Leading XA-ADPCM

Most movies start with STR video sectors. But a few games start with XA-ADPCM:

 4-byte 01h,"XSP" ;Sentient header in 1st sector only
 N-byre zero(es) ;Polygons? (in last 150Mbyte of PANEKIT.STR)

 0000h..7FFFh=User Defined
 8000h..FFFFh=System (with 8001h=MDEC being the only officially defined type)

 0000h=Polygon Video, Wacwac as Polygon Stream
 0000h=Polygon Video?, Army Men Air Attack 2 (MagDemo40: AMAA2*.PMB)
 0000h=MDEC Video, Alice in Cyberland
 0001h=MDEC Video, Ridge Racer Type 4 (PAL version, 320x176 pix)
 0001h=Whatever extra data for XA-ADPCM streams (Bits Laboratory games)
 0001h=Whatever non-audio waverform? (3D Baseball)
 0001h=Subtitles, Metal Gear Solid MGS\ZMOVIE.STR
 0002h=Software-rendered video (without using MDEC/GTE) (Cyberia)
 0002h=MDEC Video, Wacwac with IntroTableSet
 0003h=MDEC Video, Wacwac with EndingTableSet
 0004h=MDEC Video, Final Fantasy 9 (MODE2/FORM2)
 0008h=SPU-ADPCM, AKAO audio (Final Fantasy 9)
 0000h=SPU-ADPCM, AKAO audio (Chrono Cross Disc 1, Legend of Mana)
 0001h=SPU-ADPCM, AKAO audio (Chrono Cross Disc 1, Legend of Mana)
 0100h=SPU-ADPCM, AKAO audio (Chrono Cross Disc 2)
 0101h=SPU-ADPCM, AKAO audio (Chrono Cross Disc 2)
 0000h=Whatever special, channel 0 header (Nightmare Project: Yakata)
 0400h=Whatever special, channel 1 header (Nightmare Project: Yakata)
 0001h=Whatever special, channel 0 data (Nightmare Project: Yakata)
 0401h=Whatever special, channel 1 data (Nightmare Project: Yakata)
 5349h=MDEC Video, Gran Turismo 1 and 2 (with BS iki)
 0078h=MDEC Ending Dummy (Mat Hoffman's Pro BMX (MagDemo48: MHPB\SHORT.STR)
 5673h=MDEC Leading Dummy (Mat Hoffman's Pro BMX (MagDemo48: MHPB\SHORT.STR)
 8001h=MDEC Video, Standard MDEC (most common type value)
 8001h=Polygon Video (Ape Escape) (same ID as standard MDEC)
 8001h=Eagle One: Harrier Attack various types (MDEC and other data)
 8001h=Dance series SPU-ADPCM streaming (with STR[1Ch]=DDCCBBAAh)
 8101h=MDEC Video, Standard MDEC plus bit8=FlagDisc2 (Chrono Cross Disc 2)

 Ace Combat 3 Electrosphere (*.SPB)
 Alice in Cyber Land (*.STR)
 Judge Dredd (*.IXA) ;and very small 4-byte STR header
 ReBoot (MOVIES*.WXA)

13.13 CDROM File Video Streaming STR Variants

- 266/1136 -

Also, Aconcagua (Wacwac) has XA-ADPCM before Video (but, yet before that, it has 150

leading zerofilled sectors).

Also, Porsche Challenge (SRC\MENU\STREAM*.STR) starts with corrupted Subheaders,

which may appear as leading XA-ADPCM (depending on how to interprete the corrupted

header bits).

Leading SPU-ADPCM

Metal Gear Solid (MGS\ZMOVIE.STR, 47Mbyte)

This is an archive dedicated to STR movies (with number of frames instead of filesize

entries). Metal Gear Solid does also have cut-scenes with polygon animations (but those

are supposedly stored elsewhere?).

File List entries:

Disc 1 has four movies: The first one has a bit more than 12.5 sectors/frame, the other

three have a bit more than 10 sectors/frame (eg. detecting the archive format could be

done checking for entries wirh 8..16 sectors/frame).

Example, from Disc 1:

The files in the ZMOVIE.STR archive start with subtitles in 1st sector (this is usually/

always only one single sector for the whole movie):

 EA videos ;\
 Crusader ; chunks
 Policenauts ;/
 AKAO videos

 000h 4 Number of entries (4)
 004h N*8 File List
 Zerofilled

 000h 2 Unknown... decreasing values?
 002h 2 Number of Frames (same as last frame number in STR header)
 004h 4 Offset/800h (to begin of STR movie, with subtiltes in 1st sector)

 04 00 00 00
 ED 97 9E 01 01 00 00 00 ;num sectors=1439h ;div19Eh=C.81h ;97EDh-6137h=36B6h
 37 61 86 01 3A 14 00 00 ;num sectors=0F41h ;div186h=A.03h ;6137h-38D0h=2867h
 D0 38 10 03 7B 23 00 00 ;num sectors=1EA1h ;div310h=A.00h ;38D0h-2302h=15CEh
 02 23 73 02 1C 42 00 00 ;num sectors=1881h ;div273h=A.01h ;2302h-0000h=2302h

13.13 CDROM File Video Streaming STR Variants

- 267/1136 -

Subtitle entries:

The text strings are ASCII, with special 2-byte codes (80h,7Bh=Linebreak, 1Fh,20h=u-

Umlaut, etc).

Customized STR Video Headers

VIEWPOINT (WITH SLIGHTLY MODIFIED STR HEADER)

CAPCOM GAMES

Resident Evil 2 (ZMOVIE\.STR, PL0\ZMOVIE\.STR)

Super Puzzle Fighter II Turbo (STR/CAPCOM15.STR)

CHRONO CROSS DISC 2 VIDEO

Chrono Cross Disc 1 does have normal STR headers, but Disc 2 has Type.bit8 toggled:

 000h 2 STR ID (0160h) ;\
 002h 2 STR Type (0001h=Subtitles) ;
 004h 2 Sector number within Subtitles (0) ; STR
 006h 2 Number of Sectors with Subtitles (1) ; header
 008h 4 Frame number (1) ;
 00Ch 4 Data size counted in 4-byte units (same as [02Ch]/4) ;
 010h 10h Zerofilled ;/
 020h 4 Unknown (2) ;\
 024h 4 Unknown (1AAh, 141h, or 204h) ; Data
 028h 4 Unknown (00100000h) ; part
 02Ch 4 Size of all Subtitle entries in bytes plus 10h ;
 030h .. Subtitle entries ;/
 Zeropadding to 800h-byte boundary ;-padding

 000h 4 Offset from current subtitle to next subtitle (or 0=Last subtitle)
 004h 4 First Frame number when to display the subtitle?
 008h 4 Number of frames when to display the subtitle?
 00Ch 4 Zero
 010h .. Text string, terminated by 00h
 Zeropadding to 4-byte boundary

 008h 4 Frame number (0=First) ;<-- instead of 1=First
 01Ch 2 Unknown (always D351h) ;<-- instead of zero
 01Eh 2 Number of Frames in this STR file ;<-- instead of zero

 01Ch 4 Sector number of 1st sector of current frame ;<-- instead of zero

 002h 2 STR Type (8101h=Disc 2) ;<-- instead of 8001h

13.13 CDROM File Video Streaming STR Variants

- 268/1136 -

And, the Chrono Cross "final movie" does reportedly have "additional properties".

Unknown, what that means, it does probably refer to the last movie on Chrono Cross Disc

2, which is quite huge (90Mbyte), and has lower resolution (160x112), and might have

whatever "additional properties"?

NEED FOR SPEED 3

Need for Speed 3 Hot Pursuit (MOVIES\.XA, contains videos, not raw XA-ADPCM)

Jackie Chan Stuntmaster (FE\MOVIES\.STR)

With slightly modified STR headers:

REBOOT (MOVIES*.WXA)

This has leading XA-ADPCM, and customized STR header:

GRAN TURISMO 1 (230MBYTE STREAM.DAT) AND GRAN TURISMO 2 (330MBYTE STREAM.DAT)

These two games use BS iki format, and (unlike other iki videos) also special STR

headers:

Caution: The STR header values aren't constant throughout the frame:

PGA TOUR 96, 97, 98 (VIDEO..\.XA AND ZZBUFFER\.STR)

Used by all movies in PGA Tour 96, 97 (and for the ZZBUFFER\BIGSPY.STR dummy

padding movie in PGA Tour 98).

The videos have normal BS v2 data, but the Frame Size entry is 8 smaller than usually.

As workaround, always load [0Ch]+8 for all movies with standard STR headers (unless

 014h 4 Number of Frames (..excluding last some frames?) ;-instead BS[0..3]
 018h 4 Unlike the above modified entry, this is normal ;-copy of BS[4..7]

 014h 2 Type (0000h=Normal, 01FFh=Empty frames at end of video)
 016h 2 Number of Frames (excluding empty ones at end of video)
 018h 8 Zerofilled

 002h 2 STR Type (5349h) ("IS") ;-special (instead 8001h)
 010h 2 Total number of frames in video ;-special (instead width)
 012h 2 Flags (bit15=1st, bit14=last) ;-special (instead height)
 014h 8 Zero ;-special (instead BS header copy)
 020h 7E0h Data (in BS iki format) ;-BS iki header (with width/height)

 Namely, flags in [012h] are toggled on first/last sector of each frame,
 and of course [04h] does also increase per sector.

13.13 CDROM File Video Streaming STR Variants

- 269/1136 -

that would exceed [06h]*7E0h).

The padding videos in ZZBUFFER folder have additional oddities in STR header:

SPYTEST.STR has nonsense quant values exceeding the 0000h..003Fh range (first frame

has quant=00B1h, and later frames go as high as quant=FFxxh, that kind of junk is

probably unrelated to BS fraquant). The oddities for SPYTEST.STR do also occur in some

frames in PGA Tour 98 BIGSPY.STR. Anyways, those ZZBUFFER files seem to be only

unused padding files.

ALICE IN CYBER LAND (*.STR)

Note: First sector contains XA-ADPCM audio (video starts in 2nd sector).

Frames are always 320x240.

The frame number of the last used frame of a movie has the bit15 set. After that last

frame, there are some empty frame(s) with frame number FFFFh.

For some reason there are "extra audio sectors in between movies" (uh?).

Many of the movies have a variable frame rate. All movies contain frames sequences that

match one of the following frame rates: 7.5 fps, 10 fps, 15 fps, 30 fps.

ENCRYPTED IKI (PANEKIT - INFINITIVE CRAFTING TOY CASE)

PRINCESS MAKER: YUMEMIRU YOUSEI (PM3.STR)

PARAPPA (JAPANESE DEMO VERSION ONLY) (S0/GUIDE.STR)

These files do have BS ID=3000h (except, the first and last some frames have nromal

ID=3800h). The STR header is quite normal (apart from reflecting the odd BS ID):

 00Ch 4 Frame Size-8 (ie. excluding 8-byte BS header) ;instead of Size-0

 ZZBUFFER\SPY256.STR [14h..1Fh]=normal copy of 8-byte BS v2 header and zero
 ZZBUFFER\SPYGLASS.STR [14h..1Fh]=zerofilled ;\BS v1
 ZZBUFFER\SPYTEST.STR [14h..1Fh]=00 00 10 00 00 00 00 09 00 00 07 EE ;/
 ZZBUFFER\BIGSPY.STR Used in PGA Tour 98 (instead of above three files)

 STR Sector Header:
 002h 2 STR Type (0000h=Alice in Cyber Land video) ;-special
 008h 4 Frame number (1=First) (bit15 set in last frame, or FFFFh)
 010h 10h Zerofilled (instead width/height and BS header copy) ;-special
 020h 7E0h Data (in BS v2 format)

 014h 8 Copy of decrypted BS header (instead of encrypted BS header)

13.13 CDROM File Video Streaming STR Variants

- 270/1136 -

STARBLADE ALPHA AND GALAXIAN 3

These movies have Extra stuff in the data section. The STR header is quite normal

(apart from reflecting the Extra stuff):

The data part looks as so:

Note: Starblade Alpha does use that format for GAMEn.STR and NAME.STR in FLT and TEX

folders (the other movies in that game are in normal STR format).

LARGO WINCH: COMMANDO SAR (FMV\NSPIN_W.RNG)

This is a somewhat "normal" movie, without audio, and with the STR headers moved to

the begin of the file:

Note: The movie contains the rotating "W" logo, which is looped in Start screen.

PLAYER MANAGER (1996, ANCO SOFTWARE) (FILMS\1..3*.STR)

The data part occupies 9-10 sectors, consisting of:

 016h 2 Copy of BS ID, 3000h in most frames (instead of 3800h)
 020h 7E0h Data (in BS format, also with BS ID 3000h, instead of 3800h)

 00Ch 4 Frame Size in bytes (=size of ExtraHeader + BsData + ExtraData)
 014h 4 Copy of Extra Header ;instead of BS[0..3]
 018h 4 Copy of BS[0..3] ;instead of BS[4..7]
 020h 7E0h Data (ExtraHeader + BsData + ExtraData)

 000h 2 Size of BS Data area (S1) ;\Extra Header
 002h 2 Size of Extra Data area (S2) ;/
 004h S1 BS Data (in BS v3 format) ;-BS Data
 .. S2 Extra Data (unknown purpose) ;-Extra Data

 000h Nx20h STR Headers ;size = filesize/800h*20h
 ... Nx7E0h Data ;size = filesize/800h*7E0h

 006h 2 Number of Sectors in this Frame-1 (8..9 = 9..10 sectors)
 00Ch 4 Frame Size in bytes (8..9*7E0h = 3F00h or 46E0h)
 010h 2 Bitmap Width (always F0h)
 012h 2 Bitmap Width (always 50h)
 014h 0Ch Zerofilled (instead copy of BS header or copy of Extra header)
 020h 7E0h Data (Extra Stuff, BS v2 data, plus Unused stuff)

13.13 CDROM File Video Streaming STR Variants

- 271/1136 -

The compressor tries to match the picture quality to the number of sectors per frame, but

it's accidentally leaving the last sector unused:

Apart from the odd format in FILMS\1..3\.STR, the game does also have normal videos in

FILMS\.STR.

CHIISANA KYOJIN MICROMAN (DAT\STAGE**.MV)

The .MV files have 5 sectors/frame: Either 5 video sectors without audio, or 4-5 video

sectors plus XA-ADPCM audio (in the latter case, audio is in each 8th sector (07h,0Fh,

17h,1Fh,etc), hence having filesize rounded up to N*8 sectors):

Caution: The STR header values aren't constant throughout the frame:

The Junk values can be zero, or increase/decrease during the movie, some or all of them

seem to be sign-expanded from 12bit (eg. increasing values can wrap from 07xxh to

F8xxh).

Apart from the odd DAT\STAGE*\.MV files, the game does also have .STR files with

normal STR headers and more sectors per frame (DAT\STAGE16,21,27\.STR,

DAT\OTHER\.STR, DAT\OTHER\CM\.STR, and MAT\DAT*.STR).

 0000h Extra Stuff (7E0h bytes, whatever, often starts with 00,FF,00,FF,..)
 07E0h BS v2 data (3720h or 3F00h bytes, including FFh-padding)
 ... Unused Sector (7E0h bytes, same as in previous frame or zerofilled)

 For 9 sectors: Only 1..7 are used, sector 8 is same as in previous frame
 For 10 sectors: Only 1..8 are used, sector 9 is zerofilled

 Filesize = 800h*((NumberOfFrames*5)) ;5 sectors, no xa-adpcm
 Filesize = 800h*((NumberOfFrames*5+7) AND not 7) ;4-5 sectors, plus xa-adpcm

 Sector 0: [10h] = Number of Frames, [12h]=Junk
 Sector 1: [10h] = Junk, [12h]=0
 Sector 2: [10h] = Junk, [12h]=Junk
 Sector 3: [10h] = Junk, [12h]=Same as below (Bitmap Height)
 Below ONLY when having 5 sectors per frame:
 Sector 4: [10h] = Bitmap Width (140h) [12h]=Bitmap Height (D0h)
 That is, frames with 4 sectors do NOT have any Bitmap Width entry
 (the duplicated Height entry in sector 3 exists, so one could compute
 Width=NumMacroBlocks*100h/Height, or assume fixed Width=320, Height=208).

13.13 CDROM File Video Streaming STR Variants

- 272/1136 -

BLACK SILENCE PADDING

Used by Bugriders: The Race of Kings (MOVIE\XB.STR)

Used by Rugrats Studio Tour (MagDemo32: RUGRATS\DATA\OPEN\B.STR)

The names are sorted alphabetically and exist in pairs (eg. CHARMXA.STR and

CHARMXB.STR), and the disc sectors are following the same sort order.

The padding files contain only black pixels and silent XA-ADPCM sectors, with following

unique STR header entries, notably with wrong Width entry (the MDEC data contains only

320x192 pixels).

The huge 7 second padding is a very crude way to avoid the next movie to be played

when not immediately pausing the CDROM at end of current movie.

RIDGE RACER TYPE 4 (ONLY PAL VERSION) (R4.STR)

The 570Mbyte R4.STR file contains XA-ADPCM in first three quarters, and two STR

movies in last quarter:

As seen above, the PAL movies have lower framerate. And, the 1st PAL movie has higher

resolution, plus some other customized STR header entries:

 Each movie file is followed by dummy padding file. For example, in Bugriders:
 MOVIE*XA.STR Movie clip (with correct size, 320x192)
 MOVIE*XB.STR Black Silence padding (wrong size 640x192, should be 320x192)

 00Ch 4 Frame Size (087Ch)
 010h 2 Bitmap Width (wrongly set to 640, should be 320)
 012h 2 Bitmap Height (192)
 014h 2 MDEC Size (05A0h)
 016h 2 BS ID (3800h)
 018h 2 BS Quant (0001h)
 01Ah 2 BS Version (0002h)
 Filesize is always 44Fh sectors (about 2.2Mbyte per *XB.STR file)

 1st NTSC/US movie: 320x160 pix, 0F61h frames, 4-5 sectors/frame, normal STR
 1st PAL/EUR movie: 320x176 pix, 0CD0h frames, 5-6 sectors/frame, special STR
 2nd NTSC/US movie: 320x160 pix, 1D6Ah frames, 4-5 sectors/frame, normal STR
 2nd PAL/EUR movie: 320x160 pix, 18B5h frames, 5-6 sectors/frame, normal STR

 002h 2 STR Type (0001h=Custom, 176pix PAL video) ;instead of 8001h
 006h 2 Number of Sectors in this Frame (always 5..6)
 00Ch 4 Frame Size (always 2760h or 2F40h, aka 7E0h*5..6)
 012h 2 Bitmap Height (00B0h, aka 176 pixels) ;instead of 00A0h
 014h 8 Zerofilled ;instead BS[0..7]
 020h 7E0h Data (in BS v3 format, plus FFh-padding)

13.13 CDROM File Video Streaming STR Variants

- 273/1136 -

That is, the special video is standard MDEC, the only problem is detecting it as such

(despite of the custom STR Type entry).

MAT HOFFMAN'S PRO BMX (MAGDEMO48: MHPB\SHORT.STR)

This contains a normal MDEC movie, but with distorted "garbage" in first and last some

sectors.

1st Sector:

2nd Sector:

3rd-6th Sector:

7th Sector and up (almost standard MDEC):

 1st sector STR Type 5673h (Leading Dummy) ;\
 2nd sector STR Type 8001h (distorted/empty MDEC) ; junk
 3rd..6th sector STR Type 8001h (distorted/garbage MDEC) ;/
 7th sector and up STR Type 8001h (normal MDEC, with odd [01Ch]) ;-movie
 Last 96h sectors STR Type 0078h (Ending Dummy) ;-junk

 002h 2 STR Type (5673h=Leading Dummy)
 004h 4 Whatever (0004000Ch)
 008h 4 Whatever (0098967Fh)
 00Ch 4 Frame Size (always 100h)
 010h 7F0h EAh-filled

 002h 2 STR Type (8001h=Normal MDEC ID, but content is empty)
 004h 4 Whatever (0004000Ch) ;\
 008h 4 Whatever (0098967Fh) ; same as in 1st sector
 00Ch 4 Frame Size (always 100h) ; (but ID at [002h] differes)
 010h 7F0h EAh-filled ;/

 002h 2 STR Type (8001h=Normal MDEC ID, but content is distorted)
 004h 2 Sector number within current Frame (always 0)
 006h 2 Number of Sectors in this Frame (always 1)
 008h 4 Frame number (increasing, 1..4 for 3rd..6th sector)
 00Ch 4 Frame Size (always 7D0h)
 010h 10h EAh-filled
 020h 7D0h Unknown (random/garbage?)
 7F0h 10h EAh-filled

 Caution: The STR header values aren't constant throughout the frame:
 Entry entry [01Ch] is incremented per sector (or wraps to 0 in new section).
 01Ch 4 Increasing sector number (within current movie section or so)

13.13 CDROM File Video Streaming STR Variants

- 274/1136 -

Last 96h Sectors:

FINAL FANTASY VII (FF7) (MOVIE\.MOV AND MOVIE\.STR)

These movies have Extra stuff in the data section. The STR header is quite normal

(apart from reflecting the Extra stuff):

The data part looks as so:

FINAL FANTASY IX (FF9) (*.STR AND *.MBG)

There are several customized STR header entries:

Caution: The STR header values aren't constant throughout the frame:

Sector ordering has BS data snippets arranged backwards, for example, if BS data does

occupy 2.5 sectors:

 002h 2 STR Type (0078h=Ending Dummy)
 004h 2 Sector number within current Frame (always 0)
 006h 2 Number of Sectors in this Frame (always 1)
 008h 4 Frame number (increasing, in last 96h sectors)
 00Ch 4 Frame Size (always 20h)
 010h 2 Bitmap Width (always 40h)
 012h 2 Bitmap Height (always 40h)
 014h 7ECh Zerofilled

 00Ch 4 Frame Size in bytes (including 28h-byte extra stuff)
 014h 8 Copy of Extra data [0..7] :-instead of BS header[0..7]
 020h 7E0h Data (ExtraData + BsData)

 000h 28h Extra data (unknown purpose, reportedly "Camera data" ... whut?)
 028h .. BS Data (in BS v1 format)

 002h 2 STR Type (0004h=FF9/Video) ;instead of 8001h
 004h 2 Sector number within current Frame (02h..num-1) (2..9 for video)
 006h 2 Total number of Audio+Video sectors in this frame (always 0Ah)
 00Ch 4 Frame Size/4 (of BS data, excluding MBG extra) ;instead of Size/1
 014h 8 Copy of BS[0..7] from 8th video sector ;instead 1st sector
 01Ch 2 Usually 0000h (or 0004h in some MBG sectors) ;inszead of 0000h
 01Eh 2 Usually 0000h (or 3xxxh in some MBG sectors) ;inszead of 0000h
 020h 8F4h Data (in BS v2 format, plus MBG extra data, if any)

 Namely, entry [1Ch..1Fh]=nonzero occurs only on the sector that does contain
 the end of BS data (=and begin of MBG extra data), and of course [04h] does
 also increase per sector.

13.13 CDROM File Video Streaming STR Variants

- 275/1136 -

Sector type/size, very unusually with FORM2 sectors:

Huffman codes are standard BS v2, with one odd exception: MDEC 001Eh/03E1h (run=0,

level=+/-1Eh) should be usually encoded as 15bit Huffman codes, FF9 is doing that for

001Eh, but 03E1h is instead encoded as 22bit Escape code:

There are two movie variants: *.STR and *.MBG. Most MBG files (except

SEQ02\MBG102.MBG) contain extra MBG info in [01Ch..01Fh] and extra MBG data

appended after the BS data. If present, the appended MBG data is often/always(?) just

these 28h-bytes:

Unknown if some sectors contain more/other MBG data, perhaps compressed BG pixel-

depth values for drawing OBJs in front/behind BG pixels?

Non-standard STR Video Headers

FINAL FANTASY VIII (FF8)

Video frames are always 320x224. The video frames are preceeded by two SPU-ADPCM

audio sectors.

 [04h]=00h-01h 1st-2nd audio sector, SPU-ADPCM (see Audio streaming chapter)
 [04h]=02h-06h 1st-5th video sector, unused, [020h..913h] is FFh-filled
 [04h]=07h 6th video sector, contains end of BS data and MBG extra, if any
 [04h]=08h 7th video sector, contains middle of BS data
 [04h]=09h 8th video sector, contains begin of BS data

 Audio sectors are MODE2/FORM1 (800h bytes, with error correction)
 Video sectors are MODE2/FORM2 (914h bytes, without error correction)

 000000000100010 MDEC=001Eh (run=0, level=+1Eh) ;-normal (used)
 000000000100011 MDEC=03E1h (run=0, level=-1Eh) ;-normal (not used)
 0000010000001111100001 MDEC=03E1h (run=0, level=-1Eh) ;-escape (used)

 FF FF FF FF FE FF FE 41 AD AD AD AD AD AD AD AD
 AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD
 AD AD AD AD AD AD AD AD
 (followed by FF's, which might be padding, or part of the extra data)

 000h 4 ID "SMJ",01h=Video
 004h 1 Sector number within current Frame (02h..num-1) (2..9 for video)
 005h 1 Total number of Audio+Video sectors in this frame, minus 1 (9)
 006h 2 Frame number (0=First)
 008h 7F8h Data (in BS v2 format)

13.13 CDROM File Video Streaming STR Variants

- 276/1136 -

ACE COMBAT 3 ELECTROSPHERE (IN 520MBYTE ACE.SPH/SPB ARCHIVE)

The videos start with one XA-ADPCM sector, followed by the first Video sector.

Caution: The STR header values aren't constant throughout the frame:

The Japanese version may be the only game that has two streaming videos running in

parallel on different channels.

That means, non-japanese version is different...?

JUDGE DREDD (1998, GREMLIN) (CUTS\.IXA AND LEVELS*.IXA)

This is a lightgun-game with "interactive movies". The gameplay consists of running on a

fixed path through a scene with pre-recorded background graphics, the only player

interaction is aiming the gun at other people that show up in that movie scene. There

are two movie types:

Both CUTS and LEVELS have unusually small 4-byte STR headers:

 STR Sector Header:
 000h 1 Always 01h
 001h 1 Sector number within current Frame (00h..num-1) (8bit)
 002h 2 Number of Sectors in this Frame
 004h 2 Unknown (1 or 3)
 006h 2 Frame number (decreasing, 0=Last)
 008h 2 Bitmap Width in pixels ;\130hxE0h or 140hxB0h or 80hx60h
 00Ah 2 Bitmap Height in pixels ;/
 00Ch 4 Zero
 010h 2 Zero, or decreasing timer (decreases approx every 2 sectors)
 012h 2 Zero, or decreasing timer (decreases approx every 1 sector)
 014h 3 Zero
 017h 1 Zero, or increases with step 2 every some hundred sectors
 018h 2 Zero, or Timer (increments when [1Ah] wraps from 04h to 01h)
 01Ah 1 Zero, or Timer (increments when [1Bh] wraps from 5Fh to 00h]
 01Bh 1 Zero, or Timer (increments approx every 1 sector)
 01Ch 2 Zero, or Whatever (changes to whatever every many hundred sectors)
 01Eh 2 Zero, or 0204h
 020h 7E0h Data (in BS v3 format)

 Namely, entry [10h..1Fh] can change within the frame (happens in japanese
 version), and of course [01h] does also increase per sector.

 LEVELS**.IXA - Interactive gameplay movies
 CUTS*.IXA - Non-interactive cut-scene movies

 000h 4 Sector number within current Frame (LEVELS=0..8, or CUTS=0..9)
 004h 7FCh Data (see below)

13.13 CDROM File Video Streaming STR Variants

- 277/1136 -

Data for CUTS is 320x240pix (10 sectors per frame):

Data for LEVELS is 320x352pix plus extra stuff (9 sectors per frame):

The unusual 320x352pix resoltution contains a 320x240pix BG image, with additional

320x112pix texture data appended at the bottom.

Extra Stuff 1..6 does supposedly contain info for animating enemies and/or backgrounds.

iki

The .iki video format (found in files with .IKI or .IK2 extension) is used in several games

made by Sony. iki movie sectors have some different properties:

13.14 CDROM File Video Streaming Framerate

According to Sony, BS encoded 320x240pix videos can be played at 30fps (with cdrom

running at double speed).

STR Frame Rate

As a general rule, the frame rate is implied in CDROM rotation speed (150 or 75 sectors

per second, minus the audio sectors, divided by the number of sectors per video frame).

Fixed/Variable Framerates

The frame can drop on video frames that contain more sectors than usually. Video

frames that require fewer sectors than often padded with zerofilled sectors. However,

 Note: CUTS videos have 2 leading XA-ADPCM sectors
 000h .. BS Data (in BS v2/v3 format) ;-BS picture

 Note: LEVELS videos have 1 leading XA-ADPCM sector
 000h 4 Offset to BS Data (always 28h) ;\
 004h 4*6 Offsets to Extra Stuff 1..6 ; extra header
 01Ch 0Ch Zerofilled ;/
 028h .. BS Data (in BS v2/v3 format) ;-BS picture
 Extra Stuff 1..6 ;-extra data

 * There are only as many iki video sectors as needed to hold all the
 frame's data. Remaining sectors are null.
 * The first sector's Submode.Channel starts at zero, then increments for
 each sector after that, and resets to zero after an audio sector.
 * IK2 videos can also have variable frame rates that are very inconsistent.

13.14 CDROM File Video Streaming Framerate

- 278/1136 -

some games don't have that padding, so they could end up reeceiving up to 150 single-

sector frames per second; the actual framerate is supposedly slowed down to 60Hz or

less via Vblank timer (and with the CDROM reading getting paused when the read-ahead

buffer gets full).

Audio Samplerate

XA-ADPCM audio contains samplerate info (in the FORM2 subheader), the samplerate

versus amount of audio sectors can be used to compute the CDROM rotation speed.

There are two exceptions: Some movies don't have any audio at all, and some movies

use SPU-ADPCM instead of XA-ADPCM. In the latter case, the SPU Pitch (samplerate)

may (or may not) be found somewhere in the audio sector headers.

CDROM Rotation speed

As said above, the speed can be often detected via audio sample rate. Otherwise, the

general rule is that most PSX games are used 2x speed (150 sectors/second). But, there

are a few games with 1x speed (see below).

CDROM Single speed (75 sectors/frame)

Here are probably most of the USA games with videos at 1x speed.

 007 - The World Is Not Enough
 1Xtreme
 Arcade Party Pak
 Atari Anniversary Edition Redux
 Blast Radius
 Blue's Clues - Blue's Big Musical
 Chessmaster II
 Chronicles of the Sword
 Civilization II
 Colin McRae Rally
 Creatures - Raised in Space
 Cyberia
 Demolition Racer
 Dune 2000
 ESPN Extreme Games
 FIFA Soccer 97
 Fade to Black
 Family Connection - A Guide to Lightspan
 Fear Effect
 Fox Hunt
 Interactive CD Sampler Volume 1
 Jade Cocoon - Story of the Tamamayu
 Jeopardy! 2nd Edition

13.14 CDROM File Video Streaming Framerate

- 279/1136 -

13.15 CDROM File Video Streaming Audio

Audio Stream

STR movies are usually interleaved with XA-ADPCM sectors (the audio sectors are

automatically decoded by the CDROM hardware and consist of raw ADPCM data without

STR headers).

CDROM File Audio Streaming XA-ADPCM

However, there are also movies without audio. And a few movies with SPU-ADPCM

audio.

SPU-ADPCM in Chunk-based formats

CDROM File Video Streaming Chunk-based formats

SPU-ADPCM in Chrono Cross/Legend of Mana Audio Sector

Chrono Cross Disc 1 (HiddenDirectory\1793h..17A6h)

Chrono Cross Disc 2 (HiddenDirectory\1793h..179Dh)

Legend of Mana (MOVIE*.STR, except some movies without audio)

 Juggernaut
 Krazy Ivan
 MTV Sports - Skateboarding featuring Andy Macdonald
 MTV Sports - T.J. Lavin's Ultimate BMX
 Medal of Honor
 Medal of Honor - Underground
 Official U.S. PlayStation Magazine Demo Disc 23
 Planet of the Apes
 PlayStation Underground Number 2
 Shockwave Assault
 Starblade Alpha
 Starwinder - The Ultimate Space Race
 Str.at.e.s. 1 - Match-A-Batch
 Str.at.e.s. 5 - Parallel Lives!
 Str.at.e.s. 7 - Riddle Roundup!
 The X-Files
 Top Gun - Fire at Will!
 Um Jammer Lammy
 Uprising X
 Wheel of Fortune - 2nd Edition
 Williams Arcade's Greatest Hits

 000h 2 STR ID (0160h)
 002h 2 STR Type (0000h, 0001h, 0100h, or 0101h)

13.15 CDROM File Video Streaming Audio

- 280/1136 -

Note: The Chrono/Mana STR files start with Audio frames in first sector (except, some

Legend of Mana movies don't have any Audio, and do start with Video frames).

SPU-ADPCM in Final Fantasy VIII (FF8)

There is one special case on disc 1: a movie with no video. Each 'frame' consists of two

sectors: the first is the left audio channel, the second is the right audio channel.

 0000h=Legend of Mana, Audio normal sectors
 0001h=Legend of Mana, Audio sectors near end of movie
 0000h=Chrono Cross Disc 1, Audio.left?
 0001h=Chrono Cross Disc 1, Audio.right?
 0100h=Chrono Cross Disc 2, Audio.left?
 0101h=Chrono Cross Disc 2, Audio.right?
 004h 2 Sector number in Frame (0=Audio.left?, 1=Audio.right?)
 006h 2 Number of Audio sectors in this frame (always 2)
 008h 4 Frame number (1=First)
 00Ch 4 Unused (Chrono: FFh-filled or Mana: 00000FC0h=2x7E0h=Framesize?)
 010h 10h Unused (Chrono: FFh-filled or Mana: 00h-filled)
 020h 60h Unused (FFh-filled)
 080h 4 ID "AKAO"
 084h 4 Frame number (0=First)
 088h 8 Unused (zerofilled)
 090h 4 Remaining Time (step 690h) (can get stuck at 0340h or 0B20h at end)
 094h 4 Zero
 098h 4 Unknown (11h)
 09Ch 4 Pitch (1000h=44100Hz)
 0A0h 4 Number of bytes of audio data (always 690h)
 0A4h 2Ch Unused (zerofilled)
 0D0h 690h Audio (10h-byte SPU-ADPCM blocks) (1680 bytes)
 760h A0h Unused (10h-byte SPU-ADPCM blocks with flag=03h and other bytes=0)

 000h 4 ID "SMN",01h=Audio/left, "SMR",01h=Audio/right
 004h 1 Sector number in Frame (0=Audio.left, 1=Audio.right)
 005h 1 Total number of Audio+Video sectors in this frame, minus 1 (1 or 9)
 006h 2 Frame number (0=First)
 008h E8h Unknown (camera data?) (232 bytes)
 0F0h 6 Audio ID (usually "MORIYA", sometimes "SHUN.M")
 0F6h 0Ah Unknown (10 bytes) (reportedly 10 bytes at offset 250 = FAh ?????)
 100h 4 ID "AKAO"
 104h 4 Frame number (0=First)
 108h 14h Unknown (20 bytes)
 11Ch 4 Pitch (1000h=44100Hz)
 120h 4 Number of bytes of audio data (always 690h)
 124h 2Ch Unknown (44 bytes)
 150h 20h Unknown (32 bytes)
 170h 690h SPU-ADPCM Audio data (690h bytes)

13.15 CDROM File Video Streaming Audio

- 281/1136 -

SPU-ADPCM in Final Fantasy IX (FF9) (*.STR and *.MBG)

The FF9 audio sectors are normal MODE2/FORM1 sectors (unlike the FF9 video sectors,

which are MODE2/FORM2).

Dance series SPU-ADPCM streaming (bigben interactive, DATA.PAK\stream*.str)

This format is used for raw SPU-ADPCM streaming (without video).

SLES-04121 Dance: UK

SLES-04161 Dance: UK eXtra TraX

SLES-04129 Dance Europe

SLES-04162 All Music Dance! (Italy)

Note: Sector 0..8 contain 9*7E0h=46E0h bytes data per frame, but only 4000h bytes are

used (the last 6E0h bytes in sector 8 are same as in sector 7).

 000h 2 STR ID (0160h)
 002h 2 STR Type (0008h=FF9/Audio)
 004h 2 Sector number in Frame (0=Audio.left, 1=Audio.right)
 006h 2 Total number of Audio+Video sectors in this frame (always 0Ah)
 008h 4 Frame number (1=First)
 00Ch 4 Zero
 010h 1 Audio flag? (00h=No Audio, 01h=Audio)
 011h 4Fh Zerofilled --- XXX or whatever (when above is 00h)
 060h 4 Number of Frames in this STR file
 064h 1Ch EEh-filled
 Below 780h bytes are all zerofilled when [10h]=00h (no audio)
 Below 780h bytes are reportedly all ABh-filled "in the last frame of a movie
 on Disc 4" (unknown which movie, and if that occurs in other movies, too)
 080h 4 ID "AKAO"
 084h 4 Frame number (0=First)
 088h 14h Unknown (20 bytes)
 09Ch 4 Pitch (116Ah=48000Hz) (or 1000h=44100Hz in final movie)
 0A0h 4 Number of bytes of audio data (0, 720h, 730h, or 690h=final movie)
 0A4h 2Ch Unknown (44 bytes)
 0D0h 730h SPU-ADPCM audio (plus leftover/padding when less than 730h bytes)

 000h 2 STR ID (0160h)
 002h 2 STR Type (8001h, same as MDEC)
 004h 2 Sector number within current Frame (0000h..num-1)
 006h 2 Number of Sectors in this Frame (always 9)
 008h 4 Frame number (0=First)
 00Ch 4 Frame Size in bytes (always 4000h)
 010h 4 Whatever (always 00A000A0h, would be width/height if it were video)
 014h 8 Zerofilled
 01Ch 4 Special ID (always DDCCBBAAh for Dance audio)
 020h 7E0h Data (in SPU-ADPCM format, mono, 22200Hz aka Pitch=07F5h)

13.15 CDROM File Video Streaming Audio

- 282/1136 -

Raw SPU-ADPCM Streaming

Some games are using raw SPU-ADPCM for streaming. That is, the file is basically a

normal .VB file, but it can be dozens of megabytes tall (ie. too large to be loaded into

RAM all at once).

13.16 CDROM File Video Streaming Chunk-based formats

Newer Electronic Arts videos (EA)

EA videos are chunk based (instead of using 20h-byte .STR headers). The next chunk

starts right at the end of the previous chunk (without padding to sector boundaries).

 Disney's The Emperor's New Groove (MagDemo39: ENG\STREAM*.CVS)
 Disney's Aladdin in Nasira's Revenge (MagDemo46: ALADDIN\STREAM*.CVS)

 STR Sector Header:
 No STR Sector header (first sector starts directly with "VLC0" chunk)
 VLC0 Chunk (at begin of movie file):
 000h 4 Chunk ID "VLC0"
 004h 4 Chunk Size (always 1C8h) (big-endian)
 008h 1C0h 16bit MDEC values for E0h huffman AC codes (little-endian)
 MDEC Chunks (video frames):
 000h 4 Chunk ID "MDEC" ;\
 004h 4 Chunk Size (...) (big-endian) ; custom chunk header,
 008h 2 Bitmap Width in pixels (big-endian) ; instead of STR header
 00Ah 2 Bitmap Height in pixels (big-endian) ;
 00Ch 4 Frame Number (starting at 0) (big-endian) ;/
 010h .. Data (in BS v2 format, but using custom Huffman codes from VLC0)
 Zeropadding to 4-byte boundary
 Audio Chunks (au00/au01):
 000h 4 Chunk ID ("au00"=normal, "au01"=last audio chunk)
 004h 4 Chunk Size (...) (big-endian)
 008h 4 Total number of 2x4bit samples in previous chunks (big-endian)
 00Ch 2 Unknown (always 800h) (maybe Pitch: 800h=22050Hz) (big-endian)
 00Eh 2 Unknown (always 200h) (big-endian)
 SPU-ADPCM audio data, left (0Fh bytes per sample block)
 SPU-ADPCM audio data, right (0Fh bytes per sample block)
 Garbagepadding to 4-byte boundary
 Note: SPU-ADPCM does normally have 10h-byte blocks, but in this case,
 the 2nd byte (with loop flags) is omitted, hence only 0Fh-byte blocks.
 Zero Chunk (zeropadding at end of file, exists only in some EA videos):
 000h .. Zeropadding

13.16 CDROM File Video Streaming Chunk-based formats

- 283/1136 -

Older Electronic Arts videos

Crusader: No Remorse (1996 Origin Systems) (MOVIES*.STR)

Soviet Strike (1996 Electronic Arts)

Battle Stations (1997 Electronic Arts)

Andretti Racing (1996 Electronic Arts)

Oldest Electronic Arts videos

Wing Commander III: Heart of the Tiger (MOVIES1.LIB*.wve) (1995, EA/Origin)

 STR Sector Header:
 000h 4 ID (DDCCBBAAh) (aka AABBCCDDh big-endian)
 004h 4 Sector number within STR file (0=First, up to Filesize/800h-1)
 008h 7F8h Data (video and audio chunks, see below) (first chunk is "ad20")
 Video Chunks (MDEC):
 000h 4 Chunk ID "MDEC" ;\
 004h 4 Chunk Size (...) (big-endian) ;
 008h 2 Bitmap Width in pixels (big-endian) ; custom chunk header
 00Ah 2 Bitmap Height in pixels (big-endian) ;
 00Ch 4 Frame Number (starting at 0) (big-endian) ;/
 010h .. Data (in BS v2 format) ;-standard BS v2 data
 Audio Chunks (ad20/ad21) (22050Hz stereo):
 000h 4 Chunk ID ("ad20"=normal, "ad21"=last audio chunk)
 004h 4 Chunk Size (1A50h or 1A70h) (big-endian)
 008h 4 Total number of 2x4bit samples in previous chunks (big-endian)
 00Ch 2 Unknown (always 800h) (maybe Pitch: 800h=22050Hz) (big-endian)
 00Eh 2 Unknown (always 200h) (big-endian)
 010h .. SPU-ADPCM audio data, left (10h bytes per sample block)
 SPU-ADPCM audio data, right (10h bytes per sample block)
 Last STR Sector:
 000h 18h FFh-filled (aka 8-byte STR header and 10h-byte Chunk header)
 018h - Nothing (total STR filesize is N*800h+18h bytes)

 STR Sector Header:
 No STR Sector header (first sector starts directly with "Ad10" chunk)
 Video Chunks (MDEC):
 000h 4 Chunk ID "MDEC" ;\
 004h 4 Chunk Size (2xx0h) (big-endian) ;
 008h 2 Bitmap Width in pixels (big-endian) ; custom chunk header
 00Ah 2 Bitmap Height in pixels (big-endian) ;
 00Ch 2 Unknown (7FFFh) (big-endian) ;
 00Eh 2 Unknown (AD14h or AD24h) (big-endian) ;/
 010h .. Data (in BS v2 format) ;-standard BS v2 data
 Padding, up to circa 20h bytes, FFh-filled
 Audio Chunks (Ad10/Ad11) (22050Hz stereo):
 000h 4 Chunk ID ("ad20"=normal, "ad21"=last audio chunk)
 004h 4 Chunk Size (D38h or D28h) (or less in last chunk) (big-endian)

13.16 CDROM File Video Streaming Chunk-based formats

- 284/1136 -

Audio seems to be 22050Hz stereo, however, chunks with size=D38h have odd amounts

of sampleblocks, so it isn't as simple as having left/right in first/second half.

Policenauts (Japan, 1996 Konami) (NAUTS\MOVIE*.MOV)

The Name List does resemble a file archive, however, the "filenames" are just Type IDs

(eg. all picture frames do have the same name).

Data Formats for the different Data Types...

 010h .. SPU-ADPCM audio data, left ? (10h bytes per sample block)
 SPU-ADPCM audio data, right ? (10h bytes per sample block)

 STR Sector Header:
 No STR Sector header (first sector starts directly with "VMNK" chunk)
 First chunk (800h bytes):
 000h 4 ID "VMNK" (aka KNMV backwards, maybe for Konami Video/Movie)
 004h 4 Unknown (01h)
 008h 4 Unknown (01h)
 00Ch 4 Unknown (F0h)
 010h 4 Size of KLBS chunks? (40000h)
 014h 4 Bitmap X1 (aka left border)? (16pix, 10h)
 018h 4 Bitmap Y1 (aka upper border)? (16pix, 10h)
 01Ch 4 Bitmap Width (288pix, 120h)
 020h 4 Bitmap Height (144pix, 90h)
 024h 7E4h Zerofilled
 Further chunks (40000h bytes, each):
 000h 8 Zerofilled
 008h 4 Chunk ID "KLBS" (aka SBLK backwards, maybe for Stream Block)
 00Ch 4 Chunk Size (usually 40000h)
 010h 4 Number of Name List entries
 014h 4 Number of Name List entries (same as above)
 018h 8 Zerofilled
 020h N*30h Name List
 Data (referenced from Name List)
 Zeropadding (to end of 40000h-byte chunk)

 Name List entries:
 000h 8 Zerofilled
 008h 8 Data Type Name (eg. "SCIPPDTS")
 010h 4 Time when to play/display the frame (0 and up)
 014h 4 Time duration for that frame (usually 14h for Picture frames)
 018h 4 Data Offset in bytes (from begin of chunk)
 01Ch 4 Data Size in bytes
 020h 10h Zerofilled

 Type "SDNSHDTS" aka SNDS,STDH - SoundStdHeader (Size=800h, Duration=0)
 000h 4 Maybe Pitch? (800h) (big-endian)
 004h 4 Maybe Pitch? (800h) (big-endian)
 008h 4 Total SPU-ADPCM size in bytes (for whole .MOV) (big-endian)

13.16 CDROM File Video Streaming Chunk-based formats

- 285/1136 -

Note: Total number of 10h-byte SPU-ADPCM blocks can be odd (so the audio seems to be

mono).

Apart from the .MOV files, there's also one standard .STR file for the Knnami Intro (with

normal STR headers and BS v2 data).

Best Sports Games Ever (DD\.VLC and MOVIES\.VLC) (Powerline Demo Disc menu)

This format is used for still images with only frame, and for looping short animation

sequences in the Demo Disc Menu. There's no audio.

For random access, best is seeking "fpos=N*(Framesize+4)+10h", alternately one could

search "fpos=LocationAfterFrameEndID".

Sentient (FILMS*.FXA)

This is having neither per-sector STR headers nor Chunk headers, instead it's having raw

data with fixed size of 10 sectors per frame.

File Header (sector 0, 800h bytes):

 00Ch 4 Unknown (FFFFFFFFh) (whatever)
 010h 4 Unknown (00007FFFh) (big-endian)
 014h 7ECh Zerofilled
 Type "SDNSSDTS" aka SNDS,STDS - SoundStdStream (Size=10h..4000h, Duration=9Ch)
 000h 4000h SPU-ADPCM data in 10h-byte blocks (last chunk is less than 4000h)
 Type "SCIPPDTS" aka PICS,STDP - PictureStdPicture (Size=3xxxh, Duration=14h)
 000h 3xxxh Picture Frame (in BS v1 format)
 Type "SCTELLEC" aka ETCS,CELL - ExtraCells? (Size=0Ch, Duration=1)
 000h .. Maybe subtitle related...?
 Type "SCTEGOLD" aka ETCS,DLOG - ExtraD-log? (Size=19h..31h, Duration=27h..44h)
 000h .. Maybe subtitle related...?

 Header Chunk:
 000h 4 Fixed ID (74h,55h,89h,08h aka 08895574h)
 004h 2 Bitmap Width (140h)
 006h 2 Bitmap Height (100h)
 008h 2 Video Frame Size/4 (17A0h or 13B0h)
 00Ah 2 Number of Video Frames (01h or 32h)
 00Ch 4 Frame End ID (eg. 62DCCACEh) (random?, but stays same within movie)
 Video Frame Chunk(s):
 Data (in BS v1/v2/v3 format) ;\size = hdr[008h]*4
 FFh-filled (padding to Frame Size) ;/
 ... 4 Frame End ID (eg. 62DCCACEh) ;-same value as in hdr[00Ch]

 000h 4 File ID (01h,"XSP") (aka PSX backwards)
 004h 2 Unknown (0001h)
 006h 2 Unknown (0040h) (this is used for something...)
 008h 2 Bitmap Width (0140h)

13.16 CDROM File Video Streaming Chunk-based formats

- 286/1136 -

The frame rate is 15fps with 10 sectors per frame (8xVideo and either 2xAudio or

1xAudio+1xDummy). The Video/Audio/Dummy sector arrangement does repeat each 40

sectors (aka each 4 frames):

Video frames are 8 sectors (4000h-byte), first and last 8 bytes are swapped:

Dummy sectors contain 800h bytes:

 00Ah 2 Bitmap Height (00F0h)
 00Ch 4 Total number of video frames
 010h 4 Number of video sectors per frame (always 8)
 014h 4 Total number of video sectors, excluding audio/dummy (=NumFrames*8)
 018h 1 Zero
 019h 1 Sector List size (28h) (ie. each 4 frames) ;\or zerofilled when
 01Ah 28h Sector Types (2=Video, 1=Audio, 0=Dummy) ;/not present
 042h .. Zerofilled
 7xxh .. Unknown, maybe just garbage ...?
 Zerofilled

 vVvvvvv--vvVvvv--vvvvVv--vvvvvv-Vvvvvvv- Video
 -------A-------A-------A-------A-------A Audio
 --------D-------D-------D--------------- Dummy
 V = 1st sector of video frame
 v = 2nd..8th sector of video frame (or fileheader in case of sector 0)
 A = Audio (each 8th sector, ie. sector 07h,0Fh,17h,1Fh,etc.)
 D = Dummy (occurs after some (not all) audio sectors)
 Some files have that sector arrangement stored in header[019h..041h], but
 other files have that header entries zerofilled (despite of using the same
 arrangement).

 0000h 8 Last 8 bytes of BS v1 bitstream ;\or garbage padding
 0008h 3FF0h First 3FF0h of BS v1 bitstream ;/
 3FF8h 8 Footer (64bit, with squeezed BS header and other info)
 The footer bits are:
 0-4 5bit Quant (00h..1Fh) (only 5bit, not 6bit)
 5-15 11bit MDEC Size in 20h-word units (80h-byte units)
 16-23 8bit Unknown (lowbits are often same as bit48 and up?)
 24-31 8bit BS ID/100h (3800h/100h)
 32-47 16bit Frame Number (0=First)
 48-63 16bit Next Sector Number (start of next video frame)
 To decrypt/convert the frame to standard BS v1 format:
 x=[3FF8h] ;get footer
 [3FF8h..3FFFh]=[0000h..0007h] ;last 8 bytes of bitstream
 [0000h]=(x AND FF00FFE0h) ;size and ID=3800h
 [0004h]=(x AND 1Fh)+10000h ;quant and version=v1
 The next_sector number is usually current_sector+1 (or +2 if that would be
 audio), in last frame it does point to end of file.
 Bitstreams smaller than 3FF8h are garbage padded (initially some 32bit garbage
 values, and in later frames leftovers from previous bitstream sectors).

13.16 CDROM File Video Streaming Chunk-based formats

- 287/1136 -

Audio sectors are XA-ADPCM and can be filtered via Subheader, or via sector arrangement

pattern.

13.17 CDROM File Video Streaming Mis-mastered files

Mis-mastered streaming files

There are several discs that have streaming data stored as partial CDROM images

(instead of as real CDROM sectors).

The 920h-byte sectors exclude the leading Sync mark and MM:SS:FF:Mode2 value.

 000h 4 Always FFFFFFFFh (unfortunately, this isn't a unique ID)
 004h 7FCh Garbage (zeroes, random, or even leaked ASM source code)
 Dummy sectors have the same Subheader as video sectors, the leading FFFFFFFFh
 could also occur in BS bitstreams or frames with garbage padding, so one must
 use the sector arrangement pattern to identify dummy sectors.

 Format Content Where
 raw 920h-byte STR K9.5 1 - Live in Airedale (ZZBUFFER.STR) ;\
 raw 920h-byte STR Need for Speed 3 (MOVIES\ZZZZZZZ*.PAD) ;
 raw 920h-byte STR 3D Baseball (ZZZZZZZZ.ZZZ) ; intended
 raw 920h-byte STR Wing Commander III (DUMMY.DAT) ; padding
 raw 920h-byte STR R-Types (DMY\DUMMY.BIN) ;
 raw 920h+junk STR+junk Grand Slam (DUMMY.BIN) ;
 raw 920h-byte XA-ADPCM Spec Ops Airborne Commando (PADDING.NUL) ;
 raw 920h-byte SW-STR Cyberia (ENDFILL*.STR) (software render) ;
 RIFFs/CDXAfmt STRs Sonic Wings Special (SW00.DMY = two RIFFs);/
 raw 920h-byte XA-ADPCM Rugrats (MagDemo19: STREAMS\DB02.ISF) ;\nonsense
 raw 920h-byte Data BABEh Rugrats (MagDemo19: STREAMS\OPEN.BIN) ; dupes
 raw ???-byte CDDA Championship Surfer (MagDemo43: HWX\MUSIC);/
 raw ???-byte CDDA Twisted Metal 2 (MagDemo50: TM2\FRWYSUB.DA) ;-?
 raw 920h-byte STR Sonic Wings Special (MOV\MQ*.STR) ;-unused?
 raw 920h-byte STR Apocalypse (MagDemo16: APOC*.STR)
 raw 920h-byte XA-ADPCM Apocalypse (MagDemo16: APOC*.XA)
 raw 920h-byte XA-ADPCM NFL Xtreme (MagDemo13: NFLX\GAME\SOUND\2PLAYRNO.XA)
 raw 920h-byte XA-ADPCM Ace Combat 2 (MagDemo01: ACE2.STP)
 raw 920h-byte XA-ADPCM Colony Wars (MagDemo02: CWARS\DEMO.PAK)
 raw 920h-byte XA-ADPCM Best Sports demo (AH2\GAMEDATA\COM\MUSIC\MUSIC.IXA)
 raw 920h-byte XA-ADPCM Tomb Raider: Last Revelation (MagDemo29: TR4\XA1.XA)
 raw 800h-byte XA-ADPCM Croc 1 demo (MagDemo02: CROC\MAGMUS.STR) (FORM1)
 RIFF/CDXAfmt XA-ADPCM Best Sports demo (LOMUDEMO\SFX\COMMENT.STR)
 RIFF/CDXAfmt ?+XA-ADPCM Ace Combat 3 Electrosphere (MagDemo30: AC3*.SPB)
 RIFF/CDXAfmt XA-ADPCM Colony Wars Venegance (MagDemo14: CWV\SONYDEMO.PAK)
 RIFF/WAVEfmt CDDA T'ai Fu (MagDemo16: TAIFU\3_10.WAV, 2x16bit 44100Hz)
 RIFF/WAVEfmt CDDA Psalm69 (beta) FRONT\FIRE.TRK

13.17 CDROM File Video Streaming Mis-mastered files

- 288/1136 -

The RIFF/CDXAfmt has a standard RIFF header, followed by 930h-byte sectors (same

format as when opening CDROM streaming files in Windows). The RIFF/WAVEfmt is just a

standard .WAV file.

In case of the ZZ*.* files on retail discs, the developers did intentionally append some

non-functional dummy STR files (instead of appending zerofilled 30Mbyte at end of disc).

CDROM File XYZ and Dummy/Null Files

In case of the Demo Discs, the developers did probably have high hopes to release a

demo version with working streaming data, just to find out that Sony had screwed up the

data format (or maybe they had only accidentally included streaming data, without

actually using it in demo version). Confusingly, the corrupted files were released on

several discs (magazine demos, and other demo releases).

The Rugrats demo has intact files in RUGRATS\CINEMAT and RUGRATS\XA folders, plus

nonsense copies of that files in 920h-byte format in STREAMS folder.

Partially mis-mastered files

Legend of Dragoon (MagDemo34: LOD\XA\LODXA00.XA has FIRST SECTOR mis-

mastered (it has TWO sub-headers

(01,00,48,00,01,00,48,00,01,01,64,04,01,01,64,04), the remaining sectors are looking

okay).

Porsche Challenge (USA) (SRC\MENU\STREAM*.STR)

The subheader and data of the 1st sector are accidently overwritten by some ASCII

string:

 Data/movie sectors look as so:
 000h 4 Sub-Header (File, Channel, Submode OR 20h, Codinginfo)
 004h 4 Copy of Sub-Header
 008h 800h Data (2048 bytes) ;<-- contains STR movie sectors
 808h 4 EDC (zerofilled)
 80Ch 114h ECC (zerofilled)
 And XA-ADPCM sectors look as so:
 000h 4 Sub-Header (File, Channel, Submode OR 64h, Codinginfo)
 004h 4 Copy of Sub-Header
 008h 900h Data (18*128 bytes) ;\contains XA-ADPCM audio sectors
 908h 14h Data (zerofilled) ;/
 91Ch 4 EDC (zerofilled)

 000h 4 Subheader 01 44 2D 52 ".D-R" ;\distorted
 004h 4 Subheader copy 01 4D 20 47 ".M G" ;/"CD-ROM G"
 008h 299h Data ASCII 65 6E 65 72 61 ... "enerator for Windows"...
 2A1h 567h Data BS bitstream (but lacks BS header and start of bitstream)

13.17 CDROM File Video Streaming Mis-mastered files

- 289/1136 -

The 2nd sector and up are containing intact STR headers (for the 2nd-Nth sector of 1st

frame, but the whole 1st frame is unusable due to missing 1st sector; however, the

following frames are intact).

13.18 CDROM File Video BS Compression Versions

STR/BS Version Summary, with popularity in percents (roughly)

Most games can decrypt v1/v2/v3 videos (no matter which of the three versions they are

actually using), newer games do occassionally use v3 for picture compression, but often

stick with v2 for video streaming (perhaps because v3 does require slightly more CPU

load; unknown if the higher CPU load has been an actual issue, and if it has been solved

in the later (more optimized) decompressor versions) (unknown if there are other benefits

like v2 having better DC quality or better compression in some cases?).

BS v0 (used by only one known game)

This game is apparently using a very old and very unoptimized decoder (although it was

released in 1997, when most or all other games did already have decoders with v1/v2/v3

support).

The v0 decoder has different header, lacks End of Frame codes, and uses Huffman codes

with different AC values than v1/v2/v3/iki.

 Version .STR movies .BS pictures
 BS v2 60% 6% Most games
 BS v3 20% 4% Some newer games
 BS v1 15% 0.1% Old games
 BS ea 2% - (?) Electronic Arts titles
 BS iki 0.5% 0.1% Several games
 BS fraquant 0.2% 0.1% Rare (X-Files, Eagle One)
 BS v0 0.1% - Rare (Serial Experiments Lain)
 BS v2/v3.crypt 0.2% - Rare (Star Wars games)
 BS iki.encrypted 0.1% - Rare (Panekit)
 Wacwac MDEC 0.1% - Rare (Aconcagua)
 Polygon Streams 0.x% (?) - Some titles
 Raw MDEC - - Was never used in files?
 MPEG1 - - VCD Video CDs
 None ?% (?) 90% No videos or BS pictures

 v0 used by Serial Experiments Lain

13.18 CDROM File Video BS Compression Versions

- 290/1136 -

BS v1 (used by older games, some of them also having v2 videos)

v1 and v2 can be decoded with the same decompressor. The only difference is that v1

was generated with an older compressor (which did accidently store nonsense 22bit

escape codes with run=N, level=0 in the bitstream; whereas one could as well use

run+N+1 in the next code, or omit it completely if next code is EOB).

BS v2 (most games)

 v1 used by Wipeout 2097 (MAKE.AV, XTRO*.AV)
 v1 used by Viewpoint (MOVIES*.STR) (oddly with [08h]=FirstFrame=0 and
 [1Ch]=Unspecified=Nonzero) (the game also has ".str" files in
 VIEW.DIR\streams, but that isn't MDEC/STR stuff)
 v1 used by Ridge Racer Revolution (MOVIE*.STR)
 v1 used by Policenauts
 v1 used by Final Fantasy VII (FF7)
 v1? used by Tekken 2
 v1/v2 used by Final Fantasy Tactics (OPEN*.STR)
 v1/v2 used by Project Horned Owl (*.STR)
 v1/v2 used by Gex (*.FMV)
 (and probably more)

 v2 used by Gex - Enter the Gecko (*.STR)
 v2 used by Tomb Raider (FMV*.FMV)
 v2 used by Alone (STR**.STR)
 v2 used by Kain (*.STR)
 v2 used by Fear Effect (BOOT.SID, LOGO.SID, ABGA\ABGA.FLX)
 v2 used by Parasite Eve 2 (INTERx.STR, and in .CDF's eg. stage1\folder501)
 v2 used by Witch of Salzburg (MOVIE*.STR)
 v2 used by Breath of Fire III (LOGO*.STR)
 v2 used by Hear it Now (MOVIE*.STR)
 v2 used by Legend of Mana (MOVIE*.STR)
 v2 used by Misadventures of Tron Bonne (STR*.STR)
 v2 used by Rayman (VIDEO*.STR)
 v2 used by Resident Evil 1 (PSX\MOVIE*.STR) ;\although v3 is
 v2 used by Resident Evil 2 (PL0\ZMOVIE*.STR, ZMOVIE*.STR) ;/used in *.BSS
 v2 used by Tokimeki Memorial 2 (VX*.STR)
 v2 used by Spider-Man (CINEMAS*.STR)
 v2 used by Perfect Assassin (CDV*.STR)
 v2 used by Pandemonium 2 (*.STR)
 v2 used by Die Hard Trilogy 2 (MOVIE*.STR)
 v2 used by Need for Speed 3 (MOVIES*.STR) (oddly with [14h,18h]<>[20h,24h])
 v2 used by Wild Arms (STR*.STR)
 v2 used by Wild Arms 2 (STR*.STR)
 v2 used by Frogger (*.STR)
 v2 used by Gundam Battle Assault (XA*.STR)
 v2 used by Alundra (MOVIE*.MOV)
 v2 used by Spec Ops (file 95h,96h within BIGFILE.CAT)
 v2 used by Crash Team Racing (file 1E1h..1F8h,1FAh within BIGFILE.BIG)
 (and many more)

13.18 CDROM File Video BS Compression Versions

- 291/1136 -

Same as v1, but without the compressor bug.

BS v3 (used by some newer games, some of them also having v2 videos)

Same as v2, but using Huffman compressed DC values.

BS ea (Electronic Arts)

Used by many EA Sports titles and several other titles from Electronic Arts:

Uses VLC0 and MDEC chunks (instead of STR headers), the MDEC chunks contain

standard BS v2 data, but using custom MDEC values from VLC0 chunk.

BS fraquant

This replaces the 6bit quant value by a 16bit fixed-point quant value (done by

manipulating the Quant Table instead of using QuantDC, apart from that extra feature it's

internally using normal BS v1/v2/v3 decoding).

 v2/v3 used by Lemmings Oh No More Lemmings (ANIMS*.STR)
 v2/v3 used by Castlevania (*.STR)
 v3 used by Heart of Darkness (CINE*.STR, SETUP*.STR)
 v3 used by R-Types (MV*.STR)
 v3 used by Black Matrix (MOVIE*.STR)
 v3 used by Nightmare Creatures II (INTRO*.STR, LEVEL**.STR)
 (and many more)

 Castrol Honda Superbike Racing
 EA Sports Supercross 2000, 2001
 Future Cop - L.A.P.D. (retail and MagDemo14: FCOPLAPD*.WVE and *.FSV)
 Hot Wheels - Turbo Racing
 Jampack Vol. 2
 Knockout Kings 99, 2000, 2001
 Madden NFL 99, 2000, 2001, 2002, 2003, 2004, 2005 (eg. MADN00\FMVIDEO.DAT*)
 NASCAR 98, 99, 2000, 2001 (and 98 Collector's Edition, and 99 Legacy)
 NASCAR Thunder 2002, 2003, 2004 and NASCAR Rumble
 Nuclear Strike
 Official U.S. PlayStation Magazine Demo Disc 39 (...XXX which game?)
 PlayStation Underground Jampack - Winter 2000
 Road Rash Jailbreak, and Road Rash 3D
 Tiger Woods PGA Tour Golf, and Tiger Woods USA Tour 2001

 X-Files (Fox Interactive/Hyperbole Studios, 1999)
 Eagle One: Harrier Attack (Infogrames/Glass Ghost, 2000)
 Blue's Clues: Blue's Big Musical (Mattel/Viacom/TerraGlyph, 2000)

13.18 CDROM File Video BS Compression Versions

- 292/1136 -

BS iki

This might have been used between v2 and v3, iki is using uncommon BS headers and LZ

compressed Quant/DC values (whilst v3 is using Huffman compressed DC values).

Encrypted iki

Same as normal iki, with some SWAP/ADD/XOR-encrytion in first 20h-bytes.

Encrypted v2/v3

Same as normal v2/v3 with simple XOR-encryption or SWAP-encryption.

Wacwac MDEC

Similar to v3, but uses completely different Huffman codes than BS video.

Polygon Streaming (instead of MDEC picture streaming)

Polygon streams contain vertices (for textures that are stored elsewhere). Usually

needing only one sector per frame. This can be useful for animations that were recorded

 iki: Gran Turismo 1 (STREAM.DAT) ;\with uncommon STR header
 iki: Gran Turismo 2 (STREAM.DAT) ;/
 iki: Hot Shots Golf 2 / Everybody's Golf 2 (MagDemo31: HSG2\MINGOL2X.BIN)
 iki: Legend of Legaia (MagDemo20: LEGAIA\MOV\MV2.STR)
 iki: Legend of Dragoon (STR*.IKI)
 iki: Omega Boost (MOVIE*.IKI)
 iki: Um Jammer Lammy (MagDemo24: UJL*.IKI) (retail: **.IKI and CM*.IK2)
 iki: plus a dozen of japanese-only titles

 Panekit - Infinitive Crafting Toy Case (first 13Mbyte in PANEKIT.STR)

 v3.xor used by Star Wars Masters of Teras Kasi (MagDemo03: MASTERS*.STR)
 v2.xor supported (but not actually used) by Star Wars Masters (MagDemo03)
 v3.swap used by Star Wars Rebel Assault II (*.STR, *.SED, Stills)
 v2.swap used by Star Wars Rebel Assault II (*.STR)
 v3.swap used by BallBlazer Champions (*.STR)

 Aconcagua (JP) (2000 Sony/WACWAC!) (STR_01_00.STR and STR_09_01.STR)

 Ape Escape (DEMO*.STR, STR*.STR, and KKIIDDZZ.HED\STR\0006h and up)
 Aconcagua (most STRs are Polygon Streams, except two are Wacwac MDEC streams)
 Panekit - Infinitive Crafting Toy Case (last 150Mbyte in PANEKIT.STR)

13.18 CDROM File Video BS Compression Versions

- 293/1136 -

from real actors. Drawbacks are more edgy graphics and lower color depth (although that

may fit in with the game engine).

CDROM File Video Polygon Streaming

MPEG1 (on VCD Video CDs)

MPEG1 uses I/P/B-Frames, the I-Frames may reach similar compression as BS files.

However, P-Frames and B-Frames do compress much better than BS files.

CDROM Video CDs (VCD)

MPEG1 isn't used in any PSX games, but VCDs can be viewed on SCPH-5903 consoles

(or via software decoder in nocash PSX kernel clone).

Titles without movies

Most PSX titles do include movies, exceptions are some early launch titles and

educational titles:

13.19 CDROM File Video BS Compression Headers

There are several different BS headers. The File ID/Version entries can be used to detect

the correct type. The MDEC Size entry contains the size after Huffman decompression

(ie. the half-decompressed size before passing the data to the MDEC decompression

hardware) (usually divided by 4 and rounded up to 80h/4 bytes).

BS v1/v2/v3 header

Encrypted v2/v3

Encryption is used in Star Wars games, there are two encryption schemes (XOR and

SWAP).

 Ridge Racer 1 (1994)
 Lightspan Online Connection CD

 000h 2 MDEC Size/4 (after huffman decompression) (rounded to 80h/4 bytes)
 002h 2 File ID (3800h)
 004h 2 Quantization step/factor (0000h..003Fh, for MDEC "DCT.bit10-15")
 006h 2 Version (1, 2, or 3) (2 is most common)
 008h ... Huffman compressed data blocks (Cr,Cb,Y1,Y2,Y3,Y4, Cr,Cb,Y1,Y2..)

13.19 CDROM File Video BS Compression Headers

- 294/1136 -

XOR-encrypt: Star Wars Masters of Teras Kasi (MagDemo03: MASTERS*.STR):

SWAP-encrypt: BallBlazer Champions, Star Wars Rebel Assault II (*.STR, *.SED):

Whilst XORing or SWAPping the halfwords is simple, the more difficult part is

distinguishing between SWAP-v2/v3 and XOR-v2/v3 encryption. This can be done as so:

BS iki Header

IKI videos have a custom .BS header, including some GT-ZIP compressed data:

 000h 2 MDEC Size/4 (rounded to 80h/4 bytes) (unencrypted) ;\same as normal
 002h 2 File ID (3800h) (unencrypted) ; BS v1/v2/v3
 004h 2 Quant (0..3Fh) (unencrypted) ;/
 006h 2 Version (in bit15, plus random in LSBs):
 00xxh..7FFFh for v2 (unknown if this could include values 0..3)
 8000h..FFFFh for v3 (bit14-0=random, varies in each frame)
 008h .. Encrypted bitstream
 (each halfword XORed by BE67h for v2, or XORed by E67Bh for v3)
 ... (2) Zeropadding to 4-byte boundary (unencrypted)
 Zeropadding to end of sector (unencrypted)
 The XOR values BE67h/E67Bh are hardcoded in the Star Wars Masters of Teras
 Kasi .EXE (same XOR values for both retail and demo version), unknown if any
 other games are also using that kind of encryption (and if yes, if they are
 using the same XOR values).

 000h 2 MDEC Size/4 (rounded to 80h/4 bytes) ;\same as normal
 002h 2 File ID (3800h) ; BS v1/v2/v3
 004h 2 Quant (0..3Fh) ;/
 006h 2 Version (random 16bit, 00xxh..FFFFh) ;-no meaningful version info
 008h 2 Bitstream 2nd halfword ;\to "decrypt" the file,
 00Ah 2 Bitstream 1st halfword ;/these must be swapped
 00Ch .. Bitstream 3rd halfword and up ;-in normal order

 if header[06h]<=0003h then assume unencrypted v0/v1/v2/v3
 if header[06h]>=0004h then strip any trailing 0 bits, and check EndOfFrame..
 if last 10bit = 0111111111 then assume SWAP.v2
 if last 10bit = 1111111111 then assume SWAP.v3
 otherwise assume XOR.v2/v3 (and use header[06h].bit15 to distinguish v2/v3)

 000h 2 MDEC Size/4 (rounded to 80h/4 bytes) ;\same as normal
 002h 2 File ID (3800h) ;/BS v1/v2/v3
 004h 2 Bitmap Width in pixels ;instead of Quant
 006h 2 Bitmap Height in pixels ;instead of Version
 008h 2 Size of GT-ZIP compressed data (plus 2-byte alignment padding)
 00Ah .. GT-ZIP compressed DC/Quant values (plus 2-byte alignment padding)
 Huffman compressed AC data blocks (Cr,Cb,Y1,Y2,Y3,Y4, Cr,Cb,Y1,Y2..)

13.19 CDROM File Video BS Compression Headers

- 295/1136 -

The number of blocks is NumBlocks=(Width+15)/16*(height+15)/16*6. The size of the

decompressed GT-ZIP data is NumBlocks*2.

Encrypted iki

The first 20h byte of the iki header & data are encrypted. Among others, the ID 3800h is

inverted (=C7FFh). To decrypt them:

Note: The .STR header's StHeadM/StHeadV fields contain a copy of the decrypted values.

The PANEKIT.STR file is 170Mbyte tall, but only the first 13Mbyte contain movie data...

the rest is unknown stuff... often with zeroes followed by 7B,44,F0,29,E0,28 unknown

what for...?

BS fraquant

This has a normal BS v1/v2/v3 header, with special quant entry:

The decoder is using the default_quant_table (02h,10h,10h,13h,..,53h) multiplied with a

fixed point number:

 [buf+00h]=[buf+00h] XOR FFFFFFFFh
 [buf+04h] <--> [buf+08h] ;exchange 2x32bit
 [buf+0Ch] <--> [buf+0Eh] ;exchange 2x16bit
 [buf+10h]=[buf+10h]+FFFF6F7Bh
 [buf+14h]=[buf+14h]+69140000h
 [buf+18h]=[buf+18h]+FFFF7761h
 [buf+1Ch]=[buf+1Ch]+6B040000h

 X-Files, GRAPHICS*.STR,*.BIN, LOGOS*.STR,*.BS
 Eagle One: Harrier Attack (*.STR, DATA**.STR) (leading zerofilled sectors)
 Blue's Clues: Blue's Big Musical (*.STR) (has one leading zerofilled sector)

 004h 2 Quant (0001h..0003h, or fixed-point 8000h..9xxxh)

 quant=BsHeader[04h] ;get fractional quant value
 BsHeader[04h]=0001h ;force quant=1 (for use in BS v1/v2/v3 decoder)
 if quant<8000h then quant=quant*200h else quant=quant AND 7FFFh
 quant[0]=default_quant_table[0]
 for i=1 to 3Fh,
 x=(default_quant_table[i]*quant)/200h
 if x=00000000h then quant[i]=01h else quant[i]=(x AND FFh)
 next i
 use MDEC(2) command to apply quant[0..3Fh] to both Luma and Chroma tables
 use normal BS v1/v2/v3 decoder to decompress the bitmap

13.19 CDROM File Video BS Compression Headers

- 296/1136 -

BsHeader[04h] should be 0001h..0003h, or 8000h..862Bh (values outside that range

would overflow the 8bit quant table entries). Values 0001h..0003h should should give

same results as for normal BS decoding, so only values 8000h and up do need special

decoding.

Caution: Despite of the overflows, quant>862Bh is used (eg. X-Files

GRAPHICS\GRAPHICS.BIN has quant=88C4h, Blue's Big Musical has quant=93E9h; those

images do look okay, so the compressor seems to have recursed the overflows; or the

overflow affects only a few pixels), however, very large with LSBs all zero (eg. 9000h) can

cause 8bit table entries to become 00h (due to ANDing the result with FFh).

Note: X-Files LOGOS\POP*.STR have quant=8001h (=near zero), that files are only

60Kbyte and seem to be all black.

Note: The movie engine uses COP2 GPF opcodes to calculate quant values.

v0 Header (in STR files)

v0 Header (in LAPKS.BIN chunks)

LAPKS.BIN contains several chunks, each chunk contains an animation sequence with

picture frame(s), each frame starts with following header:

For decompressing the transparency mask:

CDROM File Compression LZSS (Serial Experiments Lain)

The Transparency Mask is stored as scanlines (not as macroblocks), the upper/left pixel is

in bit7-6 of first byte, the 2bit alpha values are ranging from 0=Transparent to 3=Solid.

 000h 1 Quant for Y1,Y2,Y3,Y4 (00h..3Fh)
 001h 1 Quant for Cr,Cb (00h..3Fh)
 002h 2 File ID (3800h) (or Frame Number in ENDROLL1.STR on Disc 2)
 004h 2 MDEC Size/2 (!), and without padding (!) (unlike v1/v2/v3/iki)
 006h 2 BS Version (0) (actually MSBs of above Size, but it's always 0)
 008h .. Huffman Bitstream, first bit in bit7 of first byte

 000h 2 Bitmap Width in pixels ;\cropped to non-black screen area,
 002h 2 Bitmap Height in pixels ;/size can vary within the sequence
 004h 2 Quant for Y1,Y2,Y3,Y4 (0000h..003Fh)
 006h 2 Quant for Cr,Cb (0000h..003Fh)
 008h 4 Size of compressed BS Bitstream plus 4 ;Transparency at [008h]+0Ch
 00Ch 2 Size/2 of MDEC data (after huffman decompression, without padding)
 00Eh 2 BS Version (0) (actually MSBs of above Size, but it's always 0)
 010h .. BS Bitstream with DC and AC values (Huffman compressed MDEC data)
 ... 4 Transparency Mask Decompressed Size (Width*Height*2/8) (=2bpp)
 Transparency Mask LZSS-compressed data

13.19 CDROM File Video BS Compression Headers

- 297/1136 -

BS ea Headers (Electronic Arts)

EA videos are chunk based (instead of using 20h-byte .STR headers).

CDROM File Video Streaming Chunk-based formats

VLC0 Chunk: Custom MDEC values (to be assigned to normal BS v2 Huffman codes).

MDEC Chunks: Width/Height and BS v2 data (using MDEC values from VLC0 chunk).

Raw MDEC

There aren't any known pictures or movies in raw MDEC format. However, the Huffman

decompression functions do usually output raw data in this format:

The first 4 bytes are the MDEC(1) command, the "ID" is always 3800h (equivalent to

selecting 16bpp output; for 24bpp this must be changed to 3000h before passing the

command to the MDEC hardware). The remaining bytes are MDEC data (padded to 80h-

byte boundary).

Macroblock Decoder (MDEC)

13.20 CDROM File Video BS Compression DC Values

DC v0

This is similar as v1/v2, except there is no End code for End of Frame, and the .BS header

contains two separate quant values (for Cr/Cb and Y1-Y4).

DC v1/v2/ea

 000h 2 MDEC Size/4 (after huffman decompression) (rounded to 80h/4 bytes)
 002h 2 File ID (3800h)
 004h .. MDEC data (16bit DC/AC/EOB codes)
 Padding (FE00h-filled to 80h-byte DMA transfer block size boundary)

 nnnnnnnnnn DC Value (signed 10bit, -200h..+1FFh)

 If output_size=NumberOfMdecCodes*2 then EndOfFrame
 If BlockIsCrCb then QuantDC=DC+QuantC*400h else QuantDC=DC+QuantY*400h

 nnnnnnnnnn DC Value (signed 10bit, -200h..+1FEh)
 0111111111 End of Frame (+1FFh, that, in place of Cr)

13.20 CDROM File Video BS Compression DC Values

- 298/1136 -

This is similar as v0, except there is only one Quant value for all blocks, and the header

lacks info about the exact decompressed size, instead, compression end is indicated by a

newly added end code:

DC v3

Similar as v1/v2, but DC values (and End code) are now Huffman compressed offsets

relative to old DC, with different Huffman codes for Cr/Cb and Y1-Y4:

The decoding works as so (with oldDcXxx=0 for first macroblock):

Note: The offsets do cover signed 11bit range -3FCh..+3FCh. Older v3 decoders did

require 11bit offsets (eg. add +3FCh to change DC from -200h to +1FCh). Newer v3

decoders can wrap within 10bit (eg. add -4 to wrap DC from -200h to +1FCh).

 If DC=+1FFh then EndOfFrame
 QuantDC=DC+Quant*400h

 For Cr/Cb For Y1..Y4 Offset (added to old DC of Y/Cr/Cb block)
 00 100 +(00h) ;\
 01s 00s -(01h)*4 ,+(01h)*4 ;
 10sn 01sn -(03h..02h)*4,+(02h..03h)*4 ; required
 110snn 101snn -(07h..04h)*4,+(04h..07h)*4 ; codes
 1110snnn 110snnn -(0Fh..08h)*4,+(08h..0Fh)*4 ; for 10bit
 11110snnnn 1110snnnn -(1Fh..10h)*4,+(10h..1Fh)*4 ; range
 111110snnnnn 11110snnnnn -(3Fh..20h)*4,+(20h..3Fh)*4 ;
 1111110snnnnnn 111110snnnnnn -(7Fh..40h)*4,+(40h..7Fh)*4 ;/
 11111110snnnnnnn 1111110snnnnnnn -(FFh..80h)*4,+(80h..FFh)*4 ;-11bit (!)
 - 11111110 Unused ;\
 111111110 111111110 Unused ; unused
 1111111110 1111111110 Unused ;/
 1111111111 1111111111 End of Frame ;-end code
 Note: the "snnn" bits are indexing the values in right column,
 with s=0 for negative values, and s=1 for positive values.

 If bits=1111111111 then EndOfFrame
 If BlockIsCr then DC=DecodeHuffman(HuffmanCodesCbCr)+oldDcCr, oldDcCr=DC
 If BlockIsCb then DC=DecodeHuffman(HuffmanCodesCbCr)+oldDcCb, oldDcCb=DC
 If BlockIsY1234 then DC=DecodeHuffman(HuffmanCodesY1234)+oldDcY, oldDcY=DC
 If older_version AND DC>=0 then QuantDC=Quant*400h or (DC) ;\requires
 If older_version AND DC<0 then QuantDC=Quant*400h or (DC+400h) ;/11bit
 If newer_version then QuantDC=Quant*400h+(DC AND 3FFh) ;-wrap 10bit

13.20 CDROM File Video BS Compression DC Values

- 299/1136 -

DC iki

The DC values (including Quant values for each block) are separately stored as GT-ZIP

compressed data in the IKI .BS header.

CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

Calculate NumBlocks=(Width+15)/16*(height+15)/16*6, decompress the DC values

(until DecompressedSize=NumBlocks*2). During Huffman decompression, read the DC

values from the decompressed DC buffer (instead of from the Huffman bitstream):

As shown above, the Hi- and Lo-bytes are stored in separate halves of the DC buffer

(which may gain better compression).

13.21 CDROM File Video BS Compression AC Values

Below shows the huffman codes and corresponding 16bit MDEC values; the "xx" bits

contain an index in the list of 16bit MDEC values, the "s" bit means to negate the AC

level (in lower 10bit of the 16bit MDEC value) when s=1.

Huffman codes for AC values BS v1/v2/v3/iki

 If BlockNo>=NumBlocks then EndOfFrame
 QuantDC = DCbuf[BlockNo]*100h + DCbuf[BlockNo+NumBlocks]

 10 FE00h ;End of Block, EOB
 11s 0001h
 011s 0401h
 010xs 0002h,0801h
 0011xs 1001h,0C01h
 00101s 0003h
 00100xxxs 3401h,0006h,3001h,2C01h,0C02h,0403h,0005h,2801h
 0001xxs 1C01h,1801h,0402h,1401h
 00001xxs 0802h,2401h,0004h,2001h
 000001xxxxxxxxxxxxxxxx 0000h..FFFFh ;Escape code for raw 16bit values
 000001xxxxxx0000000000 0000h..FC00h ;Escape nonsense level=0 (used in v1)
 0000001xxxs 4001h,1402h,0007h,0803h,0404h,3C01h,3801h,1002h
 00000001xxxxs 000Bh,2002h,1003h,000Ah,0804h,1C02h,5401h,5001h,
 0009h,4C01h,4801h,0405h,0C03h,0008h,1802h,4401h
 000000001xxxxs 2802h,2402h,1403h,0C04h,0805h,0407h,0406h,000Fh,
 000Eh,000Dh,000Ch,6801h,6401h,6001h,5C01h,5801h
 0000000001xxxxs 001Fh,001Eh,001Dh,001Ch,001Bh,001Ah,0019h,0018h,
 0017h,0016h,0015h,0014h,0013h,0012h,0011h,0010h
 00000000001xxxxs 0028h,0027h,0026h,0025h,0024h,0023h,0022h,0021h,
 0020h,040Eh,040Dh,040Ch,040Bh,040Ah,0409h,0408h
 000000000001xxxxs 0412h,0411h,0410h,040Fh,1803h,4002h,3C02h,3802h,

13.21 CDROM File Video BS Compression AC Values

- 300/1136 -

Huffman codes for AC values BS v0 (Serial Experiments Lain)

Uses different 16bit MDEC values, and the Escape code is different: 8bit levels are 2bit

shorter than v1/v2/v3, but 9bit levels are much longer, and 10bit levels are not supported

at all (those v0 Escape codes are described in Sony's File Format documented; albeit

accidentally because the doc was actually trying to describe v2/v3).

Huffman codes for AC values BS ea (Electronic Arts)

This is using custom MDEC values from VLC0 chunk, and assigns them to the standard

Huffman codes. There are two special MDEC values:

VLC0 chunk entries 00h..DFh are mapped to the following Huffman codes:

 3402h,3002h,2C02h,7C01h,7801h,7401h,7001h,6C01h
 000000000000 Unused

 10 FE00h ;End of Block, EOB
 11s 0001h
 011s 0002h
 010xs 0401h,0003h
 0011xs 0801h,0005h
 00101s 0004h
 00100xxxs 000Ah,000Bh,0403h,1801h,000Ch,000Dh,1C01h,000Eh
 0001xxs 0006h,0C01h,0402h,0007h
 00001xxs 0008h,1001h,0009h,1401h
 000001xxxxxx0xxxxxxx 0000h..FC00h+(+001h..+07Fh AND 3FFh) ;\
 000001xxxxxx000000001xxxxxxx 0000h..FC00h+(+080h..+0FFh AND 3FFh) ; Escape
 000001xxxxxx000000000xxxxxxx Unused ; codes
 000001xxxxxx1xxxxxxx 0000h..FC00h+(-080h..-001h AND 3FFh) ;
 000001xxxxxx100000000xxxxxxx 0000h..FC00h+(-100h..-081h AND 3FFh) ;
 000001xxxxxx100000001xxxxxxx Unused ;/
 0000001xxxs 000Fh,0802h,2001h,0404h,0010h,0011h,2401h,0012h
 00000001xxxxs 0013h,0405h,0014h,2801h,0015h,0C02h,3001h,0017h,
 0016h,2C01h,0018h,001Ch,0019h,0406h,0803h,001Bh
 000000001xxxxs 001Ah,3401h,001Dh,0407h,1002h,001Fh,001Eh,3801h,
 0020h,0021h,0408h,0023h,0022h,1402h,0024h,0025h
 0000000001xxxxs 0804h,0409h,0418h,0026h,3C01h,0027h,0C03h,1C03h,
 0028h,0029h,002Ah,002Bh,040Ah,002Ch,1802h,002Dh
 00000000001xxxxs 002Fh,002Eh,4001h,0805h,0030h,040Bh,0031h,0033h,
 0032h,1C02h,0034h,1003h,0035h,4401h,040Ch,0037h
 000000000001xxxxs 0036h,0038h,0039h,5401h,003Ah,0C04h,040Dh,5C01h,
 2002h,003Bh,0806h,4C01h,003Ch,2402h,6001h,4801h
 000000000000 Unused

 FE00h End of Block (EOB)
 7C1Fh Escape code (huffman code will be followed by v2-style 16bit value)

13.21 CDROM File Video BS Compression AC Values

- 301/1136 -

All codes can be freely assigned (Escape and EOB don't need to be at 10 and 000001, and

the last huffman bit doesn't have to serve as sign bit).

Notes

All BS versions are using the same Huffman codes (the different BS versions do just

assign different 16bit MDEC codes to them).

The huffman codes can be neatly decoded by "counting leading zeroes" (without needing

bitwise node-by-node processing; this is done in IKI video decoders via GTE registers

LZCS and LZCR). Sony's normal v2/v3 decoders are using a yet faster method: A large

table to interprete the next 13bit of the bitstream, the table lookup can decode up to 3

huffman codes at once (if the 13bit contain several small huffman codes).

13.22 CDROM File Video BS Picture Files

BS Picture Files

A couple of games are storing single pictures in .BS files:

 10 00
 11x 01,02
 011x 03,04
 010xx 05,06,07,08
 0011xx 0D,0E,0B,0C
 00101x 09,0A
 00100xxxx 2E,2F,22,23,2C,2D,2A,2B,26,27,24,25,20,21,28,29
 0001xxx 15,16,13,14,0F,10,11,12
 00001xxx 1A,1B,1E,1F,18,19,1C,1D
 000001 17h
 0000001xxxx 3E,3F,38,39,30,31,34,35,32,33,3C,3D,3A,3B,36,37
 00000001xxxxx 46,47,54,55,4E,4F,44,45,4A,4B,52,53,5E,5F,5C,5D,
 42,43,5A,5B,58,59,48,49,4C,4D,40,41,50,51,56,57
 000000001xxxxx 74,75,72,73,70,71,6E,6F,6C,6D,6A,6B,68,69,66,67,
 64,65,62,63,60,61,7E,7F,7C,7D,7A,7B,78,79,76,77
 0000000001xxxxx 9E,9F,9C,9D,9A,9B,98,99,96,97,94,95,92,93,90,91,
 8E,8F,8C,8D,8A,8B,88,89,86,87,84,85,82,83,80,81
 00000000001xxxxx B0,B1,AE,AF,AC,AD,AA,AB,A8,A9,A6,A7,A4,A5,A2,A3,
 A0,A1,BE,BF,BC,BD,BA,BB,B8,B9,B6,B7,B4,B5,B2,B3
 000000000001xxxxx C6,C7,C4,C5,C2,C3,C0,C1,C8,C9,D4,D5,D2,D3,D0,D1,
 CE,CF,CC,CD,CA,CB,DE,DF,DC,DD,DA,DB,D8,D9,D6,D7
 000000000000 Unused

 Alice in Cyberland (ALICE.PAC*.BS)
 BallBlazer Champions (BBX_EXTR.DAT\Pics*) (SWAP-encrypted)
 Bugriders: The Race of Kings (**.BS and STILLS\MENUS.BS*)

13.22 CDROM File Video BS Picture Files

- 302/1136 -

Note: Those .BS files are usually hidden in custom file archives.

BS Picture Resolution

Movies have Width/Height entries (in the .STR header). Raw .BS picture files don't have

any such information. However, there are ways to guess the correct resolution:

Common resolutions are:

 Die Hard Trilogy 2 (DATA*.DHB, DATA\DH*\L**.DHB, MOVIE*.DHB)
 Dino Crisis 2 (PSX\DATA\ST*.DBS*)
 Duke Nukem (MagDemo12: DN_TTK*)
 Final Fantasy VII (FF7) (MOVIE\FSHIP2*.BIN*) (BS v1)
 Gran Turismo 1 (retail TITLE.DAT* and MagDemo10/15) (in BS iki format)
 Jet Moto 2 (MagDemo03: JETMOTO2*)
 Mary-Kate and Ashley Crush Course (MagDemo52: CRUSH\SCRN*.BS)
 Mat Hoffman's Pro BMX (MagDemo48: MHPB\STILLS.BIN*) (with width/height info)
 NFL Gameday '99 (MagDemo17: GAMEDAY\FE\GD98DATA.DAT)
 Official U.S. PlayStation Magazine Demo Disc 01-02 (MENU\DATA*.BSS)
 Official U.S. PlayStation Magazine Demo Disc 03-54 (MENU.FF*)
 Parasite Eve 2 (INIT.BS, and within .HED/.CDF archives)
 Resident Evil 1 (PSX\STAGE**.BSS, headerless archive, 8000h-byte align)
 Resident Evil 2 (COMMON\BSS*.BSS, headerless archive, 10000h-byte align)
 Rugrats (MagDemo19: RUGRATS*)
 Rugrats Studio Tour (MagDemo32: RUGRATS\DATA\RAW*.BS)
 Starwars Demolition (MagDemo39+MagDemo41: STARWARS\SHELL\.BS+.TBL*)
 Star Wars Rebel Assault 2 (RESOURCE.000\Stills*) (SWAP-encrypted)
 Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\390h..3E2h)
 Vigilante 8 (MagDemo09: EXAMPLE*)
 Witch of Salzburg (PICT\PIC**.BS and DOT1 archives *.BSS, *.DAT, *.BIN)
 X-Files (LOGOS*.BS and GRAPHICS\GRAPHICS.BIN and GRAPHICS\PACKEDBS.BIN*)
 You Don't Know Jack 2 (MagDemo41: YDKJV2\RES\UI*.BS)

 For BS iki format, use resolution from iki header (eg. Gran Turismo 1)
 For MHPB\STILLS.BIN, there's width/height in chunk headers
 Count the number of blocks (EOB codes) during Huffman decompression
 Divide that number by 6 to get the number of Macroblocks
 Search matches for Height=NumBlocks/Width with Width>=Height and Remainder=0
 If Height=300..400, assume double H-resolution, repeat with Width/2>=Height
 And/or use a list of known common resoltions (see below examples)
 Search arrangements with many similar colors on adjacent macroblocks

 Blocks Pixels Example
 F0h 256x240 any?
 12Ch 320x240 Resident Evil 2 (COMMON\BSS*.BSS)
 1E0h 512x240 Demo Disc 03-54 (MENU.FF*), Duke Nukem (MagDemo12)
 1E0h 640x192 Less common than above (but used by Witch of Salzburg)
 4B0h 640x480 Vigilante 8 (MagDemo09), Jet Moto 2 (MagDemo03)
 var random Witch of Salzburg has various random resolutions
 iki ikihdr Gran Turismo 1 has A0hxA0h and odd size (!) E8hx28h
 ? ? Final Fantasy VII (FF7)

13.22 CDROM File Video BS Picture Files

- 303/1136 -

Some other possible, but rather unlikely results would be:

Witch of Salzburg has many small .BS files with various uncommon resolutions (most of

them are bundled with 16-byte .TXT files with resolution info).

Extended BS with Width/Height

Starwars Demolition (MagDemo39:

STARWARS\SHELL\DEMOLOGO.BS+RESOURCE.TBL\)

Starwars Demolition (MagDemo41:

STARWARS\SHELL\DEMOLOGO.BS+RESOURCE.TBL\)

13.23 CDROM File Video Wacwac MDEC Streams

Wacwac uses different Huffman codes than BS videos, the decoder has some promising

ideas that might yield slightly better compression than BS v3. However, it is used by

only one known game:

And even that game is only using it in two movies, and the movies are barely making any

use of it: The 20Mbyte intro scene is a picture slide show (where the camera is zooming

across twelve black and white images), the 50Mbyte ending scene is providing a more

cinematic experience (the camera is scrolling through a text file with developer staff

names).

 ? ? Ultimate Fighting Championship (UFC\CU00.RBB\3B7h..3E2h)
 118h 320x224 Alice in Cyberland (most files; or two such as panorama)
 230h ? Alice in Cyberland (AD_115.BS and AD_123A.BS)

 C8h 320x160 Unlikely for pictures (but used for STR videos, eg. Alone)
 F0h 320x192 Unlikely for pictures (but used for STR videos, eg. Wipeout)
 1E0h 384x320 Very unlikely to see that vertical resolution on PSX

 000h 2 Width (280h) ;\extra header
 002h 2 Height (1E0h) ;/
 004h 2 MDEC Size/4 (after huffman decompression) (rounded to 80h/4 bytes)
 006h 2 File ID (3800h)
 008h 2 Quantization step/factor (0000h..003Fh, for MDEC "DCT.bit10-15")
 00Ah 2 Version (1, 2, or 3) (2 is most common)
 00Ch ... Huffman compressed data blocks (Cr,Cb,Y1,Y2,Y3,Y4, Cr,Cb,Y1,Y2..)

 Aconcagua (JP) (2000 Sony/WACWAC!)

13.23 CDROM File Video Wacwac MDEC Streams

- 304/1136 -

Wacwac MDEC Stream Sectors

Aconcagua has dozens of STR files with Polygon Streams. MDEC Streams are found only

in two STR files for Intro and Ending scenes:

Audio is normal XA-ADPCM, with the first audio sector occuring before 1st frame (after

the leading zeropadded 150 sectors).

Wacwac Huffman Bitstreams

Wacwac uses little-endian bitstreams (starting with low bit in bit0 of first byte). To

decode the separate blocks in the bitstream:

The header/data lacks info about MDEC size after Huffman decompression, the worst case

size for 320x208pix would be:

Note: The bitstream consists of separate 16x208pix slices (set DC for Cr,Cb,Y to zero at

begin of each slice, and skip padding to 32bit-boundary at end of each slice).

 000h 2 STR ID (0160h)
 002h 2 STR Type WACWAC Tables (0002h=IntroTableSet, 0003h=EndingTableSet)
 004h 2 Sector number within current Frame (0000h..num-1)
 006h 2 Number of Sectors in this Frame
 008h 4 Frame number (6 or 11 and up, because 1st some frames are Polygons)
 00Ch 4 Frame Size in bytes
 010h 2 Bitmap Width (always 140h) ;\always 320x208 (in fact, the
 012h 2 Bitmap Height (always 0D0h) ;/decoder is hardcoded as so)
 014h 4 Quant (0..3Fh) (same for all sectors within the frame)
 018h 8 Zerofilled
 020h 7E0h Raw Bitstream data (without Quant or BS header) (garbage padded)

 Intro=Disc1:\ST01_01\STR_01_00.STR Ending=Disc2:\ST09_01\STR_09_01.STR
 Leading zeroes (150 sectors) Leading zeroes (150 sectors)
 Frame 0001h..0005h Polygon Frames Frame 0001h..000Ah Polygon Frames
 Frame 0006h..0545h MDEC Frames 20MB Frame 000Bh..0D79h MDEC Frames 50MB
 Frame 0546h..1874h Polygon Frames 48MB

 Read Huffman code for DC, and output Quant*400h+(DC AND 3FFh)
 Read Huffman code for Size, aka num1,num2,num3 values for below reads
 Repeat num1 times: Read Huffman code for AC1, and output AC
 Repeat num2 times: Read Huffman code for AC2, and output AC
 Repeat num3 times: Read Huffman code for AC3, and output AC
 Output EOB (end of block)

 14h*0Dh*6*41h*2+Align(80h)+Header(4) = 31880h+4 bytes

13.23 CDROM File Video Wacwac MDEC Streams

- 305/1136 -

Wacwac Huffman Table Sets

Aconcagua has two table sets, stored in PROGRAM.BIN (in compressed form, appearing

as so: FF,90,16,2E,06,20,03,D6,etc). While watching the intro movie, the uncompressed

sets can be found at these RAM locations:

Each Table Set has a 38h-byte header, followed by five tables:

Size Table entries (64bit):

 80112AF8h (1690h bytes) ;Table Set for Intro Scene
 80114188h (1B68h bytes) ;Table Set for Ending Scene

 000h 4 Table Set size (1690h or 1B68h)
 004h 4 Table Set exploded size (when allocating 16bit/DC, 32bit/Size/AC)
 008h 2 Size Table max Huffman size in bits (0Ah or 09h) ;\Size
 00Ah 2 Size Table number of entries (40h) ;/
 00Ch 2 DC Table max Huffman size in bits (0Bh) ;\
 00Eh 2 DC Table number of entries (100h) ; DC
 010h 2 DC Huffman code Escape 10bit (non-relative 10bit DC value) ;
 012h 2 DC Huffman size Escape 10bit (3 or 6, escape prefix size) ;/
 014h 2 AC1 Table max Huffman size in bits (0Eh or 0Bh) ;\
 016h 2 AC1 Table number of entries (0DAh or 100h) ;
 018h 2 AC1 Huffman code Escape 7bit (run=0bit, level=signed7bit) ; AC1
 01Ah 2 AC1 Huffman code Escape 16bit (run=6bit, level=10bit) ;
 01Ch 2 AC1 Huffman size Escape 7bit (9 or 7, escape prefix size) ;
 01Eh 2 AC1 Huffman size Escape 16bit (9 or 7, escape prefix size) ;/
 020h 2 AC2 Table max Huffman size in bits (0Eh) ;\
 022h 2 AC2 Table number of entries (AAh or F4h) ;
 024h 2 AC2 Huffman code Escape 8bit (run=3bit, level=signed5bit) ; AC2
 026h 2 AC2 Huffman code Escape 16bit (run=6bit, level=10bit) ;
 028h 2 AC2 Huffman size Escape 8bit (10 or 9, escape prefix size) ;
 02Ah 2 AC2 Huffman size Escape 16bit (10 or 9, escape prefix size) ;/
 02Ch 2 AC3 Table max Huffman size in bits (0Eh) ;\
 02Eh 2 AC3 Table number of entries (87h or B2h) ;
 030h 2 AC3 Huffman code Escape 8bit (run=4bit, level=signed4bit) ; AC3
 032h 2 AC3 Huffman code Escape 16bit (run=6bit, level=10bit) ;
 034h 2 AC3 Huffman size Escape 8bit (10 or 9, escape prefix size) ;
 036h 2 AC3 Huffman size Escape 16bit (10 or 9, escape prefix size) ;/
 038h .. Size Table (64bit per entry) ;\
 DC Table (32bit per entry) ;
 AC1 Table (64bit per entry) ; Tables
 AC2 Table (64bit per entry) ;
 AC3 Table (64bit per entry) ;/

 0-1 Zero
 2-31 Huffman code (10bit max)
 32-39 Number of AC1 codes in this block ;\implies End of Block (EOB)
 40-47 Number of AC2 codes in this block ; after those AC codes

13.23 CDROM File Video Wacwac MDEC Streams

- 306/1136 -

DC Table entries (32bit):

AC1/AC2/AC3 Table entries (64bit):

The Escape codes are stored in the 38h-byte Table Set header (instead of in the tables),

the init function uses that info for patching escape-related opcodes in the decoder

function (that would allow to omit table lookups upon escape codes; the decoder doesn't

actually omit such lookups though).

To simplify things, one could store the escape codes in the tables (eg. using special MDEC

values like FC00h+35h for run=3bit, level=signed5bit).

13.24 CDROM File Video Polygon Streaming

Ape Escape - Polygon Streaming

Used by Ape Escape (Sony 1999) (DEMO\.STR and some STR\.STR files and

KKIIDDZZ.HED\STR\0006h and up).

The files start with zerofilled sectors (without STR headers), followed by sectors with

STR headers with [00h]=0160h, [02h]=8001h (same values as for MDEC), but with

[10h..1Fh]=zero (without resolution/header info). And the data at [20h] starts with

something like 14h,00h,03h,FFh,2Ah,02h,00h,00h.

That data seems to consist of polygon coordinates/attributes that are rendered as movie

frames. The texture seems to be stored elsewhere (maybe in the .ALL files that are

bundled with some .STR files).

 48-55 Number of AC3 codes in this block ;/
 56-63 Huffman size (1..10 bits)

 0-9 Relative DC Value (relative to old DC from memorized Cr,Cb,Y)
 10-15 Huffman size (1..11 bits)
 16-31 Huffman code (11bit max)
 Notes: For the relative DC's, the decoder does memorize DC for Cr,Cb,Y upon
 decoding Cr,Cb,Y1,Y3 (but does NOT memorize DC when decoding Y2,Y4).
 Initial DC for Cr,Cb,Y is zero at begin of each 16x208pix slice.
 Obscurities: The decoder does accidentally use bit10 to sign-expand the
 DC value in bit0-9 (but does mask-off those bugged sign bits thereafter),
 and the decoder does uselessly memorize Y1 and Y3 separately (but uses only
 the most recently memorized value).

 0-1 Zero
 2-31 Huffman code (14bit max)
 32-47 MDEC code (6bit run, and 10bit AC level)
 48-63 Huffman size (1..14 bits)

13.24 CDROM File Video Polygon Streaming

- 307/1136 -

Panekit - Polygon Streaming

Panekit STR seems to use Polygon Streaming (except 1st some Megabytes are MDEC).

Aconcagua - Polygon Streaming

Aconcagua STR does use Polygon Streaming (except first+last movie are MDEC).

Cyberia (1996) (TF\STR*.STR)

Cyberia is using Software-rendering for both movies and in-game graphics. That is, PSX

hardware features like MDEC, GTE, and GPU-Polygons are left all unused, and the GPU is

barely used for transferring data from CPU to VRAM.

The STR header for software-rendered movie frames looks as so:

Note: First sector of First frame does usually have byte[22h]=88h (except FINMUS.STR).

The Custom data part is often have garbage padding (such like ASCII strings with "c2str"

command line tool usage instructions).

Croc 1 (CUTS*.AN2)

Probably cut-scenes with polygon animations. The files seem to contain 2300h-byte data

frames (plus XA-ADPCM sectors inserted here and there).

Custom STR - 3D Baseball (BIGFILE.FOO)

This is used for several files in 3D Baseball (BIGFILE.FOO):

 000h 2 STR ID (0160h)
 002h 2 STR Type (0002h=Custom, Software rendering)
 004h 2 Sector number within current Frame (0..num-1)
 006h 2 Number of Sectors in this Frame (varies)
 008h 4 Frame Number (1=First)
 00Ch 4 Frame Size in Bytes/4 (note: first frame in MAP*.STR is quite big)
 010h 2 Rendering Width (0140h)
 012h 2 Rendering Height (00C0h)
 014h 0Ch Unknown (zerofilled or random garbage)
 020h 7E0h Custom data for software rendering

 000h 4 Number of remaining frames
 ... 22FCh Unknown data (zeropadded if smaller)

 _______________ Unknown Streaming Data (Polygons or whatever) ________________

13.24 CDROM File Video Polygon Streaming

- 308/1136 -

The files contain some kind of custom streaming data, with custom STR header, and data

containing increasing/decreasing bytes... maybe non-audio waveforms?

Army Men Air Attack 2 (MagDemo40: AMAA2*.PMB)

Note: The .PMB file is bundled with a .PMH file, which might contain header info?

Bits Laboratory games (Charumera, and True Love Story series)

 BIGFILE.FOO\0151h\0005h,0009h,000Fh,0017h,001Bh, 02E5h,02E9h,..,0344h,0348h
 BIGFILE.FOO\0152h\0186h,018Ch,0192h,0198h)
 BIGFILE.FOO\0153h\029Ah,02A0h,02A6h,02ACh)

 000h 2 STR ID (0160h)
 002h 2 STR Type (0001h=Custom)
 004h 2 Sector number within current Frame (always 0)
 006h 2 Number of Sectors in this Frame (always 1)
 008h 4 Frame Number (1=First)
 00Ch 4 Frame Size (6FAh or 77Ah, sometimes 17Ah or 1FAh or 20Ah)
 010h 2 Unknown (280h, or sometimes 300h or 340h)
 012h 2 Frame Time (0=First, increases with step [19h], usually +5 or +7)
 014h 2 Unknown (280h, or sometimes 300h or 3C0h, or 0)
 016h 1 Frame Time (same as [012h] AND FFh)
 017h 1 Unknown (0 or 1)
 018h 1 Unknown (40h, or 80h, or C0h)
 019h 1 Duration? (5 or 7, or sometimes less, step for Frame Time)
 01Ah 1 Unknown (3, or less in last some frames)
 01Bh 5 Zerofilled
 020h 7E0h Data (increasing/decreasing bytes... maybe non-audio waveforms?)

 000h 2 STR ID (0160h)
 002h 2 STR Type (0000h=Custom)
 004h 2 Sector number within current Frame (0..2)
 006h 2 Number of Sectors in this Frame (always 4) (3xSTR + 1xADPCM)
 008h 4 Frame Number (1=First)
 00Ch 4 Frame Size? (800h, despite of having 3 sectors with 7E0h each?)
 010h 2 Unknown (00h or 01h)
 012h 2 Unknown (A3h or ABh ... 6Ch or 7Bh ... or 43h or 49h)
 014h 2 Sector number within current Frame (0..2) (same as [004h])
 016h 0Ah Zerofilled
 020h 7E0h Data (polygon streaming or so?)

 Charumera ENDING.XA (with dummy/zero data)
 True Love Story TLS\MULTI.XA (with nonzero data)
 True Love Story 2 TLS2\ENDING.STR and TLS2\MULTI.XA
 True Love Story Fan Disc ;\probably use that format, too
 True Love Story: Remember My Heart ;/(not verified)

13.24 CDROM File Video Polygon Streaming

- 309/1136 -

The STR headers have STR ID=0160h and STR Type=0001h, STR header[10h..1Fh]

contains nonsense BS video info (with BS ID=3800h, although there isn't any BS data in

the actual data part at offset 20h and up).

The files do mainly contain XA-ADPCM sectors, plus some STR sectors in non-MDEC

format. Unknown if that STR sectors are separate channels, or if they are used in parallel

with the XA-ADPCM channel(s).

Unknown what the STR sectors are used for (perhaps Polygon Streaming, audio subtitles,

or simple garbage padding for unused audio sectors). In some files, the STR sectors

appear to be just dummy padding (STR header plus zerofilled data area).

Nightmare Project: Yakata

This game has normal MDEC Streams, and Special Streams in non-MDEC format (eg.

Disc1, File 0E9h-16Eh and 985h-B58h), perhaps containing Polygon Streams or

whatever.

There are two channels (file=1/channel=00h-01h), each channel contains data that

consists of 5 sectors per frame (1xHeader plus 4xData). The sectors have STR

ID=0160h, and STR Type as follows:

Eagle One: Harrier Attack STR files

All of the above have STR Type=8001h (but only the MDEC movies have BS ID 3800h;

the MDEC movies start with 13 zerofilled sectors that are all zeroes without any STR/BS

headers).

 0000h=Whatever special, channel 0 header (sector 0)
 0400h=Whatever special, channel 1 header (sector 1)
 0001h=Whatever special, channel 0 data (sector 2,4,6,8)
 0401h=Whatever special, channel 1 data (sector 3,5,7,9)

 *.STR MDEC movies ;\BS fraquant (except, demo version
 \DATA**.STR MDEC movies ;/ on MagDemo31 uses mormal BS v2)
 \DATA*\M*\L*.STR Multi-language TXT files with STR header on each sector
 \DATA*\M*\I*.STR unknown binary data (whatever and SPU-ADPCM)
 \LANGN.STR unknown binary data (whatever)

13.24 CDROM File Video Polygon Streaming

- 310/1136 -

13.25 CDROM File Audio Single Samples VAG (Sony)

VAG audio samples

PSX Lightspan Online Connection CD, cdrom:\CD.TOC:\UI*\.VAG

PSX Wipeout 2097, cdrom:\WIPEOUT2\SOUND\SAMPLES.WAD:\.vag (version=02h)

PSX Perfect Assassin, DATA.JFS:\AUDIO\.VAG and DATA.JFS:\SND\.VAG

VAG files are used on PSX, PSP, PS2, PS3, PS4. The overall 1-channel mono format is

same for consoles. But there are numerous different variants for interleaved 2-channel

stereo data.

VAG Filename Extensions

VAG File IDs (header[000h])

VAG Versions (header[004h])

 000h 4 File ID (usually "VAGp")
 004h 4 Version (usually 02h, or 20h) (big-endian)
 008h 4 Reserved (0) (except when ID="VAGi") (big-endian)
 00Ch 4 Channel Size (data size... per channel?) (big-endian)
 010h 4 Sample Rate (in Hertz) (eg. 5622h=22050Hz) (big-endian)
 014h 0Ch Reserved (0) (except when version=2)
 020h 10h Name (ASCII, zeropadded)
 ... (..) Optional ID string (eg. "STEREO" in upper/lowercase)
 ... (..) Optional Padding to Data start
 ADPCM Data for channel(s) (usually at offset 030h)

 .vag default (eg. many PSX games)
 .vig 2-channel with interleave=10h (eg. PS2 MX vs ATV Untamed)
 .vas 2-channel with interleave=10h (eg. PS2 Kingdom Hearts II)
 .swag 2-channel with interleave=filesize/2 (eg. PSP Frantix)
 .l and .r 2-channel in l/r files (eg. PS2 Gradius V, PS2 Crash Nitro Kart)
 .str whatever (eg. P?? Ben10 Galactic Racing)
 .abc whatever (eg. PSP F1 2009 (v6), according to wiki.xentax.com)

 "VAGp" default (eg. many PSX games)
 "VAG1" 1-channel (eg. PS2 Metal Gear Solid 3)
 "VAG2" 2-channel (eg. PS2 Metal Gear Solid 3)
 "VAGi" 2-channel interleaved (eg. ?)
 "pGAV" little endian with extended header (eg. PS2 Jak 3, PS2 Jak X)
 "AAAp" extra header, followed by "VAGp" header (eg. PS2 The Red Star)

13.25 CDROM File Audio Single Samples VAG (Sony)

- 311/1136 -

Reserved Header entries for ID="VAGi"

Reserved Header entries for Version=00000002h (eg. PSX Wipeout 2097)

This does reportedly contain some default "base" settings for the PSX SPU:

Reserved Header entries for Version=00000003h (according to wiki.xentax.com)

Reserved Header entries for Version=00020001h and Version=00030000h

Unknown if the above "force Mono" stuff is really needed (maybe it was intended to avoid

problems with Version=00000002h, and maybe never happens in Version=00000003h

and up)?

VAG ADPCM Data

The ADPCM data uses PSX SPU-ADPCM encoding (even on PS2 and up, except PS4 with

Version=0002001h or Version=00030000h, which do use HEVAG encoding).

 00000000h v1.8 PC
 00000002h v1.3 Mac (eg. PSX Wipeout 2097, in SAMPLES.WAD)
 00000003h v1.6+ Mac
 00000020h v2.0 PC (most common, eg. PSX Perfect Assassin)
 00000004h ? (later games, uh when/which?)
 00000006h ? (vagconf, uh when/which?)
 00020001h v2.1 (vagconf2) ;\with HEVAG coding instead SPU-ADPCM
 00030000h v3.0 (vagconf2) ;/(eg. PS4/Vita)
 40000000h ? (eg. PS2 Killzone) (1-channel, little endian header)

 008h 4 Interleave (little endian) (the other header entries are big endian)

 014h 2 Volume left 4Eh,82h ;-Port 1F801C00h
 016h 2 Volume right 4Eh,82h ;-Port 1F801C02h
 018h 2 Pitch (includes fs modulation) A8h,88h ;-Port 1F801C04h +extra bit?
 01Ah 2 ADSR1 00h,00h ;-Port 1F801C08h
 01Ch 2 ADSR2 00h,E1h ;-Port 1F801C0Ah
 01Eh 2 ? A0h,23h ;-Port 1F801C0xh maybe?

 01Eh 1 Number of channels (0 or 1=Mono, 2=Stereo)

 01Ch 2 Zero ;if non-zero: force Mono
 01Eh 1 Number of channels (0 or 1=Mono, 2=Stereo ;if 10h..FFh: force Mono
 01Fh 1 Zero ;if non-zero: force Mono

13.25 CDROM File Audio Single Samples VAG (Sony)

- 312/1136 -

SPU ADPCM Samples

The data does usually start at offset 0030h (except, some files have extra header data

or padding at that location).

The first 10h-byte ADPCM block is usually all zero (used to initialize the SPU).

2-channel (stereo) files are usually interleaved in some way.

VAG Endiannes

The file header entries are almost always big-endian (even so when used on little endian

consoles). There are a few exceptions:

ID="VAG1" has little endian [008h]=Interleave (remaining header is big-endian).

ID="pVAG" has (some?) header entries in little endian.

Version=40000000h has most or all header entries in little endian (perhaps including the

version being meant to be 00000040h).

VAG Channels

VAGs can be 1-channel (mono) or 2-channel (stereo). There is no standarized way to

detect the number of channels (it can be implied in the Filename Extension, Header ID,

in Reserved Header entries, in the Name string at [020h..02Fh], in optional stuff at

[030h], or in a separate VAG Header in the middle of the file).

VAG Interleave

AAAp Header

 None default (for 1-channel mono) (and separate .l .r stereo files)
 800h when ID="VAG2"
 [008h] when ID="VAGi" (little-endian 32bit header[008h])
 1000h when ID="pGAV" and [020h]="Ster" and this or that
 2000h when ID="pGAV" and [020h]="Ster" and that or this
 10h when filename extension=".vig"
 10h when Version=0002001h or Version=00030000h (and channels=2)
 filesize/2 when filename extension=".swag"
 6000h when [6000h]="VAGp" (eg. PSX The Simpsons Wrestling)
 1000h when [1000h]="VAGp" (eg. PS2 Sikigami no Shiro)
 ...

 000h 4 ID "AAAp"
 004h 2 Interleave
 006h 2 Number of Channels (can be 1 or 2?)
 008h 30h*N VAGp header(s) for each channel, with Version=00000020h
 ADPCM Data (interleaved when multiple channels)

13.25 CDROM File Audio Single Samples VAG (Sony)

- 313/1136 -

See also

http://github.com/vgmstream/vgmstream/blob/master/src/meta/vag.c ;very detailed

http://wiki.xentax.com/index.php/VAG_Audio ;rather incomplete and perhaps wrong

13.26 CDROM File Audio Sample Sets VAB and VH/VB (Sony)

VAB vs VH/VB

PSX Perfect Assassin has some v7 .VH/.VB's (in \DATA.JFS:\SND\.*)

PSX Resident Evil 2, COMMON\DATA\.DIE (contains .TIM+.VAB badged together)

PSX Spider-Man, CD.HED\l2a1.vab is VAB v5 (other VABs in that game are v7)

PSX Tenchu 2 (MagDemo35: TENCHU2\VOLUME.DAT\5* has VAB v20h, maybe a typo)

VAB Header (VH)

Program Attributes (10h-byte per Program, max 80h programs)

 .VAB contains VAB header, and ADPCM binaries ;-all in one file
 .VH contains only the VAB header ;\in two separate files
 .VB contains only the ADPCM binaries ;/

 0000h 4 File ID ("pBAV")
 0004h 4 Version (usually 7) (reportedly 6 exists, too) (5, 20h exists)
 0008h 4 VAB ID (usually 0)
 000Ch 4 Total .VAB filesize in bytes (or sum of .VH and .VB filesizes)
 0010h 2 Reserved (EEEEh)
 0012h 2 Number of Programs, minus 1 (0000h..007Fh = 1..128 programs)
 0014h 2 Number of Tones, minus? (max 0800h?) (aka max 10h per program)
 0016h 2 Number of VAGs, minus? (max 00FEh)
 0018h 1 Master Volume (usually 7Fh)
 0019h 1 Master Pan (usually 40h)
 001Ah 1 Bank Attribute 1 (user defined) (usually 00h)
 001Bh 1 Bank Attribute 2 (user defined) (usually 00h)
 001Ch 4 Reserved (FFFFFFFFh)
 0020h 800h Program Attributes 10h-byte per Program 00h..7Fh (fixed size)
 0820h P*200h Tone Attributes 200h-byte per Program 00h..P-1 (variable size)
 xx20h 200h 16bit VAG Sizes (div8) for VAG 00h..FFh (fixed size)
 xx20h (...) ADPCM data (only in .VAB files, otherwise in separate .VB file)

 000h 1 tones Number of Tones in the Program (Yaroze: 4) (uh?)
 001h 1 mvol Master Volume (Yaroze: 0..127)
 002h 1 prior (Yaroze: N/A)
 003h 1 mode (Yaroze: N/A)
 004h 1 mpan Master Panning (Yaroze: 0..127)
 005h 1 reserved0

13.26 CDROM File Audio Sample Sets VAB and VH/VB (Sony)

- 314/1136 -

http://github.com/vgmstream/vgmstream/blob/master/src/meta/vag.c
http://wiki.xentax.com/index.php/VAG_Audio

Tone Attributes (20h-byte per Tone, max 10h tones per Program)

VAB Binary (VB) (ADPCM data) (to be loaded to SPU RAM)

This can contain max 254 "VAG files" (maybe because having two (?) reserved 8bit

numbers?).

Sony wants the total size of the ADPCM data to be max 7E000h bytes (which would

occupy most of the 512Kbyte SPU RAM, leaving little space for the echo buffer or

additional effects).

Note: The "VAG files" inside of VAB/VB are actually raw SPU-ADPCM data, without any

VAG file header. The first 10h-byte ADPCM block is usually zerofilled.

13.27 CDROM File Audio Sequences SEQ/SEP (Sony)

SEQ - Single Sequence

.SEQ contains MIDI-style sequences, the samples for the instruments can be stored in a

separate .VAB file (or .VH and .VB files).

Used by Perfect Assassin, DATA.JFS:\SND*.SEQ (bundled with *.VH and *.VB)

 006h 2 attr (Yaroze: N/A)
 008h 4 reserved1
 00Ch 4 reserved2

 000h 1 prior Tone Priority (Yaroze: 0..127, 127=highest)
 001h 1 mode Mode (Yaroze: 0=Normal, 4=Reverberation)
 002h 1 vol Tone Volume (Yaroze: 0..127)
 003h 1 pan Tone Panning (Yaroze: 0..127)
 004h 1 center Centre note (in semitone units) (Yaroze: 0..127)
 005h 1 shift Centre note fine tuning (Yaroze: 0..127)
 006h 1 min Note limit minimum value (Yaroze: 0..127)
 007h 1 max Note limit maximum value (Yaroze: 0..127)
 008h 1 vibW (Yaroze: N/A)
 009h 1 vibT (Yaroze: N/A)
 00Ah 1 porW (Yaroze: N/A)
 00Bh 1 porT (Yaroze: N/A)
 00Ch 1 pbmin Max? value for downwards pitchbend (Yaroze: 0..127)
 00Dh 1 pbmax Max value for upwards pitchbend (Yaroze: 0..127)
 00Eh 1 reserved1
 00Fh 1 reserved2
 010h 2 ADSR1 Attack,Decay (Yaroze: 0..127,0..15)
 012h 2 ADSR2 Release,Sustain (Yaroze: 0..127,0..31)
 014h 2 prog Program number that tone belongs to (Yaroze: 0..127)
 016h 2 vag VAG number (Yaroze: 0..254)
 018h 8 reserved

13.27 CDROM File Audio Sequences SEQ/SEP (Sony)

- 315/1136 -

Used by Croc (MagDemo02: CROC\CROCFILE.DIR\AMBI*.BIN, MAP*.BIN, JRHYTHM.BIN)

Used by many other games.

The "Score data" seems to be more or less same as in Standard Midi Format (.smf files),

ie. containing timing values and MIDI commands/parameters.

SEP - Multi-Track Sequences

This is a simple "archive" with several SEQ-like sequences.

Sequences:

Used by Hear It Now (Playstation Developer's Demo) (RCUBE\RCUBE.SEP)

Used by Rayman (SND\BIGFIX.ALL\0002)

Used by Monster Rancher (MagDemo06, MR_DEMO\DATA\MF_DATA.OBJ\025B)

Used by Rugrats (MagDemo19: RUGRATS\DB02\.SEP and MENU\SOUND\SEPS\.SEP)

Used by Rugrats Studio Tour (MagDemo32: RUGRATS\DATA\SEPS*.SEP)

Used by Monkey Hero (MagDemo17: MONKEY\BIGFILE.PSX}*.SEP)

Used by Pitfall 3D

Used by Blue's Clues: Blue's Big Musical (SEPD chunks in *.TXD)

 000h 4 File ID "pQES"
 004h 4 Version (1) (big endian?)
 008h 2 Resolution per quarter note (01h,80h)
 00Ah 3 Tempo 24bit (8bit:16bit maybe?) (07h,27h,0Eh)
 00Dh 2 Rhythm (NN/NN) (04h,02h)
 00Fh ... Score data, uh? (with many MIDI KeyOn's: xx,9x,xx,xx)
 ... 3 End of SEQ (2Fh=End of Track) (FFh,2Fh,00h)

 000h 4 File ID "pQES" ;same ID as in .SEQ files (!)
 004h 2 Version (0) ;value 0, and only 16bit, unlike .SEQ files
 006h .. 1st Sequence
 2nd Sequence
 etc.

 000h 2 Sequence ID (0000h and up) (big endian) ;-ID number
 002h 2 Resolution per quarter note (01h,80h) ;\
 004h 3 Tempo 24bit (07h,27h,0Eh) ; as in SEQ files
 007h 2 Rhythm (NN/NN) (04h,02h) ;/
 009h 4 Data size (big endian, from 00Dh up to including End of SEQ(
 00Dh ... Score data, uh? (...) ;\as in SEQ files
 ... 3 End of SEQ (2Fh=End of Track) (FFh,2Fh,00h) ;/

13.27 CDROM File Audio Sequences SEQ/SEP (Sony)

- 316/1136 -

13.28 CDROM File Audio Other Formats

.SQ .HD .HD (SSsq/SShd)

This is a newer Sony format from 1999 (resembling the older .SEQ .VH .VB format).

Used by Alundra 2, Ape Escape, Arc the Lad 3, Koukidou Gensou - Gunparade March,

Omega Boost, PoPoLoCrois Monogatari II, The Legend of Dragoon, Wild Arms 2.

SEQUENCE DATA (*.SQ)

Channel

VOICE HEADER (*.HD)

 .SQ Sequence Data (with ID "SSsq")
 .HD Voice Header (with ID "SShd")
 .BD Voice Binary (raw SPU-ADPCM, same as .VB)

 000h 2 Sequence Volume (0 .. 127, Always 64??)
 002h 2 Ticks per Quarter Note (always 1E0h)
 004h 2 Tempo
 005h 6 Zerofilled
 00Ch 4 ID "SSsq"
 010h 10h*10h Channels
 110h .. Sequence

 000h 1 UNKNOWN
 001h 1 Channel Index
 002h 1 Program Index
 003h 1 Volume
 004h 1 Pan (0 .. 127, 64 is center)
 005h 4 UNKNOWN
 009h 1 Modulation (Multiplier for "breath" control)
 00Ah 1 Pitch Bend (0 .. 127, 64 is center)
 00Bh 1 Priority
 00Ch 1 Breath (0 .. 127 how quickly to loop over the breath wave)
 00Dh 1 UNKNOWN
 00Eh 1 Adjusted volume (combination of sequence volume and channel volume)
 00Fh 1 UNKNOWN

 000h 4 Size of the .HD file itself
 004h 4 Size of the corresponding .BD file
 008h 4 Zero
 00Ch 4 ID "SShd"
 010h 1Ch*4 Offsets to data (or FFFFFFFFh=None)
 080h .. Data

13.28 CDROM File Audio Other Formats

- 317/1136 -

Data 0 - Programs

Data 1 - Velocity volumes

Data 2 - Breath waves

Data 3 - Sequence set (Used for SFX, uses a slightly altered subset of commands)

Header
 000h 2 Program Upper bound (count - 1)
 002h 2*n Program offsets (FFFFh=None, yes the count can be higher than actual program
count)
 Program data

 Program
 000h 1 Type + Tone Upper bound (FF = SFX, if not, 1st bit allows the program to
play multiple tones per one KeyOn, rest is upper bound)
 001h 1 Volume (0 .. 127)
 002h 1 Pan (0 .. 127, 64 is center)
 003h 1 UNUSED
 004h 1 Pitch Bend multiplier
 005h 1 Breath wave index (7Fh=None)
 006h 1 SFX - Starting note
 007h 1 SFX - Tone count

Tone
 000h 1 Minimum note
 001h 1 Maximum note
 002h 1 Root key
 003h 1 Fine pitch adjustment (in 1/16 of a semitone)
 004h 2 ADPCM offset (*8)
 006h 4 ADSR
 00Ah 1 Volume override
 00Bh 1 Volume (0 .. 127)
 00Ch 1 Pan (0 .. 127, 64 is center)
 00Dh 1 Pitch Bend multiplier
 00Eh 1 Breath wave index (7Fh=None)
 00Fh 1 Flags (High priority, Noise, UNKNOWN, UNKNOWN, Pitch Bend from Program,
Modulation, Breath wave from Program, Reverb)

 000h 2 UNUSED
 002h 1*80h Velocity volumes

 000h 2 Beath wave upper bound
 002h 2*n Breath wave offsets
 ... 40h*n Breath waves (Only 60 out of the 64 values are used. And each represents 1
step in a 1 sec cycle at the lowest breath speed)

13.28 CDROM File Audio Other Formats

- 318/1136 -

Data 4 - Embedded SSsq (Used for SFX)

VOICE BINARY (*.BD) (SAME AS .VB FILES)

DNSa/PMSa/FNSa/FMSa

There are four four file types:

Used by several games (usually inside of BIGFILE.DAT):

Note: The exact file format does reportedly differ in each game.

"PMSA" (AKA SAMPLES BACKWAORDS)

"DNSA" (AKA SOUND BACKWARDS)

 000h 2 Sets upper bound
 002h 2*n Set Offsets
 ... 2 Sequence upper bound (Set 0)
 ... 2*m Sequence offset (Set 0)

 Sequences (Terminated with FF 2F 00 - End of Track command)

 000h 10h SSsq header with just the volume
 010h 18h*10h Channels
 190h ... Programs

 000h .. SPU-ADPCM data (usually starting with zerofilled 10h-byte block)

 "DNSa" (aka SouND backwards) ;sequence data
 "PMSa" (aka SaMPles backwards) ;samples with small header
 "FMSa" (aka SaMples-F... backwards) ;samples with bigger header ;\Legacy
 "FNSa" (aka SouNd-F... backwards) ;whatever tiny file ;/of Kain

 Akuji (MagDemo18: AKUJI\BIGFILE.DAT*) (DNSa,PMSa)
 Gex 2 (MagDemo08: GEX3D\BIGFILE.DAT*) (DNSa)
 Gex 3: Deep Cover Gecko (MagDemo20: G3\BIGFILE.DAT*) (DNSa,PMSa)
 Legacy of Kain 2 (MagDemo13: KAIN2\BIGFILE.DAT*) (DNSa)
 Legacy of Kain 2 (MagDemo26: KAIN2\BIGFILE.DAT*) (DNSa,PMSa,FNSa,FMSa)
 Walt Disney World Racing Tour (MagDemo35: GK\BIGFILE.DAT*) (DNSa,PMSa)

 000h 4 ID "PMSa"
 004h 4 Total Filesize
 008h 8 Zerofilled
 010h .. SPU-ADPCM data (usually starting with zerofilled 10h-byte block)

13.28 CDROM File Audio Other Formats

- 319/1136 -

"FNSA" (AKA SOUND-F... BACKWARDS)

These are whatever tiny files (with filesize 1Ch or 2Ch).

"FMSA" (AKA SAMPLES-F... BACKWARDS)

AKAO

There a several games that have sound files with ID "AKAO".

AKAO is also used in several streaming movies:

CDROM File Video Streaming Audio

Others

Alone in the Dark IV has MIDB and DSND chunks (which contain sound files).

See also

The page below does mention several PSX sound formats, plus some open source &

closed source tools for handling those files.

https://github.com/loveemu/vgmdocs/blob/master/

Conversion_Tools_for_Video_Game_Music.md

 000h 4 ID "DNSa" ;aka SND backwards
 004h 2 Offset from DNSa+4 to 8-byte entries (can be odd)
 006h 1 Unknown (3)
 007h 1 Number of 8-byte entries (N1)
 008h 1? Number of 10h-byte entries (N2)
 Unknown (..)
 ... N1*8 Whatever 8-byte entries
 ... N2*10h Whatever 10h-byte entries
 circa 40h 4-byte entries...?
 Unknown (..)
 Several blocks with ID "QESa" or "QSMa" ;supposedly MIDI-style?

 000h 4 ID "FNSa"
 Unknown

 000h 4 ID "FMSa"
 008h .. Unknown..
 SPU-ADPCM data (usually starting with zerofilled 10h-byte block)

 XXX does that include different AKAO formats... for Samples and Midi?

13.28 CDROM File Audio Other Formats

- 320/1136 -

https://github.com/loveemu/vgmdocs/blob/master/Conversion_Tools_for_Video_Game_Music.md
https://github.com/loveemu/vgmdocs/blob/master/Conversion_Tools_for_Video_Game_Music.md

13.29 CDROM File Audio Streaming XA-ADPCM

Audio Streaming (XA-ADPCM)

Audio streaming is usually done by interleaving the .STR or .BS file's Data sectors with

XA-ADPCM audio sectors (the .STR/.BS headers don't contain any audio info; because

XA-ADPCM sectors are automatically decoded by the CDROM controller).

Raw XA-ADPCM files (without video) are usually have .XA file extension.

13.30 CDROM File Audio CD-DA Tracks

The eleven .SWP files in Wipeout 2097 seem to be CD-DA audio tracks.

The one TRACK01.WAV in Alone in the Dark, too?

Other than that, tracks can be accessed via TOC instead of filenames.

13.31 CDROM File Archives with Filename

Entrysize=08h

WWF SMACKDOWN (MAGDEMO33: TAI*.PAC)

The DPAC archives can contain generic files (eg .TIM) and child archives (in a separate

archive format, with ID "PAC ").

 000h 4 ID ("DPAC") ;\
 004h 4 Unknown (100h) ;
 008h 4 Number of files (N) ;
 00Ch 4 Directory Size (N*8) ; Header
 010h 4 File Data area size (SIZE = Totalsize-Headersize) ;
 014h 4 Unknown (1) ;
 018h 7E8h Zerofilled (padding to 800h-byte boundary) ;
 800h N*8 File List ;
 Zerofilled (padding to 800h-byte boundary) ;/
 ... SIZE File Data area ;-Data area
 File List entries:
 000h 8 Filename ("NAME")
 004h 2 File Offset/800h (increasing)
 006h 2 File Size/800h

13.29 CDROM File Audio Streaming XA-ADPCM

- 321/1136 -

Entrysize=10h

CHAMPIONSHIP MOTOCROSS (MAGDEMO25: SMX\RESHEAD.BIN AND RESBODY.BIN)

RESHEAD.BIN:

RESBODY.BIN:

ONE (DIRFILE.BIN\W*\SECT*.BIN)

TRUE LOVE STORY 1 AND 2 (TLS*\MCD.DIR AND MCD.IMG)

MCD.DIR:

MCD.IMG:

In True Love Story 2, the MCD.IMG data is encrypted as follows:

 000h N*10h File List (220h bytes)
 File List entries:
 000h 8 Filename ("FILENAME", if shorter: terminated by 00h plus garbage)
 008h 4 Filesize in bytes
 00Ch 4 Offset/800h in RESBODY.BIN (increasing) (or FFFFFFFFh if Size=0)

 000h .. File Data (referenced from RESHEAD.BIN)

 000h N*10h File List
 File Data area
 File List entries:
 000h 0Ch Filename (eg. "FILENAME 001") ;for last entry: "END 000"
 00Ch 4 Offset (increasing, N*10h and up) ;for last entry: zero

 000h N*10h File List
 ... 10h End marker (FFh-filled)
 File List entries:
 000h 8 Filename (zeropadded if less than 8 chars)
 008h 2 Zero (0000h)
 00Ah 2 Size/800h
 00Ch 4 Offset/800h in MCD.IMG
 Note: Filenames are truncated to 8 chars (eg. "FOREST.T" instead "FOREST.TIM")

 000h .. File Data area (encrypted in True Love Story 2)

 init_key_by_filename(name): ;for MCD.IMG (using filenames from MCD.DIR)
 i=0, key0=0001h, key1=0001h, key2=0001h
 while i<8 and name[i]<>00h
 key0=(key0 XOR name[i])
 key1=(key1 * name[i]) AND FFFFh

13.31 CDROM File Archives with Filename

- 322/1136 -

The MCD.* files don't contain any encryption flag. Below are some values that could be

used to distinguish between encrypted and unencrypted MCD archives (though that may

fail in case of any other games/versions with other values):

STAR WARS REBEL ASSAULT 2 (RESOURCE.*, AND NESTED THEREIN)

BALLBLAZER CHAMPIONS (*.DAT, AND NESTED THEREIN)

The Rebel RESOURCE.* files start with name "bigEx" or "fOFS", BallBlazer *.DAT start

with "SFXbase" or "tpage", nested files start with whatever other names.

Uncompressed Data Format (when List entry [08h]=0 or [0Ch].bit31=0):

 key2=(key2 + name[i]) AND FFFFh
 ret
 init_key_by_numeric_32bit_seed(seed): ;maybe for LINEAR.IMG and PICT.IMG ?
 key0=(seed) AND FFFFh
 key1=(seed - (seed*77975B9h/400000000h)*89h) AND FFFFh
 key2=(seed - (seed*9A1F7E9h/20000000000h)*3527h) AND FFFFh
 ret
 decrypt_data(addr,len):
 for i=1 to len/2
 key2=key2/2 + (key0 AND 1)*8000h
 key0=key0/2 + (key1 AND 1)*8000h
 key1=key1/2 + ((key1/2 OR key0) AND 1)*8000h
 key0=((((key1+47h) AND FFFFh)/4) XOR key0)+key2+(((key1+47h)/2) AND 1)
 halfword[addr]=halfword[addr] XOR key0, addr=addr+2
 ret

 Item Unencrypted Encrypted
 Parent Folder name "TLS" "TLS2"
 First name in MCD.DIR "BACKTILE" "TEST.RPS"
 First word in MCD.IMG 00000010h 074D4C8Ah

 000h N*10h File List
 ... (4) CRC32 on above header (Top-level only, not in Nested archives)
 File Data area
 ... (..) Huge optional padding to xx000h-byte boundary (in BallBlazer .DAT)
 File List entries in Top-level archives (with [0Ch].bit31=1):
 000h 8 Filename (zeropadded if less than 8 chars)
 008h 4 Decompressed Size (or 0=File isn't compressed)
 00Ch 4 Offset, self-relative from current List entry (plus bit31=1)
 File List entries in Nested archives (with [0Ch].bit31=0):
 000h 0Ch Filename (zeropadded if less than 12 chars)
 00Ch 4 Offset, self-relative from current List entry (plus bit31=0)
 Last File List entry has [00h..0Bh]=zerofilled, and Offset to end of file.

 000h .. Uncompressed Data
 CRC32 on above Data (Top-level only, not in Nested archives)

13.31 CDROM File Archives with Filename

- 323/1136 -

Compressed Data Format (when List entry [08h]>0 and [0Ch].bit31=1)::

CDROM File Compression RESOURCE (Star Wars Rebel Assault 2)

Entrysize=14h

FIGHTING FORCE (MAGDEMO01: FGHTFRCE*.WAD)

File List entries:

PARAPPA (MAGDEMO01: PARAPPA*.INT)

UM JAMMER LAMMY (MAGDEMO24: UJL*.INT)

Folder entries:

File List entries:

 000h 1 Compression Method (01h=LZ/16bit, 02h=LZ/24bit)
 001h 3 Decompressed Size (big-endian)
 004h .. Compressed Data
 Zeropadding to 4-byte boundary
 CRC32 on above bytes (method, size, compressed data, padding)

 000h 4 Number of files (big endian)
 004h N*14h File List
 File Data

 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter than 12 chars)
 00Ch 4 Filesize in bytes (can be odd) (big endian)
 010h 4 Fileoffset in bytes (increasing, 4-byte aligned) (big endian)

 0000h 2000h Folder 1
 2000h .. File Data for Folder 1
 ... 2000h Folder 2
 File Data for Folder 2
 ... 2000h Folder End marker (FFFFFFFFh, plus zeropadding)

 0000h 4 Folder ID (increasing, 1,2,3, or FFFFFFFFh=End)
 0004h 4 Number of files (max 198h) (N)
 0008h 4 File Data Area size/800h (S)
 000Ch 4 Zero (0)
 0010h N*14h File List
 Zeropadding to 2000h
 2000h S*800h File Data Area for this folder

13.31 CDROM File Archives with Filename

- 324/1136 -

File Offsets are always 4-byte aligned (required for Um Jammer Lammy, which contains

Filesizes that aren's multiples of 4).

Note: There can be more than one folder with same ID (ie. when having more than 198h

TIM files, which won't fit into a single 2000h-byte folder).

GRAN TURISMO 1 (MAGDEMO10: GT\BG.DAT\, GT\COURSE.DAT\)

GRAN TURISMO 1 (MAGDEMO15: GT\BG.DAT\, GT\COURSE.DAT\)

JUMPSTART WILDLIFE SAFARI FIELD TRIP (MAGDEMO52: DEMO\DATA.DAT*.DAT)

These are child archives found inside of the main GT-ARC and DATA.DAT archives.

CROC 2 (MAGDEMO22: CROC2\CROCII.DAT AND CROCII.DIR)

DISNEY'S THE EMPEROR'S NEW GROOVE (MAGDEMO39: ENG\KINGDOM.DIR+DAT)

DISNEY'S ALADDIN IN NASIRA'S REVENGE (MAGDEMO46: ALADDIN\ALADDIN.DIR+DAT)

File List entries:

ALICE IN CYBERLAND (ALICE.PAC, AND NESTED .PAC, .FA, .FA2 ARCHIVES)

 000h 4 Filesize in bytes
 004h 10h Filename (FILENAME.EXT, zeropadded)

 000h 4 Number of Files (eg. 26h) (usually at least 02h or higher)
 004h N*14h File List
 File Data area
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded if shorter)
 010h 4 Offset in bytes (increasing, 4-byte-aligned?)

 DIR:
 000h 4 Number of Entries (0Eh)
 004h N*14h File List
 DAT:
 000h .. File Data (referenced from CROCII.DIR)

 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter)
 00Ch 4 File Size in bytes
 010h 4 File Offset in .DAT file (800h-byte aligned, increasing)

 000h N*14h File List
 ... 14h Zerofilled (File List end marker)
 File Data area
 File List entries:
 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter)

13.31 CDROM File Archives with Filename

- 325/1136 -

PAC and FA are uncompressed, FA2 is compressed via some LZ5-variant:

CDROM File Compression LZ5 and LZ5-variants

INTERPLAY SPORTS BASEBALL 2000 (MAGDEMO22:BB2000\DATA\HOG.TOC\UNIFORMS*.UNI)

Entrysize=18h

INVASION FROM BEYOND (MAGDEMO15: IFB*.CC)

File List entries:

Note: Alignment is optional: Files in IFB\HANGAR\.CC and IFB\MAPS\.CC use 4-byte

aligned offsets (but may have odd filesizes). Files in IFB\INCBINS*.CC don't use any

alignment/padding.

GHOST IN THE SHELL (MAGDEMO03: GITSDEMO\S01*.FAC)

File List entries:

 00Ch 4 Offset (increasing, 4-byte aligned)
 010h 4 Filesize in bytes (can be odd, eg. for .FA2 files)

 000h N*14h File List (3Ch*14b bytes, unused entries are zeropadded)
 4B0h .. Data area (TIM files for player uniforms)
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Offset (zerobased, from begin of Data area, increasing)

 000h 0Ch Fixed ID (always "KotJCo01Dir ") (always that same string)
 00Ch 4 Number of Files
 010h N*18h File List
 File Data area

 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Offset in bytes (increasing, 1-byte or 4-byte aligned)
 014h 4 Filesize in bytes (can be odd)

 000h N*18h File List (18h-bytes each)
 ... 18h File List end marker (zerofilled)
 File Data

 000h 1 Filename Checksum (sum of bytes at [001h..00Dh])
 001h 1 Filename Length (excluding ending zeroes) (eg. 8, 9, 10, 12)
 002h 0Ch Filename ("FILENAME.EXT", zeropadded if less than 12 chars)
 00Eh 2 Unknown (2000h) (maybe attr and/or ending zero for filename)

13.31 CDROM File Archives with Filename

- 326/1136 -

ODDWORLD: ABE'S EXODUS (MAGDEMO17: ABE2*.LVL)

ODDWORLD: ABE'S EXODUS (MAGDEMO21: ABE2*.LVL AND NESTED .IDX FILES)

File List entries (in .LVL files):

File List entries (in .IDX files):

MONKEY HERO (MAGDEMO17: MONKEY\BIGFILE.PSX AND NESTED .PSX FILES)

File List entries:

 010h 4 Filesize in bytes (can be odd)
 014h 4 Offset (increasing, 4-byte aligned)

 000h 4 Header Size in bytes (2800h) (can be MUCH bigger than needed)
 004h 4 Zero
 008h 4 ID "Indx"
 00Ch 4 Zero
 010h 4 Number of Files (N) (CEh) (can be zero=empty in .IDX files)
 014h 4 Header Size/800h (05h)
 018h 4 Zero
 01Ch 4 Zero
 020h N*18h File List
 Zeropadding to end of Headersize
 File Data area

 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter)
 00Ch 4 Offset/800h
 010h 4 File Size/800h
 014h 4 File Size in bytes

 IDX files use the same File List entry format as LVL, but the offsets
 seem to refer to an external file with corresponding name, for example:
 cdrom:\ABE2\CR.LVL\CR.IDX ;directory info
 cdrom:\ABE2\CR.MOV ;external data (the .MOV being a .STR video)
 XXX: That's not tested/verified, and not implemented in no$psx file viewer.

 000h 4 Unknown (6)
 004h 4 Total Filesize (1403800h)
 008h 2 Unknown, Alignment? (800h)
 00Ah 2 Number of Files, excluding zerofilled File List entries (ACh)
 00Ch 4 Header Size (1800h)
 010h 4 Unknown, Entrysize? (18h)
 014h 4 Unknown, Entrysize? (18h)
 018h N*18h File List (can contain unused zerofilled entries here and there!)
 File Data area

13.31 CDROM File Archives with Filename

- 327/1136 -

NHL FACEOFF '99 (MAGDEMO17: FO99*.KGB AND NESTED *.PRM *.TMP *.ZAM)

NHL FACEOFF 2000 (MAGDEMO28: FO2000*.KGB, Z.CAT, AND NESTED *.PRM AND *.TMP)

File List entries:

SYPHON FILTER 1 (MAGDEMO18: SYPHON\SUBWAY.FOG) (4MBYTE, NAMELEN=10H)

File List entries:

This is almost same as the newer v2 format in Syphon Filter 2 (see there for details).

CENTIPEDE (MAGDEMO23: ARTFILES*.ART)

 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 File Offset in bytes (800h-byte aligned, unusorted/not increasing)
 014h 4 File Size in bytes

 000h 4 ID "KGB",00h
 004h 4 Number of Files (N)
 008h (4) Number of Files negated (-N) ;<-- optional, not in LITESHOW.KGB
 ... N*18h File List
 ... (..) CBh-padding to alignment boundary (only if align=800h)
 File Data area

 000h 10h Filename ("FILENAME.EXT", terminated by 00h, padded with CDh)
 010h 4 File Size in bytes
 014h 4 File Offset (800h-byte or 1/4-byte? aligned)

 000h 4 Unknown (80000001h)
 004h 4 Offset/800h to Final Padding area
 008h 8 Zerofilled
 010h N*18h File List
 ... (..) CDh-padding to 800h-byte alignment boundary
 File Data area
 ... 800h Some text string talking about "last-sector bug"
 ... 40BEh Final Padding area (CDh-filled)

 000h 10h Filename ("FILENAME.EXT", terminated by 00h, padded with CDh)
 010h 4 File Offset/800h (increasing)
 014h 4 File Size/800h

 000h 0Fh ID ("Art", zeropadded) ;\
 00Fh 1 Type or so ("?") ; sorts of File List entry
 010h 4 Number of entries plus 1 (N+1) ; for root folder
 014h 4 Total Size in bytes (can be odd) ;/
 018h N*18h File List
 File Data area
 File List entries:

13.31 CDROM File Archives with Filename

- 328/1136 -

Note: C0L7.ART includes zerofilled 18h-bytes as last File List entry, BONU.ART doesn't

have any such zerofilled entry.

Unknown if this can have child folders (maybe in similar form as the root folder entry).

SHEEP RAIDER (MAGDEMO52: SDWDEMO*.SDW)

SHEEP RAIDER (MAGDEMO54: SDWDEMO*.SDW)

The SDW archive contains malformed 200h*1A4h pixel TIMs.

WING COMMANDER III (*.LIB)

LARGO WINCH - COMMANDO SAR (LEVELS*.DCF)

 000h 0Fh Filename ("FILENAME", zeropadded)
 00Fh 1 Type/extension or so ("X" or "D")
 010h 4 File Offset (unaligned, increasing)
 014h 4 File Size in bytes (can be odd)

 000h 4 Unknown (301h)
 004h 4 Zero (0)
 008h 4 Number of files (N)
 00Ch N*18h File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 4 Offset (800h-byte aligned, increasing)
 004h 4 Filesize in bytes
 008h 1 Unknown (01h)
 009h 0Fh Filename ("FILENAME.EXT",00h, plus garbage padding)

 Texsize is 6900Eh, but should be 6900Ch = 200h*1A4h*2+0Ch
 Filesize is 6A000h, but should be 69014h = 200h*1A4h*2+14h

 000h 2 Number of Files (C9h)
 002h N*18h File List
 ... (..) Padding to 800h-byte boundary (if any, eg. in MOVIES.LIB)
 File data area (800h-byte aligned, or unaligned)
 File List entries:
 000h 4 Filesize in bytes
 004h 4 Offset (increasing, 800h-byte aligned, or unaligned)
 008h 10h Filename ("filename.ext", zeropadded)

 000h 4 ID "DCAT"
 004h 4 Number of Entries
 008h N*18h File List
 Zerofilled (padding to 800h-byte boundary)
 File Data area
 File List entries:

13.31 CDROM File Archives with Filename

- 329/1136 -

POLICENAUTS (NAUTS*.DPK)

ACTUA ICE HOCKEY 2 (BEST SPORTS GAMES EVER (DEMO), AH2\GAMEDATA*.MAD)

There are several oddities in demo version (unknown if that's in retail, too):

MUPPET MONSTER ADVENTURE (MAGDEMO37: MMA\GAMEDATA+WORLDS**.INF+WAD)

File List entries:

 000h 10h Filename ("FILENAME.EXT", terminated by 00h, plus garbage padding)
 010h 4 Filesize in bytes
 014h 4 Offset (increasing, 800h-byte aligned)

 000h 4 ID "FRID"
 004h 4 Always E0000000h
 008h 4 Always 800h (...maybe alignment)
 00Ch 4 Number of Entries (N)
 010h 4 Header Size (N*18h+20h, plus padding to 800h-byte boundary)
 014h 4 Always 18h (...maybe entry size)
 018h 8 Zerofilled
 020h N*18h File List
 Zerofilled (padding to 800h-byte boundary)
 File Data area
 File List entries:
 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter)
 00Ch 4 Offset (increasing, 800h-byte aligned)
 010h 4 Filesize in bytes
 014h 4 Unknown (checksum? random?)

 000h N*18h File List
 File Data area (directly after File List, without end-code)
 Note: There is no file-list end-marker (instead, the Offset in 1st File
 entry does imply the end of File List).
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Offset (increasing, 4-byte aligned, or unaligned for TXT files)
 014h 4 Filesize in bytes (or weird nonsense in SFX.MAD)

 SFX.MAD has nonsense Filesize entries (eg. 164h for a 15150h-byte file).
 FACES.MAD contains only one TIM file... but as 3Mbyte junk appended?
 RINKS.MAD and TEAMS.MAD start with 0Dh,0Ah,1Ah followed by 4Mbyte junk.
 MISCFILE.MAD contains several nested .mad files.
 MISCFILE.MAD\panfont.mad*.txt --> starts with FF,FE --> that's 16bit Unicode?

 INF:
 000h N*18h File List
 WAD:
 000h .. File Data area

13.31 CDROM File Archives with Filename

- 330/1136 -

ARMY MEN AIR ATTACK 2 (MAGDEMO40: AMAA2*.PCK)

MORT THE CHICKEN (MAGDEMO41: MORT*.PPF AND .TPF)

HOT WHEELS EXTREME RACING (MAGDEMO52: US_01293\VEHICLES*.CAB)

Entrysize=19h

WAD FORMAT (WIPEOUT 2097)

PSX Wipeout 2097, cdrom:\WIPEOUT2\SOUND\SAMPLES.WAD:\.vag

PSX Wipeout 2097, cdrom:\WIPEOUT2\TRACK*\TRACK.WAD:\.*

 000h 4 File Offset/800h in .WAD file
 004h 4 File Size in bytes
 008h 10h Filename ("FILENAME.EXT", zeropadded)

 000h 4 Number of entries (N)
 004h N*18h File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Fileoffset (800h-byte aligned, increasing)
 014h 4 Filesize in bytes

 000h 2 Type (31h=TPF with TIMs, 32=PPF with PMDs)
 002h 2 Number of entries (N) (can be 0=None, eg. STAGE*\MORT.PPF)
 004h 4 File List Size (N*18h)
 008h 4 Header Size (always 14h)
 00Ch 4 Data area Size (Filesize-14h-N*18h)
 010h 4 Data area Offset (14h+N*18h)
 014h N*18h File List
 File Data area
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Filesize in bytes
 014h 4 Fileoffset (from begin of Data area, increasing)

 000h 4 ID "BACR" (aka RCAB backwards)
 004h 4 Number of entries (N)
 008h N*18h File List
 File Data area
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 020h 4 Offset (from begin of Data area, increasing, 4-byte aligned)
 024h 4 Filesize in bytes (can be odd)

13.31 CDROM File Archives with Filename

- 331/1136 -

PSX Wipeout 3 (MagDemo25: WIPEOUT3*)

Directory Entries

The filesize entry implies offset to next file.

Entrysize=1Ch

COMMAND & CONQUER, RED ALERT (MAGDEMO05: RA*) FAT/MIX/XA

File List entries:

SYPHON FILTER 2 (MAGDEMO30: SYPHON\TRAIN.FOG) (2.8MBYTE, NAMELEN=14H)

File List entries:

 000h 2 Number of files
 002h N*19h Directory Entries for all files
 Data for all files (without any alignment, in same order as above)

 000h 10h Filename (ASCII, can be lowercase), terminated by 00h, plus garbage
 010h 4 Filesize in bytes ;\maybe compressed/uncompressed, or rounded,
 014h 4 Filesize in bytes ;/always both same
 018h 1 Unknown (always 00h)

 000h 4 Number of entries with location 0=MIX (M=65h)
 000h 4 Number of entries with location 1=XA (X=1)
 008h M*1Ch File List for location 0=MIX
 ... X*1Ch File List for location 1=XA

 000h 10h Filename (terminated by 00h, padded with garbage)
 010h 4 Offset/800h in DATA.MIX or Offset/930h DATA.XA file (increasing)
 014h 4 Filesize in bytes
 018h 4 File Location (0=DATA.MIX, 1=DATA.XA)

 000h 4 Unknown (80000001h)
 004h 4 Offset/800h to Final Padding area
 008h 8 Zerofilled
 010h N*1Ch File List
 ... (..) CDh-padding to 800h-byte alignment boundary
 File Data area
 ... 3394h Final Padding area (CDh-filled)

 000h 14h Filename ("FILENAME.EXT", terminated by 00h, padded with CDh)
 014h 4 File Offset/800h (increasing)
 018h 4 File Size/800h

13.31 CDROM File Archives with Filename

- 332/1136 -

This is almost same as the older v1 format in Syphon Filter 1:

To detect the version: Count the length of the "ASCII chars + 00h byte + CDh padding

bytes" at offset 10h.

Note: The FOG archive in Syphon Filter 2 demo version does contain some empty dummy

files (with intact filename, but with offset=0 and size=0).

Entrysize=20h

COLONY WARS (MAGDEMO02: CWARS\GAME.RSC)

COLONY WARS VENEGANCE (MAGDEMO14: CWV\GAME.RSC, 8MBYTE)

File List entries:

Note: Colony Wars Red Sun does also have a GAME.RSC file (but in different format, with

folder structure).

WARGAMES (MAGDEMO14: WARGAMES*.DAT)

File List entries:

 v1 (Syphon Filter 1) has filename_len=10h (and filelist_entrysize=18h)
 v2 (Syphon Filter 2) has filename_len=14h (and filelist_entrysize=1Ch)

 000h 4 Number of Files
 004h N*20h File List
 ... 10h File List End: Name (zerofilled)
 ... 4 File List End: Offset (total filesize, aka end of last file)
 ... 0Ch File List End: Padding (zerofilled)
 File Data area

 000h 10h Filename ("FILENAME.EXT", terminated by 00h, padded with garbage)
 010h 4 File Offset in bytes (increasing, 4-byte aligned)
 014h 0Ch Padding (garbage) (usually 800F68A0h,800F68A0h,800F68A0h)

 000h 4 Number of Files (1C3h)
 004h N*20h File List
 Zeropadding to 800h-byte boundary
 File Data area

 000h 10h Filename ("FILENAME.EXT", zeropadded, sorted alphabetically)
 010h 4 File Offset/800h (unsorted, not increasing)
 014h 4 File Size in bytes
 018h 4 File Size/800h
 01Ch 4 Zero

13.31 CDROM File Archives with Filename

- 333/1136 -

RUNNING WILD (MAGDEMO15: RUNWILD*.BIN)

File List entries:

Files with extension .z or .Z are compressed:

CDROM File Compression Z (Running Wild)

TEST DRIVE OFF-ROAD 3 (MAGDEMO27: TDOR3\TDOR3.DAT)

About same as the other Test Drive games, but with shorter filenames.

TDOR3.DAT contains DOT1 child archives and many RNC compressed files: --> CDROM

File Compression RNC (Rob Northen Compression)

TINY TANK (MAGDEMO23: TINYTANK*.DSK)

 000h N*20h File List
 ... 4 File List End Offset/800h (end of last file)
 ... 4 File List End Size (zero)
 ... 18h File List End Name (zerofilled)
 Padding to 800h-byte boundary (each 20h-byte: 01h, and 1Fh zeroes)
 File Data

 000h 4 Offset/800h (increasing)
 004h 4 Filesize in bytes
 008h 18h Filename ("FILENAME.EXT" or ":NAME" or ":NAME:NAME", zeropadded)

 000h N*20h File List (1920h bytes used; with padding: 5800h bytes in total)
 Zeropadding to Headersize (5800h)
 File Data area
 File List entries:
 000h 18h Filename ("FILENAME.EXT" or "PATH\FILENAME.EXT", zeropadded)
 018h 4 Filesize in bytes
 01Ch 4 File (Offset-Headersize)/800h

 000h 4 ID ("TDSK") ;\
 004h 4 Number of Files (1Bh) ; Directory
 008h N*20h File List ;/
 ... 4 1st File Size (same as Size entry in File List) ;\File Data area
 1st File Data ; (each file os
 ... 4 2nd File Size (same as Size entry in File List) ; preceeded by
 2nd File Data ; a size entry)
 etc. ;/
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 File Size in bytes
 014h 4 Unknown (35xxxxxxh..372xxxxxh)
 018h 4 Unknown (3724xxxxh) (Timestamp maybe?)
 01Ch 4 File Offset in bytes (increasing, 4-byte aligned)

13.31 CDROM File Archives with Filename

- 334/1136 -

Note: The File Offset points to a 32bit value containing a copy of the Filesize, and the

actual file starts at Offset+4.

MAG 3 (MAGDEMO26: MAG3\MAG3.DAT, 7MBYTE)

PLAY WITH THE TELETUBBIES (MAGDEMO35: TTUBBIES*.RES)

File List entries:

MAT HOFFMAN'S PRO BMX (OLD DEMO) (MAGDEMO39: BMX\FE.WAD+STR) (UNCOMPRESSED)

MAT HOFFMAN'S PRO BMX (NEW DEMO) (MAGDEMO48: MHPB\FE.WAD+STR) (COMPRESSED)

The decompressor is using an Inflate variant with slightly customized block headers:

 000h N*20h File List (B60h bytes)
 Zeropadding to 800h-byte boundary
 File Data area (files are AAh-padded to 800h-byte boundary)
 File List entries:
 000h 4 Filesize in bytes
 004h 2 File Offset/800h (16bit) (increasing)
 006h 1Ah Filename ("FILENAME.EXT" or "PATH\FILENAME.EXT", zeropadded)

 000h 2 Zero (0000h)
 002h 2 Number of Files (N)
 004h 4 Data Base (N*20h+10h)
 008h 4 Unknown (20h) ;-maybe File List entry size?
 00Ch 2 Unknown (10h) ;\maybe filename length and/or header size?
 00Eh 2 Unknown (10h) ;/
 010h N*20h File List
 File Data area

 000h 4 Zero
 004h 4 File Offset (increasing, 4-byte aligned, relative to Data Base)
 008h 4 File Size in bytes (can be odd)
 00Ch 4 Zero
 010h 10h Filename ("FILENAME.EXT", zeropadded)

 WAD:
 000h N*20h File List
 STR:
 000h .. File Data (MagDemo39: 4.5Mbyte, MagDemo48: compressed/2.8Mbyte)
 File List entries:
 000h 14h Filename ("FILENAME.EXT", zeropadded)
 014h 4 Offset in bytes, 4-byte aligned, in STR file
 018h 4 Filesize, compressed (always rounded to multiple of 4 bytes)
 01Ch 4 Filesize, decompressed (zero when not compressed)

13.31 CDROM File Archives with Filename

- 335/1136 -

Everything else is same as described here:

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

Instead of "tinf_uncompress", use the function below:

Note: Apart from the MHPB\FE.WAD archive, many MHPB*.BIN files seem to be also

compressed (unknown if that's the same compression method; and, if so, they would lack

decompressed size info).

Entrysize=28h

DEMO MENU, PLAYSTATION MAGAZINE DEMO DISC 03-54, MENU.FF

Used on most PlayStation Magazine Demo Discs (Disc 03-54, except Disc 01-02)

Used on PlayStation Underground 3.1 (and maybe other issues)

Used on Interactive CD Sampler Disc Volume 10 (maybe others, but not Vol 4,5)

File List entries:

 - end flag is processed immediately (instead of after the block)
 - blocktype is only 1bit wide (instead of 2bit)
 - stored blocks have plain 16bit len (without additional 16bit inverse len)

 bmx_tinf_style_uncompress(dst,src)
 tinf_init() ;init constants (needed to be done only once)
 @@lop:
 if tinf_getbit()=0 then goto @@done ;end flag, 1bit
 if tinf_getbit()=0 then ;blocktype, 1bit
 tinf_align_src_to_byte_boundary()
 len=LittleEndian16bit[src], src=src+2 ;get len (without inverse len)
 for i=0 to len-1, [dst]=[src], dst=dst+1, src=src+1, next i ;uncompressed
 else
 tinf_decode_dynamic_trees(), tinf_inflate_compressed_block() ;compressed
 gpto @@lop
 @@done:
 ret

 000h 4 Number of entries (eg. 20h or 28h)
 004h N*28h File List
 Garbage padding to 800h-byte boundary
 File Data
 Huge zeropadding to 200000h or 2EE000h (2048Kbyte or 3000Kbyte)

 000h 20h Filename (terminated by 00h, padded with... looks like garbage)
 020h 4 Size/800h
 024h 4 Offset/800h (increasing)

13.31 CDROM File Archives with Filename

- 336/1136 -

Contains .BS, .TIM, .TXT, .VH, .VB files. The size seems to be always(?) 2048Kbytes,

2992Kbytes, 2000Kbytes, or 3000Kbytes (often using only the first quarter, and having

the remaining bytes zeropadded).

TEST DRIVE 4 (MAGDEMO03: TD4.DAT) (HEADERSIZE=2000H, USED=0...H)

TEST DRIVE 5 (MAGDEMO13: TD5.DAT) (HEADERSIZE=3000H, USED=1EF8H)

DEMOLITION RACER (MAGDEMO27: DR\DD.DAT) (HEADERSIZE=5000H, USED=2328H)

This is used by several games, with different Headersizes (2000h or 3000h or 5000h),

with Offsets relative to the Headersize. To detect the Headersize, skip used entries, skip

following zeropadding, then round-down to 800h-byte boundary (in case the 1st file

contains some leading zeroes).

File List entries:

TD5.DAT and DD.DAT contain DOT1 child archives and many RNC compressed files:

CDROM File Compression RNC (Rob Northen Compression)

GEKIDO (MAGDEMO31: GEKIDO\GLOBAL.CD)

File List entries:

There is no "number of files" entry, and no "file list end marker" (though the "random

gibberish" might serve as end marker, as long it doesn't start with "\" backslash).

TEAM BUDDIES (MAGDEMO37: BUDDIES\BUDDIES.DAT* AND NESTED *.BND FILES)

 000h N*28h File List (less than 0C00h bytes used in TD4 demo)
 Zeropadding to Headersize (2000h or 3000h or 5000h)
 File Data

 000h 20h Filename ("PATH\FILENAME.EXT", zeropadded)
 020h 4 Size in bytes
 024h 4 (Offset-Headersize)/800h (increasing)

 0000h N*28h File List
 21C0h ... Unknown random gibberish? (23h,E8h,0Ch,1Dh,79h,C5h,24h,...)
 4000h ... File Data area

 000h 1Ch Filename ("\PATH\FILENAME.EXT;0", zeropadded)
 01Ch 4 Filesize in bytes
 020h 4 Fileoffset in bytes (4000h and up, increasing)
 024h 4 Filechecksum (32bit sum of all bytes in the file)

13.31 CDROM File Archives with Filename

- 337/1136 -

File List entries:

Note: There is a 4-byte gap between most files, that appears to be caused by weird/

bugged alignment handling done as so:

Namely, odd filesizes (eg. for TXT files in BUDDIES.DAT\00D2h..00D7h) are forcefully

rounded-up to 4 bytes boundary. If that rounding has occurred then there is no additional

4-byte gap (but the 4-byte gap will appear if the original filesize was already 4-byte

aligned).

JUMPSTART WILDLIFE SAFARI FIELD TRIP (MAGDEMO52: DEMO\DATA.DAT)

Entrysize=34h

ARMY MEN: AIR ATTACK (MAGDEMO28: AMAA\PAK*.PAK)

 000h 4 ID "BIND"
 004h 4 Number of files (N)
 008h N*28h File List
 File Data area

 000h 20h Filename ("\FILENAME.EXT", zeropadded)
 020h 4 File Offset (increasing, 4-byte aligned) ;\see note
 024h 4 File Size in bytes (always a multiple of 4) ;/

 size=((filesize+3) AND not 3) ;size entry for curr file (plus 3)
 offs=((filesize+4) AND not 3)+offs ;offs entry for next file (plus 4 !!!)

 000h 4 Number of entries (N)
 004h 4 Number of entries (same as above)
 008h 4 Number of entries (same as above)
 00Ch 4 Number of entries (same as above)
 010h N*28 File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 20h Filename ("\PATH\FILENAME.EXT", zeropadded)
 020h 4 Offset/800h, from begin of Data area (increasing)
 024h 4 Filesize in bytes

 000h 4 Number of Files
 004h N*34h File List
 Zeropadding to 4000h
 4000h .. File Data area
 File List entries:
 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Filesize in bytes ;\always both same, always

13.31 CDROM File Archives with Filename

- 338/1136 -

The used Type.Subtype values are:

Entrysize=40h

NINJA (MAGDEMO13: NINJA\CUTSEQ\.WAD AND NINJA\WADS\.WAD)

YOU DON'T KNOW JACK (MAGDEMO23: YDKJ\RES*.GLU)

YOU DON'T KNOW JACK 2 (MAGDEMO41: YDKJV2\\.GLU)

 014h 4 Filesize in bytes ;/both multiple of 800h
 018h 4 Zero
 01Ch 4 Type (07h..1Ah)
 020h 4 Subtype (00h..01h)
 024h 10h Zero

 07h.0 .TIM (*.TIM)
 07h.01h .TIM (HUD_*.TIM)
 08h.0 .TIM (PSTART.TIM)
 09h.0 .TIM (FONT.TIM)
 0Ah.0 .SFX
 0Eh.0 .MBL
 10h.0 .ATR
 11h.0 .RLC
 13h.0 .AST
 15h.0 .SCD
 16h.0 .TXT (PAUSED.TXT)
 17h.0 .TXT (OBJECT*.TXT)
 18h.0 .BIN
 1Ah.0 Misc (.3DO=TIM, .V=TXT, and TERRAIN.CLP .HI .LIT .MAP .PAT .POB .TER)

 000h 4 Number of Files (N)
 004h 4 Size of File Data area (SIZ) (total filesize-8-N*40h)
 008h N*40h File List
 ... SIZ File Data area
 File List entries:
 000h 4 Filesize in bytes
 004h 4 Fileoffset in bytes (zerobased, from begin of File Data area)
 008h 38h Filename, zeropadded

 000h 4 ID ("GLUE")
 004h 4 Unknown (always 400h)
 008h 4 Number of Files (N)
 00Ch 4 Header Size (40h+N*40h)
 010h 30h Zerofilled
 040h N*40h File List
 Garbage padding to alignment boundary
 File Data area
 File List entries:
 000h 20h Filename ("FILENAME.EXT", zeropadded)
 020h 4 File Offset in bytes (increasing, 800h-byte aligned)

13.31 CDROM File Archives with Filename

- 339/1136 -

Most .GLU files are 800h-byte aligned (except SHORTY\.GLU and THREEWAY\GLU which

use 4-byte alignment).

The files do start on alignment boundaries, but there is no alignment padding after end of

last file.

Entrysize=60h

ARMY MEN AIR ATTACK 2 (MAGDEMO40: AMAA2\.PCK\.PAK)

File Type values are 07h=TIM, 0Ah=SFX, 0Eh=MBL, 10h=ATR, 13h=AST, 15h=SCD,

19h=VTB, 1Bh=DCS, 1Dh=DSS, 1Eh=STR, 1Fh=DSM, 20h=FNT, 21h=TER, 25h=PMH,

26h=Misc.

Most of the files are SCRATCH compressed:

CDROM File Compression LZ5 and LZ5-variants

There are also several uncompressed files (eg. VERSION.V, *.SFX, and many of the

TERRAIN.* files).

 024h 4 File Size in bytes
 028h 2 File ID Number 1 (eg. 1-71 for C01.GLU-C71.GLU)
 02Ah 2 Unknown (random, checksum, ?)
 02Ch 4 File ID Number 2 (eg. increasing: 1, 2, 3)
 030h 10h Zerofilled

 000h 4 Number of entries (N)
 010h N*60h File List
 Zeropadding to 2000h
 2000h .. File Data area
 File List entries:
 000h 4 Timestamp? (BFxxxxh..C0xxxxh) (or zero, in first file)
 004h 4 Unknown (always 421C91h)
 008h 4 Unknown (200h or 60200h)
 00Ch 4 Filesize (uncompressed)
 010h 4 Filesize (compressed, or 0 when not compressed)
 014h 4 File Checksum (sum of all bytes in uncompressed file data)
 018h 4 Unknown (random 32bit value?)
 01Ch 10h Filename ("FILENAME.EXT", zeropadded)
 02Ch 4 Zerofilled
 030h 4 Unknown (0 or 1 or 8)
 034h 4 File Type (see below)
 038h 8 Zerofilled
 040h 4 Offset MSBs (Fileoffset-2000h)/800h ;\increasing, 4-byte aligned
 044h 4 Offset LSBs (Fileoffset AND 7FFh) ;/(or zero when filesize=0)
 048h 18h Zerofilled

13.31 CDROM File Archives with Filename

- 340/1136 -

Entrysize=90h

GRIND SESSION (MAGDEMO33: GRIND\SLIP.GRV)

GRIND SESSION (MAGDEMO36: GRIND\SLIP.GRV)

GRIND SESSION (MAGDEMO42: GRIND\SLIP.GRV)

GRIND SESSION (MAGDEMO45: GRIND\SLIP.GRV)

Variable Entrysize

HED/WAD

Format of the CD.HED file:

File Entry format:

PADBUG: Apocalypse does append 1..800h bytes alignment padding (instead of 1..7FFh

or 0 bytes).

DANCE UK (DATA.PAK)

 000h 4 ID (A69AA69Ah)
 004h 4 Number of files (N)
 008h N*90h File List
 File Data area
 File List entries:
 000h 80h Filename ("DATA\FILENAME.EXT",00h, plus CDh-padding)
 080h 4 File Offset in bytes (increasing, 4-byte aligned)
 084h 4 File Size in bytes
 088h 8 Unknown (random/checksum?)

 Used by Spider-Man (MagDemo31,40: SPIDEY\CD.HED and CD.WAD)
 Used by Spider-Man 2 (MagDemo52: SPIDEY\CD.HED and CD.WAD)
 Used by Tony Hawk's Pro Skater (MagDemo22: PROSKATE\CD.HED and CD.WAD)
 Used by Apocalypse (MagDemo16: APOC\CD.HED and CD.WAD) ;with PADBUG
 Used by MDK (Jampack Vol. 1: MDK\CD.HED and CD.WAD) ;without ENDCODE
 Used by Mat Hoffman's Pro BMX (old demo) (MagDemo39: BMX\BMXCD.HED+WAD)

 000h .. File Entries (see below)
 ... (1) End code (FFh) (if any, not present in MDK)

 000h .. Filename (ASCII, terminated by 00h, zeropadded to 4-byte boundary)
 ... 4 Offset in CD.WAD (in bytes, usually 800h-byte aligned)
 ... 4 Filesize (in bytes)

13.31 CDROM File Archives with Filename

- 341/1136 -

KULA QUEST / KULA WORLD / ROLL AWAY (*.PAK)

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

LARGO WINCH - COMMANDO SAR (NTEXTURE\.GRP AND LEVELS\.DCF*.CAT AND *.GRP)

JACKIE CHAN STUNTMASTER (RTARGET\GAME.GCF AND LEV*.LCF)

 000h 4 Number of Files (N) (1ADh)
 004h 4 Unknown (7) (maybe HeaderSize/800h, same as first Offset/800h ?)
 008h 4 Unknown (1430h = 14h+N*0Ch, same as first Name pointer)
 00Ch 4 Unknown (1430h = 14h+N*0Ch, same as first Name pointer)
 010h 4 Unknown (1430h = 14h+N*0Ch, same as first Name pointer)
 014h N*4 Name List (pointers to name strings, 1430h and up) 6B4h bytes
 ... N*4 Size List (filesize in bytes) 6B4h bytes
 ... N*4 Offset List (Offset/800h) 6B4h bytes
 ... N*var Name Strings (ASCII strings, "folder\filename.ext",00h)
 Zerofilled (padding to 800h-byte boundary)
 File Data area

 000h 4 Number of Files (N)
 004h N*8 File List (2x32bit entries: Offset, Size) (unaligned, can be odd)
 ... N*4 File Name Offsets
 ... N*var File Name Strings ("FILE NN",0Ah,00h)
 Garbage-padding to 4-byte boundary
 ... (4) Optional extra garbage? ("MON " in ATLANTFI.PAK, MARSFI.PAK, etc.)
 File Data area (ZLIB compressed, starting with big-endian 789Ch)

 000h 4 ID (12h,34h,56h,78h) (aka 12345678h in big endian)
 004h 4 Header Size (offset to File Data area)
 008h 4 Number of Entries (can be 0=None, eg. LEVELS\LARGO07.DCF\Z16.CAT)
 00Ch N*var Name List (Filenames in form "FILENAME.EXT",00h)
 Zeropadding to 4-byte boundary
 ... N*4 Size List (Filesizes in bytes)
 File Data area

 000h 4 Number of files (N) (3..EBh) (big-endian)
 004h N*Var File List (list size is implied in first file offset)
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 4 File Type (ascii, .LLN .TXI .TPG .RCI .RCP .WDB .PCI .PCP .BLK)
 004h 4 File Size (can be odd) (big-endian)
 008h 4 File Offset (increasing, 800h-byte aligned) (big-endian)
 00Ch 4 Extra Size (0 or 4 or 8) (big-endian)
 010h .. Extra Data (if any) (32bit number, or "TEXTURES")

13.31 CDROM File Archives with Filename

- 342/1136 -

SYPHON FILTER 1 (MAGDEMO18: SYPHON\.HOG, SYPHON\SUBWAY.FOG\.HOG,SLF.RFF)

SYPHON FILTER 2 (MAGDEMO30: SYPHON\.HOG, SYPHON\TRAIN.FOG\.HOG,SLF.RFF)

There are two versions: Syphon Filter 1 (v1) and Syphon Filter 2 (v2):

Normally, the following is common for v1/v2:

There are several inconsistent special cases for some v2 files:

Danger: The special value 920h means that headersize is one 800h-byte sector (whereas

920h is dangerously close to REAL headersize, eg. v1 PCHAN.HOG has headersize=908h

which means one 800h-byte sector plus 108h bytes) (the 920h thing should occur only in

v2 though, since v1 has STR files stored in ISO filesystem instead of in HOG archives).

ELECTRONIC ARTS 32BIT BIGF ARCHIVES

 000h 4 Timestamp? (36xxxxxxh=v1?, 38xxxxxxh=v2?, other=SLF.RFF)
 004h 4 Number of Files (N)
 008h 4 Base for Offset List (always 14h)
 00Ch 4 Base for String Table (v1=N*4+14h, or v2=N*4+18h)
 010h 4 Base for File Data (end of String Table plus align 4/800h/920h)
 014h N*4 Offsets to File(s) (increasing, first=0, relative to above [010h])
 ... (4) v2 only: End Offset for Last File (HOG filesize minus [010h])
 String Table (filename list in form of "FILENAME.EXT",00h)
 Zeropadding to 4-byte or 800h-byte boundary
 File Data area

 v1 has [0Ch]=N*4+14h (without end-of-last-file entry; use end=total_size)
 v2 has [0Ch]=N*4+18h (and does have end-of-last-file entry)
 v1 has STR files in ISO filesystem (not in HOG archives)
 v2 has STR files in MOVIES.HOG (with [10h]=920h and [14h and up]=sectors)

 v1/v2 has [10h]=data base, aligned to 4 or 800h
 v1/v2 has [14h and up] in BYTE-offsets, relative to base=[10h]
 v1/v2 uses HOG format in .HOG files also in SLF.RFF
 v1/v2 has further .RFF files (but that aren't in HOG format)

 v2 MOVIE.HOG has [10h]=920h (which is meant to mean base="after 1st sector")
 v2 MOVIE.HOG has [14h and up] in SECTOR-units, with base="after 1st sector"
 v2 SLF.RFF does contain two HOG archives badged together (plus final padding)
 v2 has some empty 0-byte .HOG files (at least so in demo version)

 000h 4 ID "BIGF" (normal case, all big-endian, 4-byte aligned) ;\
 ID "BIGH" (with [04h]=little-endian instead big-endian) ;
 ID "BIG4" (with 40h-byte alignment padding instead 4-byte) ;
 004h 4 Sum of Header+Filesizes (excluding Padding's!) (big-endian) ; Header
 008h 4 Number of entries (N) ;11h (big-endian) ;

13.31 CDROM File Archives with Filename

- 343/1136 -

File List entries (with variable length names, entries aren't 4-byte aligned):

Used by PGA Tour 96, 97, 98 (*.VIV)

Used by FIFA - Road to World Cup 98 (MOP*.BK*, Z4TBLS.BIG\.t, ZMO*.BIG\.viv)

Used by Fifa 2000 (Best Sports demo: FIFADEMO\.BIG, *.SBK, and nested .viv)

Used by Need for Speed 3 Hot Pursuit (*.VIV)

Used by WCW Mayhem (MagDemo28: WCWDEMO\.BIG) (odd filesizes & nameless files)

This is reportedly also used for various other Electronic Arts games for PC, PSX, and PS2

(often with extension *.BIG, *.VIV).

Reportedly also "BIGH" and "BIG4" exist:

http://wiki.xentax.com/index.php/EA_BIG_BIGF_Archive

Other Electronic Arts file formats (used inside or alongside big archives):

https://wiki.multimedia.cx/index.php/Electronic_Arts_Formats_(2) - BNK etc

ELECTRONIC ARTS 24BIT C0FB ARCHIVES

File List entries (with variable length names, and unaligned 24bit values):

 00Ch 4 Size of Header (including File List) ;11Fh (big-endian) ;
 010h .. File List ;/
 Padding to 1/4/8-byte boundary (optional, before each file) ;\Data
File Data ;/

 000h 4 Offset in bytes (increasing, often 4/8-byte aligned) (big-endian)
 004h 4 Size in bytes (can be odd, but often rounded to 4-byte) (big-endian)
 008h .. Filename (ASCII, terminated by 00h) ;variable length
 Note: Filenames can be empty ("",00h) (eg. in WCWDEMO\ZSOUND.BIG)

 000h 2 ID C0FBh (C0h,FBh) (big-endian) ;\
 002h 2 Size of Header-4 (00h,15h) (big-endian) ; Header
 004h 2 Number of Files (00h,01h) (big-endian) ;
 006h .. File List ;/
 019h .. Padding to 4-byte boundary? ;-Padding
 01Ch .. File Data ;-Data
 ... 4 "CRCF" ;\
 ... 4 Unknown (0C,00,00,00) (chunk-size little-endian?) ; Footer
 ... 4 Unknown (3B,2E,00,00) (checksum maybe?) ;/

 000h 3 Offset in bytes (increasing) ;(big-endian, 24bit)
 004h 3 Size in bytes ;(big-endian, 24bit)
 008h .. Filename (ASCII, terminated by 00h) ;variable length

13.31 CDROM File Archives with Filename

- 344/1136 -

http://wiki.xentax.com/index.php/EA_BIG_BIGF_Archive
https://wiki.multimedia.cx/index.php/Electronic_Arts_Formats_(2)

Used by FIFA - Road to World Cup 98 (*.BIG)

Used by Sled Storm (MagDemo24: ART\ZZRIDER.UNI, with 8 files insides)

DESTRUCTION DERBY RAW (MAGDEMO35: DDRAW*.PTH+.DAT, AND NESTED THEREIN)

File List entries:

Caution: Filenames in PTH archives aren't sorted alphabetically (so DAT isn't always

guaranteed to be the previous entry from PTH, namely, that issue occurs in MagDemo35:

DDRAW\INGAME\NCKCARS.PTH*.PTH+DAT).

Caution: The whole .DAT file can be compressed: If the sum of the filesizes in PTH file

does exceed the size of the DAT file then assume compression to be used (normally, the

top-level DATs are uncompressed, and nested DATs are compressed).

CDROM File Compression PCK (Destruction Derby Raw)

SNOCROSS CHAMPIONSHIP RACING (MAGDEMO37: SNOCROSS\SNOW.TOC+.IMG)

File List entries:

Resembles DDRAW*.PTH+.DAT (but Offset/Size are swapped, and uses 800h-align).

Note: The archive contains somewhat corrupted TGA's:

 PTH File:
 000h N*var File List
 DAT File:
 000h .. File Data area

 000h .. Filename ("FILENAME.EXT",00h) (variable length)
 ... 4 File Size in bytes (can be odd)
 ... 4 File Offset in bytes in DAT file (increasing, unaligned)

 TOC:
 000h N*var File List
 IMG:
 000h .. File Data area

 000h .. Filename ("DATA\FILENAME.EXT",00h) (variable length)
 ... 4 File Offset (increasing, 800h-byte aligned, in .IMG file)
 ... 4 File Size in bytes

 TGA[10h..11h] = 08h,08h ;bpp=8 (okay) and attr=8 (nonsense)
 TGA[10h..11h] = 10h,01h ;bpp=16 (okay) and attr=1 (okay) but it's yflipped

13.31 CDROM File Archives with Filename

- 345/1136 -

13.32 CDROM File Archives with Offset and Size

Crash Team Racing (retail: BIGFILE.BIG, and MagDemo30/42: KART\SAMPLER.BIG)

File Entries:

Filetypes in the archive include...

Black Matrix (*.DAT)

File List entries:

The "files" might actually contain small child folders? Or the whole stuff is just some kind

of data structure, not an actual file system archive.

Charumera (*.CVF)

 000h 4 Zero
 004h 4 Number of Files (260h)
 010h N*8 File entries
 Zeropadding to 800h byte boundary
 File Data

 000h 4 Fileoffset/800h (increasing)
 004h 4 Filesize in bytes

 MDEC v2 STR's (file 1E1h..1F8h,1FAh)
 TIM textures (file 01FBh..0200h and others)
 empty files (file 01F9h and others)
 small archives with named entries (file B5h,124h,125h,126h and others)
 stuff with date string and names (file 253h,256h)
 there seem to be no nested BIG files inside of the main BIG file

 000h 4 Number of files (N) (eg. 196h)
 004h 4 Unknown (always 0Bh) (maybe sector size shift?)
 008h N*4 File List
 Zeropadding to 800h-byte boudary
 File Data

 000h 2 Offset/800h (increasing)
 002h 2 Size/800h (can be zero)

 000h N*4 File List
 Zeropadding to 800h-byte boundary
 File Data area

13.32 CDROM File Archives with Offset and Size

- 346/1136 -

Vs (MagDemo03: THQ*) has .CDB archives

File List entries:

Note: The files may consist of multiple smaller files badged together (eg. DISPLAY.CDB

contains several TIMs per file).

Some CDB archives have garbage padding at end of file: BIN.CDB (2Kbyte), CSEL.CDB

(80K), DISPLAY.CDB (70K), MOT.CDB (10648Kbyte). Maybe that's related to deleted files

in the Vs demo version and/or to updating the CDB archives with newer/smaller content,

but without truncating the CDB filesize accordingly.

Monster Rancher (MagDemo06: MR_DEMO*.OBJ)

Deception III Dark Delusion (MagDemo33: DECEPT3\K3_DAT.BIN)

Star Trek Invasion (MagDemo34: STARTREK\STARTREK.RES)

Similar as .CDB archives (but with 32bit offset, and without duplicated size).

File List entries:

 File List entries:
 000h 1 Size/800h (8bit)
 001h 3 Offset/800h (24bit, increasing)

 000h N*8 File List
 Zeropadding to 800h-byte boundary
 File Data
 Garbage padding (can be several megabytes tall)

 000h 2 Offset/800h (increasing)
 002h 2 Size/800h (same as below, rounded up to sector units)
 004h 4 Size in bytes

 000h N*8 File List
 ... 4 File List end marker (00000000h)
 Garbage padding to 800h-byte boundary
 File Data

 000h 4 Offset/800h (increasing)
 004h 4 Size in bytes (often zero; for unused file numbers)

13.32 CDROM File Archives with Offset and Size

- 347/1136 -

Note: Files are usually padded with 0..7FFh bytes to 800h-byte boundary, but

STARTREK.RES does append additional 800h-byte padding after each file (ie. 800h..FFFh

padding bytes in total).

Einhander (MagDemo08: BININDEX.BIN/BINPACK0.BIN/BINPACK1.BIN)

File List entries:

SO98 Archives (NBA Shootout '98, MagDemo10: SO98..*.MDL *.TEX *.ANI *.DAT)

Resembles .BZE (in terms of duplicated size entry).

File List entries:

.DAT contains .TIM .SEQ .VB .VH and nested SO98 archives

.MDL contains whatever (and empty 0-byte files)

.TEX contains .TIM

.ANI contains whatever

Gran Turismo 1 (MagDemo10: GT*.DAT) GT-ARC

Gran Turismo 1 (MagDemo15: GT*.DAT) GT-ARC

Gran Turismo 2 (GT2.VOL\arcade\arc_fontinfo) GT-ARC

 000h X*4 File List for BINPACK0.BIN ;\
 Zeropadding ; BINPACK0
 410h .. Unknown (some/all of it looks like garbage) ;/
 800h Y*4 File List for BINPACK1.BIN ;\
 Zeropadding ; BINPACK1
 C10h .. Unknown (some/all of it looks like garbage) ;/

 000h 2 Offset/800h in BINPACK0.BIN or BINPACK1.BIN
 002h 2 Size/800h

 000h 4 Number of Files
 004h 4 Size of File Data area (total filesize-N*0Ch-8)
 008h N*0Ch File List
 File Data area

 000h 4 Offset (zerobased, from begin of File Data area)
 004h 4 Size in bytes
 008h 4 Size rounded to mutiple of 4-bytes

13.32 CDROM File Archives with Offset and Size

- 348/1136 -

MESSAGES.DAT, SOUND.DAT, TITLE.DAT which are completely uncompressed GT-ARC's.

Most other GT-ARC's contain LZ compressed files. In case of CARINF.DAT it's vice-versa,

the files are uncompressed, but the GT-ARC itself is LZ compressed (the fileheader

contains 00h,"@(#)GT-A",00h,"RC",00h,00h; it can be detected via those bytes, but lacks

info about decompressed size).

CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

O.D.T. (MagDemo17: ODT*.LNK and ODT\RSC\NTSC\ALLSOUND.SND and nested LNK's)

Barbie Explorer (MagDemo50: BARBIEX*.STR and nested therein)

File List entries:

Quirk: Instead of rounding only Offsets to N*4 byte boundary, all Sizes are rounded to

N*4 bytes (eg. TXT files in ODT\RSC\NTSC\GFILES.LNK\01 with odd number of characters

are are zeropadded to N*4 bytes).

Note: The PADBUG archives in Final Fantasy VIII (FF8) are very similar (but have a

different alignment quirk).

Bust A Groove (MagDemo18: BUSTGR_A\.DFS and BUSTGR_B\.DFS) (DFS)

Bust-A-Groove 2 (MagDemo37: BUSTAGR2\BUST2.BIN*) (main=DF2 and child=DFS)

Same as in O.D.T. with extra "DFS_" ID at start of file.

 000h 0Ch ID "@(#)GT-ARC",00h,00h
 00Ch 2 Content Type (8001h=Compressed, 0001h=Uncompressed)
 00Eh 2 Number of Files (eg. 0Fh)
 010h N*0Ch File List
 File Data area
 File List entries:
 000h 4 Offset in bytes (increasing, unaligned)
 004h 4 Compressed File Size (can be odd) ;\both same when uncompressed
 008h 4 Decompressed File Size ;/(ie. when [00Ch]=0001h)

 000h 4 Number of Files (N)
 004h N*8 File List
 File Data area

 000h 4 Offset in bytes (increasing, 1/4-byte? aligned)
 004h 4 File Size in bytes (usually N*4, TXT's in ODT are padded as so)

13.32 CDROM File Archives with Offset and Size

- 349/1136 -

The game does use uncompressed DFS archives (in .DFS files) and compressed DFS

archives (in .BPE files):

CDROM File Compression BPE (Byte Pair Encoding)

The game does also use .DBI files (which contain filenames and other strings, whatever

what for).

Monaco Grand Prix Racing Simulation 2 (MagDemo24: EXE\\.SUN)

Same as DFS, but with Total Filesize instead of "DFS_".

File Entries:

Note: The alignment in Monaco is a bit glitchy:

The first file starts with unknown 32bit value, followed by "pBAV".

Rollcage (MagDemo19: ROLLCAGE\SPEED.IMG) (2Mbyte)

Rollcage Stage II (MagDemo31: ROLLCAGE\SPEED.IDX+SPEED.IMG) (3Kbyte+9Mbyte)

Sydney 2000 (MagDemo37: OLY2000\DEMO.IDX+DEMO.IMG) (1Kbyte+2Mbyte)

 000h 4 ID "DFS_" (with align 4) or "DF2_" (with align 800h)
 004h 4 Number of Files (N)
 008h N*8 File List
 File Data area
 File List entries:
 000h 4 Fileoffset in bytes (4-byte or 800h-byte aligned, increasing)
 004h 4 Filesize in bytes (can be odd, eg. in BUSTGR_A\SELECT.BPE*)

 000h 4 Total used filesize (excluding zeropadding to 2EE000h)
 004h 4 Number of Files (N)
 008h N*8 File List
 File Data area
 ... (..) In some files: Zeropadding to 2EE000h (3072Kbytes)

 000h 4 Offset (increasing, 4-byte aligned, see note)
 004h 4 Filesize in bytes (can be odd in Monaco)

 If (Size AND 3)=0 then NextOffset=Offset+Size ;Align4
 If (Size AND 3)>0 then NextOffset=Offset+Size+Align800h ;Align800h
 Namely, Monaco has files with Size=3BC5h.

13.32 CDROM File Archives with Offset and Size

- 350/1136 -

File List entries:

The compression related entries allow to pre-allocated the decompression buffer (without

needing to load the actual GT20 file header), and then load the comprssed file to the top

of the decompression buffer.

CDROM File Compression GT20 and PreGT20

Ultimate 8 Ball (MagDemo23: POOL.DAT) (5.5Mbyte)

Notes: The LAST file isn't zeropadded to 800h-byte boundary. The File List includes some

unused entries (all 0Ch-bytes zerofilled).

BIGFOOL - 3D Baseball (BIGFILE.FOO)

 Rollcage 1 uses a single IMG file that contains both directory and data:
 000h 4 Header offset (0) ;\
 004h 4 Header size (10h+N*10h) ; this seems to be a File List entry
 008h 4 Header size (10h+N*10h) ; for the header itself
 00Ch 4 Zero ;/
 010h N*10h File List ;-File List for actual files
 Zeropadding to 800h-byte boundary
 File Data area
 Number of files is "IMG[04h]/10h" (minus 1 for excluding the header itself)
 The other titles have seaparate IDX and IMG files for directory and data:
 SPEED.IDX = Directory (N*10h bytes File List with offsets into SPEED.IMG)
 SPEED.IMG = File data
 Number of files is "Filesize(SPEED.IDX)/10h"

 000h 4 Fileoffset in bytes (800h-byte aligned, increasing)
 004h 4 Filesize in bytes
 008h 4 When compressed: GT20 Header [004h] (decompressed size)
 When uncompressed: Same as filesize
 00Ch 4 When compressed: GT20 Header [008h] (overlap, usuallly 3, or 7)
 When uncompressed: Zero

 000h 4 Number of Entries
 004h N*0Ch File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 4 Unknown (random/checksum?)
 004h 4 File Offset (800h-byte aligned, increasing)
 008h 4 File Size in bytes

 000h N*0Ch File List (154h entries)
 ... N*4 Filename Checksums (?) (154h entries)

13.32 CDROM File Archives with Offset and Size

- 351/1136 -

The 1st list entry describes the current directory itself, as so:

Further list entries are Files or Subdirectories, as so:

Spec Ops - Airborne Commando (BIGFILE.CAT and nested CAT files therein)

File Entries:

Filetypes in the archive include...

There are "strings" in some files, are those filenames, eg. Icon_xxx etc?

Hot Shots Golf 2 (retail: DATA\F0000.BIN, MagDemo31/42: HSG2\MINGOL2.BIN)

The DATA directory is 13800h bytes tall. But, the PSX kernel supports max 800h bytes

per ISO directory (so the kernel can only see the first 33 files in that directory). The

 Zerofilled (padding to 800h-byte boundary)
 File Data area

 000h 4 Number of entries (including the 1st entry itself)
 004h 4 Offset/800h (always 0, relative from begin of directory)
 008h 4 Type (always 3=Directory)

 000h 4 For Files: Size in bytes, for Directories: Number of entries
 004h 4 Offset/800h (from begin of current directory, increasing)
 008h 4 Type (0=File, 3=Directory)

 000h 4 File ID (always 01h,02h,04h,08h)
 004h 4 Maybe Version? (always 01h,00h,01h,00h)
 008h 4 Header Size (18h+N*8+ArchiveNameLength) ;eg. 4ECh
 00Ch 4 Sector Alignment (can be 4 or 800h)
 010h 4 Number of Files (N) ;eg. 99h
 014h 4 Length of Archive Name (including ending 00h)
 018h N*8 File entries (see below)
 Archive Name, ASCII, terminated by 00h ;eg. "bigfile.dir",00h
 Zeropadding to Sector Alignment boundary
 File Data

 000h 4 Fileoffset (with above Sector Alignment) (increasing)
 004h 4 Filesize in bytes

 nested CAT archives (file 07h,0Ch,11h,16h,1Bh,20h,25h,etc)
 empty files (file 3Eh,5Ah-5Fh,62h-67h,etc)
 MDEC v2 STR's (file 95h-96h)
 XA-ADPCM's (inside of nested CAT, in file94h\file*)

13.32 CDROM File Archives with Offset and Size

- 352/1136 -

game isn't actually trying to parse the ISO directory entries, instead, it's using the

2800h-byte offset/size list in F0000.BIN to access the directory content:

Retail Version disc layout:

Demo version in Playstation Magazine is a bit different: It has only two large .BIN files

(instead of hundreds of smaller .BIN files). The directory is stored in first 2800h bytes of

MINGOL2.BIN. The MM:SS:FF offsets are numbered as if they were located on sector

00:06:00 and up (to get the actual location: subtract 00:06:00 and then add the starting

sector number of MINGOL2.BIN).

Note: File 000h is a dummy entry referring to the 2800h-byte list itself (retail file 000h

has offset=00:06:00 but size=0, demo file 000h has offset and size set to zero). File

001h is the first actual file (at offset=00:06:05, ie. after the 2800h-byte list)

Threads of Fate (MagDemo33: TOF\DEWPRISM.HED+.EXE+.IMG)

The demo version uses "Virtual Sectors" in HED+EXE+IMG files. Apart from that, the

format is same as for the "Hidden Sectors" in retail version:

CDROM File Archives in Hidden Sectors

 0000h+N*4 1 Sector MM in BCD ;\based at 00:06:00 for file 0
 0001h+N*4 1 Sector SS in BCD ; (unused files are set to 00:00:00)
 0002h+N*4 1 Sector FF in BCD ;/
 0003h+N*4 1 Size MSB in hex (Size/800h/100h)
 2000h+N 1 Size LSB in hex (Size/800h AND FFh)
 2800h (..) Data area for file 001h..590h (demo version only)

 Sector 000ADh SCUS_944.76 ;exefile ;\
 Sector 00130h SYSTEM.CNF ; iso root folder
 Sector 00131h DATA (sub-folder, 27h sectors) ;/
 Sector 00158h (padding) ;-padding to 00:06:00
 Sector 001C2h DATA\F0000.BIN ;file 000h ;\
 Sector 001C7h DATA\F0001.BIN ;file 001h ;
 ... ; iso data folder
 Sector 00B54h DATA\F0032.BIN ;file 020h ;
 Sector 00B9Bh DATA\F0033.BIN ;file 021h ; ;\files exceeding the 800h
 ; ; directory size limit, not
 Sector 1A0C9h DATA\F1907.BIN ;file 773h ;/ ;/accessible via PSX kernel
 Sector 1AAF1h DUMMY.BIN ;-iso root folder (padding)

 Sector 07148h HSG2\MINGOL2.BIN ;file 000h..590h ;demo binary files
 Sector 0AC1Dh HSG2\MINGOL2X.BIN ;file 76Ch ;demo streaming file(s)
 Sector 0B032h HSG2\SCUS_944.95 ;exefile ;demo exe file

13.32 CDROM File Archives with Offset and Size

- 353/1136 -

WWF Smackdown (MagDemo33: TAI\.PAC\, and nested therein)

These "PAC " files are found in the main archives (which use a separate archive format,

with ID "DPAC").

File List entries:

Bug: TAI\C.PAC\EFFC\0001h has TWO entries with File ID=0002h.

Tyco R/C Racing (MagDemo36: TYCO\MAINRSRC.BFF)

File List entries:

Padding Note: Padding after headers & files is weirdly done in two steps:

Team Buddies (MagDemo37: BUDDIES\BUDDIES.DAT)

 000h 4 ID ("PAC ") ;\
 004h 4 Number of files (N) ; Header
 008h N*8 File List ;/
 File Data area ;-Data area

 000h 2 File ID (inreasing, but may skip numbers, ie. non-linear)
 002h 3 File Offset (increasing, relative to begin of Data area)
 005h 3 File Size

 000h 4 Unknown (1)
 004h 4 Filelist Offset (800h)
 008h 4 Filelist Size (N*8+4) (7ACh)
 Padding to 800h-byte boundary (see note)
 800h 4 Number of files (N) (F5h)
 804h N*8 File List
 Padding to 800h-byte boundary (see note)
 File Data area

 000h 4 File Offset in bytes (increasing, 800h-byte aligned)
 004h 4 File Size in bytes

 Step 1: Zeropadding to 200h-byte boundary (first 0..1FFh bytes)
 Step 2: Garbagepadding to 800h-byte boundary (last 0..600h bytes)

 000h 2 ID ("BD")
 002h 2 Number of files (N)
 004h N*8 File List
 Zeropadding to 3000h
 3000h .. File Data area

13.32 CDROM File Archives with Offset and Size

- 354/1136 -

File List entries:

Gundam Battle Assault 2 (DATA*.PAC, and nested therein)

File List entries:

Incredible Crisis (MagDemo38: IC*.CDB)

File List entries:

Ape Escape Sound Archive (MagDemo22:KIDZ\KKIIDDZZ.HED\DAT\1Bh-1Dh,49h-53h,..)

Ape Escape Sound Archive (MagDemo44:KIDZ\KKIIDDZZ.HED\DAT\1Bh-1Dh,4Fh-59h,..)

Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB)

 000h 4 File Offset/800h (increasing)
 004h 4 File Size in bytes

 000h 4 ID ("add",00h)
 004h 4 Fixed (4)
 008h 4 Offset to File List (usually/always 20h)
 00Ch 4 Number of Files (N)
 010h 4 Fixed (10h)
 014h 0Ch Zerofilled
 020h N*10h File List
 File Data area

 000h 4 Offset (increasing, 4-byte aligned) ;\or both zero
 004h 4 Size (can be odd) ;/
 008h 4 Unknown (0) (or 00h,10h,11h,20h,30h,40h when Offset/Size=0)
 00Ch 4 Zero (0)

 000h 4 Number of files (N)
 004h N*4 File List
 Zeropadding to 800h-byte boundary

 000h 2 File Offset/800h (increasing)
 002h 2 File Size/800h

 000h 5*4 File Sizes (can be odd) (can be 0 for 2nd and 5th file)
 014h 5*4 File Offsets (28h and up, increasing by sizes rounded to N*10h)
 028h .. File Data area (first file usually/always contains "SShd")

13.32 CDROM File Archives with Offset and Size

- 355/1136 -

File List entries (RIDX):

Extended List entries (EXIX):

Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\183h,37Bh..3EBh)

E.T. Interplanetary Mission (MagDemo54: MEGA\MEGA.CSH+.BIN)

File List entries:

 0000h 4 ID "siff" ;\Header
 0004h 4 Total Filesize (DADB1Ch) ;/
 0008h 4 ID "RSRC" ;\
 000Ch 4 String Size (70h) ; ASCII string
 0010h 70h String "RC ver1.0 Copyright",...,00h ;/
 0080h 4 ID "RIDX" ;\
 0084h 4 File List Size (1F78h) (3EFh*8) ; Directory
 0088h N*8 File List (Offset, Size1) ;/
 2000h 4 ID "EXIX" ;\
 2004h 4 Extended List Size (FBCh) (3EFh*4) ; Extended
 2008h N*4 Extended List (Size2) ;/
 2FC4h 4 ID "GAP0" ;\Alignment Padding
 2FC8h 4 Padding Size (2Ch) ; (so that next chunk
 2FCCh 2Ch Padding (1Ah-filled) ;/starts at boundary-8)
 2FF8h 4 ID "RBB0" ;\
 2FFCh 4 File Data area Size (DAAB1Ch) ; Data area
 3000h .. File Data area ;/

 000h 4 File Offset (increasing, 4-byte aligned, from ID "RBB0" plus 8)
 004h 4 File Size in bytes (can be odd)

 000h 4 File Size in bytes (always the same size as in RIDX chunk)

 000h 4 ID "OIFF" ;\Header
 004h 4 Total Filesize ;/
 008h 4 ID "TIMT" or "ANMT" ;\
 00Ch 4 Size (N*4) ; Directory Table
 010h N*4 File List (offsets from begin of Data ID+8);/
 ... 4 ID "TIMD" or "ANMD" ;\
 ... 4 Data Area size (SIZ) (Filesize-18h-N*4) ; Data area
 ... SIZ Data Area ;/

 MEGA.CSH:
 000h N*0Ch File List
 MEGA.BIN:
 000h .. File Data area

13.32 CDROM File Archives with Offset and Size

- 356/1136 -

Driver 2 The Wheelman is Back (MagDemo40: DRIVER2\SOUND\\)

Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS*.ZAL) (Z-Axis)

Dave Mirra Freestyle BMX (MagDemo36: BMX\ASSETS*.ZAL) (Z-Axis)

Dave Mirra Freestyle BMX (MagDemo46: BMX\ASSETS*.ZAL) (Z-Axis)

File List entries (0Ch or 10h bytes per entry, depending on compression):

For decompression, see:

CDROM File Compression ZAL (Z-Axis)

Speed Punks (MagDemo32: SPUNKS*.GDF)

 000h 4 Offset (in MEGA.BIN file, 800h-byte aligned, increasing)
 004h 4 Unknown (32bit id/random/checksum/whatever)
 008h 4 Filesize in bytes

 000h 4 Number of entries (1 or more)
 004h N*10h File List
 File Data area (.VB aka SPU-ADPCM)
 File List entries:
 000h 4 Offset from begin of Data area, increasing
 004h 4 Filesize in bytes
 008h 4 Unknown (0 or 1)
 00Ch 4 Unknown (AC44h, 0FA0h, 2EE0h, 2710h, 2B11h, 3E80h, 1F40h, etc.)
 Note: Above AC44h might 44100Hz, or just file number 44100 decimal?

 000h 4 ID (always 2A81511Ch)
 004h 0Ch Zerofilled
 010h 1 Unknown (1)
 011h 1 Compression Flag for all files (00h=Uncompressed, 80h=Compressed)
 012h 2 Number of files (bit0-13?=N, bit14=Unknown, can be set)
 014h N*0Ch File List, 12 bytes/entry ;<-- when [11h]=00h=uncompressed
 014h N*10h File List, 16 bytes/entry ;<-- when [11h]=80h=compressed
 File Data area

 000h 4 File ID (usually 0=first, increasing) (or 0001h,7531h,7532h,...)
 004h 4 Offset-10h in bytes (increasing, 4h-byte aligned)
 008h 4 Filesize, uncompressed (can be odd)
 00Ch (4) Filesize, compressed (can be odd) ;<-- exists only if compressed

 000h 4 ID "0FDG XSP" (aka PSX GDF0 backwards)
 008h 4 Header Size (N*10h+10h)

13.32 CDROM File Archives with Offset and Size

- 357/1136 -

Legend of Dragoon (MagDemo34: LOD\SECT*.BIN, and nested therein)

RC Revenge (MagDemo37: RV2\BB\3.BBK and Retail: BB\\.BBK)

This does basically contain four large files (and four info blocks with info on the content

of those files).

 00Ch 4 Number of files (N)
 010h N*10h File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 4 ID/Type ("MARV", "MARS", "MARD", "PMET", "COLR", "MROF")
 004h 4 ID/Num (usually 1 SHL N, or all zero)
 008h 4 Offset (800h-byte aligned, increasing)
 00Ch 4 Size in bytes

 000h 4 ID "MRG",1Ah
 004h 4 Number of Files (eg. 0, 1, 2, 193h, 2E7h, or 1DBBh)
 008h N*8 File List
 Padding to 800h-byte boundary (8Ch-filled) (not in nested MRG's)
 File Data area
 File List entries:
 000h 4 Offset/800h, or 4-byte aligned Offset/1 (increasing)
 004h 4 Size (can be odd, and can be zero)
 Size oddities:
 Empty files in demo version have Size=0 and Offset=0.
 Empty files in retail version have Size=0 and Offset=OffsetOfNextFile.
 MRG archives can start or end with Empty files.
 All files can be empty (eg. retail DRAGN0.BIN\1190h).
 NumFiles can be zero (eg. retail DRAGN0.BIN\1111h, demo DRAGN0.BIN\10E2h).
 Offset oddities:
 SECT*.BIN have Offset/800h
 Nested MRGs have 4-byte aligned Offset/1
 The two variants can be detected as:
 if FirstOffset=(NumFiles*8+8) then NestedVariant
 if FirstOffset=(NumFiles*8+8+7FFh) AND NOT 7FFh then RootVariant
 Whereas, FirstOffset is the first NONZERO offset in file list (important
 for demo version, which has archives that start with ZERO offsets).

 000h 4 Random/Checksum?
 004h 4 Faded ID (FADED007h)
 008h 4 Part 1 Offset (Sound) (always E5Ch)
 00Ch 4 Part 2 Offset (Texture) (when Type=01h: Offset-E5Ch)
 010h 4 Part 3 Offset (?) (when Type=01h: Offset-E5Ch)
 014h 4 Part 4 Offset (?) (when Type=01h: Offset-E5Ch)
 018h 4 Type (10h or 20h=Normal) (or 01h=Special in BB\8*.BBK)
 01Ch B0Ch Part 1 Info (Sound) (when Type=01h: garbage-filled)
 B28h 314h Part 2 Info (Texture)
 E3Ch 14h Part 3 Info (?)

13.32 CDROM File Archives with Offset and Size

- 358/1136 -

Part 1 Info (Sound info) (if any):

Part 2 Info (Texture info):

Part 3 Info:

 E50h 0Ch Part 4 Info (?)
 E5Ch .. Part 1 Data (Sound, SPU-ADPCM data, if any)
 Part 2 Data (Texture data) (starts with BDEF1222h or BDEF1111h)
 Part 3 Data (?) ;\maybe map, models, and/or whatever
 Part 4 Data (?) ;/

 01Ch 4 Random/Checksum?
 020h 4 Faded ID (FADED007h)
 024h 4 Part 1 Size (eg.7C7F0h)
 028h 4 SPU Start Addr (1010h) (for data from file offset E5Ch)
 02Ch 4 SPU Middle Addr (eg. 58F70h)
 030h 4 SPU End Addr (eg. 7D800h) (start+size)
 034h 2 Middle entry number (often 3Ch)
 036h 2 Number of used entries-1 (eg. 50h means that 51h entries are used)
 038h AF0h Sample List (100 entries, unused ones are zerofilled)
 914h 214h Zerofilled (unused 1Ch-byte entries) (total is 1Ch*64h)
 Sample List entries:
 000h 4 SPU Offset (1010h and up) (SpuOffset=1010h is FileOffset=E5Ch)
 004h 4 Sample Size in bytes
 008h 4 Unknown (0)
 00Ch 4 Unknown (0)
 010h 4 Pitch (400h=11025Hz, 800h=22050Hz, 2E7h=8000Hz, 8B5h=24000Hz)
 014h 4 Unknown (0 or 1)
 018h 4 File ID (00001F08h and up)

 B28h 4 Random/Checksum?
 B2Ch 4 Faded ID (FADED007h)
 B30h 4 Part 2 Size (N*16000h) ;Width=2C0h halfwords, Height=N*64
 B34h 4 Zero (0h)
 B38h 4 Some RAM Address (8010xxxxh)
 B3Ch 4 Unknown (eg. 195h or E3h) ;same as at [DA4h]
 B40h 4+4 VRAM Address X,Y (140h,0) ;maybe load target
 B48h 4+4 VRAM Address X,Y (140h,0) ;maybe palette base?
 B50h 4+4 VRAM Address X,Y (xx0h,Height-40h) ;often at/near end of used area
 B58h 4 Unknown (eg. 1D0h or 1E0h)
 B5Ch 4 Unknown (eg. 1Ah or 0Dh)
 B60h 200h Some halfwords? (most are FFFFh, some are 0000h)
 D60h 40h Zerofilled (0)
 DA0h 4 Unknown (eg. 185h or E2h)
 DA4h 4 Unknown (eg. 195h or E3h) ;same as at [B3Ch]
 DA8h 9x10h Special Texpages (VramX,Y, SizeX,Y, StepX,Y, Flag/Type/Num or so?)
 E38h 4 Some RAM Address (800Axxxxh)

 E3Ch 4 Random/Checksum?
 E40h 4 Faded ID (FADED007h)

13.32 CDROM File Archives with Offset and Size

- 359/1136 -

Part 4 Info:

Note: File CAT\RDS.CAT does also start with ID=FADED007h (but contains whatever

different stuff).

13.33 CDROM File Archives with Offset

Below are archives that start with a simple Offset list. The DOT1 and DOTLESS types are

"standard" archives used by many PSX games (although the "standard" was probably

independently created by different developers).

DOT1 Archives (named after the ".1" extension in R-Types)

Used by various titles:

DOT1 (in lack of a better name) is a simple archive format that contains Number of

Entries and List with Increasing Offsets to File data.

There are four variants with different alignment (and in some cases, with an extra entry

with end-offset for last file):

 E44h 4 Part 3 Size (eg. A9728h or 51264h)
 E48h 4 RAM End Address (start+size) (eg. 801Fxxxxh) (near memtop)
 E4Ch 4 RAM Start Address (end-size) (eg. 801xxxxxh)

 E50h 4 Random/Checksum?
 E54h 4 Faded ID (FADED007h)
 E58h 4 Part 4 Size (usually 10CCCh) (or 105E0h in demo version)

 R-Types (CG.1, PR\PR.1, and nested inside CG.1)
 Final Fantasy IX (nested inside FF9.IMG, FF9.IMG\DB, FF9.IMG\DB\DOT1)
 Legend of Mana (*.EFF,*.SET,*.BTP(?) in folders SND*,SOUND,WM(?))
 Witch of Salzburg (*.ANM/BIN/BSS/DAT/MDL/SCE)
 Rayman (RAY*.XXX, RAY\SND*.ALL, and nested inside *.XXX)
 Pandemonium II (JESTERS.PKG\0101\0008 and JESTERS.PKG\0101\000D)
 Incredible Crisis (MagDemo38: IC\TAN_DAT.CDB\<DOTLESS>\<DOT1>\<SHIFTJIS>)
 Various games on PlayStation Magazine Demo Discs (Disc 03-54)

 000h 4 Number of Files (N) (eg. 2..18)
 004h N*4 File List (offsets to each file, increasing, aligned)
 ... (4) Optional: Total filesize (aka end-offset for last list entry)
 Optional: Zeropadding to alignment boundary (when alignment>4)
 File Data

13.33 CDROM File Archives with Offset

- 360/1136 -

The files can be detected by checking [004h]=4+(N*4), 4+(N*4)+Align800h, 4+

(N*4)+4, or 4+(N*4)+4+Align10h, and checking that the offsets are increasing with

correct alignment (Rayman has some empty files with same offset), and don't exceed the

total filesize. And that the alignment space is zeropadded (in case of R-Types, only the

header is 00h-padded, but files are FFh-padded).

The detection could go wrong, especially if the archive contains very few files, some of

the nested DOT1's contain only one file (header "00000001h, 00000008h", without any

further increasing offsets or padding). As workaround, accept such files only if they have

a ".1" filename extension, or if they were found inside of a bigger DOT1, IMG, or DB

archive.

Final Fantasy IX contains some DOT1's with fewer than few entries (the file being only 4-

bytes tall, containing value NumEntries=00000000h).

NFL Gameday '98 (MagDemo04: GAMEDAY*.FIL) (32bit) (with nested FIL's)

NFL Gameday '99 (MagDemo17: GAMEDAY*.FIL) (32bit)

NFL Gameday 2000 (MagDemo27: GAMEDAY*.FIL) (16bit and 32bit)

NCAA Gamebreaker '98 (MagDemo05: GBREAKER*.FIL,*.BIN) (16bit and 32bit)

NCAA Gamebreaker 2000 (MagDemo27: GBREAKER*.FIL) (16bit and 32bit)

FIL/32bit (with [02h]=FFFFh):

FIL/16bit (with [02h]\<>FFFFh, eg. FLAG*.FIL and VARS\STARTUP2.FIL\0*):

 Align800h, no extra entry R-Types (CG.1 and PR\PR.1)
 Align4, no extra entry R-Types (nested in CG.1), FF9 (in IMG, IMG\DB)
 Align2, no extra entry Incredible Crisis (IC\TAN_DAT.CDB**)
 Align800h, with extra entry MLB 2000 (DATA.WAD)
 Align10h, with extra entry Witch of Salzburg (*.ANM/BIN/BSS/DAT/MDL/SCE)
 Align4, with extra entry Rayman (*.XXX, *.ALL)

 000h 2 Number of Files (N)
 002h 2 ID for 32bit version (FFFFh=32bit entries)
 004h N*4 File List (offsets to each file, increasing, 4-byte aligned)
 File Data

 000h 2 Number of Files (N)
 002h N*2 File List (offsets to each file, increasing, 4-byte aligned)

13.33 CDROM File Archives with Offset

- 361/1136 -

PreSizeDOT1 (Ace Combat 2) (retail and MagDemo01: ACE2.DAT*)

Like DOT1, but with Total Filesize being oddly stored at begin of file.

Note: Ace Combat 2 contains PreSizeDOT1 (ACE2.DAT\02h..1Dh,36h..B2h) and normal

DOT1 archives (nested in PreSizeDOT1's and in ACE2.DAT\B3h..E1h).

DOT-T (somewhat same as DOT1, but with 16bit entries)

Armored Core (MagDemo02, AC10DEMP*.T)

This can contain many empty 0-byte files (aka unused file numbers; though maybe those

files exist in the retail version, but not in the demo version).

DOTLESS Archive

Hot Shots Golf (MagDemo07: HSG\.DAT)

Hot Shots Golf 2 (retail: DATA\F0000.BIN\, MagDemo31/42: HSG2\MINGOL2.BIN\)

Starblade Alpha (FLT\.DAT, TEX\.DAT)

Incredible Crisis (MagDemo38: IC\TAN_DAT.CDB\<DOTLESS>)

Like DOT1, but without Number of Files entry (instead, the first offset does imply the end

of file list). There's no extra entry for end of last file (instead, that's implied in the total

filesize). Most files have at least 5 entries, but HSG\TITLE0.DAT seems to contain only

one entry (ie. the whole header contains only one value, 00000004h, followed by

something that looks like raw bitmap data).

 Zeropadding to 4-byte boundary
 File Data

 000h 4 Total Filesize (aka end-offset for last list entry)
 004h 4 Number of Files (N)
 008h N*4 File List (offsets to each file, increasing, 4-byte aligned)
 File Data

 000h 2 Number of Files
 002h N*2 File List (Offset/800h to file data, increasing)
 ... 2 Total Size/800h (end-offset for last file)
 Zeropadding to 800h-byte boundary
 File Data

 000h N*4 Offsets to File data (increasing, usually 4-byte aligned)
 ... (4) Filesize (end-offset for last file) (only in Ape Escape)
 File Data

13.33 CDROM File Archives with Offset

- 362/1136 -

Also used by Ape Escape (MINIGAME\ included nested ones), the Ape Escape files do

have an end-marker with last-offset (that will appear as an empty 0-byte file at end of list

when not specifically handling it). MINIGAME\MINI2\BXTIM.BIN does also have several 0-

byte files inside of the file list.

Twisted Metal: Small Brawl (MagDemo54: TMSB\SHL*.TMS)

This resembles DOT1, with an extra size entry and padding to 0D0h.

Ridge Racer Type 4 (MagDemo19: R4DEMO\R4.BIN, 39Mbyte)

Ridge Racer Type 4 (MagDemo21: R4DEMO\R4.BIN, 39Mbyte)

Basically, this is alike DOT1, but SECTOR numbers, and with extra entries...

Legend of Legaia (MagDemo20: LEGAIA\PROT.DAT)

The PROT.DAT does not contain filenames, however, it's bundled with CDNAME.TXT, which

appears to contain symbolic names for (some) indices:

 000h 4 Size of Data Area (total filesize minus 0D0h)
 004h 4 Number of files
 008h N*4 File List (zerobased offsets from begin of Data Area)
 Zeropadding to 0D0h
 0D0h .. File Data Area

 000h 4 Number of Files (N) (3C9h)
 004h N*4 File List (Offset/800h)
 ... 4 Total Size/800h ;<-- last offset
 ... 4 Unknown (00,E8,82,2E) ;<-- ??? maybe chksum*800h or so?
 Zeropadding to 800h-byte boundary
 File Data area

 000h 4 Zero
 004h 4 Number of Entries (4D3h)
 008h N*4 File List (Offset/800h)
 ... 4 Total Size/800h (aka end Offset/800h of last file)
 Zeropadding to 800h-byte boundary
 File Data area

 #define init_data 0 ;for file 0000h
 #define gameover_data 1 ;for file 0001h
 #define town01 3 ;for file 0003h
 #define town0b 12 ;for file 000Ch
 ... ;...

13.33 CDROM File Archives with Offset

- 363/1136 -

The DAT file contains many zerofilled "dummy" files with 800h-byte size.

Bloody Roar 1 (MagDemo06: BL*.DAT)

Bloody Roar 2 (MagDemo22: ASC,CMN,EFT,LON,SND,ST5,STU*.DAT)

Most or all files in DAT archives are PreGT20 compressed.

CDROM File Compression GT20 and PreGT20

Note: Unused entries can occur anywhere, eg. Bloody Roar 2 CMN\SEL01.DAT does have

both first and LAST entry marked as unused (FFFFFFFFh). Also, there may be a lot of

unused entries, eg. Bloady Roar 1 CMN\TITLE00.DAT uses only 5 of 41h entries).

Klonoa (MagDemo08: KLONOA\FILE.IDX*)

C - The Contra Adventure (DATA\SND*.SGG)

Ninja (MagDemo13: NINJA\VRW*.VRW)

 #define other6 1222 ;for file 04C6h
 #define other7 1228 ;for file 04CCh

 000h 4 Number of Entries (N)
 004h N*4 File List (Offset-(4+N*4), increasing) (or FFFFFFFFh=Unused entry)
 File Data area

 000h 4 ID "OA05"
 004h N*4 Offset List (usually/always 5 used entries, plus zeropadding)
 030h .. File Data area (usually/always starting at offset 30h)

 000h 4 ID "SEGG"
 004h 4 Offset to .VH file
 008h 4 Offset to .VB file
 00Ch 4 Number of .SEQ files (N) (usually 6Eh, or 08h in MENU.SGG)
 010h N*4 Offsets to .SEQ files (increasing, unaligned)
 SEQ files
 Padding to 4-byte boundary
 VH file
 VB file

 000h 8 ID "VRAM-WAD" (here as archive ID, although same as compress ID)
 004h N*4 File List (offsets to Data) ;NumFiles=(FirstOffset-8)/4
 Data (compressed .PAK files, which do ALSO have ID="VRAM-WAD")

13.33 CDROM File Archives with Offset

- 364/1136 -

The compressed .PAK files are using a LZ5-variant:

CDROM File Compression LZ5 and LZ5-variants

The Next Tetris (MagDemo22: TETRIS*) has PSX.BSE (and nested therein)

Tactics Ogre (UBF*.BIN)

Note: The last file is a TXT file containing "LINK-FILE END....",0Dh,0Ah,1Ah, plus

zeropadding to 800h-byte boundary.

Spyro the Dragon (MagDemo12: SPYRO\PETE.WAD)

File List entries:

13.34 CDROM File Archives with Size

Disney-Pixar's Monsters, Inc. (MagDemo54: MINC*.BZE)

 000h 4 Unknown (3)
 004h 4 Total Size
 008h 4 Number of Files (N) (max 40h, for max 40h*4 bytes in file list)
 00Ch N*4 File List (increasing offsets, 800h-byte aligned)
 Unknown (looks like garbage padding for unused File List entries)
 10Ch 6F4h 42h-filled padding to 800h-byte boundary
 800h .. File Data area

 000h 8 Fixed (88h,0,0,0,0,0,0,0)
 008h 4 Number of Files (eg. 1Dh or 585h, including last/end file)
 00Ch N*4 File List (increasing offsets, 800h-byte aligned)
 Zeropadding to 800h-byte boundary
 File Data area

 000h 4 Total Filesize (3E800h in Spyro)
 004h N*8 File List (1B0h bytes in Spyro)
 Zeropadding to 800h-byte boundary
 File Data (4-byte aligned, despite of above 800h-byte hdr padding)

 000h 4 Fileoffset (increasing, 4-byte aligned)
 004h 4 File ID? (unsorted, not increasing, used range is 000h..1FAh)

 000h 4 Zero (0)
 004h 4 Type/ID (27100h=160000, 2BF20h=180000, 30D40h=200000 decimal)
 008h 4 Number of files

13.34 CDROM File Archives with Size

- 365/1136 -

File List entries:

Bugs Bunny: Lost in Time (MagDemo25: BBLIT*.BZZ) (without extra entry)

The Grinch (MagDemo40: GRINCH*.BZZ) (with extra entry)

Resembles .BZE, but without the Type entry in Header.

File List entries:

Files are compressed, starting with 0Bh, same as in Jersey Devil...

CDROM File Compression BZZ

Note: The TIM files in Bugs Bunny and The Grinch BZZ archives consists of two TIMs

badged together: A 4x4 pix dummy TIM, followed by the actual 512x125 pix TIM (in some

cases followed some extra bytes at end of file?).

Jersey Devil .BZZ (MagDemo10: JD*.BZZ)

Resembles .BZE, but without the Type entries in Header and File List, and without

Header checksum.

 00Ch N*0Ch File List
 Zeropadding to 7FCh
 7FCh 4 Checksum (32bit sum of SIGN-EXPANDED bytes at [000h..7FBh])
 File Data

 000h 4 File Type/ID or so (roughly increasing, eg. 1,3,6,5,7,8,9,A,B)
 004h 4 Filesize in bytes
 008h 4 Filesize rounded up to multiple of 800h bytes

 000h 4 Fixed 1 (maybe version, or compression flag)
 004h (4) Unknown (000xxxx0h) ;<-- Extra in The Grinch only (not Bunny)
 ... 4 Number of files
 ... N*0Ch File List
 Zeropadding to 7FCh
 7FCh 4 Checksum (32bit sum of SIGN-EXPANDED bytes at [000h..7FBh])
 File Data

 000h 4 File Type/ID or so (roughly increasing, eg. 1,2,3,6,5,7,8,9,A)
 004h 4 Filesize in bytes (rounded to N*4 even if compressed data is less)
 008h 4 Filesize rounded up to multiple of 800h bytes

 000h 4 Fixed 1 (maybe version, or compression flag)
 004h 4 Number of files (4)
 008h N*8 File List

13.34 CDROM File Archives with Size

- 366/1136 -

File List entries:

Files are compressed, starting with 0Bh, same as in Bugs Bunny...

CDROM File Compression BZZ

Jackie Chan Stuntmaster (RCHARS*.RR)

NBA Basketball 2000 (MagDemo28: FOXBB*.RR)

Jackie Chan Stuntmaster does always have headersize=1730h (with many unused entries

with size=0, both in the middle & at the end of File List).

Bomberman World (MagDemo15: BOMBER*.RC)

Resembles .OBJ but contains Filetype? instead of Offset.

File List entries:

 Zeropadding to 800h-byte boundary (without checksum, unlike .BZE)
 File Data

 000h 4 Size in bytes
 004h 4 Size rounded to multiple of 800h

 000h 2 ID ("PX")
 002h 2 Unknown (1 or 3)
 004h 4 Header Size (eg. 80h, 7C0h, or 1730h) (N*8+8)
 008h N*8 File List
 Zeropadding to 800h-byte boundary
 File Data area
 File List entries:
 000h 4 Offset (increasing, 800h-byte aligned)
 004h 1 Zero
 005h 3 Filesize in bytes (24bit) (can be odd)

 XXX detect this WITH extension=".RC" check before OBJ
 (else type=1 could be mistaken as offs=1) (eg RC1\BP0*.RC)

 000h N*8 File List
 ... 8 File List end (zerofilled)
 Garbage padding to 800h-byte boundary

 000h 4 Filetype (see below)
 004h 4 Filesize in bytes

13.34 CDROM File Archives with Size

- 367/1136 -

There can be several files with same type in one .RC archive. Type values are:

Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\BMXCD.HED+WAD)

This format is used by the NEW demo version on MagDemp48 (the OLD demo version on

MagDemo39 did use Spider-Man-style HED/WAD format with filenames).

File List entries:

Note: HED is processed at 80052AC0h in MagDemo48.

Madden NFL 2000 (MagDemo27: MADN00*.DAT and nested therein)

Madden NFL 2001 (MagDemo39: MADN01*.DAT and nested therein)

Dummy files have filesize=1 (but they do nethertheless occupy a whole data sector).

Unknown why the FMV file in MADN00 is using SectorSize=920h (it appears to be FORM2

related, although the file seems to be stored in FORM1 sectors, but the STR movie

appears to work okay despite of the odd size).

 00h = End of File List (at least so when Type and Size are both zero)
 01h = .TIM
 02h = Unknown
 03h = Unknown
 05h = .VH
 06h = .VB
 09h = Unknown
 0Ah = .TIM (left half of a larger image) (right half has type 01h)
 0Bh = Unknown
 0Ch = Unknown

 HED:
 000h 2 Number of entries (N)
 002h N*6 File List
 WAD:
 000h ... File data (at 800h-byte aligned locations)

 000h 3 File ID (24bit)
 003h 3 File Size in bytes (21bit, max 2Mbyte) (upper 3bit=unused?)

 000h 4 Header Size (N*SectorSize) (xxh, 800h, 1000h, 4800h, or 920h)
 004h 4 Sector Size (4=ChildArchive, 800h=MainArchive, 920h=FMV/MADN00)
 008h 4 File List entrysize (0=32bit, 1=16bit/MADN00, 4=16bit/MADN01)
 00Ch N*2/4 File List (16bit or 32bit filesizes in bytes)
 Zeropadding to SectorSize boundary
 Files (with above sizes, each zeropadded to SectorSize boundary)

13.34 CDROM File Archives with Size

- 368/1136 -

Croc 2 (MagDemo22: CROC2\CROCII.DIR\FESOUND.WAD)

Disney's The Emperor's New Groove (MagDemo39:ENG\KINGDOM.DIR\FESOUND.WAD)

Disney's Aladdin in Nasira's Rev. (MagDemo46:ALADDIN\ALADDIN.DIR\FESOUND.WAD)

The number of files is implied in sum of filesizes versus total size.

Dino Crisis 1 and 2 (PSX\DATA*.DAT and *.DBS and *.TEX) ("dummy header")

File List entrysize can be 10h or 20h bytes:

File List entries:

 000h 4 Total Filesize-4
 004h N*14h File List (2 entries in Croc2, 3 entries in Aladdin/Emperor)
 File Data area (SPU-ADPCM((.VB files with leading zeroes)
 File List entries: (Aladdin/Emperor) (Croc2)
 000h 4 Sample Rate in Hertz (AC44h=44100Hz) (5622h=22050Hz)
 004h 2 Sample Rate Pitch (1000h=44100Hz) (0800h=22050Hz)
 006h 2 Unknown (7Fh) (32h)
 008h 4 Unknown (1) (8)
 00Ch 4 Unknown (1FC0001Fh) (40008Fh)
 010h 4 Filesize (xxx0h) (xxx0h)

 000h 800h File List (with 10h or 20h bytes per entry)
 800h .. File Data (each file is zeropadded to 800h-byte boundary)

 Dino Crisis 1 --> always size 10h
 Dino Crisis 2 --> usually size 20h
 Dino Crisis 2 --> sometimes size 10h (eg. SC24.DAT, SC48.DAT, WEP_*.DAT)

 File List entries, type 0 and 7:
 000h 4 Type (0=Data (or .BS pictures), 7=CompressedData)
 004h 4 Size
 008h 4 RAM Addresss (80000000h..801FFFFFh)
 00Ch 4 Zero
 010h (10h) Zerofilled
 File List entries, type 1 and 2 and 8:
 000h 4 Type (1=Bitmap, 2=Palette, 8=CompressedBitmap)
 004h 4 Size (see below Size Notes)
 008h 2 VRAM Address X (0..3FFh)
 00Ah 2 VRAM Address Y (0..1FFh) (or 280h in Dino 2 ST703.DAT)
 00Ch 2 Width in halfwords (1..400h)
 00Eh 2 Height (1..200h)
 010h (10h) Zerofilled
 File List entries, type 3 and 4:
 000h 4 Type (3=VoiceHeader("Gian"), 4=VoiceData(SPU-ADPCM))

13.34 CDROM File Archives with Size

- 369/1136 -

Size Notes:

Note: Dino Crisis DEMO version (MagDemo28: DINO\TRIAL.DAT) does also contain

"dummy header" DAT archives (but, unlike as in retail version, they are hidden

somewhere inside of the headerless 14Mbyte TRIAL.DAT archive).

Type 7 and 8 are using LZSS compression:

CDROM File Compression LZSS (Dino Crisis 1 and 2)

Apart from LZSS, Type 4 is using SPU-ADPCM compression, and some Type 0 files

contain .BS compressed pictures (eg. Dino Crisis 2 PSX\DATA\ST*.DBS*).

13.35 CDROM File Archives with Chunks

Chunk-based archives have chunk headers for each file, but don't have a central

directory. That's mainly useful when loading the whole archive to memory.

 004h 4 Size
 008h 4 SPU Address (0..7FFF0h)
 00Ch 2 Unknown (0..7) ;\usually both same (or val1=0, val2>0)
 00Eh 2 Unknown (0..7) ;/
 010h (10h) Zerofilled
 File List entries, type 5 (eg. ME*.DAT):
 000h 4 Type (5=Unknown... maybe Midi-style or so)
 004h 4 Size
 008h 4 Load Address (0, or on next 4-byte boundary after previous file)
 00Ch 2 Unknown (0..2) ;\always both same
 00Eh 2 Unknown (0..2) ;/
 010h (10h) Zerofilled
 File List entries, type 6 and 9:
 The EXE code does also accept type 6 and 9 (type 6 is handled same as
 type 0, and type 9 is ignored), but the actual archives don't seem to
 contain any files with those types.
 File List entries, padding for unused entries:
 000h 10h Type ("dummy header ")
 010h (10h) Zerofilled

 Bitmaps and Palettes can have following sizes:
 Width*Height*2 ;normal case
 Width*Height*2 + Align(1000h) ;eg. Dino Crisis 1 DOOR*.DAT
 Width*Height*2 + Align(800h) ;eg. Dino Crisis 2 DOOR27.DAT
 CompressedBitmaps can have following sizes in compressed form:
 Less than Width*Height*2 ;normal case
 Less than Width*Height*2 + 1000h ;eg. Dino Crisis 2 M_RESULT,ST002.DAT
 CompressedBitmaps can have following sizes after decompression:
 Width*Height*2 + 8 ;normal case
 Width*Height*2 + Align(1000h?) + 8 ;eg. Dino Crisis 2 M_RESULT,ST002.DAT

13.35 CDROM File Archives with Chunks

- 370/1136 -

Interchange File Format (IFF)

IFF has been invented by Electronic Arts in 1985 on Amiga (hence using 2-byte

alignment and big-endian size values).

IFF does mainly define a standarized file structure for use with custom group/chunk

types (it does also define some Amiga-specific standard audio/video types, but those are

barely useful on PSX).

The files are starting with a Group Header, followed by Chunks:

Used by Forsaken (MagDemo09: FORSAKEN\\.BND,MP,PCO)

Used by Perfect Assassin (DATA.JFS\DATA\SCREEN1.LBM)

Used by Star Wars Demolition (MagDemo39,41: STARWARS\.EXP)

Used by Turbo Prop Racing (MagDemo11: RRACER\.IFF, except COURSE.IFF)

Used by Viewpoint (VIEW.DIR\.VCF,*.VCS,*.ST*) - some have wrong Size entry?

Used by Vigilante 8 (MagDemo09: EXAMPLE\.EXP)

Used by Wing Commander III (*.LIB\.IFF)

Bugs in Viewpoint: fonts\.vcf have correct Groupsize=Filesize-8, but screens\.vcf have

incorrect Groupsize=Filesize-4, and streams\.vcf have weirdest random

Groupsize=Filesize+(-04h,+08h,+14h,+5A0h).

Z-Axis little-endian IFF variant

Unlike real IFF, these are using little-endian, and don't have a Group Type entry. There

seem to be no nested FORMs. Alignment is kept as 2-byte.

 Group Header:
 000h 4 Group ID ("FORM") (or "LIST" or "CAT " or "PROP")
 004h 4 Group Size-08h (SIZ) (filesize-8) (big-endian)
 008h 4 Group Type (4-character ASCII) (should be an unique identifier)
 00Ch SIZ-4 Chunk(s), and/or nested Group(s)
 Chunk Format:
 000h 4 Chunk Type (4-character ASCII) (meaning depends on Group Type)
 004h 4 Chunk Size (SIZ) (big-endian)
 00Ch SIZ Data (eg. .TIM, .VB, .VH or custom data)
 Zeropadding to 2-byte boundary

 Group Header:
 000h 4 Group ID ("FORM" or "BODY")
 004h 4 Group Size-08h (SIZ) (little-endian)
 008h SIZ Chunk(s)
 Chunk Format:
 000h 4 Chunk Type (4-character ASCII)
 004h 4 Chunk Size (SIZ) (little-endian)

13.35 CDROM File Archives with Chunks

- 371/1136 -

ID "FORM" used by Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS\.ZAL\)

ID "FORM" used by Dave Mirra Freestyle BMX (MagDemo36,46: BMX\ASSETS\.ZAL\)

ID "BODY" used by Colony Wars (MagDemo02: CWARS\GAME.RSC\.BND)

ID "BODY" used by Colony Wars Venegance (MagDemo14: CWV\GAME.RSC\.BND)

Alice in Cyberland little-endian IFF variant (.TPK)

Same as Z-Axis IFF variant, except Group IDs are different, and the Header sizes are

included in the Group/Chunk sizes.

ID "hTIX" used by Alice in Cyberland (ALICE.PAC\alice.tpk, csel.tpk, etc.)

ID "hFNT" used by Alice in Cyberland (ALICE.PAC\alice.tpk, juri.tpk, etc.)

ID "hMBD" used by Alice in Cyberland (ALICE.PAC\.FA2\.MBD)

ID "hHBS" used by Alice in Cyberland (ALICE.PAC\0x_xx.HBS)

Touring Car Championship (MagDemo09: TCAR\GAME\\.BFX)

Jarret & LaBonte Stock Car Racing (MagDemo38: WTC\\.BFX)

Contains several simple chunks:

There is no end-marker in last chunk (it simply ends at total filesize).

 00Ch SIZ Data
 Zeropadding to 2-byte boundary

 Group Header:
 000h 4 Group ID ("hTIX","hFNT","hMBD","hHBS")
 004h 4 Group Size (total filesize) (little-endian)
 ... (8) Unknown extra (0,0,0,0,0Ch,0,0,0) ;<-- only in "hHBS" files
 Chunk(s)
 Chunk Format:
 000h 4 Chunk Type ("cCLT","cBIT","cSTR","cMAP","cIDX","cVAB","cSEQ")
 004h 4 Chunk Size (SIZ) (little-endian)
 00Ch SIZ-8 Data
 Maybe Zeropadding to boundary? (Chunk Size is always N*4 anyways)

 000h 4 Chunksize in bytes (SIZ) (usually a multiple of 4)
 004h SIZ Chunkdata (eg. .TIM file or other stuff)

13.35 CDROM File Archives with Chunks

- 372/1136 -

Colony Wars Venegance (MagDemo14: CWV\GAME.RSC\VAG.WAD)

Colony Wars Red Sun (MagDemo31: CWREDSUN\GAME.RSC\0002\VAG_WAD)

Contains several simple chunks with filenames:

There is no end-marker in last chunk (it simply ends at total filesize).

Red Sun VAG_WAD is a bit odd: The "extension" is _WAD instead .WAD, the chunk names

include prefix "RedSun\", which leaves only 5 chars for the actual name, causig duplicated

names like "RedSun\laser" (which were supposedly meant to be named laser1, laser2,

laser3 or the like), and many of the Red Dun VAG files contain damaged 30h-byte VAG

header entries, eg. zero instead of ID "VAGp").

Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\STILLS.BIN)

Contains .BS files in several chunks:

Note: STILLS.BIN exists in newer BMX demo in MagDemo48 only (not in MagDemo39).

Ridge Racer (TEX*.TMS)

Ridge Racer Revolution (BIG*.TMS)

Ridge Racer Type 4 (MagDemo19+21: R4DEMO\R4.BIN\\)

 000h 0Ch Chunk Filename ("filename.ext", zeropadded if shorter)
 00Ch 4 Chunk Data Size in bytes (SIZ)
 010h SIZ Chunk Data (usually VAGp files, in VAG.WAD)

 000h .. Chunk(s) (.BS files with extra header info)
 ... 4 End Marker (00000000h)
 Chunk format:
 000h 4 Chunk size (including whole chunk header)
 004h 2 Bitmap Width (eg. F0h)
 006h 2 Bitmap Height (eg. 80h)
 008h 2 Data Size/4 (same as (Chunksize-0Ch-filenamelen)/4)
 00Ah 2 MDEC Size/4 (same as at Data[0])
 00Ch .. Filename (eg. "lsFact",00h or "bsRooftop1",00h) ;\filename field
 Filename Zeropadding to 4-byte boundary ;/
 Data (in BS v2 format) (MDEC Size/4, BS ID 3800h, etc.)

 000h 4 ID (100h)
 004h .. Chunk(s)

13.35 CDROM File Archives with Chunks

- 373/1136 -

Chunk Format:

Jet Moto 2 (MagDemo03: JETMOTO2*.TMS)

Twisted Metal 2 (MagDemo50: TM2*.TMS)

Contains a fileheader and .TIM files in several chunks:

Princess Maker - Yumemiru Yousei (BDY*.BD and PM.*)

The BDY*.BD files do simply contain several chunks:

The PM.* files do contain several "folders" with fixed size:

Chunk Format:

The Data for different Chunk IDs does usually have a small header (often with w,h,x,y

entries, aka width/height, vram.x/y) followed by the actual data body:

 ... 4 Zero (Chunk Size=0=End)
 Optional zeropadding to 800h-byte boundary (in R4.BIN*)

 000h 4 Chunk Size (SIZ)
 004h SIZ Chunk Data (TIM file) (note: includes 0x0pix TIMs with palette)

 000h 8 ID "TXSPC",0,0,0 (aka CPSXT backwards)
 008h 4 Timestamp? (32A5C8xxh)
 00Ch 4 Number of Chunks (N) (can be 0=None, eg. TM2\SCREEN\ARROWS.TMS)
 010h N*4 Unknown
 ... N*var Chunks
 Chunk format:
 000h 4 Chunk Size-4 (SIZ)
 004h SIZ Chunk Data (TIM file)

 000h .. Chunk(s)

 000h .. Chunk(s) for 1st folder ;\Foldersizes are:
 Zeropadding to Foldersize-boundary ; 20000h (PM.DT0 and PM.PCC)
 Chunk(s) for 2nd folder ; 28000h (PM.MAP)
 Zeropadding to Foldersize-boundary ; 42000h (PM.SD0)
 etc. ;/

 000h 4 Chunk ID (800000xxh)
 004h 4 Chunk Size (size of Data part, excluding ID+Size)
 008h .. Data

13.35 CDROM File Archives with Chunks

- 374/1136 -

Project Horned Owl (COMDATA.BIN, DEMODATA.BIN, ROLL.BIN, ST*DATA.BIN)

Chunk Format:

Chunk Type values:

For detection, the existing .BIN files start with following values:

 80000004h x(2),y(2),width(2),height(2) Bitmap 8bpp ;PM.PCC,MAP
 80000005h w(2),h(2),zero(4) Array32bit(w,h) ;PM.MAP
 80000006h x(2),width(2) Bitmap Palette ;PM.*
 80000007h x(2),y(2),w(1),h(1),zero(2) Array8bit(w,h) ;PM.MAP
 80000010h width(2),height(2),x(2),y(2) Bitmap 16bpp ;*.BD
 80000012h zero(0) ? ;*.BD
 80000014h x(2),y(2),width(2),height(2) Bitmap 4bpp ;PM.DT0
 80000016h x(2),y(2),w(1),h(1),n(1),3Fh(1) BitmapArray4bpp(n*2) ;PM.DT0
 80000018h ... ? ;PM.PCC
 8000001Ah zero(8) ? ;PM.PCC
 8000001Ch x(2),y(2),width(2),height(2) Bitmap 1bpp flags? ;*.BD
 80000020h zero(8) Sound .SEQ file ;PM.SD0
 80000021h zero(8) Sound .VH file ;PM.SD0
 80000022h zero(8) Sound .VB file ;PM.SD0
 80000024h x(2),zero(6) ? ;PM.DT0\4\0
 00000000h Zeropadding to next folder Zeropadding ;PM.*

 000h .. Chunks

 000h 1 Chunk Type (see below)
 001h 3 Unknown (some flags or file ID, or zero in many files)
 004h 4 Chunk Size (SIZ)
 008h SIZ Chunk Data (eg. SEQ file)

 02h unknown ST*.BIN
 05h .TXT ROLL.BIN
 05h LZ-compressed TIM DEMODATA.BIN, ST*.BIN (except ST1*.BIN)
 06h DOT1 with stuff and TSQ?? ST*.BIN
 07h .TMD DEMODATA.BIN, ST*.BIN (except ST1*.BIN)
 08h unknown ST*.BIN
 09h "PRM:" ST*.BIN
 0Ah unknown ST*.BIN
 0Bh DOT1 with stuff ST*.BIN (except ST1*.BIN) (odd: ST3*.BIN)
 0Ch .SEQ ROLL.BIN, ST*.BIN
 0Dh unknown COMDATA.BIN
 0Eh unknown ST*.BIN
 0Fh DOT1 with LZ-compressed TIMs ST*.BIN
 10h DEFLATE-compressed TIM COMDATA.BIN, ROLL.BIN, ST*.BIN
 11h DOT1 with stuff ST*.BIN
 Note: Type=05h can be uncompressed TXT or compressed TIM.

13.35 CDROM File Archives with Chunks

- 375/1136 -

TIMs are compressed via HornedLZ (Type=05h,0Fh) or Deflate (Type=10h).

CDROM File Compression HornedLZ

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

The game's Inflate function does ignore the 2bit blocktype: All blocks must have dynamic

trees (fixed trees and uncompressed blocks aren't supported).

Blaster Master (DATA\.IDX, DATA\.DAT)

DATA\GRP.IDX, DATA\MAP.IDX, DATA\SEQ.IDX DATA\VAB.IDX:

DATA\SEQ.DAT:

DATA\VAB.DAT:

DATA\GRP.DAT and DATA\MAP.DAT:

 07 00 00 00 xx xx 00 00 41 00 00 00 .. TMD Model ("A")
 0C 00 00 00 xx xx 00 00 70 51 45 53 .. SEQ Midi ("pQES")
 0E xx 00 00 08 00 00 00 xx xx xx xx .. Whatever in ST7DATA.BIN (see note)
 10 01 00 00 24 28 00 00 EC 9B 7F 70 .. Deflated TIM in COMDATA.BIN
 10 08 1A 00 30 0C 00 00 ED 58 4F 88 .. Deflated TIM in ROLL.BIN
 ST7DATA.BIN has 2 chunks with Type=0Eh, followed by SEQ chunk at offset=20h.

 000h N*2 Chunk List (16bit Offset/800h to Part-1-Chunks in .DAT files)
 Zeropadding to 800h-byte boundary
 Notes:
 The Chunk List can contain zeroes (as first entry at offset 0, and as
 unused entries; in VAB.IDX those can be followed by further USED entries).
 For 2-part DAT files, the Chunk List contains offsets for Part 1 only.

 000h 4 Chunksize/800h ;\
 004h 4 Datasize in bytes ; Single
 008h 4 Always 015A5A01h or 015A5A00h ; Part
 00Ch 4 Always 2803h ; with
 010h .. Midi data .SEQ file ; 1 file
 Zeropadding to 800h-byte boundary ;/

 000h 4 Chunksize/800h ;\
 004h 4 Size of .VH Voice Header in bytes ; Single
 008h 4 Size of .VB Voice Binary in bytes ; Part
 00Ch .. Voice Header .VH file ; with
 Zeropadding to 800h-byte boundary ; 2 files
 Voice Binary .VB file ;
 Zeropadding to 800h-byte boundary ;/

 000h 4 Part 1 Chunksize/800h ;\
 004h 4 Size of all TIM files in bytes (can be 0=None) ; Part 1

13.35 CDROM File Archives with Chunks

- 376/1136 -

The DAT files are chunk-based (unfortunately, each DAT file is using its own chunk format,

some of them are using 2-part chunks).

The DAT chunks can be parsed without using the IDX file (the IDX can be helpful for quick

lookup, but even then, one will still need to parse the DAT chunk headers to find the

actual contents like TIM, SEQ, VB, VH files).

See also

CDROM File Archive Darkworks Chunks (Alone in the Dark)

CDROM File Archive Blue Chunks (Blue's Clues)

CDROM File Archive HED/CDF (Parasite Eve 2)

CDROM File Compression LZSS (Serial Experiments Lain)

CDROM File Compression SLZ/01Z (chunk-based compressed archive)

13.36 CDROM File Archives with Folders

There are several ways to implement folder-like directory trees:

Other than that, below are special formats with dedicated folder structures.

Archives with Folders

CDROM File Archive HUG/IDX/BIZ (Power Spike)

CDROM File Archive TOC/DAT/LAY

CDROM File Archive WAD (Doom)

CDROM File Archive WAD (Cardinal Syn/Fear Effect)

CDROM File Archive DIR/DAT (One/Viewpoint)

CDROM File Archive HED/CDF (Parasite Eve 2)

 008h .. Texture data (several TIMs appended after each other) ;
 Zeropadding to 800h-byte boundary ;/
 ... 4 Number of Files (N) ;\
 ... 4 Part 2 Chunksize/800h ;
 ... N*8 File List ; Part 2
 Garbage-padding to 800h-byte boundary? ;
 File Data area (each file Garbage-padded to 800h-byte) ;
 File List entries: ;
 000h 4 File Type/ID ;
 004h 4 Size in bytes ;/

 - Using multiple archive files nested within each other
 - Using filenames with path string (eg. "path\filename.ext")

13.36 CDROM File Archives with Folders

- 377/1136 -

CDROM File Archive IND/WAD (MTV Music Generator)

CDROM File Archive GAME.RSC (Colonly Wars Red Sun)

CDROM File Archive BIGFILE.DAT (Soul Reaver)

CDROM File Archive FF8 IMG (Final Fantasy VIII)

CDROM File Archive FF9 IMG (Final Fantasy IX)

CDROM File Archive GTFS (Gran Turismo 2)

CDROM File Archive Nightmare Project: Yakata

CDROM File Archive FAdj0500 (Klonoa)

See also: PKG (a WAD.WAD variant with folders)

Perfect Assassin (*.JFS)

JFS Headers (0Ch+N*14h bytes)

File Entries (with [10h].bit31=0):

Folder Entries (with [10h].bit31=1):

The JFS format is almost certainly unrelated to IBM's "Journaled File System".

 Overall File Structure
 JFS for root ;\
 JFS for 1st folder ;\these are dupicated, ; header with complete list
 JFS for 2nd folder ; also stored in below ; of all file/folder names
 JFS for 3rd folder ; data area ;
 etc. ;/ ;/
 JFS for 1st folder, plus data for files in that folder ;\
 JFS for 2nd folder, plus data for files in that folder ; data area
 JFS for 3rd folder, plus data for files in that folder ;
 etc. ;/

 00h 4 ID "JFS",00h
 04h 4 Size in bytes (for root: including nearby child JFS's)
 08h 4 Number of file/folder entries in this folder (N)
 0Ch N*14h File/Folder entries

 00h 12 "FILENAME.EXT" (or zeropadded if shorter)
 0Ch 4 Offset from begin of JFS in data area (without any alignment)
 10h 4 Size in bytes, plus 00000000h=File

 00h 12 "DIRNAME.EXT" (or zeropadded if shorter)
 0Ch 4 Offset to child JFS in data area
 10h 4 Offset to child JFS in header area, plus 80000000h=ChildFolder

13.36 CDROM File Archives with Folders

- 378/1136 -

Alone in the Dark The New Nightmare (FAT.BIN=Directory, and DATA.BIN=Data)

Directory Entries (10h bytes):

File Entries (10h bytes):

Compressed files (in LEVELS\\ with Size.bit25=1) can be decompressed as so:

CDROM File Compression Darkworks

The files include some TIM images, WxH images, binary files, and chunks:

CDROM File Archive Darkworks Chunks (Alone in the Dark)

Interplay Sports Baseball 2000 (MagDemo22: BB2000* HOG.DAT and HOG.TOC)

Folder entries:

File entries:

 FAT.BIN:
 00h 2 Number of folders (X) (43h)
 02h 2 Number of files (Y) (8F0h)
 04h 4 Unknown (1000h)
 08h X*10h Directory Entry 0000h..X-1 (entry 0000h is named "ROOT")
 .. Y*10h File Entry 0000h..Y-1
 DATA.BIN:
 00h .. File Data area

 00h 8 Name (terminated by 00h if less than 8 chars)
 08h 2 First Subdirectory number (0001h and up, 0000h would be root)
 0Ah 2 Number of Subdirectories (0000h=None, if so above is usually 00FFh)
 0Ch 2 First File number (0000h and up)
 0Eh 2 Number of files (0000h=None, if so above is usually 00FFh)

 00h 8 Name (terminated by 00h if less than 8 chars)
 08h 4 Offset/800h to DATA.BIN
 0Ch 4 Size in bytes (when compressed: decompressed size+02000000h)

 HOG.TOC:
 000h N*14h Folder/File List (starting with root folder)
 HOG.DAT:
 000h .. File Data (referenced from HOG.TOC)

 000h 1 Type ("D"=Directory)
 001h 8 Name ("FILENAME", zeropadded if shorter) (or "\" for root)
 009h 3 Extension (usually zero for directories)
 00Ch 4 Folder Offset/14h in .TOC file (aka 1st child file/folder index)
 010h 4 Folder Size/14h (aka number of child files/folders)

13.36 CDROM File Archives with Folders

- 379/1136 -

Tenchu 2 (MagDemo35: TENCHU2\VOLUME.DAT)

Folder List entries:

File List entries:

Blasto (MagDemo10: BLASTO\BLASTO.DAT and BLASTO\BLASTO.LFS)

File entries (with [10h]=Positive):

Folder entries (with [10h]=Negative):

 000h 1 Type ("F"=File)
 001h 8 Name ("FILENAME", zeropadded if shorter)
 009h 3 Extension ("EXT", zeropadded if shorter)
 00Ch 4 File Offset/800h in .DAT file (increasing)
 010h 4 File Size in bytes

 000h 4 Unknown (demo=A0409901h, us/retail=A0617023h)
 004h 4 Unknown (0h)
 008h 4 Number of files (F) (demo=B7h, us/retail=1294h)
 00Ch 4 Number of folders (D) (demo=0Fh, us/retail=3Eh)
 010h D*8 Folder List
 Zerofilled (padding to 800h-byte boundary)
 800h F*10h File List
 Zerofilled (padding to 800h-byte boundary)
 File Data area

 000h 4 Folder ID (Random, maybe folder name checksum?)
 004h 4 First file number in this folder (0=first, increasing)

 000h 4 File Offset/800h
 004h 4 File Size in bytes
 008h 4 Folder ID (same as Parent Folder ID in Folder List)
 00Ch 4 File ID (Random, maybe file name checksum?)

 LFS:
 000h N*18h File/Folder List
 DAT:
 000h .. File data

 000h 10h Filename ("FILENAME.EXT", zeropadded)
 010h 4 Offset in bytes, in BLASTO.DAT
 014h 4 Size in bytes

13.36 CDROM File Archives with Folders

- 380/1136 -

Folder end marker (with [00h]=00h or 80h):

Twisted Metal 4 (MagDemo30: TM4DATA*.MR and *.IMG)

These are relative small archives with hundreds of tiny chunks (with registry style

Symbol=Value assignments), and a few bigger chunks (with .mod .vab .bit .clt files).

Some filenames have trailing non-ascii characters, for example:

Filetypes:

 000h 10h Foldername ("DIRNAME", zeropadded)
 010h 4 Index to first child (at Offset=(-Index)*18h in BLASTO.LFS)
 014h 4 Zero

 000h 1 End marker, at end of root & child directories (00h or 80h)
 001h 17h Unknown

 000h 4 Fixed ID (CCCC0067h)
 004h .. Root Folder (with Name="Root",00h,FDh,FDh,FDh)
 Folder Chunk format:
 000h 1 Length of Name (including 4-byte padding)
 001h 1 Number of Child Folders
 002h 2 Number of Child Files
 004h .. Name ("name",00h, CDh-padded to 4-byte boundary; Root=FDh-padded)
 Child File(s)
 Child Folder(s)
 File Chunk format:
 000h 1 Length of filename (including 4-byte padding)
 001h 1 Filetype (see below)
 002h 2 Array Size (or FFFFh for non-array filetypes)
 004h 4 Filesize (SIZ) (including 4-byte padding)
 008h 4 Decompressed Size (or 0=Uncompressed)
 00Ch .. Filename/Symbol ("name.ext",00h, CDh-padded to 4-byte boundary)
 ... SIZ Data/Value (CDh-padded to 4-byte boundary)

 "AXEL.MR\display\resolution\r3\Groups\Combined_Polyset",1Ah,01h,04h,00h
 "CALYPSO.MR\display\resolution\r3\Groups\Combined_Polyset",A8h,00h, CDh,CDh

 Typ Size Expl.
 02h var Text String (terminated by 00h, garbage-or-00h-padded to 4-byte)
 03h 8 Misc (*.IMG\textures*) ;\
 03h 20h Misc (*.MR\display\resolution\r*\Groups*) ; these are all
 03h var Misc (*.MR\display\resolution*List) ; filetype=03h
 03h file Misc (*.MR\display*.bit) (same as type=0Ch) ;/
 04h 4 Numeric 32bit
 05h 8 Numeric 4x16bit point (X,Y,Z,CDCDh)
 06h file Model (*.mod) (DOTLESS archive with model data)

13.36 CDROM File Archives with Folders

- 381/1136 -

Compressed Data (when [008h]\<>0):

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

13.37 CDROM File Archive HUG/IDX/BIZ (Power Spike)

Power Spike (MagDemo43: POWER\GAME.IDX and .HUG)

POWER\GAME.HUG

POWER\GAME.IDX

Folder List entries:

 0Bh 4 Numeric 32bit repeat,light
 0Ch file XYWH Bitmap/Palette (*.bit, *.clt) (in GAME.IMG, MENU\menu)
 0Dh 4 Numeric 32bit delay
 0Eh 4 Numeric 32bit color (maybe 24bit RGB plus 00h-padding?)
 0Fh 10h Whatever 10h-byte "pos"
 10h file Sony .VAB file (*.vab)
 12h N*1 Array? (with Arraysize=0014h)
 16h N*?? Array Text Strings (with Arraysize=0001h) (in MAIN.MR\worlds)
 1Ah N*10h Array Guns,startpoints (RCCAR.MR*, NEON.MR\world)
 1Bh 4 Numeric 2x16bit (X,Y) (in MENU.MR)
 1Ch N*4 Array lloc (in MENU.MR\menu\screens) (with Arraysize=04h or 1Fh)
 25h 8 Whatever 8-byte (in GAME.MR\dualShock)
 26h N*8 Array CollideArray (in GAME.MR\dualShock) (with Arraysize=4 or 6)

 000h .. ZLIB compressed data (usually starting with big-endian 789Ch)
 (compression is used for almost all files, except VERY small ones)

 000h .. File Data

 000h 4 ID "HUGE"
 004h 4 Checksum (sum of all bytes at [010h and up])
 008h 4 Number of Folders (D) (87h)
 00Ch 4 Number of Files (F) (F9h)
 010h D*1Ch Folder List (Folder 0..D-1)
 ... F*18h File List (File 0..F-1)

 000h 0Ch Folder Name ("DIRNAME", zeropadded)
 00Ch 4 First Child File (or FFFFFFFFh=None)
 010h 4 Number of Child Files (or 00000000h=None)
 014h 4 First Child Folder (or FFFFFFFFh=None)
 018h 4 Next Sibling Folder (or FFFFFFFFh=None)

13.37 CDROM File Archive HUG/IDX/BIZ (Power Spike)

- 382/1136 -

File List entries:

The root entries are Folder 0 (and its siblings). That is, the root can contain only folders

(not files).

The IDX/HUG archive contains many BIZ archives (and some TXT files).

Power Spike (MagDemo43: POWER\GAME.IDX*.BIZ) (BIZ nested in IDX/HUG)

File List entries

All files in the BIZ archive are BIZ compressed (unknown if it does also support

uncompressed files).

CDROM File Compression LZ5 and LZ5-variants

The BIZ archive seems to be solely containing PSI bitmaps (even files in

GAME.IDX\SOUND\MUSIC*.BIZ do merely contain PSI bitmaps, not audio files).

13.38 CDROM File Archive TOC/DAT/LAY

Used in PSX Lightspan Online Connection CD (CD.TOC, CD.DAT, CD.LAY).

The .TOC file doesn't have any file header, it does just start with the first File/Folder folder

entry in root directory. The directory chains with file/folder entries are sorted

alphabetically, each chain is terminated by a final entry which does point to parent

directory.

 000h 0Ch File Name ("FILENAME.EXT", zeropadded if shorter than 12)
 00Ch 4 File Checksum (sum of all bytes in file added together)
 010h 4 File Offset/800h in GAME.HUG
 014h 4 File Size in bytes

 000h 4 ID "BIG!"
 004h 4 Number of entries (N)
 008h N*1Ch File List
 BIZ compressed File Data

 000h 10h Filename (zeropadded)
 010h 4 File Offset (increasing, unaligned, can be odd)
 014h 4 File Size decompressed
 018h 4 File Size compressed

 CD.TOC contains File/Folder entries
 CD.DAT contains the actual File bodies
 CD.LAY devkit leftover (list of filenames to be imported from PC to TOC/DAT)

13.38 CDROM File Archive TOC/DAT/LAY

- 383/1136 -

File Entries

Folder Entries (with Filesize=FFFFFFFFh)

Final Entries (with Name="",00h and Filesize=FFFFFFFxh)

13.39 CDROM File Archive WAD (Doom)

Doom, PSXDOOM\ABIN\.WAD and PSXDOOM\MAPDIR*\.WAD)

The .WAD format is used by Doom (for DOS, Jaguar, PSX, etc), various homebrew Doom

hacks, and some other developers have adopted the format and used .WAD in other

game engines.

File List entries:

 00h 4 Offset to next Sibling File/Folder/Final entry
 04h 4 Filesize in bytes
 08h 4 Filedata Offset/800h in CD.DAT
 0Ch .. Filename (ASCII, terminated by 00h)
 Padding to 4-byte boundary (garbage)

 00h 4 Offset to next Sibling File/Folder/Final entry
 04h 4 Filesize (always FFFFFFFFh in Folder entries)
 08h 4 Offset to first File/Folder in Child directory
 0Ch .. Name of Child directory (ASCII, terminated by 00h)
 Padding to 4-byte boundary (garbage)

 00h 4 Offset to next Sibling entry (00000000h=None)
 04h 4 Filesize (FFFFFFFFh in child folders, FFFFFFFEh in root folder)
 08h 4 Offset to first File/Folder in Parent directory (or to self for root)
 0Ch 1 Empty Name ("",00h)
 0Dh 3 Padding to 4-byte boundary (garbage)

 000h 4 ID "IWAD" (or "PWAD" for homebrew patches, or "PACK" in A.D. Cop)
 004h 4 Number of File List entries (N) (including final ENDOFWAD entry)
 008h 4 Offset to Directory Area (filesize-N*10h)
 00Ch .. File Data area
 ... N*10h File List

 000h 4 Offset to file data (increasing by compressed size, 4-byte aligned)
 004h 4 Filesize in bytes (uncompressed size) (zero in ENDOFWAD file)
 008h 8 Filename (uppercase ASCII, zeropadded if less than 8 chars)

13.39 CDROM File Archive WAD (Doom)

- 384/1136 -

Folders

The directory can contain names like F_START, F_END, P1_START, P1_END with

filesize=0 to mark begin/end of something; that stuff can be considered as

subdirectories with 1- or 2-character names.

Notes: There are also regular files with underscores which are unrelated to folders (eg.

F_SKY01). There are also 0-byte dummy files (eg. MAP17 in first entry MAP17.WAD).

And there's a 0-byte dummy file with name ENDOFWAD in last file list entry (at least,

it's present versions with compression support).

LZSS Decompression

Compression is indicated by Filename[0].bit7=1. The compressed size is NextFileOffset-

FileOffset (that requires increasing offsets in File List, including valid offsets for 0-byte

files like F_START, F_END, ENDOFWAD).

The game engine may insist on some files to be compressed or uncompressed (so

compression may be required even if the uncompressed data would be smaller).

More info: http://doomwiki.org/wiki/WAD

13.40 CDROM File Archive WAD (Cardinal Syn/Fear Effect)

.WAD files (Cardinal Syn/Fear Effect)

This format exists in two version:

 @@collect_more:
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=([src]*10h)+([src+1]/10h)+1, len=([src+1] AND 0Fh)+1, src=src+2
 if len=1 then goto @@decompress_done
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

13.40 CDROM File Archive WAD (Cardinal Syn/Fear Effect)

- 385/1136 -

http://doomwiki.org/wiki/WAD

Version detection could be done somewhat as so:

For loading the Old Header, one must guess the max header size (4000h should work, in

fact, most or all Old Headers seem to be max 800h), or load more data on the fly as

needed.

Note: The Type List for one folder can contain several entries with same Group Type, eg.

Fear Effect GSHELLE.WAD\CREDIT has 5 type list entries (with 2xGroup0, 2xGroup1,

1xGroup2).

The Type List, Group Type and File Type stuff seems to have no function, apart from

faster look up (the types are also implied in the filename extension). Except, Fear

Effect .RMD .VB .VH have some unknown stuff encoded in File Type bit16-19.

Group Type is usually 0 (except for .TIM .VB .VH .MSG .SPU .OFF).

The .TIM .VB .VH .SEQ files are using standard Sony file formats. The .PMD file seems to

be also Sony standard (except that it contains a 00000000h prefix, then followed by the

00000042h PMD format ID).

 Old format: Without leading Header Size entry (Cardinal Syn MagDemo03: SYN*)
 New format: With leading Header Size entry (eg. Fear Effect)

 if [04h]*1Ch+8 >= [00h] then OLD version

 000h (4) Header Size (including folder/type/file directories) (new version)
 ... 4 Number of Folders
 Folder List (root)
 Type Lists (for each folder)
 File Lists (for each folder\type)
 File Data (for each folder\type\file)
 Folder List Entries:
 000h 14h Folder name (ASCII, zeropadded)
 014h 4 Offset to Type List
 018h 4 Number of different Types in this folder
 Type List Entries:
 000h 4 Offset to file entries (of same type, eg. .TIM files)
 004h 4 Number of file entries (of same type, eg. .TIM files)
 008h 4 Sum of all Filesizes with that type
 00Ch 4 Group Type (0000000xh)
 File List entries (Files within Type list):
 000h 14h Name (ASCII, terminated by 00h, plus garbage padding)
 014h 4 Offset to File Data (seems 4-byte aligned... always?)
 018h 4 File Type (000x00xxh)
 01Ch 4 Filesize in bytes ;\maybe compressed/uncompressed, or rounded,
 020h 4 Filesize in bytes ;/always both same

13.40 CDROM File Archive WAD (Cardinal Syn/Fear Effect)

- 386/1136 -

Cardinal Syn Types

Fear Effect Types

13.41 CDROM File Archive DIR/DAT (One/Viewpoint)

DIR/DAT (One/Viewpoint)

 .BGD FileType=00000001h
 .ANM FileType=00000003h
 .TIM FileType=00000004h (GroupType=1)
 .SP2 FileType=00000005h
 .PMD FileType=00000007h
 .MOV FileType=00000008h
 .SPR FileType=0000000Ch
 .PVT FileType=0000000Dh
 .DB FileType=0000000Eh
 .VH FileType=00000010h (GroupType=1) ;only in OLDER demo version MagDemo03
 .VB FileType=00000011h (GroupType=1)
 .MSG FileType=00000012h (GroupType=1) (actually, this is .TIM, too)
 .KMD FileType=00000013h
 .OC FileType=00000018h
 .EMD FileType=00000019h
 .COL FileType=0000001Bh
 .CF FileType=0000001Ch
 .CFB FileType=0000001Dh
 .CL FileType=0000001Eh
 .SPU FileType=0000001Fh (GroupType=1) ;added in newer demo version MagDemo09
 .OFF FileType=00000020h (GroupType=1) ;added in newer demo version MagDemo09
 .RCT FileType=00000021h ;added in newer demo version MagDemo09

 .TIM FileType=00000000h (GroupType=1)
 .RMD FileType=000x0001h
 .DB FileType=00000002h
 .ANM FileType=00000003h
 .SYM FileType=00000004h
 .VB FileType=000x0008h (GroupType=1)
 .SEQ FileType=00000010h
 .BIN FileType=00000012h
 .SFX FileType=00000013h
 .VH FileType=000x0014h (GroupType=2)
 .TM FileType=00000015h
 .NRM FileType=00000017h
 .WPD FileType=00000018h

 Used by One (DATAFILE.BIN and DIRFILE.BIN)
 Used by Viewpoint (VIEW.DAT and VIEW.DIR)

13.41 CDROM File Archive DIR/DAT (One/Viewpoint)

- 387/1136 -

Format of the DIR file:

Extension List contains several uppercase 3-character ASCII extensions, in a hex editor

this will appear as a continous string of gibberish (dots=00h):

Directory Entries contain bitstreams with ASCII characters squeezed into 6bit values:

13.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)

Alone in the Dark The New Nightmare (FAT.BIN*)

The files in FAT.BIN are using a messy chunk format: There's no clear ID+Size structure.

There are 7 different chunk types (DRAM, DSND, MIDB, G3DB, VRAM, WEAP, HAND),

each type requires different efforts to compute the chunk size.

 000h 60h Extension List (20h x 3-char ASCII, zeropadded if shorter than 3)
 060h .. Root Directory (can contain folders and files)
 Child Directories (can contain files) (maybe also sub-folders?)

 In Viewpoint: "...VCSVCFBINTXTVH.VB.STRST1ST2ST3......//..."
 In One: "...VCTVCKSNDBINCPEINI..................//..."

 000h 1 Length of Filename and Extension index
 bit7-3 File Extension Index (0..1Fh = Offset I*3 in DIR file)
 bit2-0 Filename Length-1 (0..7 = 1..8 chars)
 001h .. Filename in 6bit chars (N*6+7/8 bytes = 1..6 bytes for 1..8 chars)
 bit7-2 1st character, whole 6bit ;\1st byte
 bit1-0 2nd character, upper 2bit (if any) ;/
 bit7-4 2nd character, lower 4bit (if any) ;\2nd byte (if any)
 bit3-0 3rd character, upper 4bit (if any) ;/
 bit7-6 3rd character, lower 2bit (if any) ;\3rd byte (if any)
 bit5-0 4th character, whole 6bit (if any) ;/
 bit7-2 5th character, whole 6bit (if any) ;\4th byte (if any)
 bit1-0 6th character, upper 2bit (if any) ;/
 bit7-4 6th character, lower 4bit (if any) ;\5th byte (if any)
 bit3-0 7th character, upper 4bit (if any) ;/
 bit7-6 7th character, lower 2bit (if any) ;\6th byte (if any)
 bit5-0 8th character, whole 6bit (if any) ;/
 bitN-0 Zeropadding in LSBs of last byte ;-zeropadding
 The 6bit characters codes are:
 00h..09h="0..9", 0Ah..23h="a..z", 24h="_", 25h..3Fh=Unused
 ... 4 Filesize and End Flag
 bit31 End of Directory Flag (0=Not last entry, 1=Last entry)
 bit30-0 Filesize 31bit (or 0=Child Folder)
 ... 4 Offset and fixed bit
 bit31 Unknown (always 1)
 bit30-0 File Offset in DAT file (or Folder offset in DIR file)

13.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)

- 388/1136 -

VRAM Chunks (Texture/Palette) (in various files)

Empty VRAM chunks can be either 4 or 10h bytes tall. The 4-byte variant is directly

followed by another chunk name (eg. "VRAMDRAM"), the 10h-byte variant contains four

words ("VRAM",WithTags=1,NumTags=0,EndCode=0).

Note: Some files contain two VRAM chunks (eg. LEVELS*\VIEW*).

G3DB Chunks (Models) (in various files)

DRAM Chunks (Text and Binary data) (in various files)

WEAP Chunks (Weapons) (in WEAPON\\)

Followed by VRAM and DSND chunks.

 000h 4 ID "VRAM"
 004h 4 With Tags (0=No, 1=Yes) (or "DRAM" when empty 4-byte chunk)
 008h (4) Number of Tagged items (N) (0=None) ;\only when [4]=1
 00Ch N*10h Tagged Item(s) ;/(not so in LEVELS*\VIEW*)
 Scanline Rows(s)
 ... 4 End code (00000000h) (aka final Scanline Row with width=0)
 Tagged Item(s) (IMG, LINE, GLOW, FLARE, BALLE, BLINK, COURIER7, BMP_xxx):
 000h 8 Tag (ASCII, if less than 8 chars: terminate by 00h, pad by FDh)
 008h 8 Data
 Scanline Row(s) (bitmap scanlines and palette data):
 000h 4 Header (bit0-8=Width, bit10-18=Y, bit20-29=X, bit9,19,30,31=?)
 004h W*2 Data (Width*2 bytes, to be stored at VRAM(X,Y))

 000h 4 ID "G3DB"
 004h 4 Unknown (0, 1, or 2)
 008h 4 Size of Data part (SIZ)
 00Ch 4 Number of List entries (eg. 6 or 0Ah or 117Ch) (N)
 010h SIZ Data (supposedly LibGDX models in G3DB format)
 ... N*4 List

 000h 4 ID "DRAM"
 004h 4 Size of Data part (SIZ) (can be odd)
 008h 4 Number of List entries (N)
 00Ch SIZ Data (raw data, and/or tags TEXT, SPC, COURIER7)
 ... N*4 List

 000h 4 ID "WEAP"
 004h 4 Size-10h?
 008h .. Data

13.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)

- 389/1136 -

HAND Chunks (Hands) (in LEFTHAND*\HAND*)

Followed by VRAM and G3DB chunks.

MIDB Chunks (Music) (in MIDI\\)

DSND Chunks (Sounds) (in various files)

 000h 4 ID "HAND"
 004h 4 Size-0Ch? (18h)
 008h 8 Zerofilled
 010h 4x4 Unknown (FFh,FF00h,xF0000h,FF3232h,FF6464h,FFDCDCh,FFFFFFh,..)
 020h 4 Unknown (0, 1, 101h, or 201h)

 000h 4 ID "MIDB"
 004h 1 Unknown (0 or 1)
 005h 1 Number of SEQ blocks (1..4) (S)
 006h 1 Number of Unknown 80h-byte blocks (1..2) (U)
 007h U*80h Unknown Blocks (mostly FFh-filled)
 ... S*Var SEQ Block(s)
 VAB Block
 SEQ Blocks:
 Probably some MIDI sequence data, similar to Sony's .SEQ format.
 000h 4 Size-0Ch (can be odd)
 004h 8 Name (zeropadded if less than 8 chars)
 00Ch 4 ID "DSEQ" ;\Size
 010h .. Data ;/
 VAB Blocks:
 Apparently inspired on Sony's .VAB format (but the ID is spelled other way
 around, Lists have variable size, and entries have different format).
 000h 4 ID "VABp" (this is: not pBAV, unlike normal .VAB files)
 004h 4 Unknown (0)
 008h 4 Unknown (0)
 00Ch 4 Size of all SPU-ADPCM samples (SIZ)
 010h 2 Number of List 1 entries (N1)
 012h 2 Number of List 2 entries (N2)
 014h 2 Number of Samples (N3)
 016h 6 Unused? (CCh-filled)
 01Ch N1*10h List 1
 ... N2*10h List 2
 ... N3*2 Sample Size List (size of each SPU-ADPCM sample)
 ... SIZ SPU-APDCM Sample(s)

 000h 4 ID "DSND"
 004h 4 Unknown (0 or 2)
 008h .. VAB Block (same as in MIDB chunks, see there)

13.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)

- 390/1136 -

Note

DRAM and MIDB chunks can have odd size; there isn't any alignment padding, so all

following chunks can start at unaligned locations.

13.43 CDROM File Archive Blue Chunks (Blue's Clues)

Blue's Clues: Blue's Big Musical (*.TXD)

 000h 4 Size of AUDD+SEPD+VABB chunks ;\for quick look-up only
 004h 4 Size of all VRAM chunks ; (can be ignored by chunk crawlers)
 008h 4 Size of STGE+ANIM+FRAM chunks ;/(note: sum is total filesize-0Ch)
 AUDD Chunk (contains .VH) ;\
 SEPD Chunk(s) (contains .SEP) ; sound
 VABB Chunk (contains .VB) ;/
 ... (..) VRAM Chunk(s) (not in IN\FE2.TXD) ;-textures/palettes
 ... (..) STGE Chunk (if any, not in IN\FE*.TXD) ;-stage data?
 ... (..) ANIM Chunk (if any, not in IN\FE*.TXD) ;\animation
 ... (..) FRAM Chunk(s) (if any, not in IN\FE*.TXD) ;/
 ... (..) Further groups with ANIM+FRAM Chunks (if any) ;-more animation(s)
 AUDD Chunks:
 000h 4 Chunk ID ("AUDD")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=Uncompressed)
 00Ch 4 Zero
 010h .. VH File (Sony Voice Header, starting with ID "pBAV")
 SEPD Chunks:
 000h 4 Chunk ID ("SEPD")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=Uncompressed)
 00Ch 2 Zero
 00Eh 2 Number of sequences (in the SEP sequence archive)
 010h 4 Zero
 014h .. SEP File (Sony Sequence archive, starting with ID "pQES")
 Zeropadding to 4-byte boundary
 VABB Chunks:
 000h 4 Chunk ID ("VABB")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=Uncompressed)
 00Ch .. VB File (Sony Voice Binary, with raw SPU-ADPCM samples)
 VRAM Chunks:
 000h 4 Chunk ID ("VRAM")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (1=Compressed)
 00Ch 2 VRAM.X
 00Eh 2 VRAM.Y
 010h 2 Width in halfwords
 012h 2 Height
 014h 4 Decompressed Size (Width*Height*2) ;\Texture Bitmaps 8bpp
 018h .. Compressed Data ; (or Palettes, in last VRAM

13.43 CDROM File Archive Blue Chunks (Blue's Clues)

- 391/1136 -

VRAM and FRAM chunks with [08h]=1 (and Chunksize>14h) are compressed:

CDROM File Compression Blues

13.44 CDROM File Archive HED/CDF (Parasite Eve 2)

Crazy Data Format (CDF) is used by Parasite Eve 2, on Disc 1 and 2:

1: PE_Disk.01 Stage0.hed Stage0.cdf Stage1.cdf Stage2.cdf Stage3.cdf Inter0.str

2: PE_Disk.02 Stage0.hed Stage0.cdf Stage3.cdf Stage4.cdf Stage5.cdf Inter1.str

STAGE0.HED and STAGE0.CDF

This uses separate header/data files. The directory is stored in STAGE0.HED:

The actual data for the files (and audio stream) is stored in STAGE0.CDF.

STAGE1.CDF .. STAGE5.CDF

 Zeropadding to 4-byte boundary ;/chunk)
 STGE Chunks:
 000h 4 Chunk ID ("STGE")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=Uncompressed)
 00Ch .. Unknown (stage data?)
 ANIM Chunks:
 000h 4 Chunk ID ("ANIM")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=Uncompressed)
 00Ch .. Unknown (animation sequence info?)
 FRAM Chunks:
 000h 4 Chunk ID ("FRAM")
 004h 4 Chunk Size (of whole chunk from Chunk ID and up)
 008h 4 Compression Flag (0=When Chunksize=14h, 1=When Chunksize>14h)
 00Ch 1 Width in bytes
 00Dh 1 Height
 00Eh 6 Unknown, looks like three signed 16bit values (maybe X,Y,Z)?
 014h (4) Decompressed Size (Width*Height*1) ;\Animation Frame Bitmap 8bpp
 018h (..) Compressed Data ; (only if Chunksize>14h)
 ... (..) Zeropadding to 4-byte boundary ;/

 0000h 78h Streaming List (03h entries, 28h-bytes each, all entries used)
 0078h 1B00h File List (360h entries, 8 bytes each, all entries used)
 1B78b 8 File List End Code (FFFFFFFFh,FFFFFFFFh)

 0000h 800h Root: Folder List (100h entries, 8-byte each, unused=zeropadded)
 0800h .. 1st Folder (File/Streaming List and Data)

13.44 CDROM File Archive HED/CDF (Parasite Eve 2)

- 392/1136 -

Folder List entries:

Folder format:

File List entries (in STAGE0 and STAGE1-5)

For STAGE0, file list ends with ID/Offset=FFFFFFFFh at end of HED file. For STAGE1-5, file

list ends with unused/zeropadded entries with ID/Offset=00000000h.

The filesize can be computed as "NextOffset-CurrOffset" (at 800h-byte resolution).

Whereas, "NextOffset" can be:

For STAGE1-5, audio streams are usually stored at the end of folder (after the files).

However, for STAGE0, audio streams are oddly inserted between file21000 and file30100.

File Chunks (for files within File List)

Most CDF files in STAGE0 and STAGE1-5 do contain one or more chunks with 10h-byte

chunk headers (this can be considered as an additional filesystem layer, with the chunk

data being the actual files).

 2nd Folder (File/Streaming List and Data)
 etc.

 000h 4 Folder ID (usually N*100+1 decimal, increasing, eg. 101,201,301,etc.)
 004h 4 Folder Size/800h (of whole folder, with File/Stream List and Data)
 The Folder List ends with unused/zeropadded entries with ID/Size=00000000h.

 0000h 510h File List (A2h entries, 8-bytes each, unused=zeropadded)
 0510h 4 Zero (padding to decimally-minded offset 1300 aka 514h)
 0514h 2D0h Streaming List (12h entries, 28h-bytes each, unused=zeropadded)
 07E4h 1Ch Zero (padding to end of sector)
 0800h ... Data (for Files, Audio streams, and sometimes also Movie streams)

 000h 4 File ID (increasing, eg. 0,1,2,3,4,etc.) (or 99) (or N*100+x)
 004h 4 File Offset/800h in in .CDF (from begin of current Folder)

 The offset of next File in File List (same as CurrOffset for 0-byte files)
 The offset of next Audio stream in Streaming List
 The offset of next Movie stream in Streaming List (if it's in .CDF, not .STR)
 The size of the current Folder (for STAGE1-5)
 The size of the whole .CDF file (for STAGE0)

 000h 1 Chunk Type (see below)
 001h 1 End Flag (01h=More Chunks follow, FFh=Last Chunk)
 002h 2 Unknown (usually 800h, sometimes 500h or 600h)

13.44 CDROM File Archive HED/CDF (Parasite Eve 2)

- 393/1136 -

Chunk Types:

There are some chunkless files:

Streaming List Movie entries (stream type 1)

The size of movie streams in .CDF can be computed in similar fashion as for File List

entries (see there for details).

The size of movie streams in .STR cannot be computed easily (the next stream isn't

neccassarily stored at the next higher offset; even if it's within same folder). As

 (eg. 500h in stage0\file30301\chunkX)
 (eg. 600h in stage1\folder1201\file0\chunkXYZ)
 004h 4 Chunk Size/800h
 008h 4 Unknown (usually zero) (or 80xxxx00h in Chunk Type 0 files?)
 00Ch 4 Zero (0)
 010h .. Data (Chunk Size-10h bytes)

 00h=Room package .pe2pkg
 01h=Image .pe2img
 02h=CLUT .pe2clut
 04h=CAP2 Text .pe2cap2
 05h=Room backgrounds .bs
 06h=SPK/MPK music program .spk ;stereo/mono, sound/music, single/multiple?
 07h=ASCII text .txt (eg. stage0\20101..20132)
 ;Reportedy also (but wrong):
 ;60h=Sounds .pe2snd (but nope, that's wrong, see below)
 ;60h is a MDEC movie from Streaming List (unrelated to File List chunks),
 ;60h is 20h-byte .STR header each 800h-bytes (occurs in "stage1\folder501")

 stage0\40105...40198 are raw hMPK files without chunks
 stage0\11000, 20213, 20214, 20300, .., 660800 and 900000 are empty 0-byte

 000h 2 Stream Type (0001h=Movie)
 002h 2 Unknown (8000h or 0000h)
 004h 4 Offset/800h in current Folder of .CDF file ;<-- used when [024h]=0
 008h 4 Offset/800h in INTERx.STR file ;<-- used when [024h]>0
 00Ch 2 Unknown (0000h)
 00Eh 2 Stream ID (increasing, usually starting at 64h aka 100 decimal)
 010h 2 Stream sub.ID (usually 0, increases +1 upon multiple same IDs)
 012h 2 Picture Width (0140h = 320 decimal)
 014h 2 Picture Height (00F0h = 224 decimal)
 016h 2 Unknown (0000h)
 018h 2 Unknown (0000h or 0018h) maybe 24bpp or 24fps
 01Ah 2 Unknown (73Ah or 359h or 3DCh) (Size? but it's slighty too large?)
 01Ch 6 Unknown (zero)
 022h 2 Unknown (0 or 1) (often 1 when [024h]>0, but not always)
 024h 2 Movie number in INTERx.STR, 1 and up? (or 0=Movie is in STAGEx.CDF)
 026h 2 Unknown (0 or 1)

13.44 CDROM File Archive HED/CDF (Parasite Eve 2)

- 394/1136 -

workaround, one could create a huge list with all streams from all Folders in all

STAGEx.CDFs (or scan the MDEC .STR headers in .STR file; and check when the

increasing frame number wraps to next stream).

The dual offsets are oddly computed as: [004h]=[008h]+EndOfLastFileInFolder (that

gives the correct value in the used entry, and a nonsensical value in the other entry).

Streaming List Audio entries (stream type 2)

The size of audio streams can be computed in similar fashion as for File List entries (see

there for details).

Audio Stream Data (stored alongsides with file data in STAGEx.CDF file)

This contains a 800h-byte header a list of 32bit indices:

then followed by several chunk-like STM blocks with 10h-byte headers:

After the last STM chunk, there is more unknown stuff:

 000h 2 Stream Type (0002h=Audio)
 002h 2 Unknown (806Ah or increasing 0133h,0134h,0135h)
 004h 4 Offset/800h in STAGEx.CDF file (increasing offsets)
 008h 4 Unknown (0 or 13000h or E000h)
 00Ch 2 Stage Number (0..5 = STAGE0-5)
 00Eh 2 Stream ID (1, or increasing 3Ah,3Bh,3Ch)
 010h 4 Stream sub.ID (usually 0Bh, increases +0Ah upon multiple same IDs)
 014h 2 Unknown (0 or 2B0h or 3ADh or 398h) (Size/800h minus something?)
 016h 2 Unknown (usually 20h, sometimes 0Fh)
 018h 4 Unknown (2 or 1) ... maybe num channels ?
 01Ch 2+2 Unknown (0,0 or 800h,800h)
 020h 8 Unknown (0)

 000h 800h Whatever increasing 32bit index/timing values? FFFFFFFFh=special?
 ;That header exists in stage0\ and stage3\folder101\
 ;That header doesn't exist in all files (eg. not in stage1\folder301\)

 000h 4 Chunk Index (increases each second chunk, from 0 and up)
 004h 4 Number of Chunk Indices
 008h 4 Fixed (02h,"STM") ;2-channel Stream?
 00Ch 1 Chunk Subindex (toggles 00h or 01h per each chunk) ;ch left/right?
 00Dh 1 Chunk Size/800h
 00Eh 4 Unknown (can be 00h, 01h, 11h, 20h, 21h)
 00Fh 4 Unknown (can be A0h or C0h)
 010h .. Data (Chunk Size-10h bytes) (looks like SPU-ADPCM audio)

13.44 CDROM File Archive HED/CDF (Parasite Eve 2)

- 395/1136 -

Movie Stream Data (stored in .CDF, or in separate INTERx.STR file)

The movies are usually stored in INTERx.STR (except, some have them stored in

STAGEx.CDF, eg. stage1\folder501, stage1\folder801, stage2\folder2101,

stage2\folder3001).

The data consists of standard .STR files (with 20h-byte headers on each 800h-byte

sector), with the MDEC data being in huffman .BS format (with .BS header... per

frame?).

And, supposedly interleaved with XA-ADPCM audio sectors...?

PE_DISK.01 and PE_DISK.02

The presence of these files is probably used to detect which disc is inserted. The file

content is unknown (looks like 800h-byte random values).

Note

Reportedly "Files inside archive may be compressed with custom LZSS

compression" (unknown if/when/where/really/which files).

13.45 CDROM File Archive IND/WAD (MTV Music Generator)

MTV Music Generator (IND/WAD) (MagDemo30: JESTER\WADS\ECTS.IND and .WAD)

ECTS.IND contains FOLDER info:

 000h 0 Number of ADPCM blocks? (eg. 28h or 49h)
 004h 4 Size of extra data block in bytes (eg. 13900h or 24200h)
 008h 38h Zerofilled
 040h 8 Zerofilled (maybe 1st sample of 1st SPU-ADPCM block)
 048h .. Looks like more SPU-ADPCM block(s), terminated by ADPCM end flag(s)
 Zerofilled (padding to end of last 800h-byte sector)

 0000h 20h Name/ID ("Music 2", zeropadded)
 0020h 4 Unknown (110000h)
 0024h 4 Filesize-1000h (size excluding last 1000h-byte padding)
 0028h 4 Unknown (17E0h)
 002Ch 4 Unknown (5)
 0030h N*10h Folder List, starting with Root in first 10h-byte
 2CF0h 4 Small Padding (34h-filled)
 2CF4h 1000h Final Padding (34h-filled)
 Folder List entries that refer to Child Folders in ECTS.IND:
 000h 8 Folder Name ("EXTRA*~*", zeropadded if less than 8) ("" for root)

13.45 CDROM File Archive IND/WAD (MTV Music Generator)

- 396/1136 -

ECTS.WAD contains FILE info and actual FILE data:

13.46 CDROM File Archive GAME.RSC (Colonly Wars Red Sun)

Colony Wars Red Sun (MagDemo31: CWREDSUN\GAME.RSC, 13Mbyte)

 008h 2 Self-relative Index to first Child folder (positive)
 00Ah 2 Number of Child Folders (0..7FFFh)
 00Ch 4 Always 0007FFFFh (19bit Offset=7FFFFh, plus 13bit Size=0000h)
 Folder List entries that refer to File Folders in ECTS.WAD:
 000h 8 Folder Name ("EXTRA*~*", zeropadded if less than 8)
 008h 2 Self-relative Index to Parent folder (negative)
 00Ah 2 Number of Child Folders (always 8000h=None)
 00Ch 4 Offset and Size in ECTS.WAD
 The 32bit "Offset and Size" entry consists of:
 0-18 19bit Offset/800h in ECTS.WAD
 19-31 13bit Size/800h-1 in ECTS.WAD

 There are several File Folders (at the locations specified in ECTS.IND).
 The separate File Folders look as so:
 000h 4 Number of files (N)
 004h N*10h File List
 34h-Padding to 800h-byte boundary
 File Data area
 File List entries:
 000h 8 File Name ("NAMELIST", "ACIDWO~1", etc.) (00h-padded if shorter)
 008h 4 Offset/800h (always from begin of WAD, not from begin of Folder)
 00Ch 4 Filesize in bytes
 The first file in each folder is called "NAMELIST" and contains this:
 000h 20h Long Name for Parent Folder (eg. "Backgrounds", zeropadded)
 020h 20h Long Name for this Folder (eg. "Extra 1", zeropadded)
 040h N*20h Long Names for all files in folder (except for NAMELIST itself)
 For example, Long name for "ACIDWO~1" would be "Acidworld". Short names are
 uppercase, max 8 chars, without spaces (with "~N" suffix if the long name
 contains spaces or more than 8 chars). Many folder names are truncated to
 one char (eg. "D" for Long name "DTex"), in such cases short names CAN be
 lowercase (eg. "z" for Long name "zTrans").
 The Long Names are scattered around in the NAMELIST files in ECTS.WAD file,
 so they aren't suitable for lookup (unless when loading all NAMELIST's).

 0000h 4 Offset to Bonkers List (2794h)
 0004h F*8 Folder List (80h bytes, 10h entries)
 0084h N*14h File List(s) for each folder (2710h bytes, 1F4h entries)
 2794h 4 Number of Bonkers (FE3h)
 2798h B*8 Bonkers List (7F18h bytes, FE3h entries)
 A6B0h 8 Unknown (zerofilled)
 A6B8h .. File Data area

13.46 CDROM File Archive GAME.RSC (Colonly Wars Red Sun)

- 397/1136 -

Folder List entries:

File List entries:

Bonkers List entries:

Offsets/Indices in Folder/File list are unsorted (not increasing).

Offsets in Bonkers List are increasing (so filesizes can be computed as size=next-curr,

except, the LAST file must be computed as size=total-curr).

There is no "number of folders entry" nor "folder list end marker", as workaround, while

crawling the folder list, search the smallest file list offset, and treat that as folder list end

offset.

In the demo version, all File List entries for Folder 5 are pointing to files with filesize=0,

however, the Bonkers List has a lot more "hidden" entries that are marked to belong to

Folder 5 with nonzero filesize.

Note: Older Colony Wars titles did also have a GAME.RSC file (but in different format,

without folder structure).

13.47 CDROM File Archive BIGFILE.DAT (Soul Reaver)

Legacy of Kain: Soul Reaver - BIGFILE.DAT

Legacy of Kain: Soul Reaver (MagDemo26: KAIN2\BIGFILE.DAT)

 000h 4 Offset to File List for this folder ;\both zero when empty
 004h 4 Number of Files in this folder ;/

 000h 10h Filename ("FILENAME_EXT", zeropadded)
 010h 3 Index (in Bonkers list) (000h..Fxxh)
 013h 1 Folder Number where the file is stored (00h..0Fh)

 000h 4 File Offset (to Data, inreasing, 4-byte aligned, A6B8h and up)
 004h 4 Folder Number where the file is stored (00h..0Fh)

 000h 2 Number of Folders (175h in retail, 0Ah in demo)
 002h 2 Zero
 004h N*8 Folder List (8-byte per Folder)
 Zeropadding (to 800h-byte boundary)
 1st Folder (with File List, and File Data for that folder)
 2nd Folder (with File List, and File Data for that folder)
 3rd Folder (with File List, and File Data for that folder)
 etc.

13.47 CDROM File Archive BIGFILE.DAT (Soul Reaver)

- 398/1136 -

Folder List entries:

Folder format:

File List entries:

Encryption:

The file header, the first some Folder headers (those in first quarter or so), and (all?) File

Data is unencrypted (aka XORed with 0000h).

The Folder headers at higher offsets are encrypted with a 16bit XOR value. That XOR

value is derived from Subchannel Q via LibCrypt:

CDROM Protection - LibCrypt

When not having the Subchannel data (or when not knowing which Folders are encrypted

or unencrypted), one can simply obtain the encryption key from one of these entries

(which will be key=0000h when unencrypted):

LibCrypt seems to be used only in PAL games, unknown if the Soul Reaver NTSC version

does also have some kind of encryption.

13.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)

FF8 is quite a mess without clear directory structure. Apart from SYSTEM.CNF and boot

EXE, there is only one huge IMG file. There are at least two central directories: The Root

directory (usually at the start of the IMG file), and the Fields directory (hidden in a

 000h 2 Unknown (somehow randomly increases from -8000h to +7E8Fh)
 002h 2 Number of Files in this Folder (eg. 97h)
 004h 4 Offset to Folder (usually 800h-aligned)

 000h 2 Number of Files (same value as FolderistEntry[002h]) ;\encrypted
 002h 2 Zero ; by 16bit
 004h N*10h File List (10h-byte per Folder) ; XOR value
 Zeropadding (to 800h-byte boundary) ;/
 File Data for this folder ;-unencrypted

 000h 4 Unknown (random? filename hash? encrypted name?)
 004h 4 File Size in bytes
 008h 4 File Offset (usually 800h-aligned)
 00Ch 4 Unknown (random? filename hash? encrypted name?)

 key = FileListEntry[000h] XOR FolderListEntry[002h] ;encrypted num entries
 key = FileListEntry[002h] ;encrypted Zero
 key = FileListEntry[zeropadding, if any] ;encrypted Zeropadding

13.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)

- 399/1136 -

compressed file that can be found in the Root directory). Moreover, there are files that

exist in neither of the directories (most notably the Movies at the end of the IMG file).

IMG File

The IMG file doesn't have a unique file header, it can be best detected by checking the

filename: FF8DISCn.IMG with n=1-4 for Disc 1-4 (or only FF8DISC1.IMG or

FF8.EXE+FF8TRY.IMG for demo versions).

The directories contain ISO sector numbers (originated from begin of the ISO area at

sector 00:02:00). Accordingly, it's best to extract data from the whole disc image (in

CUE/BIN format or the like). When having only the raw IMG file, one most know/guess

the starting sector number (eg. assume that the first Root File is located on the sector

after the Root Directory, and convert sector numbers ISO-to-IMG accordingly).

Another oddity is that many files contain RAM addresses (80000000h-801FFFFFh),

unknown how far that's relevant, and if there are cases where one would need to

convert RAM addresses to IMG offsets.

Root Directory

The Root Directory is found at:

For detection:

File List:

File List entries:

 Offset 0000h in FF8DISCn.IMG in NTSC retail versions
 Offset 2800h in FF8DISCn.IMG in PAL retail versions
 Offset 0000h in FF8DISC1.IMG in french demo version
 Offset ?????h in FF8.EXE in MagDemo23 (...maybe offset 3357Ch ?)
 Offset 33510h in FF8.EXE in japanese demo version ?
 Offset 33584h in FF8.EXE in other demo versions ?

 if FF8DISCn.IMG starts with 000003xxh --> assume Root at IMG offset 0
 if FF8DISCn.IMG starts with xxxxxxxxh --> assume Root at IMG offset 2800h
 if FF8TRY.IMG starts with "SmCdReadCore" --> assume Root somewhere in EXE

 000h N*8 File List entries
 Zeropadding to end of 800h-byte sector

 000h 4 ISO Sector Number (origin at 00:02:00) (unsorted, not increasing)
 004h 4 Filesize in bytes

13.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)

- 400/1136 -

The file list does usually end with zeropadding (unknown if that applies to all versions;

namely the Demo version might end with gibberish instead of having 800h-byte sector

padding).

Fields Directory

The Fields Directory is located in Root file 0002h. First of, decompress that file, then

search the following byte sequences to find the start/end of the directory:

The bytes between those start/end pattern contain the Directory, with entries in same

format as Root directory:

Notes: Root file 0002h is about 190Kbyte (decompressed), of which, the Fields Directory

takes up about 8Kbytes, the remaining data contains other stuff.

The sector numbers in the Fields Directory refer to other locations in the IMG file (not to

data in Root File 0002h).

Movie List

There is no known central directory for the movies (unknown if such a thing exists, or if

the movie sector numbers are scattered around, stored in separate files). However, a

movie list can be generated by crawling the movie headers, starting at end of IMG file:

That should cover all movies, which are all at the end of the IMG file (except, there's one

more movie-like file elsewhere in the middle of IMG file, that file has only SMN/SMR audio

sectors, without any SMJ video sectors).

 retail.start 040005241800bf8f1400b18f1000b08f2000bd270800e00300000000
 retail.end 0000010002000300
 demo.start 76DF326F34A8D0B863C8C0EC4BE817F8
 demo.end 0000000000000000000000000000000000100010

 000h 4 ISO Sector Number (origin at 00:02:00)
 004h 4 Filesize in bytes

 sector = NumSectors(IMG file)
 @@lop:
 seek(sector-1), read(buf,08h bytes)
 if first4byte[buf+0]=("SMJ",01h), or ("SMN",01h) then
 num_sectors=(byte[buf+5]+1)*(halfword[buf+6]+1)
 sector=sector-num_sectors
 AddToMovieFileList(sector, num_sectors)
 goto @@lop
 endif

13.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)

- 401/1136 -

PADBUG archives

PADBUG archives are used in Root files 001Eh..007Fh, most of them contain two AKAO

files (except file 004Bh contains one AKAO and one TXT file).

File List entries:

Quirk: All files are zeropadded with 1-4 bytes to 4-byte boundary (ie. files that do end on

a 4-byte boundary will be nethertheless padded with 4 zeroes).

Note: The PADBUG archives resemble LNK archives in O.D.T. (though those LNK archives

have a different unique 4-byte padding quirk).

Compression

CDROM File Compression LZ5 and LZ5-variants

FF8 does reportedly also use GZIP (unknown in which files).

Known/unknown sectors for US version FF8DISC1.IMG

See also

https://github.com/myst6re/deling/blob/master/FF8DiscArchive.cpp

https://ff7-mods.github.io/ff7-flat-wiki/FF8/PlaystationMedia.html

13.49 CDROM File Archive FF9 IMG (Final Fantasy IX)

Final Fantasy IX (FF9.IMG, 320Mbyte) Overall format

 000h 4 Number of Files (N) (usually 2)
 004h N*8 File List
 File Data area

 000h 4 Offset in bytes (increasing, 4-byte aligned, see Quirk)
 004h 4 File Size in bytes (can be odd)

 root sectors: 27CBh ;\
 field sectors: D466h ; total known sectors: 36D13h
 movie sectors: 270E2h ;/
 unknown sectors: 14F49h
 total IMG sectors: 4BC5Ch

13.49 CDROM File Archive FF9 IMG (Final Fantasy IX)

- 402/1136 -

https://github.com/myst6re/deling/blob/master/FF8DiscArchive.cpp
https://ff7-mods.github.io/ff7-flat-wiki/FF8/PlaystationMedia.html

IMG Root Directory

Folder List entries:

IMG Child Folders (FolderType=2)

File List entries:

IMG Child Folders (FolderType=3)

 000h Root Directory
 800h 1st Child Folder
 ... 2nd Child Folder
 ... 3rd Child Folder

 8000h ? Last folder, with Type3, contains 1FFh x increasing 16bit numbers
 ... Data for files in 1st Child Folder
 ... Data for files in 2nd Child Folder
 ... Data for files in 3rd Child Folder
 ...

 000h 4 ID "FF9 "
 004h 4 Unknown (06h on Disc 1 of 4) (maybe version, or disc id?)
 008h 4 Number of Folder List entries (0Fh)
 00Ch 4 Unknown (01h on Disc 1 of 4) (maybe version, or disc id?)
 (or Offset/800h to first file list?)
 010h N*10h Folder List
 Padding to 800h-byte boundary ("FF9 FF9 FF9 FF9 ")

 000h 4 FolderType (2=Normal, 3=Special, 4=Last entry)
 004h 4 Number of entries in File List (0..1FFh ?)
 008h 4 Offset/800h to Child Folder with File List
 00Ch 4 Offset/800h to File Data (same as 1st offs in File List) (0=Last)

 000h N*8 File List entries (N=Number of files, from Root directory)
 N*8 8 File List END entry (ID=FFFFh, Attr=FFFFh, Offs=EndOfLastFile)
 Zeropadding to 800h-byte boundary

 000h 2 File ID (increasing, often decimal 0,10,100, or FFFFh=Last)
 002h 2 Attr (unknown purpose, eg. 0,2,3,4,8,21h,28h,2Fh,44h,114h,FFFFh)
 004h 4 Offset/800h to File Data (increasing, implies end of prev entry)

 000h N*2 File Offsets/800h, from File Data Offset in Root (or FFFFh=None)
 N*2 2 End Offset for last file

13.49 CDROM File Archive FF9 IMG (Final Fantasy IX)

- 403/1136 -

The filesize can be computed as (NextOffs-CurrOffs)*800h, however, one must skip

unused entries (FFFFh) to find NextOffs.

Nested Child Archives

Most of the files in FF9.IMG are DB archives, there are also some DOT1 archives.

CDROM File Archive FF9 DB (Final Fantasy IX)

There are various combinations of IMG, DB, DOT1 archives nested up to 4 levels deep:

Folders in Root directory

See also

https://ninjatoes.blogspot.com/2020/07/

https://wiki.ffrtt.ru/index.php?title=Main_Page

13.50 CDROM File Archive GTFS (Gran Turismo 2)

Gran Turismo 2 (MagDemo27: GT2\GT2.VOL, GT2.VOL\arcade\arc_carlogo) - GTFS

 IMG\DOT1 (eg. dir01\file003C)
 IMG\DB (eg. dir01\file2712)
 IMG\DB\DOT1 (eg. dir01\file2712\00-0411)
 IMG\DB\DOT1\DOT1 (eg. dir01\file2712\00-0443*)
 IMG\DB\DB (eg. dir03\file2328\1B-000*)

 dir00 - Status/Menu/Battle/... -Text and random stuff.
 dir01 - Misc Images (Logos, Fonts, World 'mini' Map images, etc).
 dir02 - Dialog Text
 dir03 - Map models (Mini-zidane, airships, save point moogle, tent...)
 dir04 - Field models
 dir05 - Monster Data (Part I, stats, names, etc).
 dir06 - Location Data (Dungeon, Cities, etc).
 dir07 - Monster Data (Part II, 3d models)
 dir08 - Weapon Data (including models)
 dir09 - Samplebanks and Sequencer Data (ie music).
 dir0A - party members Data (including models)
 dir0B - Sound effects
 dir0C - World Map Data
 dir0D - Special effects (magic, summons...)

 000h 4 ID "GTFS" ;\
 004h 4 Zero ;

13.50 CDROM File Archive GTFS (Gran Turismo 2)

- 404/1136 -

https://ninjatoes.blogspot.com/2020/07/
https://wiki.ffrtt.ru/index.php?title=Main_Page

That is, for N files, numbered File(0)..File(N-1):

File Offset List entries, in File(0):

Contains information for all files, including File(0) and File(1), and including an entry for

File(N-1), which contains the end offset for the last actual file, ie. for File(N-2).

File/Folder Name List entries, in File(1):

Contains information for all files, excpet File(0), File(1), File(N-1), plus extra entries for

Folders, plus ".." entries for links to Parent folders.

The game does use several archive formats: GTFS (including nested GTFS inside of main

GTFS) and WAD.WAD and DOT1.

The game does use some GT-ZIP compressed files, and many GZIP compressed files

(albeit with corrupted/zeropadded GZIP footers; due to DOT1 filesize 4-byte padding and

(unneccessarily) GTFS 800h-byte padding).

CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

 008h 2 Number of 4-byte File Offset List entries (N) ; File(0)
 00Ah 2 Number of 20h-byte File/Folder Name List entries (F) ;
 00Ch 4 Zero ;
 010h N*4 File Offset List (see below) ;/
 Zeropadding to 800h-byte boundary
 ... F*20h File/Folder Name List (see below) ;-File(1)
 Zeropadding to 800h-byte boundary
 File Data ;-File(2)
 Zeropadding to 800h-byte boundary
 ... File Data ;-File(3)

 ... File Data ;-File(N-2)
 Zeropadding to 800h-byte boundary
 EOF 0 End of File ;-File(N-1)

 File(0) and File(1) = Directory information
 File(2)..File(N-2) = Regular data files
 File(N-1) = Offset List entry points to the end of .VOL file

 Bit0-10 = Number of padding bytes in last sector of this file (0..7FFh)
 Bit11-31 = Offset/800h to first sector of this file (increasing)
 To compute the filesize: Size=(Entry[N+1] AND FFFFF800h)-Entry[N]

 000h 4 Unknown (379xxxxxh) (maybe timestamp?)
 004h 2 When Flags.bit0=0: Index of File in File Offset List (2 and up)
 When Flags.bit0=1: Index of first child in Name List, or...
 When Flags.bit0=1: Index of 1st? parent in Name List (Name="..")
 006h 1 Flags (bit0:0=File, 1=Directory; bit7:1=Last Child entry)
 007h 19h Name (ASCII, zeropadded)

13.50 CDROM File Archive GTFS (Gran Turismo 2)

- 405/1136 -

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

To extract the decompressed size from the corrupted GZIP footers, one could compute the

compressed "size" (excluding the GZIP header, footer, and padding), and search for a

footer entry that is bigger than "size".

Note: Above doesn't recurse the worst-case compression ratio, where compressed files

could be slightly bigger than decompressed files.

13.51 CDROM File Archive Nightmare Project: Yakata

Nightmare Project: Yakata

ISO Files:

FDTBL.DAT (Folder List):

CDRTBL.DAT (File List):

 size=gz_filesize
 size=size-GzipHeader(including ExtraHeader, Filename, Comment, HeaderCrc)
 size=size-GzipFooter(8) ;initially assuming 8-byte footer (without padding)
 i=gz_filesize-4
 @@search_footer:
 if buf[i]<size then i=i-1, size=size-1 goto @@search_footer
 decompressed_size = buf[i]

 CD.IMG 550Mbyte Contains file 004h..FFFh
 CDRTBL.DAT 32Kbyte Alias for file 000h (File List for file 000h..FFFh)
 FDTBL.DAT 2Kbyte Alias for file 001h (Folder List and Disc ID)
 SLPS_010.4* 500Kbyte Alias for file 003h (Boot EXE)
 SYSTEM.CNF 72bytes Alias for file 002h (Boot Info)
 XXXXXXXX. 27Mbyte Padding (zerofilled)

 FDLTBL.DAT seems to be used to divide the file list in CDRTBL.DAT into
 separate folders. The Folder List entries are containing the first file number
 for each folder. Empty folders have same file number as next entry.
 The last folder contains the specified file number plus all remaining files.
 000h 56h*2 Folder List (16bit File Numbers, increasing from 0004h to 0xxxh)
 0ACh 748h Zerofilled
 7F4h 0Ah Game ID (ASCII "SLPS1045",00h,00h; always so on Disc 1..3)
 7FEh 2 Disc ID (1..3 = Disc 1..3)

 000h 8000h File List (1000h x 8-byte entries)
 File List entries:
 000h 4 Sector (MM:SS:FF:00 in BCD, increasing) ;\all zero for
 004h 2 Size1 (NumFramesCh1 or NumSectors) ; unused entries

13.51 CDROM File Archive Nightmare Project: Yakata

- 406/1136 -

13.52 CDROM File Archive FAdj0500 (Klonoa)

Klonoa (MagDemo08: KLONOA\FILE.IDX+FILE.BIN)

 006h 2 Size0 (NumFramesCh0 or Zero) ;/
 The meaning of the Size entries depends on the file type:
 Normal binaries: [004h]=NumSectors [006h]=0 (1 channel)
 XA-ADPCM streams: [004h]=NumSectors-50h [006h]=0 (16 channels)
 MDEC streams: [004h]=NumFrames [006h]=0 (audio+video)
 Special streams: [004h]=NumFramesCh1 [006h]=NumFramesCh0 (2 channels)
 To determine the actual filesize, one must compute the difference between
 sectors for current and next used file entry (or end of CD.IMG for last file;
 or alternately assume last file to be a Normal Binary with Size=NumSectors).
 Normal Binaries:
 Contains single files (file=0/channel=0). Filetypes include TIM, VB, VH,
 other/custom file formats, and DOT1 archives.
 The DOT1 archives have 4-byte aligned offsets, but, unconventionally, with
 some offsets set to ZERO (usually the last entry, and sometimes also other
 entries):
 SEQ files (Disc1:Dir08h\File173h) ;with ZERO entries (=uncommon)
 SEQ files (Disc1:Dir09h\File176h..3D7h) ;with ZERO entries (=uncommon)
 SEQ files (Disc1:Dir0Ah\File3DAh..3E6h) ;with ZERO entries (=uncommon)
 TIM files (Disc1:Dir4Fh\File962h..983h) ;with ZERO entries (=uncommon)
 TIM files (Disc1:Dir0Ch\File414h..426h) ;without ZERO entries (=normal DOT1)
 XA-ADPCM Streams (Disc1:Dir0Bh\File3E7h..413h):
 These contain 16 audio streams (file=1/channel=00h-0Fh). The Size entry is
 set to total size in sectors for all streams, minus 50h (ie. there appears
 to be 50h sectors appended as padding before next file).
 MDEC Streams (Disc1:Dir53h\FileBD1h..BEBh):
 These are standard STR files with MDEC video (file=0/channel=1) and
 XA-ADPCM (file=1/channel=1). There are 10 sectors per frame (8-9 video
 sectors plus 1-2 audio sectors). The total filesize is NumFrames*10+Align(8)
 sectors; the Align(8) might be there to include one final audio sector.
 Special Streams (Disc1:Dir07h\File0E9h-16Eh and Dir50h\File985h..B58h):
 These are custom STR files (non-MDEC format), perhaps containing Polygon
 streams or whatever.
 There are two channels (file=1/channel=00h-01h), each channel contains
 data that consists of 5 sectors per frame (1xHeader plus 4xData).
 The sectors have STR ID=0160h, and STR Type as follows:
 0000h=Whatever special, channel 0 header (sector 0)
 0400h=Whatever special, channel 1 header (sector 1)
 0001h=Whatever special, channel 0 data (sector 2,4,6,8)
 0401h=Whatever special, channel 1 data (sector 3,5,7,9)
 The File List size entries contain Number of Frames for each channel (either
 of these entries may be zero, or bigger/smaller/same than the other entry).
 The smaller channel is padded to same size as bigger channel (ie. total
 filesize is "max(NumFramesCh0,NumFramesCh1)*10 sectors"; though that formula
 doesn't always hold true, for example, Disc1:Dir50h\FileA2Dh and FileB1Bh
 are bigger or smaller than expected).

13.52 CDROM File Archive FAdj0500 (Klonoa)

- 407/1136 -

File List entries:

File Offsets are usually 4-byte aligned (at offset+filesize from previous entry). Except, the

first file after Folder Start (and Force Offset) is 800h-byte aligned.

The archive contains DOT1 archives, OA05 archives, Ulz compression, and TIM, TMD,

VAB, SEQ, VB files.

13.53 CDROM File Archives in Hidden Sectors

Hidden Sector Overview

Xenogears, Chrono Cross, and Threads of Fate contain only two files in the ISO

filesystem (SYSTEM.CNF and the boot executable). The CDROMs contain standard ISO

data in Sector 10h-16h, followed by Hidden stuff in Sector 17h and up:

 FILE.IDX
 000h 8 ID "FAdj0500"
 008h 38h RAM addresses (80xxxxxxh, 0Ch words)
 038h 4 Zero
 03Ch 4 RAM address (80xxxxxxh)
 040h N*10h File List (including Folder start/end markers)
 FILE.BIN
 000h .. File Data area (split into filesizes from FILE.IDX)

 Type 0 (Folder End):
 000h 4 Type (0=Folder End)
 000h 4 Zero
 008h 4 RAM address (always 801EAF8Ch)
 00Ch 4 Zero
 Type 1.a (Folder Start):
 000h 4 Type (1=Folder Start)
 000h 4 Folder Offset/800h (offset of FIRST file in this Folder)
 008h 4 RAM address (always 801EAF8Ch)
 00Ch 4 Folder Size/800h (size of ALL files in this Folder)
 Type 1.b (Force Offset, can occur between Files within a Folder):
 000h 4 Type (1=Same as Folder Start)
 000h 4 Folder Offset/800h (offset of NEXT file in this Folder)
 008h 4 RAM address (always 801EAF8Ch)
 00Ch 4 Folder Size/800h (zero for Force Offset)
 Type 2 (File entries, within Folder Start/End):
 000h 4 Type (2=File)
 004h 4 Filesize in bytes (4-byte aligned?)
 008h 4 RAM address 1 (80xxxxxxh, or zero)
 00Ch 4 RAM address 2 (80xxxxxxh)

13.53 CDROM File Archives in Hidden Sectors

- 408/1136 -

Note: Like normal files, all hidden entries have their last sector flagged as SM=89h (that

applies to all three Hidden ID, Directory, Unknown entries, and to all Hidden Files). For

details, see:

CDROM XA Subheader, File, Channel, Interleave

Xenogears (2 discs, 1998)

File List entries:

The Offset/Size can have following meanings:

 Sector 10h (00:02:16) Volume Descriptor (CD001) ;\
 Sector 11h (00:02:17) Volume Terminator (CD001) ;
 Sector 12h (00:02:18) Path Table 1 ;
 Sector 13h (00:02:19) Path Table 2 ; standard ISO
 Sector 14h (00:02:20) Path Table 3 ;
 Sector 15h (00:02:21) Path Table 4 ;
 Sector 16h (00:02:22) Root Directory ;/
 Sector 17h (00:02:23) Hidden ID ;\
 Sector 18h (00:02:24) Hidden Directory ; hidden directory
 Sector .. (00:02:xx) Hidden Unknown ;/
 Sector .. (00:02:xx) Hidden Files... (referenced via Hidden Directory)

 Sector 17h (Hidden.ID)
 000h 0Eh ID ("DS01_XENOGEARS"=Disc 1, or "DS02_XENOGEARS"=Disc 2)
 00Eh 7F2h Zerofilled
 Sector 18h..27h
 000h N*7 File List entries
 Sector 28h (Hidden.Unknown)
 Seems to contain a list of 16bit indices 0000h..1037h,FFFFh in File List
 (that, as raw list indices, regardless of the directory structure)
 000h Unknown 0016 0018 FFFF FFFF 01A8 FFFF FFFF FFFF ;\
 010h Unknown FFFF FFFF FFFF FFFF 0A35 0A3A 0D35 0AD3 ; as so on Disc 2
 020h Unknown 0A22 0A2E 0A2F FFFF FFFF FFFF FFFF FFFF ; (values<>FFFFh
 030h Unknown 0014 0001 0013 FFFF 0075 FFFF FFFF FFFF ; on Disc 1
 040h Unknown 0C10 0C14 0C15 0C19 0F52 FFFF FFFF FFFF ; are 5 less, eg.
 050h Unknown 0F4C 0B6E 0C4D 1037 0C09 0BAD FFFF FFFF ; 0011,0013,FFFF..)
 060h Unknown 002E 0034 FFFF FFFF FFFF FFFF FFFF FFFF ;
 070h Unknown FFFF FFFF FFFF FFFF ;/
 078h 2 Disc Number (0001h=Disc 1, 0002h=Disc 2)
 07Ah 786h Zerofilled
 Sector 29h 1st file

 000h 3 24bit Offset (increasing sector number, or 0=special)
 003h 4 32bit Size (filesize in bytes, or negative or 0=special)

 offset=curr, size=+N file at sector=curr, size N bytes
 offset=curr, size=-N begin of sub-directory, with N files
 offset=curr, size=0 empty file, size 0 bytes

13.53 CDROM File Archives in Hidden Sectors

- 409/1136 -

Notes: The Hidden.Directory size seems to be hardcoded to 10h sectors (alternately, one

could treat the sector of the 1st file entry as end of Hidden.Directory plus

Hidden.Unknown).

Root entry 0004h and 0005h are aliases for ISO files SYSTEM.CNF and boot EXE. There

seem to be no nested sub-directories (but there are several DOT1 child archives, in root-

and sub-directories, eg. 00DCh\0000h*).

Chrono Cross (2 discs, 1999,2000)

Threads of Fate (aka Dewprism) (1 disc, 1999,2000)

File List entries:

The directory is just a huge list of root files (without any folder structure; many of the

root files do contain DOT1 child archives though).

Root entry 0000h and 0001h are aliases for ISO files boot EXE and SYSTEM.CNF.

 offset=0, size=0 unused file entry
 offset=FFFFFFh, size=0 end of root-directory

 Sector 17h (Hidden.ID)
 000h 2 Disc Number (0001h=Disc 1, 0002h=Disc 2)
 002h 2 Number of Discs? (0002h) (always 2, even if only 1 disc)
 004h 2+2 Sector and Size for Hidden.ID (Sector=0017h, Size=002Ch)
 008h 2+2 Sector and Size for Hidden.Directory (Sector=0018h, Size=60E0h)
 00Ch 2+2 Sector and Size for Hidden.Unknown (Sector=0025h, Size=0022h)
 010h 10h Zerofilled
 020h 0Ch Title ID ("CHRONOCROSS",00h) ;Chrono Cross (retail)
 09h Title ID ("DEWPRISM",00h) ;Threads of Fate (retail)
 10h Title ID ("DEWPRISM_TAIKEN",00h) ;Threads of Fate (demo)
 0xxh 7xxh Zerofilled (unused, since Hidden.ID has only Size=2Ch/29h/30h)
 Sector 18h..24h (Hidden.Directory)
 000h N*4 File List entries
 Zeropadding (till Size=60E0h, aka 6200 entries)
 ... 720h Zeropadding (till end of 800h-byte sector)
 Sector 25h (Hidden.Unknown)
 Seems to contain a list of 16bit indices 0000h..1791h,FFFFh in File List
 (though many of the listed indices are unused file list entries)
 000h 2 Disc Number (0001h=Disc 1, 0002h=Disc 2)
 002h 10h Unknown 0000 1791 1777 1775 00ED 09DF FFFF 0002 ;\same on
 012h 10h Unknown 0025 0943 10E3 FFFF FFFF 0C77 0FD9 0FA3 ;/Disc 1+2
 022h .. Zerofilled (unused, since Hidden.ID has only Size=0022h)
 Sector 26h 1st file (same as boot EXE in ISO)

 0-22 Sector number
 23 Flag (0=Normal, 1=Unused entry)
 24-31 Number of unused bytes in last sector, div8 (0..FFh = 0..7F8h bytes)

13.53 CDROM File Archives in Hidden Sectors

- 410/1136 -

Filesizes can be computed as follows (that works for all entries including last used entry;

which is followed by some unused entries with bit23=1):

Unused entries with bit23=1 have Sector pointing to end of previous file (needed for

filesize calculation). There are some zeropadded entries at end of list (with whole 32bit

zero). There are hundreds of dummy txt files (24-byte "It's CDMAKE Dummy!",0Dh,0Ah,,

0Dh,0Ah,20h and File08xxh: 8-byte "dummy",0,0,0) although those are real used file

entries, each occupying a whole separate 800h-byte sector.

Threads of Fate (demo version) (MagDemo33: TOF\DEWPRISM.HED+.EXE+.IMG)

The demo version is using the same directory format as retail version (but with Virtual

Sector numbers in HED+EXE+IMG files instead of Hidden Sectors).

The demo's Virtual Sectors start at 1Ah (instead of 17h), to convert them to Physical

Sectors: Subtract 1Ah, then add starting Sector Number of HED file. The HED file contains

Hidden.ID, Hidden.Directory, and Hidden.Unknown.

13.54 CDROM File Archive HED/DAT/BNS/STR (Ape Escape)

Ape Escape KKIIDDZZ.HED/.DAT/.BNS/.STR

List entries, for all three lists (32bit values):

The sector numbers in DAT and BNS are basically counted from begin of the .DAT file

(which has 7000h sectors in retail version, and the .BNS file does follow right thereafter

 filesize = ([addr+4]-[addr] AND 7FFFFFh)*800h - ([addr+3] AND FFh)*8

 TOF\DEWPRISM.HED (6000h bytes) VirtSector=1Ah, PhysSector=A0A5h
 TOF\DEWPRISM.EXE (97800h bytes) VirtSector=26h, PhysSector=A0B1h
 TOF\DEWPRISM.IMG (19EA800h bytes) VirtSector=155h, PhysSector=A1E0h

 000h 52Ch List for .DAT file ;value 0000h..6FFFh = sector 0..6FFFh in DAT
 52Ch D4h Zerofilled
 600h C4h List for .BNS file ;value 7000h..71AFh = sector 0..1AFh in BNS
 6C4h 3Ch Zerofilled
 700h 50h List for .STR file(s) ;raw CDROM sector numbers from 00:02:00
 750h B0h Zerofilled

 0-19 File Offset/800h (20bit)
 20-31 File Size/800h (12bit)

13.54 CDROM File Archive HED/DAT/BNS/STR (Ape Escape)

- 411/1136 -

on the next sector) (the demo version (MagDemo22: KIDZ\) has only 105Ah sectors

in .DAT, and the BNS entries at offset 600h start with 105Ah accordingly).

There are 29 STR files in DEMO\.STR and STR*.STR, and 20 of them (?) are referenced

in HED ? There are also several .ALL files in above folders.

Note: Most of the STR files in Ape Escape contain polygon animation streams rather than

BS compressed bitmaps. Ape Escape is (c)1999 by Sony.

Some files contain RLE compressed TIMs:

CDROM File Compression TIM-RLE4/RLE8

Some files contain raw headerless SPU-ADPCM (eg. DAT file 00Ah).

13.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG

(Crash/Herc/Pandemonium)

Below are two slightly different formats. WAD.WAD has unused entries 00h-filled. The

PKG format has them FFh-filled, and does additionally support Folders, and does have a

trailing ASCII string. There's also a difference on whether or not to apply alignment to

empty 0-byte files.

However, the formats can appear almost identical (unused entries, 0-byte files, and

folders are optional, without them, the only difference would be the presence of the

ASCII string; which does exist only in 800h-byte aligned PKG's though).

WAD.WAD (Crash/Crash)

Used by Crash Bandicoot 3 (DRAGON\WAD.WAD, plus nested WADs inside of WAD.WAD)

Used by Crash Team Racing (SPYR02\WAD.WAD, plus nested WADs inside of WAD.WAD)

Used by Madden NFL'98 (MagDemo02: TIBURON.DAT except

PORTRAIT,SPRITES,XA.DAT)

Used by N2O (MagDemo09, N2O\PSXMAP.TRM and N2O\PSXSND.SND)

Used by Speed Racer (MagDemo10: SPDRACER\ALL1.BIN, with 0-byte, unpadded eof)

Used by Gran Turismo 2 (MagDemo27: GT2\GT2.OVL = 128Kbyte WAD.WAD with

GZIP's)

Used by Jonah Lomu Rugby (LOMUDEMO\SFX\.VBS, ENGLISH\.VBS)

Used by Judge Dredd (*.CAP and *.MAD)

 .HED is 2048 bytes
 .DAT is 58720256 bytes = 3800000h bytes ;div800h would be 7000h
 .BNS is 884736 bytes = D8000h bytes ;div800h would be 1B0h
 .STR's: 7D3Bh+150 = 7DD1h = sector for STR\LAB.STR

13.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)

- 412/1136 -

Used by Spyro 2 Ripto's Rage (SPYRO2\WAD.WAD, and nested WAD's therein)

Used by Spyro 3 Year of the Dragon (SPYRO3\WAD.WAD, and nested WAD's therein)

Used by Men: Mutant Academy (MagDemo33: PSXDATA\WAD.WAD*, childs in PWF)

The File List can contain Files, and Unused entries:

The Offset in first entry implies size of the File List (the list has no end-marker other than

the following zeropadding; which doesn't always exist, ie. not in 4-byte aligned files, and

not in case of garbage padding).

The last entry has Offset+Size+Align = Total WAD filesize (except, Speed Racer doesn't

have alignment padding after the last file).

The WAD.WAD format doesn't have folder entries, however, it is often used with nested

WADs inside of the main WAD, which is about same as folders.

The alignment can be 4-byte or 800h-byte: N2O uses 4-byte for the main WADs. Madden

NFL '98 uses 800h-byte for main WAD and 4-byte for child WADs (file 08h,0Ah,0Ch in

TIBURON\MODEL01.DAT and file 76h in PIX01.DAT). Crash Bandicoor 3 and Crash Team

Racing use 800h-byte for both main & child WADs (although with garbage padding

instead of zeropadding in child WAD headers).

Unused entries have Offset=0, Size=0.

Empty 0-byte files (should) have Size=0 and Offset=PrevOffs+PrevSize+Align (except,

Speed Racer has Offset=PrevOffs+PrevSize, ie. without Align for 0-byte files).

X-Men: Mutant Academy (MagDemo33,50: PSXDATA\WAD.WAD)

This does resemble standard WAD.WAD, but with leading 800h-byte extra stuff.

 000h N*8 File List
 Zeropadding to 4-byte or 800h-byte boundary (or garbage padding)
 File Data...

 000h 4 Offset in bytes (4- or 800h-byte aligned, increasing) ;\both zero
 004h 4 Size in bytes (always multiples of 800h bytes) ;/when Unused

 000h 4 ID ("PWF ") ;\
 004h 4 Total Filesize (707800h) ;
 008h 4 Unknown (1) ; extra stuff
 00Ch 4 Number of files (N) ;
 010h 7F0h Zerofilled ;/
 800h N*8 File List ;\
 Zerofilled (padding to 800h-byte boundary) ; standard WAD.WAD
 File Data area ;/
 File List entries:

13.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)

- 413/1136 -

The archive contains child archives in DOT1 format, and in standard WAD.WAD format

(without PWF header).

PKG (Herc/Pandemonium/UnholyWar)

Used by Pandemonium II (JESTERS.PKG, with Files+Folders+Unused entries)

Used by Herc's Adventure (BIG.BIN, with Files+Unused entries, without Folders)

Used by Unholy War (MagDemo12:CERBSAMP.PKG, with 0-byte files and nested PKG's)

Used by 102 Dalmatians (MagDemo40: PTTR\PSXDEMO.PKG)

The File List can contain Files, Folders, and Unused entries. The overall format of the list

entries is:

Files and Folders do have exactly the same format, the only difference is that Folders will

have Offset=00000000h in the NEXT list entry (in other words, the folder entry is

followed by child entries, which start with Offset=0).

Offsets for Root entries are 800h-byte aligned, relative to begin of PKG file.

Offsets for Child entries are 4-byte aligned, relative to Parent Folder Offset.

The last Child entry has Offset+Size+Align(4) = Parent Folder Size.

The last Root entry has Offset+Size+Align(800h) = Total PKG filesize.

The last Root entry is usually followed by the ASCII string (which looks like junk, but it is

useful because it equals to NextOffset=Nonzero=NoChilds).

 000h 4 File Offset in bytes (increasing, 800h-byte aligned)
 004h 4 File Size in bytes

 000h N*8 File List
 ASCII string (junk, but somewhat needed as nonzero end marker)
 Zeropadding to 800h-byte boundary; not in 4-byte aligned nested PKG
 File Data...

 000h 4 Offset in bytes (increasing, or 0=First child) ;\both FFFFFFFFh
 004h 4 Size in bytes (always nonzero) ;/when Unused

 Example
 00003800h,00000666h ;root00h (file 666h bytes, padded=800h)
 00004000h,00000300h ;root01h\.. (folder 300h bytes, padded=800h)
 00000000h,000000FDh ;root01h\child00h (file FDh bytes, padded=100h) ;\300h
 FFFFFFFFh,FFFFFFFFh ;root01h\child01h (unused) ; byte
 00000100h,000001FDh ;root01h\child02h (file 1FDh bytes, padded=200h) ;/
 00004800h,00001234h ;root02h (file 1234h bytes, padded=1800h)
 00006000h,00001234h ;root03h (file 1234h bytes, padded=1800h)
 FFFFFFFFh,FFFFFFFFh ;root04h (unused)

13.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)

- 414/1136 -

Notes: Unused entries can occur in both root and child folders (except, of course, not as

first or last entry in child folders). Folders seem to occur only in root folder (although the

format would allow nested folders).

Alternately, instead of Folders, one can use nested PKG's (the nested ones are using 4-

byte align, without ASCII string and zeropadding in header).

13.56 CDROM File Archive BIGFILE.BIG (Gex)

Gex (GXDATA\BIGFILE.BIG and nested BIG files therein)

File Entries:

Filetypes in the archive include...

FileEntry[04h] sometimes has similar continous values (maybe caused by similar

filenames, and using a simple checksum, not CRC32).

 00007800h,00001234h ;root05h (file 1234h bytes, padded=1800h)
 etc.

 000h 4 Number of Files (eg. F4h)
 004h 0Ch Zero
 010h N*10h File entries
 ... 4 Archive ID (eg. 00000000h, FF53EC8Bh, or 83FFFFFFh)
 Zeropadding to 800h byte boundary
 File Data

 000h 4 Archive ID (same value as in above header)
 004h 4 Filename checksum or so (randomly ordered, not increasing)
 008h 4 Filesize in bytes
 00Ch 4 Fileoffset (800h-byte aligned) (increasing)

 looks like a lot of raw data without meaningful file headers...
 file C3h,ECh are raw SPU-ADPCM
 file 08h,09h are nested BIG archives, but with FileEntry[00h]=FF53EC8Bh
 file D9h,DAh are nested BIG archives, but with FileEntry[00h]=83FFFFFFh

13.56 CDROM File Archive BIGFILE.BIG (Gex)

- 415/1136 -

13.57 CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)

Gex - Enter the Gecko - BIGFILE.DAT

Used by Gex 2: Enter the Gecko (BIGFILE.DAT)

Used by Gex 3: Deep Cover Gecko (MagDemo20: G3\BIGFILE.DAT) -- UNSORTED

Used by Akuji (MagDemo18: AKUJI\BIGFILE.DAT)

Used by Walt Disney World Racing Tour (MagDemo35: GK\BIGFILE.DAT) -- UNSORTED

File Entries:

LZ Decompression:

Filetypes in the archive include...

 000h 4 Number of Files (C0h)
 004h N*18h File entries
 Zeropadding to 800h byte boundary
 File Data

 000h 4 Random
 004h 4 Filesize in bytes (uncompressed size)
 008h 4 Filesize in bytes (compressed size, or 0=uncompressed)
 00Ch 4 Fileoffset (800h-byte aligned) (increasing, unless UNSORTED)
 010h 4 Random
 014h 4 Random (or ascii in 1st file)

 @@collect_more:
 flagbits=[src]+[src+1]*100h+10000h, src=src+2 ;16bit flags, unaligned
 @@decompress_lop:
 if dst>=dst.end then goto @@decompress_done
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 len=([src] AND 0Fh)+1), disp=([src] AND 0F0h)*10h+[src+1], src=src+2
 if len=1 or disp=0 then goto invalid ;weirdly, these are left unused
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 standard TIM (eg. file 01h,02h)
 malformed TIM (eg. file 0Fh,14h) (with [8]=2*cx*cy+4 instead 2*cx*cy+0Ch)
 crippled VAB (eg. file 0Eh,13h) (with hdr=filesize-4 plus raw ADPCM samples)
 several DNSa (eg. file 0Dh,12h,17h,BCh) SND sound? (also used by kain)

13.57 CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)

- 416/1136 -

Note: same malformed TIMs are also in Legacy of Kain (folder0004h\file0013h).

13.58 CDROM File Archive FF9 DB (Final Fantasy IX)

DB Archive

Type List entries:

File List:

Data Types

 PMSa (eg. Gex 3, World Racing) (SMP spu-adpcm samples)
 there seem to be no nested DAT files inside of the main DAT file

 000h 1 ID (DBh)
 001h 1 Number of Types
 002h 2 Zero (0)
 004h N*4 Type List
 File Lists & File Data for each Type

 000h 3 Offset to File List (self-relative, from current entry in Type List)
 003h 1 Data Type (00h..1Fh)

 000h 1 Data type (00h..1Fh) (same as in Type List)
 001h 1 Number of Files
 002h 2 Zero (0)
 004h N*2 File ID List (unique ID per type) (different types may have same ID)
 Zeropadding to 4-byte boundary
 ... N*4 Offset List (self-relative, from current entry in Offset List)
 ... 4 End Offset (first-relative, from first entry in Offset List)
 File Data (referenced from above Offset List)

 00h Misc (DOT1 Archives, or other files)
 01h Unused?
 02h Reportedly 3D Model data (vertices,quads,triangles,texcoords)
 03h Reportedly 3D Animation sequences
 04h TIM Texture
 05h Reportedly Scripts (hdr="EV") (eg. dir04\file32\1B-0001)
 06h ? (eg. dir02\file*)
 07h Sound "Sequencer Data" (hdr="AKAO") (eg. dir09\file*)
 08h Sound? tiny files (hdr="AKAO") (eg. dir04\file32\1B-0001)
 09h Sound Samples (hdr="AKAO") (eg. dir0B\file*)
 0Ah Reportedly Field Tiles and Field Camera parameters
 0Bh Reportedly Field Walkmesh (eg. dir04\file32\1B-0001)
 0Ch Reportedly Battle Scene geometry (eg. dir06\file*)
 0Dh ? (eg. dir01\file01)

13.58 CDROM File Archive FF9 DB (Final Fantasy IX)

- 417/1136 -

13.59 CDROM File Archive Ace Combat 2 and 3

Ace Combat 2 (Namco 1997) (ACE2.DAT and ACE2.STH/STP)

There are two archives, stored in three files:

Directory Format:

File List entries (64bit):

The files are interleaved depending on the Type/Channel number:

 0Eh Unused?
 0Fh Unused?
 10h ? (eg. dir05\file*)
 11h ? (eg. dir05\file*)
 12h Reportedly CLUT and TPage info for models (eg. dir04\file32\1B-0001)
 13h Unused?
 14h ? (eg. dir05\file*)
 15h Unused?
 16h ? (eg. dir04\file32\1B-0001)
 17h ? (eg. dir04\file32\1B-0000)
 18h Sound (hdr="AKAO") (eg. dir04\file32\1B-0001)
 19h ? (eg. dir04\file32\1B-0001)
 1Ah ? (eg. dir06\file*)
 1Bh DB Archives (ie. further DB's nested inside of the parent DB archive)
 1Ch ? (eg. dir04\file32\1B-0001)
 1Dh ? (eg. dir03\file2328\1B-0001)
 1Eh ? (eg. dir04\file32\1B-0001)
 1Fh ? (eg. dir04\file32\1B-0001)
 20h..FFh Unused?

 ACE2.DAT Directory for Data in ACE2.DAT itself ;normal binary data
 ACE2.STH Directory for Data in separate ACE2.STP file ;streaming data

 000h 4 Unknown (1)
 004h 4 Number of entries (N)
 008h N*8 File List

 0-27 28bit Size/N (DAT=Size/4, STP=Size/800h)
 28-31 4bit Type or Channel Number (see below)
 32-63 32bit Offset/800h in ACE2.STP or ACE2.DAT file

 File Bit28-31 Channel Sector types... Interleave Notes
 DAT 0 ch=0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1:1 data (normal)
 DAT 2 ch=0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1:1 data (exe)
 STH 0-6 ch=0-6 S.......S.......S.......S....... 1:8 stereo

13.59 CDROM File Archive Ace Combat 2 and 3

- 418/1136 -

Note: The DAT file does additionally contain PreSizeDOT1 and DOT1 child archives.

Demo: The archives in demo version (MagDemo01: ACE2.*) contain only a handful of

files; the two EXE files in demo DAT archive are only 800h-byte dummy files, and demo

STP is corrupted: Recorded as CDROM image with 920h-byte sectors, instead of as actual

CD-XA sectors).

Ace Combat 3 Electrosphere (Namco 1999) (ACE.BPH/BPB and ACE.SPH/SPB)

There are two archives, stored in four files:

Directory Format:

File List entries (64bit), when Bit31=1 (normal entries):

File List entries (64bit), when Bit31=0:

 STH 8 ch=1 vvvvvvvSvvvvvvvSvvvvvvvSvvvvvvvS 1:1 video+stereo
 Whereas D=data, S=Stereo/Audio, v=video, .=other channels

 ACE.BPH Directory for Data in separate ACE.BPB file ;normal binary data
 ACE.SPH Directory for Data in separate ACE.SPB file ;streaming data

 000h 4 ID "AC3E" (=Ace Combat 3 Electrosphere)
 004h 4 Type (BPH=3=Data?, SPH=1=Streaming?)
 008h 2 BCD Month/Day? (Japan=0427h, US=1130h)
 00Ah 2 BCD Year (or zero) (SPH=1999h, BPH=0)
 00Ch 4 Unknown (SPH=0, BPH/US=16CFh or BPH/JP=1484h)
 010h 4 Number of entries (N)
 014h N*8 File List

 0-18 19bit Size/N (BPH=Size/4, SPB=Size/800h)
 19-23 5bit Channel Number (BPH=0, SPH=0..1Fh)
 24-26 3bit Channel Interval (BPH=0, SPH=1 SHL N, eg. 3=Interval 1:8)
 27 1bit Video Flag (0=No, 1=Has Video sectors)
 28 1bit Audio Flag (0=No, 1=Has Audio sectors)
 29 1bit Always 1 (except special entries with Bit31=0, see below)
 30 1bit Unknown (US: Always 1, Japan: 0 or 1)
 31 1bit Always 1 (except special entries with Bit31=0, see below)
 32-63 32bit Offset/800h in ACE.BPB or ACE.SPB file (or 0 when bit31=0 ?)

 For unknown purpose, the normal entries with Bit31=1 are occassionally followed by
one or more entries with Bit31=0.
 Unknown if those entries do affect the actual storage (like switching to
 different channel numbers, or jumping to non-continous sector numbers).
 That unknown stuff exists in Japanese version only, not in US version.
 0-18 19bit Unknown (maybe some snippet size value in whatever units?)
 19-23 5bit Always 0 (instead of Channel)
 24-27 4bit Same as in most recent entry with Bit31=1

13.59 CDROM File Archive Ace Combat 2 and 3

- 419/1136 -

The files are interleaved depending on the Channel Interval setting (and with types data/

audio/video depending on Flags).

As shown above, interval 1:2 and 1:4 are grouped as 4:8 and 2:8 (ie. 4 or 2 continous

sectors per 8 sectors).

The Subheader's Channel number is specified in the above directory entries, Subheader's

File number is fixed (0 for BPB, and 1 for SPB).

CDROM XA Subheader, File, Channel, Interleave

The SPB file is about 520Mbyte in both US and Japan, however, the Japanese version does

reportedly contain more movies and some storyline that is missing in US/EU versions.

The BPB file contains DOT1 child archives, and Ulz compressed files.

CDROM File Compression Ulz/ULZ (Namco)

The SPB file contains movies with non-standard STR headers (and also uncommon:

interleaved videos on different channels, at least so in the japanese version).

Demo: The archives do also exist on the demo version (MagDemo30: AC3*), but

the .SPB file is corrupted: Recorded as a RIFF/CDXAfmt file, instead of as actual CD-XA

sectors).

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

NSD/NSF versions

 28-31 4bit Always 5 (instead of Flags)
 32-63 32bit Always 0 (instead of Offset)

 File Bit24-31 Sector types... Interval Content
 BPH.US E0h DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1:1 data
 SPH.US F8h SvvvvvvvSvvvvvvvSvvvvvvvSvvvvvvv 1:1 stereo+video
 SPH.US FBh S.......v.......S.......v....... 1:8 stereo+video
 SPH.US F3h S.......S.......S.......S....... 1:8 stereo
 SPH.US F4h S...............S............... 1:16 stereo
 SPH.US F5h M............................... 1:32 mono
 BPH.JAP E0h DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1:1 data
 SPH.JAP B8h,F8h SvvvvvvvSvvvvvvvSvvvvvvvSvvvvvvv 1:1 stereo+video
 SPH.JAP B9h Svvv....vvvv....Svvv....vvvv.... 1:2 (4:8) stereo+video
 SPH.JAP BAh,FAh Mv......vv......vv......vv...... 1:4 (2:8) mono+video
 SPH.JAP BBh,FBh S.......v.......S.......v....... 1:8 stereo+video
 SPH.JAP B3h,F3h S.......S.......S.......S....... 1:8 stereo
 SPH.JAP B5h,F5h M............................... 1:32 mono
 Whereas D=data, S=Stereo/Audio, M=Mono/Audio, v=Video, .=Other channels

 v0 Crash Bandicoot Prototype (oldest known prototype from 08 Apr 1996)
 v1 Crash Bandicoot 1 (retail: S**.NSD and .NSF)

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 420/1136 -

NSD

OVERALL NSD STRUCTURE (V0 CONTAINS ONLY THE LOOKUP ENTRIES)

There are four .NSD versions, which can be distinguished via filesize:

Note: v0 is mainly used by the Crash Bandicoot prototype, but the Crash Bandicoot 1

retail version does also have a few v0 files.

NSD LOOKUP

The lookup table allows to find files (by filenames) in the NSF files. It does merely

contain the NSF chunk number, so one must load/decompress that chunk to find the

file's exact size/location in that chunk.

One can create a complete file list by scanning the whole NSF file without using the NDS

lookup table.

Filenames:

 v2 Crash Bandicoot 2 (MagDemo02: CRASH\S0*.NSD and .NSF)
 v3 Crash Bandicoot 3 Warped (MagDemo26,50: (S0*.NSD and .NSF)

 0000h 100h*4 Lookup Table, using index=((Filename/8000h) AND FFh) ;\
 0400h 4 Number of Chunks in .NSF file ; Lookup
 0404h 4 Number of Files in Lookup File List (N) ;/
 0408h 4 Level Data Filename (eg. 4F26E8DFh="DATh.L") ;-LevelDat
 040Ch 4 Bitmap Number of Colors (100h) (P) (0=None) ;\
 0410h 4 Bitmap Width (200h or 1B0h) (X) (0=None) ; Bitmap
 0414h 4 Bitmap Height (0D8h or 090h) (Y) (0=None) ;/
 0418h 4 Compression: Offset/800h of first uncompressed chunk ;\
 041Ch 4 Compression: Number of compressed chunks (0..40h) ; Compress
 0420h 40h*4 Compression: Compressed Chunk List (0=unused entry) ;/
 ... N*8 Lookup File List ;-Lookup
 Level Data (size/format varies, see below) ;-LevelDat
 ... P*2 Bitmap Palette (16bit values, 8000h..FFFFh) ;\Bitmap
 ... X*Y Bitmap Pixels (0D8h*200h) ;/

 v0 NSD Filesize=408h + N*8 ;-Lookup only
 v1 NSD Filesize=520h + N*8 + P*2+X*Y + 210h ;\
 v2 NSD Filesize=520h + N*8 + P*2+X*Y + 1DCh+S*18h ; with extra stuff
 v3 NSD Filesize=520h + N*8 + P*2+X*Y + 2DCh+S*18h ;/

 Lookup File List entries (indexed via Lookup Table):
 00h 4 Chunk Number in .NSF file
 04h 4 Filename (five 6bit characters)

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 421/1136 -

Special name: 6396347Fh="NONE.!"

NSD LEVEL DATA

Level Data exists in NSD v1-v3 (v0 does also have Level Data, but it's stored in NSF file

"DAT*.L" instead of in the NSD file). There are two major versions:

NSD BITMAP

This bitmap is displayed while loading the level.

NSD COMPRESSION INFO

Compression is only used in v1 (v2-v3 do also have the compression entries at [418h..

51Fh], but they are always zerofilled).

 0 Type (always 1=Filename) (as opposed to 0=Memory Pointer)
 1-6 5th character ;-Extension ;\character set is:
 7-12 4th character ;\ ; 00h..09h="0..9"
 13-18 3rd character ; Name ; 0Ah..23h="a..z"
 19-24 2nd character ; ; 24h..3Dh="A..Z"
 25-30 1st character ;/ ;/3Eh..3Fh="_" and "!"
 31 Always zero?

 Level Data in NSD v1 (or NSF v0 file DAT*.L):
 000h 4 01h ;\
 004h 4 Level Number (xxh) (same as xx in S00000xx.NSD/NSF) ;
 008h 4 3807C8FBh = "s0_h.Z" ? ; LevelDat
 00Ch 4 Zero ; v1
 010h 4 Zero ;
 014h L*4 Namelist (40h*4) ;
 ... 4 5Ah ;
 ... F8h Zerofilled ;/
 Level Data in NSD v2-v3:
 000h 4 Number of Spawn Points (S) ;\
 004h 4 Zero ;
 008h 4 Level Number (xxh) (same as xx in S00000xx.NSD/NSF) ; LevelDat
 00Ch 4 Number of Objects? (can be bigger than below list) ; v2/v3
 (eg. 1BDh or A5h or E4h) ;
 010h L*4 Namelist for Objects? (v2=40h*4, or v3=80h*4) ;
 ... 4 Unknown, always 5Ah (maybe just list end marker?) ;
 ... C8h Zerofilled ;
 ... S*18h Spawn Points ;/

 Compressed Chunk List entries at [420h..51Fh]:
 0-5 Compressed Chunk Size/800h (1..1Fh=800h..F800h bytes, 20h..3Fh=Bad?)
 6-31 Compressed Chunk Offset/800h

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 422/1136 -

Note: Crash Bandicoot 1 retail does also have a few uncompressed files (either v0 files

without compression info, or v1 files with zerofilled compression info).

NSF

NSF files consist of 64Kbyte chunks (compressed chunks are smaller, but will be 64Kbyte

after decompression). Each chunk can contain one or more file(s). That implies that all

files must be smaller than 64Kbyte (larger textures or ADPCM samples must be broken

into multiple smaller files).

All files (except Textures) are NSF Child Archives which contain one or more smaller

files/items.

NSF CHUNK TYPES

NSF CHILD ARCHIVES

 N*8Kbyte-Compressed-chunks:
 000h 2 ID, always 1235h (instead of 1234h)
 002h 2 Zero
 004h 4 Decompressed Size (max 10000h) (usually 9xxxh..Fxxxh, often Fxxxh)
 008h 4 Skip Size (max 40h or so, when last LZSS_len was 40h)
 00Ch .. Compressed data
 ... SK Unused (Skip size)
 Final uncompressed bytes (10000h-compressed_size-skip_size)
 64Kbyte-Texture-chunks:
 000h 2 ID, always 1234h
 002h 2 Chunk Family (1=Texture)
 004h 4 Filename (five 6bit characters)
 008h 4 File Type (5=Texture)
 00Ch 4 Checksum (sum of bytes ar [0..FFFFh], with initial [0Ch]=00000000h)
 010h ... Zerofilled
 020h ... Texture data (raw VRAM data, FFE0h bytes?)
 64Kbyte-NonTexture-chunks:
 000h 2 ID, always 1234h
 002h 2 Chunk Family (0=Misc or 2..5=Sound)
 004h 4 Chunk Number*2+1
 008h 4 Number of Files (N) (can be 0, eg. prototype S0000003 chunk21h)
 00Ch 4 Checksum (sum of bytes ar [0..FFFFh], with initial [0Ch]=00000000h)
 010h N*4 File List (Offsets from ID=1234h to entries) (4-byte aligned)
 Offset for end of last File
 File Data (NSF Child Archives) (includes Type/Filename)
 Padding to 10000h-byte boundary

 000h 4 ID, always 0100FFFFh
 004h 4 Filename (five 6bit characters)
 008h 4 File Type (01h..04h, or 06h..15h)
 00Ch 4 Item Count (I)
 010h I*4 Item List (Offsets from ID=0100FFFFh to items) (...unaligned?)

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 423/1136 -

NSF CHUNK LOADING AND DECOMPRESSION

The compression is a mixup of LZSS and RLE. Compressed chunks are max F800h bytes

tall (10000h bytes after decompression).

As shown above, the chunk is intended to be loaded to the end of the decompression

buffer, so trailing uncompressed bytes would be already in place without needing further

relocation (despite of that intention, the actual game code is uselessly relocating src to

dst, even when src=dst).

Note: All compressed files seem to have an uncompressed copy with same filename in

another chunk (the NSD Lookup table does probably(?) point to the compressed variant,

which should reduce CDROM loading time).

Filetypes

FILETYPE SUMMARY

Below shows File Type, Chunk Family, Extension (5th character of filename), the version

where the type is used, 4-letter type names (as found in the EXE files), and a more

 Offset for end last item
 Data (Items)

 dst=chunk_buffer_64kbyte
 if chunksize is known (from NSD file)
 src=dest=dst+10000h-chunksize
 diskread(fpos,src,chunksize)
 else (when parsing raw NSF file without NSD file)
 src=temp_buffer_64kbyte
 diskread(fpos,src,10000h)
 dst_start=dst, src_start=src
 if halfword[src+00h]<>1234h then ;check ID (1234h=raw, or 1235h=compressed)
 dst_end=dst+word[src+04h]
 skip_size=word[src+08h]
 src=src+0Ch
 while dst<dst_end
 x=[src], src=src+1
 if x<80h then
 for i=0 to x-1, [dst]=[src], dst=dst+1, src=src+1, next i ;uncompressed
 else
 x=(x AND 7Fh)*100h+[src], src=src+1
 disp=x/8, len=(x AND 7)+3, if len=0Ah then len=40h
 for i=0 to len-1, [dst]=[dst-disp], dst=dst+1, next i ;compressed
 src=src+src_skip
 if src<>dst then
 while dst<dst_start+10000h, [dst]=[src], dst=dst+1, src=src+1 ;uncompressed
 chunksize=src-src_start ;<-- compute (when chunksize was unknown)
 fpos=fpos+chunksize ;<-- fileposition of next chunk

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 424/1136 -

verbose description.

As shown above, Type 0Ch is used with family 02h/03h, and Type 0Fh,11h,14h have two

variants each (with different extensions). The Extensions do usually corresponding with

the Types (although extension V,D are used for two different types each).

SEE ALSO:

https://gist.github.com/ughman/3170834

https://dl.dropbox.com/s/fu29g6xn97sa4pl/crash2fileformat.html

WEIRD NOTE

"Sound entries don't need to be aligned as strictly for most (all?) emulators."

What does that mean???

Is there a yet unknown 16-byte DMA alignment requirement on real hardware?

 Typ Family Ext Ver Name Description
 00h - ! - NONE Nothing
 01h 0 V all SVTX Misc.Vertices
 02h 0 G all TGEO Misc.Model ;\changed format in v2-v3 ?
 03h 0 W all WGEO Misc.WorldScenery ;/
 04h 0 S all SLST Misc.UnknownSLST
 05h 01h T all TPAG Texture.VRAM
 06h 0 L v0 LDAT Misc.LevelData ;-stored in NSD in v1-v3
 07h 0 Z all ZDAT Misc.Entity ;-changed format in v2-v3 ?
 08h - - - CPAT Internal?
 09h - - - BINF Internal?
 0Ah - - - OPAT Internal?
 0Bh 0 C all GOOL Misc.GoolBytecode
 0Ch 02h A v0 ADIO OldSound.Adpcm ;\type 0Ch
 0Ch 03h A all ADIO Sound.Adpcm ;/
 0Dh 0 M all MIDI Misc.MidiMusic ;-changed format in v1-v3 ?
 0Eh 04h N all INST Sound.Instruments
 0Fh 0 D v0-1 IMAG Misc.UnknownIMAG ;\type 0Fh
 0Fh 0 X v2-3 VCOL Misc.UnknownVCOL ;/
 10h - - - LINK Internal?
 11h 0 P v0-1 MDAT Misc.UnknownMDAT ;\type 11h
 11h 0 R v3 RAWD Misc.UnknownRAWD ;/
 12h 0 U v0-1 IPAL Misc.Unknown ;-Crash 1 only? (eg. S0000019.NSF)
 13h 0 B v1-3 PBAK Misc.DemoPlayback ;-eg. in MagDemo02
 14h 0 V v0-1 CVTX Misc.UnknownCVTX ;\type 14h
 14h 05h O v2-3 SDIO Speech.Adpcm ;/
 15h 0 D v2-3 VIDO Misc.UnknownVIDO

13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)

- 425/1136 -

https://gist.github.com/ughman/3170834
https://dl.dropbox.com/s/fu29g6xn97sa4pl/crash2fileformat.html

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear

Solid)

Metal Gear Solid (MagDemo13: MGS\)

Metal Gear Solid (MagDemo25: MGS\)

Metal Gear Solid (MagDemo44: MGS\) (looks same as in MagDemo13)

Metal Gear Solid (Retail: MGS\)

Summary of ISO files in MGS folder (with filesizes for different releases)

STAGE.DIR:

Combinations of Family/Type characters are:

 File MagDemo13/44 MagDemo25 Retail/PAL
 .EXE 9C000h 9C800h 9D800h ;-executable
 STAGE.DIR 590800h 11A7800h 42AE000h ;-main archive
 FACE.DAT 2CA000h 3Dh (txt) 358800h ;-face animation archive
 ZMOVIE.STR - - 2D4E800h ;-movie archive
 DEMO.DAT 149B000h 3Dh (txt) EC20000h ;\DAT/SYM combos (the .SYM
 DEMO.SYM 88h - - ; files were leaked in
 VOX.DAT 14F2000h 9F800h B054800h ; MagDemo13/MagDemo44 only)
 VOX.SYM 988h - - ;/
 BRF.DAT - 66800h 575800h ;\whatever, unknown format(s)
 RADIO.DAT 16CB8h 3Dh (txt) 1AA956h ;/

 000h 4 Size of File List (N*0Ch)
 004h N*0Ch Folder List
 Zeropadding to 800h-byte boundary
 Folder Data
 Folder List entries:
 000h 8 Foldername (zeropadded if less than 8 chars) ;nickname=stg
 008h 4 Offset/800h to File List
 Folder Data (per folder):
 000h 2 Unknown (always 1) (maybe File List size/800h?)
 002h 2 Folder Size/800h (of whole folder, with file list plus file data)
 004h N*8 File List
 ... Zeropadding to 800h-byte
 800h Data (for files in current folder)
 File List entries:
 000h 2 File ID (checksum on name)
 002h 1 File Family (one of following chars: "cnrs")
 003h 1 File Type (one of following chars: "abcdeghiklmoprswz",FFh)
 004h 4 File Size (or File Offset, when File Family="c")

 .?a ???? if any ???? (does NOT exist on PAL disc 1) ;nickname=azm
 .sb MIPS binary code (leading) ;nickname=bin

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 426/1136 -

Files are starting on 800h-byte boundaries. Files with Family="c" are special, they contain

an Offset entries instead of a Size entries, that Offsets are 4-byte aligned (relative to the

800h-byte aligned offset of the first Family="c" entry), the list of Family="c" entries is

terminated by an entry with Family="c" and Type=FFh (which contains the end-offset of

the last c-Family entry, aka the size of all c-Family entries).

Note: The above 3-letter nicknames are used on some webpages (unknown why, maybe

they are derived from MGS filename extensions in the PC version).

FACE.DAT (face animations for video calls):

This contains several large blocks (supposedly one per stage, each block having its own

file list). There is no directory to find the begin of the separate blocks, but one can

slowly crawl through the file:

The content of each block is:

 .cc Whatever (eg. vr10*, s01a*) ;nickname=con
 .nd Texture Archive (leading) (contains PCX files) ;nickname=dar
 .rd Misc Archive (leading) (eg. init*) ;nickname=dar
 .se Sound Effects? (trailing) ;nickname=efx
 .cg Whatever, reportedly bytecode functions ;nickname=gcx
 .ch Whatever ;nickname=hzm
 .ci Whatever (eg. ending*, s01a*) ;nickname=img
 .ck Whatever, model? aka "pat_xxx" files ;nickname=kmd
 .cl Lights, first word = size/10h ;nickname=lit
 .sm Sound Music? Nested DOT1+DOTLESS Archives ;nickname=mt3
 .co Whatever "OARa" (eg. d16e*, s00a*, s02c*) ;nickname=oar
 .cp PCX bitmap (eg. init*) ;nickname=pcc
 .cr Whatever "sNRJ1F" (eg. roll*) ;nickname=rar
 .cs Whatever (eg. d16e*, s01a*) ;nickname=sgt
 .sw Wave Archive (trailing) ;nickname=wvx
 .cz Whatever "KMDa" (eg. s11a, a11c, s14e, s15a) ;nickname=zmd
 .c,FFh End of Family="c" area ;nickname=dar?

 NextBlock = CurrBlock + 4 + Offset(lastfile)+Size(lastfile) + Align800h

 000h 4 Number of Files in this block (eg. 19h or 1Ch)
 004h N*0Ch File List for this block
 File Data for this block
 Zeropadding to 800h-byte boundary (followed by next block, if any)
 File List entries:
 000h 2 File Type (0=Main/Eye/Mouth frames, 1=All frames are full size)
 002h 2 File ID (name checksum?)
 004h 4 Filesize in bytes
 008h 4 Offset in bytes, minus 4

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 427/1136 -

Type 0 Files in FACE.DAT:

Type 1 Files in FACE.DAT:

Bitmap Format (for both Type 0 and Type 1):

 This type use a single palette for all frames, and only the first frame is
 full 52x89pix, the other frames contain only the update sections (eg. eyes).
 000h 4 Offset to 200h-byte palette (usually 20h) ;\Main
 004h 4 Offset to Main Bitmap (52x89pix) (usually 220h) ;/
 008h 4 Offset to 4th Bitmap (usually xxxxh or 0=None) ;\Eyes
 00Ch 4 Offset to 5th Bitmap (usually xxxxh or 0=None) ;/
 010h 4 Zero
 014h 4 Offset to 2nd Bitmap (usually 143Ch or 0=None) ;\Mouth
 018h 4 Offset to 3rd Bitmap (usually xxxxh or 0=None) ;/
 01Ch 4 Zero
 020h 200h Palette (256 colors) ;\Main
 220h 1218h Main Bitmap ;/
 1438h 4 Zero
 143Ch .. 2nd Bitmap (if any) ;\Mouth
 3rd Bitmap (if any) ;/
 4th Bitmap (if any) ;\Eyes
 5th Bitmap (if any) ;/

 This type use separate palettes for each frame, all frames are full 52x89pix.
 000h 4 Number of frames
 004h N*0Ch Frame List
 ... 200h 1st Frame Palette
 ... 1218h 1st Frame Bitmap (52x89pix)
 ... 4 ?
 ... 200h 2nd Frame Palette
 ... 1218h 2nd Frame Bitmap (52x89pix)
 ... 4 ?
 3rd Frame ...
 Frame List entries:
 000h 4 Offset to Palette
 004h 4 Offset to Bitmap (usually at Palette+200h)
 008h 4 Unknown (often 000x000xh)

 000h 1 Offset X (always 00h in Main Bitmap)
 001h 1 Offset Y (always 00h in Main Bitmap)
 002h 1 Width (always 34h in Main Bitmap, or less in 2nd-5th bitmap)
 003h 1 Height (always 59h in Main Bitmap, or less in 2nd-5th bitmap)
 004h .. Bitmap Pixels at 8bpp (Width*Height bytes)

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 428/1136 -

DEMO.DAT, DEMO.SYM

VOX.DAT, VOX.SYM

The .DAT files contain several huge blocks, found on 800h-boundaries starting with:

The .SYM files (if present) contain Names and .DAT Offsets/800h for those huge blocks in

text format:

VOX.DAT does (among others) contain SPU-ADPCM chunks with 2004h bytes or less, that

is, a 1+3 byte chunk header (01h=SPU-ADPCM, 002004h=Size), plus 2000h byte or less

SPU-ADPCM data.

RADIO.DAT:

Whatever, contains chunks with text messages, chunks are about as so:

BRF.DAT:

Contains several "folders" in this format:

The above "folders" are then followed by several PCX files:

 10 08 00 00 0x 00 00 00 ..

 "0xNNNNNNNN name",0Ah

 000h 4 Unknown (eg. 36h,BFh,5Eh,00h)
 004h 4 Unknown (eg. 03h,13h,00h,00h)
 008h 1 Unknown (eg. 80h)
 009h 2 Chunk Size (eg. 0xh,xxh) ;big-endian
 Chunk Data (Chunk Size-2 bytes) (binary stuff, and text strings)

 000h 4 Number of files in this folder
 004h .. File(s)
 01h-padding to 800h-byte boundary
 Files have this format:
 000h .. Filename ("name.pll",00h)
 Zeropadding to 4-byte boundary (aligned to begin of BRF.DAT)
 ... 4 File data size (usually a multiple of 4)
 File data
 ... 1 Zero (00h)

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 429/1136 -

The first part with .pll files does contain some kind of chunk sizes that could be used to

find the next entry (but that would be very slow).

The second part with .PCX files doesn't have any chunk sizes at all (though one could

decompress the .PCX file to find the end of each file) (also one could guess/find them by

looking for 0A,05,01,01/08 on 800h-byte boundaries).

ZMOVIE.STR (movie archive with several STR files with subtitles)

CDROM File Video Streaming STR Variants

STAGE.DIR\\.sb - stage binary/header

This is the first file in most folders (except "init*" folders).

The file contains MIPS binary program code. And, there are ascii strings near end of .sb

files, which include filenames, alike:

Those filenames do cover some (not all) of the name checksums in the STAGE.DIR folder.

STAGE.DIR\\.cp, STAGE.DIR\\.nd.p, BRF.DAT* - PCX bitmap files

MGS is using customized/corrupted PCX files as standard texture format (in STAGE.DIR\

\.cp, STAGE.DIR\\.nd\.p, and BRF.DAT\).

For details on PCX format (and MGS-specific customizations), see:

CDROM File Video Texture/Bitmap (PCX)

Apart from PCX, there's also custom texture format for animated bitmaps (in FACE.DAT),

and a few TIM images (in STAGE.DIR\init*\.rd\.r)

STAGE.DIR\\.nd - texture archive (with .PCX files)

STAGE.DIR\init**.rd - misc archive (with misc files)

These archives contain several chunks in following format:

 000h .. PCX file (starting with 0A,05,01,01 or 0A,05,01,08)
 01h-padding to 800h-byte boundary

 "name.c",00h + garbage-padding to 4-byte boundary ;<-- maybe source code?
 "pat_lamp",00h + zero- padding to 4-byte boundary ;<-- name for File ID !

 000h 2 File ID (checksum on name?)
 002h 1 File Type (one of following chars: "p" for .nd, or "kors" for .rd)
 003h 1 Zero (00h)

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 430/1136 -

The File Type can be:

There can be 1-2 texture archives per STAGE.DIR folder (both having File ID=0000h)

(probably due to a memory size limit: the game does probably load one archive with max

300Kbytes, relocate its contents to VRAM, then load the next archive, if any).

STAGE.DIR\\.sw - wave archive

There can be one or more .sw files per stage folder (eg. two sw's in "vr**.sw").

The unknown fields might contain volume, ADSR, pitch or the like?

STAGE.DIR\\.se - sound effects? maybe short midi-like sequences or so?

 004h 4 Chunk Size (rounded to 4-byte boundary)
 008h .. Chunk Data

 .p PCX bitmap ;-in **.nd archives
 .k Whatever ;\
 .o Whatever "OARa" ; in init**.rd archives
 .a Whatever ;
 .r Misc (TIM and other stuff) ;/

 000h 4 Unknown (800h or C00h) ;big-endian
 004h 4 Size of File List (N*10h) ;big-endian
 008h 8 Zerofilled
 010h N*10h File List (xx,xx,xx,00,00,00,00,7F,00,00,00,0F,00,19,0A,00)
 ... 4 Unknown (40000h or 60000h) ;big-endian
 ... 4 Size of SPU-ADPCM Data area ;big-endian
 ... 8 Zerofilled
 SPU-ADPCM Data area (indexed from File List)
 File List entries:
 000h 4 Offset+Flags ;little-endian!
 bit0-16 Offset (from begin of SPU-ADPCM Data area)
 bit17 Unknown (0 or 1)
 bit18 Unknown (1)
 bit19-31 Unknown (0)
 004h 12 Whatever (always 00,00,00,7F,00,00,00,0F,00,19,0A,00)

 000h 80h*10h List (unused entries are 1x00000000h,3xFFFFFFFFh)
 800h .. Data (whatever, usually 14h or more bytes per list entry)
 List entries:
 000h 1 Unknown (eg. 01h,10h,20h,A0h,80h,FFh) ;\
 001h 1 Number of Voices? (1..3) ; all zero for
 002h 1 Unknown (1 or 0) ; unused list entries
 003h 1 Unknown (2 or 0 or 1) ;/
 004h 4 Offset-800h for 1st Voice? ;-FFFFFFFFh=Unused
 008h 4 Offset-800h for 2nd Voice? (if any) ;-FFFFFFFFh=Unused

13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)

- 431/1136 -

STAGE.DIR\\.sm - whatever nested archives - sound music? mide-like?

This does resemble a DOT1 Parent archive with 1-4 DOTLESS Child archives. Except, the

offsets in Child archives are counted from begin of Parent archive.

File IDs

File IDs in STAGE.DIR (and maybe elsewhere, too) are computed as so:

Examples: "abst"=1706h, "selectvr"=8167h.

Some filenames are empty (name="", ID=0000h).

Some filenames do match up with the STAGE.DIR foldername.

Some filenames do match up with strings in .sb file of current folder.

Other filenames are unknown.

13.62 CDROM File Archive DRACULA.DAT (Dracula)

Dracula - The Resurrection - DRACULA.DAT (180Mbyte)

File List entries:

 00Ch 4 Offset-800h for 3rd Voice? (if any) ;-FFFFFFFFh=Unused
 Data:
 Seems to contain 4-byte entries (last entry being 00,00,FE,FF).

 Data:
 Seems to contain 4-byte entries (last entry being 00,00,FE,FF).

 sum=0,
 for i=0 to len(filename)-1
 sum=sum*20h+filename[i] ;\or so, 16bit overflows might be
 sum=(sum+sum/10000h) AND FFFFh ;/cropped slightly differently

 000h 4 Zero
 004h 4 Number of Entries (503h)
 008h 4 Zero
 00Ch 4 Random
 010h 10h Zero
 020h N*10h File List
 Zeropadding to 800h-byte boundary
 Fild Data area

13.62 CDROM File Archive DRACULA.DAT (Dracula)

- 432/1136 -

Most of the .DAT file consists of groups of 3 files (with type 01h/40h, 20h and 400h; of

which the files with type 20h and 400h may have Size=0=empty).

There are some general purpose files with other types at end of .DAT file:

Type 01h - Cubemap:

 000h 4 Offset/800h
 004h 4 Type (see below for info on different file types)
 008h 4 Filesize in bytes
 00Ch 4 Random (or 0 when Filesize=0)

 Type=00000001h Cubemap ;\either one of these
 Type=00000040h Cubemap.empty ;/
 Type=00000020h Cubemap.overlay? ;\these have size=0 when unused
 Type=00000400h Cubemap.sounds ;/

 Type=00000000h Archive with TIMs (Size=AB74h) (" RSC3.1V")
 Type=00000004h Unknown (Size=16164h) (00000064h)
 Type=00000008h Related to DRACULA1.STR (Size=1000h) (" RTS1.1V")
 Type=00001000h Unknown (Size=2000h) ("BXFS1.1V")
 Type=00008000h Unknown (Size=71Dh) (" CM1.1V")
 Type=00020000h Unknown (Size=3B9h) (" GSM0.1V")
 Type=02000000h Unknown (Size=0h) (empty)
 Type=00000100h Related to DRACULA1.XA (Size=1000h) ("RAAX1.1V")
 Type=00000010h Unknown (Size=450h) (" HYP0.1V")
 Type=00100000h Unknown (Size=4014h) (" xFS1.1V") (x=A1h)
 Type=00000080h Unknown (Size=258F4h) (00000010h)
 Type=00000200h TIM (gui charset) (Size=6E9Eh) (TIM)
 Type=00010000h TIM (gui buttons) (Size=10220h) (TIM)
 Type=00040000h Unknown (Size=2C4h) (" TES0.1V")
 Type=00002000h TIM (gui book pages) (Size=1040h) (TIM)
 Type=00000800h Cubemap ;\as Type 01h, (Size=4092Ch) (" RIV3.1V")
 Type=00004000h Cubemap ;/but [10h,14h]=0 (Size=4092Ch) (" RIV3.1V", too)

 000h 8 Name, ASCII, padded with leading spaces (eg. " RIV3.1V")
 008h 4 Something (0, 1 or 2) (unknown, this isn't number of list entries)
 00Ch 4 Zero
 010h 4 Offset to Ext data (ACh) ;\ext data
 014h 4 Size of Ext data (eg. 0 or 84h) ;/
 018h 6*4 Offsets to Side 0-5 ;\cubemap sides
 030h 6*4 Sizes of Side 0-5 (0, 10220h, or 10820h) ;/
 048h 44h Zerofilled
 08Ch 20h Name, ASCII (eg. "DEBUT0.VR", zeropadded)
 0ACh .. Ext Data (if any)
 Cubemap TIM sides (if any)
 Note: The cubemap TIMs have 100h or 400h colors (in the latter case: 100h colors for
each quarter of the 8bpp bitmap).
 Note: The TIMs can be arranged as 3D-cubemap with six sides, or as hires
 2D-bitmap (composed of four TIMs, and 2 empty TIMs with size=0).

13.62 CDROM File Archive DRACULA.DAT (Dracula)

- 433/1136 -

Type 40h - Empty Cubemap:

Type 400h - Sound VAG's:

Type 20h - Cubemap overlays, polygons, effects or so?:

 Same as Type 01h, but size is always 0ACh (and all seven Size entries are 0)

 000h 8 Name, ASCII, padded with leading spaces (eg. " XFS0.1V")
 008h 4 Zero
 00Ch 4 Number of Files (N) (max 10h)
 010h N*10h File List (100h bytes, zeropadded when less than 10h files)
 110h .. File Data (VAG files)
 File List entries:
 000h 4 Unknown (55F0h, 255F0h or 20000h)
 004h 4 File ID (01010000h, increasing, or other when above=2xxxxh)
 008h 4 Offset in bytes ;\.VAG files
 00Ch 4 Filesize in bytes ;/

 000h 8 Name, ASCII, padded with leading dot (eg. ".MNA4.1V")
 008h 4 Zero
 00Ch 4 Random
 010h 4 Unknown 01h
 014h 4 Total Number of 40h-byte blocks (01h..[018h]) (H)
 018h 4 Total Number of 120h-byte blocks (eg. 1Fh,31h) (N)
 01Ch 4 Total Number of 1Ch-byte blocks (eg. 1Eh, 50h, F7h) (M)
 020h 4 Unknown 0 or 1 (in file 4EAh)
 024h 4 Unknown 01h
 028h 6*4 Offsets to Side 0-5 (at end of file and up) (or 0) ;\cubemap
 040h 6*4 Sizes of Side 0-5 (10220h, or 10820h) (or 0) ;/sides
 058h H*40h 40h-byte blocks
 ... N*120h 120h-byte blocks (related to offsets in 40h-byte blocks)
 ... M*1Ch 1Ch-byte blocks (related to offsets in 120h-byte blocks)
 Unknown data (related to offsets in 1Ch-byte blocks)
 Ext data (related to Ext offsets in 40h-byte blocks)
 FILE DOES END HERE!
 (below is allocated in above header, but not actually stored in the file)
 (maybe allocated as rendering buffer?)
 ... - Cubemap TIM sides
 The 40h-byte blocks are:
 000h 20h Name (eg. "FLAMMES", zeropadded)
 020h 4 Unknown 01h or 00h
 024h 4 Offset to 120h-byte blocks (usually 98h, or higher)
 028h 4 Unknown 00h
 02Ch 4 Number of 120h-byte blocks (01h..[018h])
 030h 4 Unknown 01h
 034h 4 Ext Offset ;\usually all zero
 038h 4 Ext Size (3C000h) ; (except, nonzero in file 4EAh)
 03Ch 4 Ext Random (checksum?) ;/
 The 120h-byte blocks are:
 000h 18h*4 List with Offsets to 1Ch-byte blocks (usually 4 entries nonzero)
 060h 18h*4 List with Zeroes

13.62 CDROM File Archive DRACULA.DAT (Dracula)

- 434/1136 -

Type 00h - TIMs:

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

Croc 1 (MagDemo02: CROC*) (plus more files in retail version)

CROCFILE.DIR and CROCFILE.1:

CROCFILE.DIR\MP*.MAP (and MAP files inside of MAP*.WAD and MP090-100_*.WAD):

 0C0h 18h*4 List with Numbers of 1Ch-byte blocks (usually max 4 entries)
 The 1Ch-byte blocks are:
 000h 4 Unknown 04h
 004h 4 Width 20h or 10h
 008h 4 Height 20h or 10h or 30h
 00Ch 4 Unknown 60h or 10h
 010h 4 Unknown 00h or 30h
 014h 4 Offset to Unknown Data
 018h 4 Size of Unknown Data (Width*Height*1)

 000h 8 Name (" RSC3.1V")
 008h 8 Zerofilled
 010h 4 Number of used entries (1Fh) (max 80h)
 014h 80h*4 Offset List (offsets to files) (A14h and up)
 214h 80h*4 Zero List (zerofilled)
 414h 80h*4 Size List (filesizes)
 614h 80h*4 Width List (0Ch,18h,34h,2Ch) (in pixels)
 814h 80h*4 Height List (0Ch,24h,34h,2Ch)
 A14h .. Data (TIM files, with mouse pointers)

 CROCFILE.DIR:
 000h 4 Number of Entries (N)
 004h N*18h File List
 ... 4 Checksum (sum of all of the above bytes)
 CROCFILE.1:
 000h .. File Data (referenced from .DIR)
 File List entries:
 000h 0Ch Filename ("FILENAME.EXT", zeropadded if shorter)
 00Ch 4 File Size in bytes (can be odd) (including 8 byte for size/chksum)
 010h 4 File Offset in .1 file (unaligned, can be odd, increasing)
 014h 4 Zero (0)

 000h 4 Size-8 of whole file (or Size-0 for those in MP*.WAD)
 004h 4 Flags? (usually 0Ch or 14h)
 008h 1 Filename length (including trailing 00h, if any)
 009h .. Filename ("P:\CROC\EDITOR\MAPS\..*.MAP") (+00h in MAP05*.WAD)
 Unknown
 ... 1 Description length

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 435/1136 -

CROCFILE.DIR\.WAD:

CROCFILE.DIR\.BIN:

 Description (eg. "Default New Map")
 Unknown
 ... (4) Checksum of whole file (sum of all bytes) (not in MP*.WAD)

 MAP*.WAD:
 000h 4 Size-8 of whole file
 004h .. MAP file(s) (each with size/checksum, same format as MP*.MAP)
 ... 4 Checksum of whole file (sum of all of the above bytes)
 CROC.WAD, CROCSLID.WAD, EXCLUDE.WAD, MP*.WAD, OPTIONS.WAD, SWIMCROC.WAD:
 000h 4 Size-8 of whole file
 004h 4 Offset-8 to SPU-ADPCM data area
 008h .. Data File area (model.MOD anim.ANI, bytecode.BIN, header.CVG, etc.)
 SPU-ADPCM data area (if any, note in CROCSLID.WAD and OPTIONS.WAD)
 The Data File area contains several "files" but doesn't have any directory
 with filename/offset/size. The only way to find the separate files seems to
 be to detect the type/filesize of each file, and then advance to next file
 (bytecode.BIN files start with a size entry, but files like .MOD or .ANI
 require parsing their fileheader for computing filesize).
 Note: The PC version reportedly has .WAD files bundled with .IDX file (that
 makes it easier to find files and filenames).
 Note: The STRAT.DIR file contains a list of filenames used in .WAD files
 (but lacks info on offset/size, so it isn't really useful).

 Sound.BIN Files (CROCFILE.DIR\AMBI*.BIN, MAP*.BIN, JRHYTHM.BIN, REVERB.BIN):
 000h 4 Size of .SEQ file ;\if any (not in REVERB.BIN)
 004h .. SEQ file (starting with ID "pQES") ;/
 ... 4 Size of .VH file ;\always present
 VH file (starting with ID "pBAV") ;/
 VB file (sample data, SPU-ADPCM data, up to end of file)
 Music.BIN files (MAGMUS.BIN, MUSIC.BIN):
 000h 4 Size-8 of whole file (118h)
 004h .. Increasing 32bit values ;sector numbers in PACK*.STR files or so?
 ... 4 Unknown (2EEh or 258h) (aka 750 or 600 decimal)
 Zeropadding
 11Ch 4 Checksum (sum of all of the above bytes)
 Note: MUSIC.BIN has an extra copy (without chksum) in EXCLUDE.WAD\MUSIC.BIN
 Ascii.BIN files (CREDITS*.BIN, MNAME.BIN):
 000h 4 Size-8 of whole file
 004h (2) Type or so? (02h,01h) (only in CREDITS*.BIN, not in MNAME.BIN)
 Ascii strings (each string is: len,"text string",unknown)
 ... 4 Checksum (sum of all of the above bytes)
 Texture.BIN files (type 4) (STILLGO.BIN, STILLST.BIN, STILLTL.BIN):
 000h 2 Type (4=Texture/uncompressed, with 0Eh-byte list entries)
 002h 1 Zero (maybe Extra6byte as in type 5,6 Texture.BIN files)
 003h 2 Number of List entries (N) (always 4B0h in all three files)
 005h 2 Number of Texture Pages (usually 2)
 007h 2 Zero (maybe Unknown/Animation as in type 5,6 Texture.BIN files)
 009h N*0Eh Polygon List (?,?,?,?,?,?, x1,y1, x2,y1, x1,y2, x2,y2)

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 436/1136 -

 ... 40000h Texture Page uncompressed data (two pages, 20000h bytes each)
 ... 4 Checksum (sum of all of the above bytes)
 Texture.BIN files (type 5,6) (ENDTEXT*.BIN, FONT.BIN, FRONTEND.BIN,
 OUTRO.BIN, PUBLISH.BIN, STILL*.BIN, TB*.BIN, TK*.BIN, TPAGE213.BIN):
 000h 4 Zero (0) (in TPAGE213.BIN: Size-8 of whole file)
 004h 2 Type (6=Texture/RLE16) (in TPAGE213.BIN: 5=Texture/uncompressed)
 006h 1 Extra6byte flag/size (0=None, 3=Extra6byte: TB*.BIN, TPAGE*.BIN)
 ... (6) Extra6byte data (unknown purpose, only present when [006h]=3)
 ... 2 Number of Polygon List entries (N)
 ... 2 Number of Texture Pages (usually 1) (in TK*_ENM.BIN: usually 2)
 ... 2 Number of Unknown Blocks (0=None, or 1,2,4,8)
 ... (..) Unknown Block(s), if any
 ... 2 Number of Animation Blocks (0=None)
 ... (..) Animation Block(s), if any
 ... N*0Ch Polygon List (?,?,?,?, x1,y1, x2,y1, x1,y2, x2,y2) ;x,y or y,x?
 ... (4) Texture Page compressed size (T1) ;\only when [004h]=Type=6
 ... (T1) Texture Page compressed data ;/
 ... (4) Texture Page compressed size (T2) ;\only when [004h]=Type=6
 ... (T2) Texture Page compressed data ;/ and NumPages=2
 ... 20000h Texture Page uncompressed data ;-only when [004h]=Type=5
 ... 4 Checksum (sum of all of the above bytes)
 Unknown Block(s):
 (Unknown purpose, each Unknown Block has the format shown below)
 000h 2 Unknown (looks like some index value, different for each entry)
 002h 2 Number of Unknown Items (eg. 1 or 2 or 4)
 004h .. Unknown Items (NumItems*6 bytes) (three halfwords each?)
 Animation Block(s):
 (This is supposedly used to update portions of the Texture Page for
 animated textures, each Animation Block has the format shown below)
 000h 2 Number of Bitmap Frames in this Animation (usually 8)
 002h 2 Bitmap Width (in halfword units)
 004h 2 Bitmap Height
 006h 2 Unknown (1 or 3) ;\
 008h 2 Unknown (C10h, CC8h, 1E8h, or xxxh) ; maybe vram X,Y address?
 00Ah 2 Unknown (0) ;/
 00Ch .. Bitmap Frames (Width*2*Height*NumFrames bytes, uncompressed)
 Croc 1 RLE16 compression:
 This is using unsigned little-endian 16bit LEN/DATA pairs, LEN can be:
 0000h..7FFFh --> Load one halfword, fill 1..8000h halfwords
 8000h..FFFFh --> Copy 1..8000h uncompressed halfwords
 BUG: Texture pages should be 20000h bytes (256x256 halfwords), but for
 whatever reason, the size of decompressed data can be 1FFEAh, 1FFF0h,
 1FFFAh, 20000h, or 20002h.
 Bytecode.BIN (inside of .WAD files):
 000h 4 Size of whole file
 004h .. Whatever bytecode (starting with initial 16bit program counter?)
 Unknown.BIN (last 1-2 file(s) in EXCLUDE.WAD file):
 000h 4 Number of entries (N)
 004h N*18h Whatever
 ... 4 Checksum (sum of above bytes)
 Unknown purpose, retail version has one such file (with 0Ah entries), demo
 version has two such files (with 0Ah and 4Eh entries. The files start with:
 0A,00,00,00,00,00,00,00,00,00,64,00,00,00,EB,FF,... ;demo+retail
 4E,00,00,00,00,00,64,00,00,00,50,00,00,00,64,00,... ;demo

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 437/1136 -

CROCFILE.DIR\.MOD

 Demo version has one .MOD file in CROCFILE.DIR (retail has more such files):
 000h 2 Number of Models (N) (1 or more) (up to ECh exists) ;\header
 002h 2 Flags (0 or 1) ;/
 004h N*Var SubHeadersWithData ;see below ;-data
 ... 4 Checksum (sum of all of the above bytes) ;-checksum
 SubHeadersWithData(N*Var):
 004h 4 Radius ;\
 008h 48h Bounding Box[9*8] (each 8byte are 4x16bit: X,Y,Z,0) ; for each
 050h 4 Number of Vertices (V) ; model
 054h V*8 Vectors (4x16bit: X,Y,Z,0) ;
 ... V*8 Normals (4x16bit: X,Y,Z,0) ;
 ... 4 Number of Faces (F) (aka Polygons?) ;
 ... F*14h Faces (8x16bit+4x8bit: X,Y,Z,0,V1,V2,V3,V4, Tex/RGB) ;
 ... 2 Number of collision info 1? (X) ;\ ;
 ... 2 Number of collision info 2? (Y) ; only if ;
 ... X*2Ch Collision info 1? ; Flags.bit0=1 ;
 ... Y*2Ch Collision info 2? ;/ ;/
 There are further .MOD models inside of .WAD files, with slightly
 re-arranged entries (and additional reserved/garbage fields):
 000h 2 Number of Models (N) (1 or more) (up to ECh exists) ;\
 002h 2 Flags (0 or 1) ; header
 004h 4 Reserved/garbage (usually 224460h) (or 22C9F4h/22DF54h) ;/
 008h (4) Number of Models WITH Data arrays (M) ;\
 00Ch (M*2) Model Numbers WITH Data arrays (increasing, 0..N-1) ; ext.hdr
 ... (..) Padding to 4-byte boundary (garbage, usually=M) ;/
 ... N*68h Subheader(s) ;see below ;-part 1
 ... N*Var DataArray(s) ;see below ;-part 2
 Subheaders(N*68h):
 000h 4 Radius ;\
 004h 48h Bounding Box[9*8] (each 8byte are 4x16bit: X,Y,Z,0) ; for each
 04Ch 4 Number of Vertices (V) ; model
 050h 4 Reserved/garbage (usually 0022xxxxh) ;
 054h 4 Reserved/garbage (usually 0022xxxxh) ;
 058h 4 Number of Faces (F) (aka Polygons?) ;
 05Ch 4 Reserved/garbage (usually 0022xxxxh) ;
 060h 2 Number of collision info1? (X) ;
 062h 2 Number of collision info2? (Y) ;
 064h 4 Reserved/garbage (usually 0022xxxxh) or xxxxxxxxh) ;/
 DataArrays(N*Var) with sizes V,F,X,Y from corresponding Subheader:
 (if ext.hdr is present, then below exists only for models listed in ext.hdr)
 000h V*8 Vectors (4x16bit: X,Y,Z,0) ;\
 ... V*8 Normals (4x16bit: X,Y,Z,0) ; for each
 ... F*14h Faces (8x16bit+4x8bit: X,Y,Z,0,V1,V2,V3,V4, Tex/RGB) ; model
 ... X*2Ch Collision info 1? ;
 ... Y*2Ch Collision info 2? ;/
 The ext.hdr mentioned above exists only in some .MOD files (usually in one of
 the last chunks of MP*.WAD). Files with ext.hdr have N>1, Flags=1 (but files
 without ext.hdr can also have those settings). Files with ext.hdr do usually
 have uncommon garbage values at hdr[4], which isn't too helpful for detection.
 The only way to detect models with ext.hdr seems to be to check if the ext.hdr
 contains valid increasing entries in range 0..N-1.
 WAD's that do contain a model with ext.hdr do usually also contain an extra

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 438/1136 -

CROCFILE.DIR\MP*.DEM

CROCFILE.DIR\CROCWALK.ANI:

 100h-byte file, that file contains N bytes for model 0..N-1 (plus zeropadding
 to 100h-byte size), the bytes are supposedly redirecting models without Data
 Arrays to some other data source.
 The 100h-byte files don't have any header or checksum, they contain up to 9Ch
 entries (so there's always some zeropadding to 100h), the existing 100h-byte
 files contain following values in first 4 bytes (as 32bit value):
 04141401h, 0C040017h, 01010101h, 09030503h, 0A0B0A0Bh, 03020102h, 0C060900h,
 00060501h, 04040201h, 01010203h, 01030201h, 05000302h, 0C040317h, or Zero.
 To distinguish from other files: BIN/MAP files start with a 4-byte aligned
 Size value; if Size=0 or (Size AND 3)>0 or Size>RemainingSize then it's
 probably a 100h-byte file. Best also check if last some bytes are zeropadded.
 Exceptions:
 Retail MP090..MP100_*.WAD has model with ext.hdr, but no 100h-byte file
 Demo MP041_00.WAD has model with ext.hdr, with zerofilled 100h-byte file
 Note: Some models have ALL models listed in ext.hdr (which is about same as
 not having any ext.hdr at all; except, they ARE bundled with 100h-byte file).

 Some (not all) MP*.WAD files are bundled with MP*.DEM files, supposedly
 containing data for demonstration mode. There are two versions:
 demo version: size 2584h (9604 decimal) (some files with partial checksum)
 retail version: size 0E10h (3600 decimal) (without checksum)

 Animation data, there is only one such file in CROCFILE.DIR:
 000h 2 Value (100h)
 002h 2 Number of Triggers (T) (2)
 004h (T*2) Trigger List (with 2x8bit entries: FrameNo, TriggerID)
 Probably, Padding to 4-byte boundary (when T=odd)
 ... 4 Number of entries 1 (X)
 ... X*18h Whatever Array 1
 ... 4 Number of entries 2 (Y) (usually/always 64h)
 ... X*Y*4 Whatever Array 2
 ... 4 Number of entries 3 (Z) (usually/always 0Ah)
 ... X*Z*18h Whatever Array 3
 There are further .ANI files inside of .WAD files:
 000h 2 Value (100h or 200h) ;Animation Speed?
 002h 2 Number of Triggers (T) (0, 1, 2, 3, 5, or 9)
 004h 4 Garbage/Pointer (usually 224460h) (or zero)
 008h 4 Number of entries 1 (X) (1 or more) ;Num Frames
 00Ch 4 Garbage/Pointer (usually 22C9F4h) (or 224460h or 22DF54h)
 010h 4 Number of entries 2 (Y) (usually 64h) (or 0) ;Num Vertices (?)
 014h 4 Garbage/Pointer
 018h 4 Number of entries 3 (Z) (usually 0Ah) (or 6 or 9)
 01Ch 4 Garbage/Pointer
 020h (T*2) Trigger List (with 2x8bit entries: FrameNo, TriggerID)
 Padding to 4-byte boundary (garbage, usually=X)
 ... X*18h Whatever Array 1
 ... X*4 Garbage/Pointers (0021EE74h,0021EE74h,xxx,...)
 ... X*Y*4 Whatever Array 2 ;Vertex 3x10bit? ;only if Y>0

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 439/1136 -

CROCFILE.DIR\TCLD.CVG:

STRAT.DIR (in retail version with extra copy in CROCFILE.DIR\STRAT.DIR):

PACK*.STR (retail version only):

MAGMUS.STR (demo version only):

 ... (X*4) Garbage/Pointers (0021EE74h,0021EE74h,xxx,...) ;only if Y>0
 ... X*Z*18h Whatever Array 3

 There is only one such file in CROCFILE.DIR:
 000h 4 Size-8 of whole file
 004h 4 Unknown (0)
 008h 4 Unknown (1)
 00Ch .. SPU-ADPCM data
 ... 4 Checksum (sum of all of the above bytes)
 There are further .CVG files inside of .WAD files, these consist of two
 parts; 0Ch-byte Headers (in the data file area), and raw SPU-ADPCM data
 (in the spu-adpcm data area at end of the .WAD file):
 Header(0Ch):
 000h 4 Size+8 of data part
 004h 4 Unknown (0)
 008h 4 Unknown (0 or 1)
 Data(xxxx0h):
 000h .. SPU-ADPCM data (starting with sixteen 00h bytes)

 This file contains a list of filenames for files inside of .WAD files, but
 it does NOT tell where those files are (in which WAD at which offset).
 000h 4 Number of Entries (N)
 004h N*xxh File List (retail=14h bytes, or demo=18h bytes per entry)
 ... 4 Checksum (sum of all of the above bytes)
 List entries are:
 demo: entrysize=18h ;Filename(0Ch)+Size(4)+Zeroes(8)
 retail: entrysize=14h ;Filename(0Ch)+ Zeroes(8)
 The list contains hundreds of filenames, with following extensions:
 *.BIN byte-code strategies
 *.MOD models
 *.ANI animations
 *.CVG spu-adpcm voice data
 These "filenames" seem to be actually solely used as "memory handle names":
 MemoryHandle(#1) = LoadFile("FILENAME.BIN") ;<-- names NOT used like this
 MemoryHandle("FILENAME.BIN") = LoadFile(#1) ;<-- names used like this

 Huge files with XA-ADPCM audio data

 Huge mis-mastered 24Mbyte file (contains several smaller XA-ADPCM blocks,
 accidentally stored in 800h-byte FORM1 data sectors, instead of 914h-byte
 FORM2 audio sectors).

13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)

- 440/1136 -

ARGOLOGO.STR, FOXLOGO.STR

COPYRIGHT.IMG, WARNING.IMG

CUTS\.AN2 (looks like cut-scenes with polygon-streaming):

CDROM File Video Polygon Streaming

Note: MOD/ANI files contain many Reserved/Garbage/Pointer entries which are replaced

by pointers after loading (the initial values seem to have no purpose; they are aften set

to constants with value 002xxxxxh which could be useful for file type detection, but they

vary in different game versions).

See also:

https://github.com/vs49688/CrocUtils/ (for PC version, PSX support in progress)

13.64 CDROM File Archive Croc 2 (DIR, WAD, etc.)

Croc 2 (MagDemo22: CROC2\CROCII.DIR\T*.WAD+DEM)

Disney's The Emperor's New Groove (MagDemo39: ENG\KINGDOM.DIR\T*.WAD+DEM)

Disney's Aladdin in Nasira's Rev. (MagDemo46: ALADDIN\ALADDIN.DIR\T*.WAD+DEM)

Alien Resurrection, and Harry Potter 1 and 2 ... slightly different format?

Overall .WAD format:

XSPT Chunk (Textures):

 MDEC movies

 Raw bitmaps (25800h bytes, uncompressed, 320x240x16bpp)

 000h 4 Total Filesize+/-xx (-4 or +800h or +1800h)
 004h 4+4+.. XSPT Chunk ;Textures
 ... 4+4+.. XSPS Chunk ;SPU-ADPCM Sound (if any, not in all .WAD's)
 ... 4+4+.. XSPD Chunk ;...whatever Data...?
 ... 4+4 DNE Chunk ;End marker (in Harry Potter: with data!)

 000h 4 Chunk Name "XSPT" (aka TPSX backwards)
 004h 4 Chunk Size (excluding 8-byte Name+Size)
 008h 4 Chunk Flags (02h or 06h or 0Eh) ;02h in Croc 2
 00Ch (20h) Name (eg. "Default new map", zeropadded) ;\if Flags bit2=1
 ... (804h) Unknown ... SAME as in XSPD chunk !!! ;/

13.64 CDROM File Archive Croc 2 (DIR, WAD, etc.)

- 441/1136 -

https://github.com/vs49688/CrocUtils/

XSPS Chunk (SPU-ADPCM Sound) (if any, isn't present in all .WAD files):

XSPD Chunk:

 ... 4 Number of List 1 entries (N1) (xxh..xxxh) ;\
 ... 4 Number of Texture Pages (1..4) ; List 1 and NumPages
 ... N1*0Ch List 1 Whatever (6B 2F xx 00..) ;/
 ... 4 Number of List 2 entries (N2) (0..xxh) ;\
 ... 4 Unknown (2 or 7) ; List 2
 ... N2*04h List 2 Whatever (halfwords?) (if N2>0) ;/
 ... (5*C00h) Whatever, 5*C00h, Palette+Stuff? ;-if Flags bit3=1
 RLE16 compressed Texture Pages ;-Texture bitmap
 RLE16 Texture notes:
 Compressed data consists of signed little-endian 16bit LEN+DATA pairs:
 LEN=0000h --> invalid/unused
 LEN=0001h..7FFFh --> copy LEN halfwords from src
 LEN=8000h..FFFFh --> load ONE halfword as fillvalue, fill -LEN halfwords
 Compressed size is everything up to end of XSPT chunk
 Decompressed size is 20000h*NumTexturePages (=20000h,40000h,60000h or 80000h)
 That is: Width=256 halfwords, height 256*NumTexturePages lines. There seems
 to be only one RLE16 compression block for all Texture Pages, rather than one
 RLE16 block for each Page.
 BUG #1: Decompressed data in Aladding/Emperor does often contain only
 1FFFEh,3FFFEh,5FFFEh,7FFFEh bytes (the decompressed data has correct size
 when appending ONE halfword with random/zero value).
 BUG #2: Compressed data in Croc 2 ends with a RLE16 length value (-LEN), but
 lacks the corresponding RLE16 filldata (the decompressed data is 7FFFEh when
 filling those LEN halfwords with random/zero values).

 000h 4 Chunk Name "XSPS" (aka SPSX backwards) ;\
 004h 4 Chunk Size (excluding 8-byte Name+Size) ; header
 008h 4 Chunk Flags (0 or 3 or 7) ;/
 00Ch 4 Number of Sounds (N1) (1..xxh) ;\always present
 010h N1*14h Sound List ;/
 ... (4) VAB/VH Size ;\if Flags=3 or 7
 ... (..) VAB/VH Header ;/ (bit0 or bit1?)
 ... (4) Unknown (2 or 4) ;-if Flags=3 or 7
 ... (4) Whut (N2) ;\if Flags.bit2=1
 ... (N2*10h) Whut List (4 words: xxh,10h,xxxx00h,xxxx0h);/
 ... 4 Size of all Part 1 Sound Data blocks ;\always
 SPU-ADPCM Sound Data (referenced from Sound List) ;/
 ... (4) Size of all Part 2 Sound Data blocks (+8) ;\if Flags=
 ... (..) SPU-ADPCM Sound Data (referenced from Sound List?) ; 3 or 7
 ... (8) Zero ;/
 Sound List entries (as in FESOUND.WAD):
 000h 4 Sample Rate in Hertz (AC44h=44100Hz, 5622h=22050Hz, 3E80h=16000Hz)
 004h 2 Sample Rate Pitch (1000h=44100Hz, 0800h=22050Hz, 05CEh=16000Hz)
 006h 2 Unknown (7Fh)
 008h 4 Unknown (1) (1) (8)
 00Ch 4 Unknown (42008Fh) (1FC0001Fh) (40008Fh)
 010h 4 Filesize (xxx0h) (xxx0h)

13.64 CDROM File Archive Croc 2 (DIR, WAD, etc.)

- 442/1136 -

DNE Chunk (End marker):

Additional DEM files (always 1774h bytes) (if any, not all .WAD's have .DEM's):

See also:

http://wiki.xentax.com/index.php/Argonaut_WAD

13.65 CDROM File Archive Headerless Archives

Headerless Archives

Some games use files that contain several files badged together. For example,

To some level one could detect & resolve such cases, eg. TIM contains information about

the data block size(s), if the file is bigger, then there may be further file(s) appended.

Some corner cases may be: Files with odd size may insert alignment padding before next

file. Archives with 800h-byte filesize resolution will have zeropadding (or garbage) if the

real size isn't a mutiple of 800h. Regardless of that two cases, archives may use

zeropadding to 800h-byte or even 10000h-byte boundaries (as workaround one could

skip zeroes until reaching a well-aligned nonzero word or double word (assuming that

most files start with nonzero values; though not always, eg. raw ADPCM or raw bitmaps).

 000h 4 Chunk Name "XSPD" (aka DPSX backwards)
 004h 4 Chunk Size (excluding 8-byte Name+Size)
 008h 4 Flags-and/or-other stuff ? (eg. 00000094h or 0A801094h)
 00Ch 804h Unknown ... SAME as in XSPT chunk !!!
 810h .. Unknown ...

 000h 4 Chunk Name " DNE" (aka END backwards)
 004h 4 Chunk Size (0) (except, in Harry Potter: nonzero)
 Data (usually none such) (except, in Harry Potter: with data!)

 000h 4 Number of entries (N) (always 2EEh, aka 750 decimal)
 004h N*8 Whatever entries... maybe data for demonstration mode?

 PSX Resident Evil 2, COMMON\DATA*.DIE contains TIM+VAB badged together
 PSX Resident Evil 2, COMMON\DATA*.ITP contains 1000h-byte aligned TIMs
 Blaster Master, DATA\MENU**.PRT contains three smaller TIMs badged together
 Blaster Master, DATA\MENU**.BG contains three bigger TIMs badged together
 Misadventures of Tron Bonne, KATWA*.BIN contains headerless archives (with TIMs and
audio)
 Headerless BSS files contain several BS files with huge padding inbetween

13.65 CDROM File Archive Headerless Archives

- 443/1136 -

http://wiki.xentax.com/index.php/Argonaut_WAD

13.66 CDROM File Compression

Compressed Bitmaps

Compressed Audio

Compressed Files

CDROM File Compression LZSS (Moto Racer 1 and 2)

CDROM File Compression LZSS (Dino Crisis 1 and 2)

CDROM File Compression LZSS (Serial Experiments Lain)

CDROM File Compression ZOO/LZSS

CDROM File Compression Ulz/ULZ (Namco)

CDROM File Compression SLZ/01Z (chunk-based compressed archive)

CDROM File Compression LZ5 and LZ5-variants

CDROM File Compression PCK (Destruction Derby Raw)

CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

CDROM File Compression GT20 and PreGT20

CDROM File Compression HornedLZ

CDROM File Compression LZS (Gundam Battle Assault 2)

CDROM File Compression BZZ

CDROM File Compression RESOURCE (Star Wars Rebel Assault 2)

CDROM File Compression TIM-RLE4/RLE8

CDROM File Compression RLE_16

CDROM File Compression PIM/PRS (Legend of Mana)

CDROM File Compression BPE (Byte Pair Encoding)

CDROM File Compression RNC (Rob Northen Compression)

CDROM File Compression Darkworks

 .BS used by several games (and also in most .STR videos)
 .GIF used by Lightspan Online Connection CD
 .JPG used by Lightspan Online Connection CD
 .BMP with RLE4 used by Lightspan Online Connection CD (MONOFONT, PROPFONT)
 .BMP with RLE8+Delta also used by Online Connection CD (PROPFONT\ARIA6.BMP)
 .PCX with RLE used by Jampack Vol. 1 (MDK\CD.HED*.pcx)
 .PCX with RLE used by Hot Wheels Extreme Racing (MagDemo52: US_01293\MISC*)
 .PCX with RLE used by Metal Gear Solid (slightly corrupted PCX files)

 .XA uses XA-ADPCM (and also used in .STR videos)
 .VAG .VB .VAB uses SPU-ADPCM

13.66 CDROM File Compression

- 444/1136 -

CDROM File Compression Blues

CDROM File Compression Z (Running Wild)

CDROM File Compression ZAL (Z-Axis)

CDROM File Compression EA Methods

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

CDROM File Compression UPX

CDROM File Compression LZMA

CDROM File Compression FLAC audio

Some other archvies that aren't used by any PSX games, but, anyways...

CDROM File Compression ARJ

CDROM File Compression ARC

CDROM File Compression RAR

CDROM File Compression ZOO

CDROM File Compression nCompress.Z

CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

Compressed Archives

Some Archives have "built-in" compression.

CDROM File Archive WAD (Doom)

CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)

13.67 CDROM File Compression LZSS (Moto Racer 1 and 2)

Moto Racer 1 ("LZSS" with len+2) (MagDemo03: MRDEMO\IMG*.TIM)

Moto Racer 2 ("LZSS" with len+3) (MagDemo16: MR2DEMO\IMG*.TIM and .TPK)

This LZSS variant is unusually using 6bit len and 10bit disp. And, there are two versions:

Moto Racer 1 uses len+2, and Moto Racer 1 uses len+3. There is no version information

in the header, one workaround is to decompress the whole file with len+2, and, if the

resulting size is too small, retry with len+3. Observe that the attempt with len+2 may

 000h 4 ID "LZSS"
 004h 4 Decompressed Size
 008h .. Compressed Data

13.67 CDROM File Compression LZSS (Moto Racer 1 and 2)

- 445/1136 -

cause page faults (eg. if the sum of len values is smaller than disp; so allocate some extra

space at begin of compression buffer, or do error checks),

13.68 CDROM File Compression LZSS (Dino Crisis 1 and 2)

Dino Crisis 1 and 2 (PSX\DATA*.DAT and *.DBS and *.TEX, File type 7,8)

Dino Crisis LZSS Decompression for files with type 7 and 8:

The compressed file & archive header don't contain any info on the decompressed size

(except, for compressed bitmaps, the archive header does contain width/height entries,

nethertheless the decompressed file is usually BIGGER then width*height*2 (it can

contain padding, plus 8 bytes).

 @@collect_more:
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=1 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=([src]+[src+1]*100h) AND 3FFh, len=([src+1]/4)+2_or_3, src=src+2
 if disp=0 then goto @@decompress_done
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 @@collect_more:
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=1 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=[src]+[src+1]*100h AND FFFh, len=[src+1]/10h+2, src=src+2
 if disp=0 then error
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 if src<src_end then goto @@decompress_lop
 ret

13.68 CDROM File Compression LZSS (Dino Crisis 1 and 2)

- 446/1136 -

13.69 CDROM File Compression LZSS (Serial Experiments Lain)

Serial Experiments Lain is using LZSS compression for TIMs (in SITEA.BIN, SITEN.BIN),

and for Transparency Masks (in LAPKS.BIN).

Serial Experiments Lain (7MB SITEA.BIN on Disc 1, 5MB SITEB.BIN on Disc 2)

These are huge 5-7 Mbyte files with hundreds of chunks. Each chunk contains one

compressed TIM.

Unknown how the game is accessing chunks (there is no chunk size info, so one would

need read the whole file (or at least first 4-byte of each 800h-byte sector) for finding

chunks with ID="napk").

Serial Experiments Lain (LAPKS.BIN on Disc 1 and 2)

This a huge 14Mbyte file with 59 chunks. Each chunk contains one or more 24bpp .BS

images with black background (the images in each chunk are forming a short animation

sequence; width/height may vary because all images are cropped to rectangles

containing non-black pixels).

 Each chunk is having this format:
 000h 4 Chunk ID "napk"
 004h 4 Decompressed size
 008h .. LZSS compressed TIM data
 Zeropadding to 800h-byte boundary

 Each chunk is having this format:
 000h 4 Chunk ID "lapk"
 004h 4 Chunk size (excluding 8-byte chunk header, excluding zeropadding)
 008h 4 Number of Files in this Chunk (N)
 00Ch N*0Ch File List
 File Data (bitmaps in .BS v0 format with uncommon headers)
 Zeropadding to 800h-byte boundary
 File List entries:
 000h 4 Offset in bytes (zerobased, from begin of File Data area)
 004h 2 Bitmap Width/2 + some 3bit value in LSBs?
 006h 2 Bitmap Height
 00Ch 4 Zero
 File Data (bitmaps in .BS v0 format with uncommon headers):
 000h 2 Bitmap Width
 002h 2 Bitmap Height
 004h 2 Quant for Y1,Y2,Y3,Y4
 006h 2 Quant for Cr,Cb
 008h 4 Size of compressed BS Bitstream plus 4 ;Transparency at [008h]+0Ch
 00Ch 2 Size/2 of MDEC data (after huffman decompression, without padding)

13.69 CDROM File Compression LZSS (Serial Experiments Lain)

- 447/1136 -

BUG: The chunksize at C3A800h is set to 4C614h but should be 4D164h (the next chunk

starts at C88000h).

Unknown how the game is accessing chunks (crawling all chunks would be exceptionally

slow due to CDROM seek times, and won't work with the BUGGED chunksize).

Decompression function

This LZSS variant is unusually using 8bit len and 8bit disp.

13.70 CDROM File Compression ZOO/LZSS

Jarret & LaBonte Stock Car Racing (MagDemo38: WTC*.ZOO)

Note: The file format & compression method is unrelated to ZOO archives (to distinguish

between the formats: ZOO archives have [0014h]=FDC4A7DCh, the ZOO/LZSS files have

 00Eh 2 BS Version (0) (actually MSBs of above Size, but it's always 0)
 010h .. BS Bitstream with DC and AC values (Huffman compressed MDEC data)
 ... 4 Transparency Mask Decompressed Size (Width*Height*2/8) (=2bpp)
 Transparency Mask LZSS-compressed data

 dst_end=dst+[src], src=src+4 ;decompressed size
 @@collect_more:
 flagbits=([src] SHL 24)+800000h, src=src+1 ;8bit flags
 @@decompress_lop:
 if dst=dst_end then goto @@decompress_done
 flagbits=flagbits SHL 1 ;32bit shift with carry-out/zeroflag
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=[src]+1, len=[src+1]+3, src=src+2
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 0000h 4 Decompressed Size ;\1st sector
 0004h 7FCh Garbage ;/
 0800h 4 Decompressed Size (same as above) ;\2nd sector
 0804h 7FCh LZSS compressed data, part 1 ;/
 1000h 800h LZSS compressed data, part 2 ;-3rd sector
 1800h 800h LZSS compressed data, part 3 ;-4th sector
 etc.

13.70 CDROM File Compression ZOO/LZSS

- 448/1136 -

[0014h]=Garbage).

The decompressed WTC*.ZOO files can contain large TIMs, or chunk-based archives

(where each chunk can contain one or more small TIMs), or other stuff.

Decompression function

13.71 CDROM File Compression Ulz/ULZ (Namco)

Ulz/ULZ uses fairly normal LZSS compression, unusually with variable Len/Disp ratio,

three separate data streams (flg/lz/dta), and rather weird end check in version=0.

Ulz Format (Ace Combat 3 Electrosphere, Namco)

Ulz Format (Klonoa, MagDemo08: KLONOA\FILE.IDX*)

 decompress_file:
 if LittleEndian32bit[src+14h]=FDC4A7DCh then goto error ;refuse ZOO archives
 if LittleEndian32bit[src]<>LittleEndian32bit[src+800h] then goto error
 curr=src+800h
 src=curr+4
 @@sector_lop:
 call decompress_sector
 curr=curr+800h
 src=curr
 if src<src_end then goto @@sector_lop
 ret
 ;---
 decompress_sector:
 @@collect_more:
 flagbits=([src] SHL 24)+800000h, src=src+1 ;8bit flags
 @@decompress_lop:
 flagbits=flagbits SHL 1 ;32bit shift with carry-out/zeroflag
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=[src]*100h+[src+1], src=src+2
 if disp=FFFFh then goto @@decompress_done
 len=(disp/800h)+3, disp=(disp AND 7FFh)+1
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

13.71 CDROM File Compression Ulz/ULZ (Namco)

- 449/1136 -

Most files use version=2 (eg. US:ACE.BPH\0006h\000Fh contains DOT1 with TIMs).

Some files use version=0 (eg. US:ACE.BPH\0048h\\ contains TIMs).

ULZ Format (Time Crisis, Namco)

Most files use version=2 (eg. EUR: AD*\TIM*.FHT*)

Some files use version=0 (eg. EUR: AD4\TIM0_0.FHT\0018h, 0019h)

Ulz/ULZ Decompression Function

 000h 4 ID ("Ulz",1Ah) (parts lowercase)
 004h 3 Decompressed Size in bytes
 007h 1 Version (0 or 2)
 008h 3 Offset to Uncompressed data <-- reportedly can be 0 in version=0?
 00Bh 1 Number of Disp bits (DispBits=N, LenBits=16-N) (usually 0Ah..0Dh)
 00Ch 4 Offset to Compressed data
 010h .. Compression Flags (32bit entries)
 Uncompressed data (8bit entries)
 Zeropadding to 4-byte boundary
 Compressed data (16bit entries)

 000h 4 ID ("ULZ",1Ah) (all uppercase)
 004h 2 Zero
 006h 1 Version (0 or 2)
 007h 1 Number of Disp bits (DispBits=N, LenBits=16-N) (usually 0Ah..0Dh)
 008h 4 Offset to Uncompressed data
 00Ch 4 Offset to Compressed data
 010h 4 Decompressed Size in bytes
 014h .. Compression Flags (32bit entries)
 Uncompressed data (8bit entries)
 Zeropadding to 4-byte boundary
 Compressed data (16bit entries)

 if [src+00h]="Ulz",1Ah then
 version = Byte[src+07h]
 disp_bits = Byte[src+0Bh]
 dst_end = LittleEndian24bit[src+04h] + dst
 src_dta = LittleEndian24bit[src+08h] + src
 src_lz = LittleEndian32bit[src+0Ch] + src
 src_flg = src + 10h
 add_len = 3
 flg_1st = 31 ;process flag bit31 first
 if [src+00h]="ULZ",1Ah then
 version = Byte[src+06h]
 disp_bits = Byte[src+07h]
 src_dta = LittleEndian32bit[src+08h] + src
 src_lz = LittleEndian32bit[src+0Ch] + src
 dst_end = LittleEndian32bit[src+10h] + dst
 src_flg = src + 14h

13.71 CDROM File Compression Ulz/ULZ (Namco)

- 450/1136 -

Note: Version=2 has 32 flags per 32bit. Version=0 has 31 flags and 1 stop bit per 32bit,

plus 32 null bits at end of data (which is all rather wasteful, there's no good reason to use

version=0).

13.72 CDROM File Compression SLZ/01Z (chunk-based

compressed archive)

SLZ/01Z files are Chunk-based archives with one or more compressed chunk(s).

Used by Hot Shots Golf 2 (retail: DATA\F0000.BIN\, MagDemo31/42:

HSG2\MINGOL2.BIN\)

SLZ/01Z chunk headers

The archive consists of Chunk(s) in following format:

 add_len = 2
 flg_1st = 0 ;process flag bit0 first
 collected = 80000000h ;initially empty, plus stop bit
 @@decompress_lop:
 if version=2 AND dst=dst_end then goto @@decompress_done
 flag = collected AND 80000000h
 collected=collected*2
 if collected=0
 collected = LittleEndian32bit[src_flg], src_flg=src_flg+4
 if flg_1st=0 then ReverseBitOrder(collected) ;or make custom/faster code
 flag = collected AND 80000000h
 if version=0 AND collected=0 then goto @@decompress_done
 if version=0 then collected=collected*2 ;<-- has implied stop bit
 if version=2 then collected=collected*2 + 1 ;<-- shift-in stop bit
 if flag=0 ;compressed
 disp = LittleEndian16bit[src_lz], src_lz=src_lz+2
 len = (disp SHR disp_bits) + add_len
 disp = (disp AND ((1 shl disp_bits)-1)) + 1
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 else ;uncompressed
 [dst]=[src_dta], dst=dst+1, src_dta=src_dta+1
 goto @@decompress_lop
 @@decompress_done:
 ret

 000h 3 ID (either "01Z" or "SLZ", both are used)
 003h 1 Method (00h=Uncompressed, 01h=LZSS, 02h=LZSS+FILL)
 004h 4 Compressed size (SIZ) (same as decompressed when Method=0)
 008h 4 Decompressed size
 00Ch 4 Distance to next chunk, if any (SIZ+10h+Align4, or 0=None)
 010h SIZ Compressed data

13.72 CDROM File Compression SLZ/01Z (chunk-based compressed archive)

- 451/1136 -

SLZ/01Z decompression function:

13.73 CDROM File Compression LZ5 and LZ5-variants

Original LArc LZ5 (method "-lz5-")

LZ5 was used by LArc compression tool from 1988/1989, decompression is also

supported by LHarc/LHA. LZ5 is basically LZSS compression, but with some oddities:

LArc was discontinued in 1989, but LZ5-variants have been kept used on PSX and

Nintendo DSi; those variants are just using the raw compression, without LArc archive

headers.

 method=byre[src+3]
 len=word[src+8]
 src=src+10h
 if method=0 then
 for i=1 to len, [dst]=[src], dst=dst+1, src=src+1, next i
 goto @@decompress_done
 dst_end = dst+len
 @@collect_more:
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 if method=2 AND dst=dst_end then goto @@decompress_done
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=1 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 disp=([src]+[src+1]*100h) AND 0FFFh, len=([src+1]/10h)+3, src=src+2
 if method=1 AND disp=0 then goto @@decompress_done
 if method=2 AND len=12h then ;special fill mode...
 len=disp/100h+3, val=disp AND FFh ;len=3..12h
 if len=3 then len=val+13h, val=[src], src=src+1 ;len=13h..112h
 for i=1 to len, [dst]=val, dst=dst+1, next i ;len=4..112h
 else
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 LZ5 is often implemented with a ringbuf (instead of actual sliding window)
 LZ5 uses absolute ringbuf indices (instead of relative sliding dest indices)
 LZ5 requires the ringbuf to be initially prefilled with constants
 LZ5 ringbuf is 1000h bytes tall and starts with write index FEEh

13.73 CDROM File Compression LZ5 and LZ5-variants

- 452/1136 -

DSi Dr. Mario (DSiware, Nintendo/Arika, 2008-2009)

PSX Final Fantasy VII (FF7)

ALZ1 compression is used in various folders (ENEMY*, STAGE*, STARTUP, MAGIC, FIELD,

MINI, MOVIE, WORLD) with various filename extensions

(.LZS .BSX .DAT .MIM .TIZ .PRE .BSZ .TXZ).

Detection can be more or less reliably done by checking [000h]=Filesize-4, one could also

check the filename extensions, although .DAT doesn't qualify as unique extension.

The file doesn't contain any info on the decompressed size, so one cannot know the

decompression buffer size without first decompressing the file.

Note: For whatever reason, the game does also have one GZIP compressed file

(BATTLE\TITLE.BIN).

PSX Final Fantasy VIII (FF8)

About same as FF7, but detection is less reliable because there are no filenames or

extensions, and the file header is somewhat randomly set to [000h]=(Filesize-4)+0..7,

unknown why, maybe it's allocating dummy bytes to last some compression flags.

ALZ1 is used in four Root files (0001h,0002h,0017h,001Ah), and in many Field files, and

maybe in further files elsewhere.

PSX Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\383h*)

 INFO.DAT
 encrypted directory with filename, offset and compressed/uncompressed size
 GAME.DAT
 000h 4 ID "ALZ1"
 004h ... ALZ1 Compressed data (with size as defined in INFO.DAT)
 ... 4 ID "ALZ1"
 ALZ1 Compressed data (with size as defined in INFO.DAT)
 ...

 000h 4 Compressed Size ;=Filesize-4
 004h .. ALZ1 Compressed data (Filesize-4 bytes)

 000h 4 Compressed Size+0..7 ;=(Filesize-4)+0..7
 004h .. ALZ1 Compressed data (Filesize-4 bytes)

 000h 8 ID "00zLATAD" (aka DATALz00 backwards) ;\PreHeader
 008h 4 Total Filesize excluding PreHeader+Padding (SIZ+0Ch) ;/

13.73 CDROM File Compression LZ5 and LZ5-variants

- 453/1136 -

Ninja (MagDemo13: NINJA\LOADPICS\.PAK and NINJA\VRW\FOREST.VRW\)

Observe that Ninja is using the same ID="VRAM-WAD" for .PAK files and .VRW archives

(if [008h]=Filesize-Padding-10h then it's a compressed .PAK file, otherwise it's a .VRW

archive; whereas, those .VRW archives do themselves contain several .PAK files).

PSX Power Spike (MagDemo43: POWER\GAME.IDX*.BIZ)

BIZ compression is used in BIZ archives (which are nested in IDX/HUG archive). The

compressed & decompressed size is stored in the BIZ archive.

Note: Power Spike 20h-filled initial BIZ ringbuf is required for sky pixels in:

PSX Army Men Air Attack 2 (MagDemo40: AMAA2\.PCK\.PAK)

SCRATCH compression is used in PAK archives (which are nested in PCK archive). The

compressed & decompressed size is stored in the PAK archive.

Note: The decompressor uses half of the 1Kbyte Scratchpad RAM at 1F800000h as

ringbuf (hence the name and unusual small 200h-byte ringbuf size).

Alice in Cyberland (ALICE.PAC*.FA2)

The decompressor is at 80093A3Ch (but the code isn't permanently in memory), and it's

by far one of the worst decompression functions in compilerland.

Decompression

 00Ch 4 Unknown (always 1000h) ;\
 010h 4 Compressed data size (SIZ) ; Header
 014h 4 Decompressed data size ;/
 018h SIZ zLATAD Compressed data ;-Data
 Padding to 4-byte boundary ;-Padding

 000h 8 ID "VRAM-WAD"
 008h 4 Compressed size (Filesize-Padding-10h)
 00Ch 4 Decompressed size (18000h, 28000h, 40000h bytes)
 010h .. VRAMWAD Compressed data (192x256, 320x256, 512x256 halfwords)
 ... (..) Padding to 4-byte boundary (if any, in files in .VRW archives)

 MagDemo43: POWER\GAME.IDX\PERSOS\PSX\CUSTOM\\TEXTURE\NFIELD.BIZ\LPORJ.PSI

 000h .. FA2 Compressed .FA archive

13.73 CDROM File Compression LZ5 and LZ5-variants

- 454/1136 -

Initial Ringbuf Content

 DEFAULT = ALZ1 or BIZ or LZ5
 if DEFAULT then wr=0FEEh, mask=FFFh ;\
 if VRAMWAD then wr=0FEEh, mask=FFFh ; initial ringbuf write index
 if zLATAD then wr=0000h, mask=FFFh ; and ringbuf mask (size-1)
 if SCRATCH then wr=01BEh, mask=1FFh ;
 if FA2 then wr=00EFh, mask=0FFh ;/
 if FA2 then len2=0
 initialize_ringbuf_content (see below)
 numbits=0
 @@decompress_lop:
 if dst>=dst.end then goto @@decompress_done
 if numbits=0
 flagbits=[src], numbits=8, src=src+1 ;8bit flags
 numbits=numbits-1
 if VRAMWAD or FA2 then flagbits SHL 1, else flagbits=flagbits SHR 1
 if carry=1 then
 dta=[src], [dst]=dta, ringbuf[wr AND mask]=dta
 dst=dst+1, wr=wr+1, src=src+1
 else
 if DEFAULT then rd=[src]+([src+1]/10h)*100h), len=([src+1] AND 0Fh)+3
 if zLATAD then rd=[src]+([src+1] AND 0Fh)*100h), len=([src+1]/10h)+3
 if SCRATCH then rd=[src]+([src+1]/80h)*100h), len=([src+1] AND 7Fh)+3
 if VRAMWAD then rd=[src+1]+([src]/10h)*100h), len=([src] AND 0Fh)+3
 if FA2 then rd=[src], len=len2, len2=0, src=src+1
 if FA2 and len=0 then len=[src]/10h+2, len2=([src] AND 0Fh)+2, src=src+1
 if FA2=0 then src=src+2
 for i=1 to len ;read ringbuf[rd] (instead of relative [dst-rd])
 dta=ringbuf[rd AND mask], [dst]=dta, ringbuf[wr AND mask]=dta
 dst=dst+1, wr=wr+1, rd=rd+1
 next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 if ALZ1 or zLATAD then
 ringbuf[000h..FFFh]=(00h) ;zeroes
 if VRAMWAD then
 ringbuf[000h..FEDh]=(00h) ;zeroes
 ringbuf[FEEh..FFFh]=(uninitialized) ;uninitialized, don't use
 if BIZ then
 ringbuf[000h..FEDh]=(20h) ;ascii space
 ringbuf[FEEh..FFFh]=(uninitialized) ;uninitialized, don't use
 if SCRATCH then
 ringbuf[000h..1BFh]=(00h) ;zeroes
 ringbuf[1C0h..1FFh]=(uninitialized) ;uninitialized, don't use
 if FA2 then
 ringbuf[000h..0FFh]=(00h) ;zeroes
 if LZ5 then
 ringbuf[000h..CFFh]=(000h..CFFh)/0Dh ;increasing, repeated 0Dh times each

13.73 CDROM File Compression LZ5 and LZ5-variants

- 455/1136 -

Note: The last 12h bytes in LZ5 are 00h in LArc v3.33 (though unknown if that's intended

and stable), LHarc source code did accidentally set them to 20h (which is reportedly fixed

in later LHA versions).

13.74 CDROM File Compression PCK (Destruction Derby Raw)

Destruction Derby Raw (MagDemo35: DDRAW*.PCK,EXE,DAT)

The compression is used in some ISO files, which can be detected as:

The compression is also used in nested PTH+DAT archives (where the whole DAT is

compressed), which can be detected by checking if the sum of the PTH filesizes exceeds

the DAT filesize.

Self-decompressing GUI code in PSX BIOS for SCPH-7000 and up

The PSX BIOS seems to use the same LZSS format for the self-decompressing GUI code

(with GUI/decompression starting at 80030000h).

Decompression function

 ringbuf[D00h..DFFh]=(00h..FFh) ;increasing
 ringbuf[E00h..EFFh]=(FFh..00h) ;decreasing
 ringbuf[F00h..F7Fh]=(00h) ;zeroes
 ringbuf[F80h..FEDh]=(20h) ;ascii space
 ringbuf[FEEh..FFFh]=(should be 00h) ;see note, better don't use

 000h 3 Decompressed size (24bit, little-endian)
 003h 1 Unused (0)
 004h ... LZSS compressed data, starting with 30bit+2bit flags

 [03h]=00h, [04h]=00h, [08h]="PS-X EXE" ;DDRAW*.EXE
 [03h]=00h, [04h] AND FCh=00h, [08h]="BC",04h,40h,0,0 ;DDRAW\LDPICS*.PCK

 dst_end=dst+LittleEndian24bit[src], src=src+4
 @@collect_more:
 flagbits=BigEndian32bit([src]), src=src+4
 dispbits=14-(flagbits AND 03h), flagbits=(flagbits OR 3)-1
 dispmask=(1 SHL dispbits)-1
 @@decompress_lop:
 flagbits=flagbits SHL 1 ;32bit shift with carry-out/zeroflag
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1

13.74 CDROM File Compression PCK (Destruction Derby Raw)

- 456/1136 -

13.75 CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

BS iki Video

IKI is a rather uncommon variant of the .STR video format (used by Gran Turismo 1 and

2, Legend of Legaia, Legend of Dragoon, Omega Boost, Um Jammer Lammy).

IKI videos have a custom .BS header, including some GT-ZIP compressed data:

The number of blocks is NumBlocks=(Width+15)/16*(height+15)/16*6. The size of the

decompressed GT-ZIP data is NumBlocks*2.

Gran Turismo 1 (MagDemo10: GT*.DAT) - headerless

Gran Turismo 1 (MagDemo15: GT*.DAT) - headerless

This is used for compressing files inside of GT-ARC archives (or in one case, for

compressing the whole GT-ARC archive). The GT-ARC directory contains additional

compression info, see GT-ARC description for details.

The file GT\GAMEFONT.DAT is also GT-ZIP compressed, but lacks any ID or info on

decompressed size, and there are at least two GAMEFONT.DAT versions (in MagDemo10

va MagDemo15), both versions are 8000h byte when decompressed, and compressed

data starts with 00,FF,FF,00,00,00,80,00,00,01,17,07.

 else
 disp=BigEndian16bit[src], src=src+2
 len=(disp SHR dispbits)+3
 disp=(disp AND dispmask)+1
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 id dst<dst_end then goto @@decompress_lop
 @@decompress_done:
 ret

 000h 2 MDEC Size/4 (after huffman decompression) (rounded to 80h/4 bytes)
 002h 2 File ID (3800h)
 004h 2 Bitmap Width in pixels ;instead quant
 006h 2 Bitmap Height in pixels ;instead version
 008h 2 Size of GT-ZIP compressed data (plus 2-byte alignment padding)
 00Ah .. GT-ZIP compressed DC/Quant values (plus 2-byte alignment padding)
 Huffman compressed AC data blocks (Cr,Cb,Y1,Y2,Y3,Y4, Cr,Cb,Y1,Y2..)

 000h .. Compressed Data (without header)

13.75 CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

- 457/1136 -

Gran Turismo 2 (MagDemo27: GT2\GT2.VOL\arcade\arc_other.tim*) - with header

This is used for compressing some files in one DOT1 archive (most other files in Gran

Turismo 2 are using GZIP compression; with corrupted/zeropadded GZIP footers).

Decompression function

Notes

Depending on the source, only the compressed or decompressed size may be known:

Gran Turismo 1 has ID "@(#)GT-ZIP" (and "@(#)G.T-ZIPB" whatever that is) stored in

Main RAM (though unknown if/which/any files do have those IDs).

Gran Turismo 2 has ID "@(#)GT-ZIP" in "GT2\GT2.VOL\arcade\arc_other.tim*", apart

from that, it does mainly use GZIP compressed files.

 000h 0Ch ID "@(#)GT-ZIP",0,0
 00Ch 4 Decompressed Size
 010h .. Compressed Data (unknown compressed size due to below padding)
 Zeropadding to 4-byte boundary (when stored in DOT1 archives)

 if [src]="@(#)GT-ZIP",0,0 then dst.end=dst+[src+0Ch], src=src+10h
 @@collect_more:
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 if src>=src.end then goto @@decompress_done ;(when src.end is known)
 if dst>=dst.end then goto @@decompress_done ;(when dst.end is known)
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=0 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 len=[src], src=src+1, disp=[src], src=src+1 ;len, disp
 if disp>=80h then disp=(disp-80h)*100h+[src], src=src+1 ;longer disp
 for i=1 to (len+3), [dst]=[dst-(disp+1)], dst=dst+1, next i
 endif
 goto @@decompress_lop
 @@decompress_done:
 ret

 Source Compressed Size Decompressed Size
 Compressed GAMEFONT.DAT In ISO Filesystem Unknown (n/a)
 Compressed GT-ARC In ISO Filesystem Unknown (n/a)
 Files in GT-ARC In GT-ARC In GT-ARC
 Files with GT-ZIP header Unknown (due to padding) In GT-ZIP
 DC values in IKI videos Unknown (due to padding) From Width*Height

13.75 CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)

- 458/1136 -

13.76 CDROM File Compression GT20 and PreGT20

GT20 Compressed Files

Used by Rollcage (MagDemo19: ROLLCAGE\SPEED.IMG*)

Used by Rollcage Stage II (MagDemo31: ROLLCAGE\SPEED.IDX*)

Used by Sydney 2000 (MagDemo37: OLY2000\DEMO.IDX* and OLY2000\GTO*.GTO)

Reportedly also Chill (PS1) (*.GTO)

Reportedly also Ducati World: Racing Challenge

Reportedly also Martian Gothic: Unification (PS1) (*.GT20)

The Leading Zeropadding can be used to arrange the data to end on a sector boundary

(useful when loading the file in units of whole sectors, and wanting to load it to the end of

the decompression buffer).

 000h 4 ID ("GT20"=Compressed) (or reportedly "NOGT"=Uncompressed)
 004h 4 Size of decompressed data in bytes
 008h 4 Overlap for in-situ decompression (usually 3, or sometimes 7)
 00Ch 4 Size of Leading Zeropadding in bytes (0..7FFh)
 010h .. Leading Zeropadding (0..7FFh bytes)
 Compressed Data

 DecompressGT20:
 src=src+word[src+0Ch]+10h ;skip header and any leading zeropadding
 collected=00000001h ;end-bit
 @@lop:
 if GetBit=0
 [dst]=[src], dst=dst+1, src=src+1 ;uncompressed byte
 else
 if GetBit=0
 disp=byte[src]-100h, src=src+1 ;disp=(-100h..-1)
 len=(GetBit*2)+(GetBit*1)+2 ;len=(2..5)
 else
 tmp=halfword[src], src=src+2
 disp=(tmp/8)-2000h ;disp=(-2000h..-1)
 len=(tmp AND 7)+2 ;len=(2..9)
 if len=2
 tmp=byte[src], src=src+1
 if (tmp AND 80h) then disp=disp-2000h ;disp=(-4000h..-1)
 len=(len AND 7Fh)+2 ;len=(2..81h)
 if len=3 then goto decompression_done
 if len=2 then len=halfword[src], src=src+2 ;len=(0..FFFFh)
 for i=1 to len, [dst]=[dst+disp], dst=dst+1, next i
 goto @@lop
 ;---
 GetBit:
 collected=collected SHR 1

13.76 CDROM File Compression GT20 and PreGT20

- 459/1136 -

Note: Uncompressed files can reportedly contain "NOGT" in the header, however, Rollcage

does have compressed files (with GT20 header), and raw uncompressed files (without any

NOGT header).

https://zenhax.com/viewtopic.php?t=13175 (specs)

See also: http://wiki.xentax.com/index.php/GT20_Archive (blurp)

Pre-GT20 Compressed Files

Used by Bloody Roar 1 (MagDemo06: BL\.DAT\)

Used by Bloody Roar 2 (MagDemo22: ASC,CMN,EFT,LON,SND,ST5,STU\.DAT\)

This is apparently on older version of what was later called GT20. The PreGT20

decompression works as so:

 if zero then collected=(word[src] SHR 1)+80000000h, src=src+4
 return carry (from shift right)

 000h 4 Compression Method (0=None, 2=Compressed, Other=Invalid)
 004h 4 Compressed Size (SIZ) (same as decompressed when method=0)
 008h 4 Decompressed Size
 00Ch SIZ Compressed Data
 Garbagepadding to 4-byte boundary (in 4-byte aligned DAT files)

 DecompressPreGT20:
 src=src+0Ch ;skip header
 collected=80h ;end-bit
 @@lop:
 if GetBit=1
 [dst]=[src], dst=dst+1, src=src+1 ;uncompressed byte
 else
 if GetBit=0
 len=(GetBit*2)+(GetBit*1)+2 ;len=(2..5)
 disp=byte[src]-100h, src=src+1 ;disp=(-100h..-1)
 else
 tmp=bigendian_halfword[src], src=src+2
 disp=(tmp/8)-2000h ;disp=(-2000h..-1)
 len=(tmp AND 7)+2 ;len=(2..9)
 if len=2
 len=byte[src]+1, src=src+1 ;len=(1..100h)
 if len=1 then goto decompression_done
 for i=1 to len, [dst]=[dst+disp], dst=dst+1, next i
 goto @@lop
 ;---
 GetBit:
 collected=collected SHL 1 ;8bit shift
 if zero then collected=(byte[src] SHL 1)+01h, src=src+1
 return carry (from 8bit shift left)

13.76 CDROM File Compression GT20 and PreGT20

- 460/1136 -

https://zenhax.com/viewtopic.php?t=13175
http://wiki.xentax.com/index.php/GT20_Archive

Note: Uncompressed files with Method=0 exist in Bloody Roar 2 (CMN\SEL01.DAT).

Bloody Roar 1 (MagDemo06) has decompressor at 8016DD64h (method 0 and 2).

Bloody Roar 2 (MagDemo22) has decompressor at 8015C8C0h (method 0 and 2).

13.77 CDROM File Compression HornedLZ

Used by Project Horned Owl (*.BIN*) (and within self-decompressing EXE)

HornedLZ Detection

The easiest way to detect HornedLZ files is to check first 4 bytes:

Alternately, one could check the Chunktype (in the parent archive):

DecompressHornedLZ:

 B3 10 00 4F .. Compressed TIM with TIM Type=00h (4bpp without CLUT)
 DB 10 00 3F .. Compressed TIM with TIM Type=08h,09h,etc.

 Type=05h can be uncompressed .TXT or HornedLZ-compressed .TIM
 (check if 2nd data byte is ASCII or 10h)
 Type=0Fh is a DOT1 archive with HornedLZ-compressed .TIMs
 (parse the DOT1 archive and treat its contents as compressed .TIMs)
 Type=10h contains Deflated TIMs
 (a completely different compression method)

 collected=01h ;end-bit
 @@lop:
 if GetBit=1
 [dst]=[src], dst=dst+1, src=src+1 ;uncompressed byte
 else
 if GetBit=1
 tmp=[src], src=src+1
 len=tmp/40h+2, disp=tmp or (-40h) ;len=(2..05h), disp=(-40h..-1)
 else
 tmp=[src]*100h+[src+1], src=src+2
 len=tmp/1000h+2, disp=tmp or (-1000h) ;len=(2..11h), disp=(-1000h..-1)
 if len=2 then
 len=[src]+2, src=src+1 ;len=(2..101h)
 if len=2 then goto decompression_done
 for i=1 to len, [dst]=[dst+disp], dst=dst+1, next i
 goto @@lop
 ;---
 GetBit:
 collected=collected SHR 1

13.77 CDROM File Compression HornedLZ

- 461/1136 -

Note: The end code has all bits zero, except, disp is don't care (it's usually FFFh).

13.78 CDROM File Compression LZS (Gundam Battle Assault 2)

Gundam Battle Assault 2 (DATA\.PAC\, with ID="lzs")

decompress_gundam_lzs:

 if zero then collected=([src] SHR 1)+80h, src=src+1
 return carry (from shift right)

 000h 4 ID ("lzs",00h)
 004h 4 Zerofilled
 008h 4 Fixed (must be 1) (method/version?)
 00Ch 14h Zerofilled
 020h 2 Fixed (must be 3) (method/version?)
 022h 2 Offset to Compressed Data minus 20h (usually 38h-20h)
 024h 4 Decompressed Size
 028h 2 Flagsize (must be 08h, 10h, or 20h) (usually 20h=32bit)
 02Ah 2 Lensize (must be 02h..07h) (usually 05h=5bit)
 02Ch 4 Compressed Size (total filesize, including "lzs" header)
 030h 8 Name? (always "000000",00h,00h)
 038h .. Compressed data (usually at offset 38h)

 dst_end = dst+littleendian32bit[src+24h]
 flg_bits = littleendian16bit[src+28h] ;8,16,32
 len_bits = littleendian16bit[src+2Ah] ;2..7
 len_mask = (1 shl len_bits)-1 ;03h..7Fh
 src=src+littleendian16bit[src+22h]+20h
 collected_bits=0
 @@collect_more:
 for i=0 to flg_bits/8-1 ;read 8bit/16bit/32bit little-endian
 collected_bits=collected_bits+([src] SHL (i*8)), src=src+1
 num_collected=flg_bits
 @@decompress_lop:
 if dst=dst_end then goto @@decompress_done
 if num_collected=0 then goto @@collect_more
 num_collected=num_collected-1
 flagbits=flagbits SHR 1
 if carry=1 then
 [dst]=[src], dst=dst+1, src=src+1
 else
 temp=bigendian16bit[src], src=src+2
 len=(temp AND len_mask)+3
 disp=(temp SHR len_bits), if disp=0 then goto @@decompress_error
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 goto @@decompress_lop

13.78 CDROM File Compression LZS (Gundam Battle Assault 2)

- 462/1136 -

13.79 CDROM File Compression BZZ

Used in .BZZ archives. Note that there are three slightly different .BZZ archive formats

(they are all using the same BZZ compression, only the BZZ archive headers are

different).

Neither the file header nor the archive directory entries do contain any information about

the decompressed size. Best workaround might be to decompress the file twice (without

storing the output in 1st pass, to determine the size of the decompression buffer for 2nd

pass).

BZZ Decompression

The compression is fairly standard LZSS, except that it supports non-linear length

values, and it does support uncommon Len/Disp pairs like 7bitLen/9bitDisp (though

usually, it does use standard 4bitLen/12bitDisp).

 @@decompress_done:
 ret

 Jersey Devil .BZZ (MagDemo10: JD*.BZZ)
 Bugs Bunny: Lost in Time (MagDemo25: BBLIT*.BZZ)
 The Grinch (MagDemo40: GRINCH*.BZZ)

 decompress_bzz:
 method=byte[src], src=src+1 ;method (00h..1Fh) ;usually/always 0Bh)
 shifter = ((method/8) and 3) ;00h..03h ;usually 1
 len_bits = ((method and 7) xor 7) ;07h..00h ;usually 4
 len_mask = (1 shl len_bits)-1 ;7Fh..00h ;usually 0Fh
 threshold=len_mask/2, if threshold>07h then threshold=13h ;usually 07h
 for i=0 to len_mask
 if i>threshold then len_table[i] = ((i-threshold) shl shifter)+threshold+3
 else len_table[i] = i+3 ;method=18h max=(7Fh-13h)*8+13h+3=376h=886 decimal
 next i ;method=0Hh max=(0Fh-07h)*2+07h+3=1Ah=26 decimal
 num_flags=bigendian24bit[src]+1, src=src+3 ;NUM24+1
 @@collect_more:
 if src>=src_end then goto @@decompress_error
 flagbits=[src]+100h, src=src+1 ;8bit flags
 @@decompress_lop:
 flagbits=flagbits SHR 1
 if zero then goto @@collect_more
 if carry=1 then
 if src>=src_end then goto @@decompress_error
 [dst]=[src], dst=dst+1, src=src+1
 else
 if src+1>=src_end then goto @@decompress_error

13.79 CDROM File Compression BZZ

- 463/1136 -

Bug: Files can randomly contain NUM24 or NUM24+1 codes (that seems to be due to a

compressor bug or different compressor versions; the two variants are unfortunately

randomly mixed even within the same game).

And, compressed files are padded to 4-byte boundary (making it impossible to distinguish

between "NUM24+1" and "NUM24+padding").

13.80 CDROM File Compression RESOURCE (Star Wars Rebel

Assault 2)

Star Wars Rebel Assault 2 (RESOURCE.**)

BallBlazer Champions (*.DAT)

 temp=bigendian16bit[src], src=src+2
 len=len_table[temp AND len_mask]
 disp=temp SHR len_bits, if disp=0 then goto @@decompress_error
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 endif
 num_flags=num_flags-1, if num_flags>0 then goto @@decompress_lop
 @@decompress_error:
 ret

 Case 1) source has NUM24+1 codes
 --> decode all NUM24+1 codes (otherwise output will be too small)
 Case 2) source has NUM24 codes (and enough padding for another code)
 --> decode all NUM24+1 codes (for compatibility with case 1)
 --> output will have some constant garbage byte(s) appended
 --> exception: omit last code if it contains invalid disp=0
 Case 3) source has NUM24 codes (and not enough padding for another code)
 --> decode only NUM24 codes (abort if NUM24+1 exceeds src_end)
 --> output should (probably) have correct size
 --> never exceed src_end which would be highly unstable

 decompression function:
 base=src, method=[src], dst_end=dst+BigEndian24bit[src+1], src=src+4
 @@decompress_lop:
 if dst>=dst_end then goto @@decompress_done
 if [src] AND 80h then
 if method=01h then
 len=([src]-80h)/8+3, disp=(BigEndian16bit[src] AND 7FFh)+1, src=src+2
 else ;method=02h
 len=([src]-80h)+4, disp=(BigEndian16bit[src+1])+1, src=src+3
 for i=1 to len, [dst]=[dst-disp], dst=dst+1
 else ;uncompressed
 len=[src]+1, src=src+1
 for i=1 to len, [dst]=[src], src=src+1, dst=dst+1

13.80 CDROM File Compression RESOURCE (Star Wars Rebel Assault 2)

- 464/1136 -

Note: Compression is (normally) used only in Top-level RESOURCE.* and *.DAT archives

(not in Nested archives). The Top-level archives do also contain some uncompressed files

(which contain data that is compressed on its own: SPU-ADPCM audio, or encrypted BS

bitmaps).

Special case for BallBlazer Champions

Normally only Top-level archives contain compression, however, there are also some

Nested archives with compression in BallBlazer Champions:

The Nested archives don't have any compression flag or decompressed size entries (so

there's no good way for detecting compression in nested files).

13.81 CDROM File Compression TIM-RLE4/RLE8

Ape Escape (Sony 1999) (MagDemo22: KIDZ\) has several compressed and

uncompressed TIMs in headerless archives, the archives can contain:

The compression method is indicated by changing a reserved halfword in the TIM header:

The rest of the bytes in TIM header and in CLUT section are same as for normal TIMs. The

Bitmap section is as follows:

 goto @@decompress_lop
 @@decompress_done:
 src=(src+3) AND NOT 3
 if LittleEndian32bit[src]<>crc(base, src-base) then error
 ret

 STD_BBX.DAT\s*t\tp_a* ;\double compression, Top-level is ALSO compressed
 BBX_INTR.DAT\data1\pics* ;/
 BBX_INTR.DAT\Stad\pics* ;\
 BBX_INTR.DAT\Stad\wire* ; Nested archives with compression
 BBX_INTR.DAT\Subtitl* ;
 BBX_INTR.DAT\Subtitl\sub*;/

 Compressed 4bpp RLE4-TIM with uncompressed CLUT ;\only 4bpp can be compressed
 Compressed 4bpp RLE8-TIM with uncompressed CLUT ;/
 Uncompressed 4bpp TIM with uncompressed CLUT ;\only this type/combinations
 Uncompressed 8bpp TIM with uncompressed CLUT ; are allowed if uncompressed
 Uncompressed 16pp TIM without CLUT ;/
 End code 00000000h (plus more zeropadding) ;-end of headerless archive

 hdr[02h]=Method (0000h=Uncompressed, 0001h=RLE4, 0002h=RLE8)

13.81 CDROM File Compression TIM-RLE4/RLE8

- 465/1136 -

Decompressed size must be computed as Width*Height*2. The Section Size entry

contains Section header size, plus compressed size, plus padding to 4-byte boundary.

Method=0001h (RLE4):

Method=0002h (RLE8):

The decompression functions in Ape Escape (MagDemo22: KIDZ\) are found at:

Examples for compressed TIMs are found at:

Being made by Sony, this might be an official (but late) TIM format extension, unknown if

there are any other games using that compression.

13.82 CDROM File Compression RLE_16

Apocalypse (MagDemo16: APOC\CD.HED*.RLE)

Spider-Man (MagDemo31,40: SPIDEY\CD.HED*.RLE)

Spider-Man 2 (MagDemo50: HARNESS\CD.HED*.RLE)

 @@decompress_lop:
 color=[src]/10h, len=([src] AND 0Fh)+1, src=src+1
 for i=1 to len, putpixel(color), next i ;len=1..10h
 if numpixels<Width*Height*4 then goto @@decompress_lop

 @@decompress_lop:
 color1=[src]/10h, color2=[src] AND 0Fh, src=src+1
 if color1=color2
 len=[src]+2, src=src+1
 for i=1 to len, putpixel(color1), next i ;len=2..101h
 else
 putpixel(color1), if numpixels<Width*Height*4 then putpixel(color2)
 for i=1 to len, putpixel(color) ;len=1..10h
 if numpixels<Width*Height*4 then goto @@decompress_lop

 80078760h ape_escape_load_tim_archive
 8007894Ch ape_escape_decompress_with_4bit_lengths
 800789FCh ape_escape_decompress_with_8bit_lengths

 RLE8: Ape Escape, MagDemo22: KIDZ\KKIIDDZZ.HED\DAT\file004h\1stTIM
 RLE4: Ape Escape, MagDemo22: KIDZ\KKIIDDZZ.HED\DAT\file135h\1stTIM
 RLE8: Ape Escape, MagDemo22: KIDZ\KKIIDDZZ.HED\DAT\file139h\1stTIM

13.82 CDROM File Compression RLE_16

- 466/1136 -

This is using simple RLE compression with 16bit len/data units (suitable for 16bpp VRAM

data). The compression ratio ranges from not so bad to very bad.

Decompression

Other RLE16 variants

A similar RLE16 variant is used in Croc 1, and another variant in Croc 2.

CDROM File Archive Croc 1 (DIR, WAD, etc.)

CDROM File Archive Croc 2 (DIR, WAD, etc.)

13.83 CDROM File Compression PIM/PRS (Legend of Mana)

Legend of Mana (.PIM/.PRS)

Compression codes are:

 000h 8 ID "_RLE_16_"
 008h 4 Decompressed Size (usually 3C008h) (33408h=Apocalypse warning.rle)
 00Ch .. RLE Compressed Data (usually a .BMR bitmap)

 src=src+0Ch ;skip ID and size
 @@decompress_lop:
 len=halfword[src], src=src+2
 if len=0000h then goto @@decompress_done ;end-code
 if (len AND 8000h)=0 then
 for i=1 to len, halfword[dst]=halfword[src], dst=dst+2, src=src+2, next i
 else
 fillvalue=halfword[src], src=src+2
 for i=1 to len-8000h, halfword[dst]=fillvalue, dst=dst+2, next i
 goto @@decompress_lop
 @@decompress_done:
 ret

 000h 1 Unknown (always 01h) (maybe File ID or Compression method)
 001h .. Compressed data ;for TIM: usually 00,10, F0,00, 00,0x, F0,00, ...

 nn,data[nn+1] ;nn=00..EF len=nn+1 [dst]=data[1] ;-uncompressed
 F0,xn len=n+3 [dst]=0x ;1x4bit ;\
 F1,nn,xx len=nn+4 [dst]=xx ;1x8bit ;
 F2,nn,yx len=nn+2 [dst]=0x,0y ;2x4bit ; RLE fill
 F3,nn,xx,yy len=nn+2 [dst]=xx,yy ;2x8bit ;
 F4,nn,xx,yy,zz len=nn+2 [dst]=xx,yy,zz ;3x8bit ;/
 F5,nn,xx,data[nn+4] len=nn+4 [dst]=xx,data[1] ;\interleaved
 F6,nn,xx,yy,data[nn+3] len=nn+3 [dst]=xx,yy,data[1] ; fill combo

13.83 CDROM File Compression PIM/PRS (Legend of Mana)

- 467/1136 -

The compression is used for several files in Legend of Mana:

13.84 CDROM File Compression BPE (Byte Pair Encoding)

Byte Pair Encoding (BPE) does replace the most common byte-pairs with bytes that

don't occur in the data. That does work best if there are unused bytes (eg. ASCII text,

or 8bpp bitmaps with less than 256 colors).

Bust A Groove (MagDemo18: BUSTGR_A*.BPE)

Bust-A-Groove 2 (MagDemo37: BUSTAGR2\BUST2.BIN*)

The decompression function in Bust A Groove (MagDemo18) is at 80023860h, the heap is

in 1Kbyte Scratchpad RAM at 1F800208h, so heap size should be max 1F8h bytes

(assuming that the remaining Scratchpad isn't used for something else). The fileheader

lacks info about the decompressed size.

Legend of Dragoon (MagDemo34: LOD\OVL\.OV_ and LOD\SECT\.BIN*)

 F7,nn,xx,yy,zz,data[nn+2] len=nn+2 [dst]=xx,yy,zz,data[1] ;/
 F8,nn,xx len=nn+4 [dst]=xx ;xx=xx+1 ;\
 F9,nn,xx len=nn+4 [dst]=xx ;xx=xx-1 ; fill with
 FA,nn,xx,ss len=nn+5 [dst]=xx ;xx=xx+ss ; signed step
 FB,nn,xx,yy,ss ;ss=signed len=nn+3 [dst]=xx,yy ;yyxx=yyxx+ss ;/
 FC,xx,ny len=n+4 [dst]=[dst-yxx-1] ;\
 FD,xx,nn len=nn+14h [dst]=[dst-xx-1] ; LZ compress
 FE,xn len=n+3 [dst]=[dst-x*8-8] ;/
 FF len=0 end ;-end code

 BIN*.BIN ---> packed misc binary
 MAP*\FDATA.PRS ---> packed resource, whatever
 MAP*\MAP*.PRS ---> packed MPD resource, "SKmapDat"
 WM\WMTIM*.PIM ---> packed TIM image, 384x384x4bpp, bad compression ratio
 WM\WMAP*.PAT ---> packed loaddata
 WM\WMAP*.PIM ---> packed TIM image, 320x256x16bit, with UNCOMPRESSED dupe

 000h 4 ID "BPE_"
 004h 4 Total Filesize of compressed file including header (big-endian)
 Compression block(s)
 Each compression block contains:
 000h .. Dictionary info
 ... 2 Size of compressed data (big-endian)
 Compressed data

13.84 CDROM File Compression BPE (Byte Pair Encoding)

- 468/1136 -

Max nesting appears to be 2Ch, the decompression function allocates a 30h-byte heap on

stack, and fetches source data in 32bit units (occupying 4 heap bytes), the decompressor

does then remove 1 byte from heap, and adds 2 bytes in case of nested codes.

BPE Decompression for Bust-A-Groove and Legend of Dragoon

 000h 4 Decompressed size (little-endian)
 004h 4 ID "BPE",1Ah
 008h .. Compression block(s)
 End code (00000000h) (aka last block with Blocksize=0)
 Each compression block contains:
 000h 4 Size of decompressed block (little-endian) (or 0=End code)
 004h .. Dictionary info
 Compressed data
 Padding to 4-byte boundary

 if [src+0]="BPE_" then type=GROOVE ;\
 if [src+4]="BPE",1Ah then type=DRAGOON ;
 if type=GROOVE then src_end = src+BigEndian32bit[src+4] ; hdr
 if type=DRAGOON then dst_end = dst+LittleEndian32bit[src+0] ;
 src=src+8 ;/
 @@block_lop:
 if type=DRAGOON then ;\blk
 dst_blk_end = dst+LittleEndian32bit[src]+4, src=src+4 ; len
 if dst=dst_blk_end then goto @@decompress_done ;/
 for i=00h to FFh, dict1[i]=i, next i ;\
 i=00h ;
 @@dict_lop: ; dict
 num=[src], src=src+1 ;
 if num>7Fh then i=i+(num-7Fh), num=0, if i=100h then goto @@dict_done ;
 for j=0 to num ;
 a=[src], src=src+1 ;
 if a<>i then b=[src], src=src+1, dict1[i]=a, dict2[i]=a ;
 i=i+1 ;
 if i<100h then goto @@dict_lop ;
 @@dict_done: ;/
 if type=GROOVE then ;\blk
 src_blk_end = src+BigEndian16bit[src]+2, src=src+2 ;/len
 i=0 ;\
 @@data_lop: ;
 if i=0 then ;\ ; data
 if type=GROOVE and src=src_blk_end then goto @@data_done ; get data ;
 if type=DRAGOON and dst=dst_blk_end then goto @@data_done; from src ;
 x=[src], src=src+1 ; or heap ;
 else ; ;
 i=i-1, x=heap[i] ;/ ;
 a=dict1[x] ;-xlat ;
 if a=x then ;\ ;
 [dst]=x, dst=dst+1 ; output data to ;
 else ; dst or heap ;
 b=dict2[x], heap[i]=b, heap[i+1]=a, i=i+2 ;/ ;

13.84 CDROM File Compression BPE (Byte Pair Encoding)

- 469/1136 -

Electronic Arts

Electronic Arts games support several compression methods, including a BPE variant.

That BPE variant is a bit unusual: It does have only one compression block (with a single

dictionary for the whole file), and uses escape codes for rarely used bytes.

CDROM File Compression EA Methods

13.85 CDROM File Compression RNC (Rob Northen

Compression)

Rob Northen compression

Rob Northen compression (RNC) is a LZ/Huffman compression format used by various

games for PC, Amiga, PSX, Mega Drive, Game Boy, SNES and Atari Lynx.

Most RNC compressed files come in a standard 12h-byte header:

The compressed data consists of interleaved bit- and byte-streams, the first 2 bits of the

bit stream are ignored.

RNC Method 1 - with custom Huffman trees

The bit-stream is read in 16bit units (the 1st bit being in bit0 of 1st byte).

 goto @@data_lop ;
 @@data_done: ;/
 if type=GROOVE and src<src_end then goto @@block_lop ;\next
 if type=DRAGOON then src=(src+3) AND not 3, goto @@block_lop ;/blk
 @@decompress_done:
 if type=DRAGOON and dst<>dst_end then error
 ret

 000h 3 Signature ("RNC") (short for Rob Northen Computing compression)
 003h 1 Compression Method (01h or 02h)
 004h 4 Size of Uncompressed Data ;big-endian
 008h 4 Size of Compressed Data (SIZ) ;big-endian
 00Ch 2 CRC16 on Uncompressed Data (with initial value 0000h) ;big-endian
 00Eh 2 CRC16 on Compressed Data (with initial value 0000h) ;big-endian
 010h 1 Leeway (difference between compressed and uncompressed data in
 largest pack chunk, if larger than decompressed data)
 011h 1 Number of pack chunks
 012h SIZ Compressed Data
 ... (..) Zeropadding to 800h-byte boundary-4 ;\as so in PSX Heart of Darkness
 ... (4) Unknown ;/

13.85 CDROM File Compression RNC (Rob Northen Compression)

- 470/1136 -

Unknown how that works exactly (see source code for details), unknown if method 1 was

used on PSX.

RNC Method 2 - with hardcoded Huffman trees

The bit-stream is read in 8bit units (the 1st bit being in bit7).

Dist values:

The purpose of the pack chunks isn't quite clear, it might be related to memory

restrictions on old CPUs. In PSX Heart of Darkness they are chosen so that the

 Each pack chunk contains the following:
 * 3 Huffman trees (one for literal data sizes, one for distance values,
 and one for length values) in the bit stream. These consist of:
 o A 5 bit value for the amount of leaf nodes in the tree
 o 4 bit values for each node representing their bit depth.
 * One 16 bit value in the bitstream for the amount of subchunks in the
 pack chunk.
 * The subchunk data, which contains for each subchunk:
 o A Huffman code value from the first tree in the bit stream for the
 amount of literals in the byte stream.
 o Literals from the byte stream.
 o A Huffman code from the bit stream that represents the distance - 1
 of a distance/length pair.
 o A Huffman code from the bit stream that represents the length - 2
 of a distance/length pair.

 0 + Byte(DATA[1]) Copy 1 Byte from Source
 1000 + Dist + Byte(X) Copy 4 Bytes from Dest-(Dist+X+1)
 10010 + Dist + Byte(X) Copy 6 Bytes from Dest-(Dist+X+1)
 10011 + Dist + Byte(X) Copy 7 Bytes from Dest-(Dist+X+1)
 1010 + Dist + Byte(X) Copy 5 Bytes from Dest-(Dist+X+1)
 10110 + Dist + Byte(X) Copy 8 Bytes from Dest-(Dist+X+1)
 10111 + nnnn + Byte(DATA[12..72]) Copy nnnn*4+12 Bytes from Source
 110 + Byte(X) Copy 2 Bytes from Dest-(X+1)
 1110 + Dist + Byte(X) Copy 3 bytes from Dest-(Dist+X+1)
 1111 + Byte(0) + 0 + zeropadding End of last pack chunk
 1111 + Byte(0) + 1 End of non-last pack chunk
 1111 + Byte(L) + Dist + Byte(X) Copy L+8 Bytes from Dest-(Dist+X+1) ;L>00h

 0 = 0000h 1000 = 0200h
 110 = 0100h 1001 = 0300h
 111000 = 0C00h 101000 = 0800h
 111001 = 0D00h 101001 = 0900h
 11101 = 0600h 10101 = 0400h
 111100 = 0E00h 101100 = 0A00h
 111101 = 0F00h 101101 = 0B00h
 11111 = 0700h 10111 = 0500h

13.85 CDROM File Compression RNC (Rob Northen Compression)

- 471/1136 -

decompressed data is max 3000h bytes per chunk. Unknown if the next chunk may copy

data from previous chunk.

Links

http://aminet.net/package/util/pack/RNC_ProPack - official tool & source code

https://segaretro.org/Rob_Northen_compression - description (contains bugs)

RNC is used in a number of games by UK developers (notably Bullfrog and Traveller's

Tales), including Sonic 3D: Flickies' Island, Blam! Machinehead, Dungeon Keeper 2,

Magic Carpet, Syndicate and Syndicate Wars.

RNC in PSX Games

RNC in Mega Drive games

 Method 2: Demolition Racer (MagDemo27: DR\DD.DAT*.RNC)
 Method 2: Heart of Darkness (IMAGES\US.TIM)
 Method 2: Jonah Lomu Rugby (LOMUDEMO\GFX*.PAK)
 Method 2: NBA Jam: Tournament Edition (*.RNC, headerless .BIN/.GFX archives)
 Method 2: Test Drive 5 (MagDemo13: TD5.DAT*.RNC)
 Method 2: Test Drive Off-Road 3 (MagDemo27: TDOR3\TDOR3.DAT*.rnc)

 3 Ninjas Kick Back
 Addams Family
 Addams Family Values
 The Adventures of Mighty Max
 Asterix and the Great Rescue
 Asterix and the Power of the Gods
 The Incredible Hulk
 The Itchy & Scratchy Game (unreleased)
 Marsupilami
 Mortal Kombat
 Mr. Nutz
 Outlander
 The Pagemaster
 RoboCop 3
 Spirou
 Spot Goes to Hollywood
 Stargate
 Street Racer
 Tinhead
 Tintin in Tibet
 World Championship Soccer II

13.85 CDROM File Compression RNC (Rob Northen Compression)

- 472/1136 -

http://aminet.net/package/util/pack/RNC_ProPack
https://segaretro.org/Rob_Northen_compression

13.86 CDROM File Compression Darkworks

Used by Alone in the Dark The New Nightmare (FAT.BIN\LEVELS*\chunks)

Decompression

The decompressor is designed to hook the sector loading function: It does decompress

incoming sectors during loading, and forwards the decompressed data to the original

sector loading function. The decompressed data is temporarily stored in two small Dict

buffers (which do also serve as compression dictionary).

There are one or more escape codes per sector (one to indicate the of the sector, plus

further escape codes to swap the Dict buffers whenever the current Dict is full).

The original decompressor is doing the forwarding in 800h-byte units, so Dict swapping

 decompress:
 dictsize=1000h, dict0=alloc(dictsize), dict1=alloc(dictsize)
 src=load_next_800h_byte_sector ;load first sector
 dst=dict0 ;temp dest in current dict
 dst_base=dst ;memorize start of newly decompressed data
 @@decompress_lop:
 if [src]=00h then ;\
 esc=[src+1], src=src+1 ;
 forward_to_actual_dest(source=dst_base, len=dst-dst_base) ; escape
 if esc=0 or esc>4 then esc=2 (or warn_invalid_escape_code) ;
 if esc=1 then goto @@decompress_done ;
 if esc=2 or esc=4 then src=load_next_800h_byte_sector ;
 if esc=3 or esc=4 then swap(dict0,dict1), dst=dict0 ;
 dst_base=dst ;/
 elseif ([src] AND 03h)=0 then ;\
 len=[src]/4+2, dat=[src+1], src=src+2 ; fill 8bit
 for i=1 to len, [dst]=dat, dst=dst+1 ;/
 elseif ([src] AND 03h)=1 then ;\
 len=[src]/4+([src+2] AND 40h)+4 ;
 ptr=[src+1]+([src+2] AND 3Fh)*100h ; LZ compressed
 if ptr+len>dictsize then error (exceeds allocated dictsize) ;
 if ([src+2] AND 80h) then ptr=ptr=dict1 else ptr=ptr=dict0 ;
 src=src+3 ;
 for i=1 to len, [dst]=[ptr], ptr=ptr+1, dst=dst+1 ;/
 elseif ([src] AND 03h)=2 then ;\
 len=[src]/4+3, dat0=[src+1], dat1=[src+2], src=src+3 ; fill 16bit
 for i=1 to len, [dst]=dat0, [dst+1]=dat1, dst=dst+2 ;/
 elseif ([src] AND 03h)=3 then ;\
 len=[src]/4+1, src=src+1 ; uncompressed
 for i=1 to len, [dst]=[src], src=src+1, dst=dst+1 ;/
 goto @@decompress_lop
 @@decompress_done:
 dealloc(dict0), dealloc(dict1)
 ret

13.86 CDROM File Compression Darkworks

- 473/1136 -

may be only done when dict0 contains a multiple of 800h bytes (aka dictsize bytes).

For whatever reason, there are only 4Kbyte per Dict allocated (although the 14bit LZ

indices could have addressed up to 16Kbyte per Dict).

13.87 CDROM File Compression Blues

Blue's Clues: Blue's Big Musical (VRAM and FRAM chunks in *.TXD)

Decompression function:

13.88 CDROM File Compression Z (Running Wild)

Running Wild (MagDemo15: RUNWILD\.BIN\.Z and *.z)

 if LittleEndian32bit[src+08h]<>1 then error ;compression flag
 dst_end=dst+LittleEndian32bit[src+14h], src=src+18h, num_collected=0
 @@decompress_lop:
 if GetBit=1 then
 [dst]=[src], src=src+1, dst=dst+1 ;code 1 uncompressed byte
 elseif GetBit=1 then
 len=[src], src=src+1 ;code 01 fill or end code
 if len=00h then goto @@decompress_done
 len=len+1, fillvalue=[dst-1]
 for i=1 to len, [dst]=fillvalue, dst=dst+1
 else
 len=GetBit*2+GetBit
 if len=0 then ;code 0000 long LZ range
 len=[src] AND 0Fh, disp=[src]/10h+[src+1]*10h-1000h, src=src+2
 else ;code 00xx short LZ range
 disp=[src]-100h, src=src+1
 len=len+1
 for i=1 to len, [dst]=[dst+disp], dst=dst+1
 goto @@decompress_lop
 @@decompress_done:
 if dst<>dst_end then error
 ret
 ;---
 GetBit:
 if num_collected=0 then collected=[src], src=src+1, num_collected=8
 collected=collected*2
 return (collected/100h) AND 1

 decompress_z:
 src=src+4 ;skip 32bit decompressed size entry
 @@reload_lop:

13.87 CDROM File Compression Blues

- 474/1136 -

The bitstream is fetched in little endian 16bit units (the first bit is in bit7 of second byte).

PeekBits returns the next some bits without discarding them, SkipBits does discard them,

GetBits does combine PeekBits+SkipBits.

Note: The decompression function in Running Wild (MagDemo15) is at 80029D10h.

 load_table1 ;table for first 9bits
 load_table2 ;table for codes longer than 9bits
 @@decompress_lop:
 sym=get_symbol()
 if sym<100h then [dst]=sym, dst=dst+1, goto @@decompress_lop
 if sym=100h then goto @@escape
 len=sym-0FCh ;change 101h..140h to 05h..44h
 disp=((get_symbol()-101h)*40h) ;change 101h..140h to 00h..3Fh*40h
 disp=((get_symbol()-101h) or disp)+1 ;change 101h..140h to 00h..3Fh+above+1
 copy len bytes from dst-disp to dst
 goto @@decompress_lop
 @@escape:
 if GetBits(1)=0 then goto @@reload_lop
 ret
 ;-----
 load_table1:
 t=0
 @@load_lop:
 x=GetBits(10h)
 if x and 8000h then num=1 else num=(1 shl (9-(x/400h)))
 for i=1 to num, table1[t]=x, t=t+1, next i
 if t<200h then goto @@load_lop
 ret
 ;-----
 load_table2:
 num=GetBits(9)*2 ;can be 0=none, max=3FEh
 if num>0 then for i=0 to num-1, table2[i]=GetBits(9), next i
 ret
 ;-----
 get_symbol:
 ;returns a value in range 0..140h:
 ; 00h..FFh = data 00h..FFh (or unused for disp codes)
 ; 100h = escape (or unused for disp codes)
 ; 101h..140h = length 05h..44h (or 6bit fraction of 12bit disp)
 ; 141h..3FFh = would be possible for short codes, but shouldn't be used
 x=table1[PeekBits(9)]
 if (x and 8000h)=0 then SkipBits(x/400h), return (x and 3FFh) ;-short code
 SkipBits(9) ;skip first 9 bits, and process futher bit(s).. ;\
 x=x-0C000h ;change C000h..C1FFh and up to 000h..1FFh ; long code
 @@lop: ; (with more
 x=table2[x*2+GetBits(1)] ;branch node0/node1 ; than 9bit)
 if x>=141h then x=x-141h, goto @@lop ;
 return x ;/

13.88 CDROM File Compression Z (Running Wild)

- 475/1136 -

13.89 CDROM File Compression ZAL (Z-Axis)

Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS*.ZAL) (Z-Axis)

Dave Mirra Freestyle BMX (MagDemo36: BMX\ASSETS*.ZAL) (Z-Axis)

Dave Mirra Freestyle BMX (MagDemo46: BMX\ASSETS*.ZAL) (Z-Axis)

ZAL compression is used in ZAL archives. The archive header contains compressed and

decompressed size for each file (and a compression flag indicating whether the archive

is compressed at all).

ZAL Decompression

 if src_len=0 then goto @@decompress_done ;empty (without end code)
 lzlen=0, rawlen=0
 if [src]=10h..FFh then ;\special handling
 rawlen=[src]-11h, src=src+1 ; for code=10h..FFh
 if rawlen<=0 then goto @@decompress_error ;/at begin of source
 @@decompress_lop:
 memcopy(dst-disp,dst,lzlen) ;copy compressed bytes
 memcopy(src,dst,rawlen) ;copy uncompressed bytes
 code=[src], src=src+1
 if code=00h..0Fh then
 if rawlen=0 ;when OLD rawlen=0...
 lzlen=0, rawlen=code+3 ;\
 if rawlen=3 then ;
 while [src]=00h, rawlen=rawlen+FFh, src=src+1 ;
 rawlen=rawlen+[src]+0Fh, src=src+1 ;/
 else ;when OLD rawlen>0, and depending on OLD lzlen...
 rawlen=code AND 03h
 disp=code/4+[src]*4, src=src+1
 if lzlen=0 then disp=disp+801h, lzlen=3, else then disp=disp+1h, lzlen=2
 if code=10h..1Fh then
 lzlen=(code AND 07h)+2
 if lzlen=2 then
 while [src]=00h, lzlen=lzlen+FFh, src=src+1
 lzlen=lzlen+[src]+07h, src=src+1
 rawlen=[src] AND 03h, disp=[src]/4+[src+1]*40h+(code/8 AND 1)*4000h+4000h
 src=src+2
 if disp=4000h AND code=11h then goto @@decompress_done ;end code
 if disp=4000h AND code<>11h then goto @@decompress_error
 if code=20h..3Fh then
 lzlen=code-20h+2
 if lzlen=2 then
 while [src]=00h, lzlen=lzlen+FFh, src=src+1
 lzlen=lzlen+[src]+1Fh, src=src+1
 rawlen=[src] AND 03h, disp=[src]/4+[src+1]*40h+1, src=src+2
 if code=40h..FFh then

13.89 CDROM File Compression ZAL (Z-Axis)

- 476/1136 -

13.90 CDROM File Compression EA Methods

Electronic Arts Compression Headers

The files start with a 16bit big-endian Method value, with following bits:

The most common Method values are:

Most or all PSX files have Bit8=0, but anyways, the decompressor does support skipping

extra header entries in files with Bit8=1 (with all methods except RLE).

Most or all PSX files have Bit15=0, games for newer consoles can reportedly have

Method=90FBh (unknown if anything like B2FBh or CAFBh does also exist).

Most or all PSX files have Bit0-7=FBh (supposedly short for Frank Barchard), the 16bit

mode with Bit0-7=31h is supported for Method=4A31h only (the decompressor would

also accept invalid methods like 1031h or 3431h, but doesn't actually support 16bit mode

for those).

Compression Formats

CDROM File Compression EA Methods (LZSS RefPack)

CDROM File Compression EA Methods (Huffman)

 rawlen=code AND 03h
 lzlen=(code/20h)+1
 disp=((code/4) AND 07h)+([src]*8)+1, src=src+1
 goto @@decompress_lop
 @@decompress_done:
 ret

 0-7 ID (usually FBh) (or 31h for Method 4A31h with 16bit sizes)
 8 Extended Header (usually 0) (or 1 for headers with extra entries)
 9-14 Used to distinguish different methods
 15 Extended Size (usually 0 for 24bit sizes) (or 1 for 32bit sizes)

 10FBh = LZSS Compression (RefPack)
 90FBh = LZSS Compression (RefPack, with 32bit size) (not on PSX)
 30FBh = Huffman Compression
 32FBh = Huffman Compression with filter
 34FBh = Huffman Compression with dual filter
 46FBh = BPE Byte-Pair Encoding
 4AFBh = RLE Run-Length Encoding
 4A31h = RLE Run-Length Encoding, with 16bit size
 C0FBh = File Archive (not a compression method)

13.90 CDROM File Compression EA Methods

- 477/1136 -

CDROM File Compression EA Methods (BPE)

CDROM File Compression EA Methods (RLE)

Usage in PSX games

The compression can be used to compress whole files:

Or to compress texture bitmaps inside of .PSH file chunks:

The decompressor supports further methods (like 34FBh, 46FBh, 4AFBh), but there aren't

any files or chunks known to actually use those compression formats.

Note: Some compressed files are slightly larger than uncompressed files (eg. filesizes

for PGA Tour 96, 97, 98 COURSES\\.VIV*.mis are compressed=58h,

uncompressed=50h).

See also

http://wiki.niotso.org/RefPack - LZ method

13.91 CDROM File Compression EA Methods (LZSS RefPack)

RefPack

The compression is some kind of LZSS/LZH variant (similar to Z-Axis .ZAL files). The

compressed data consists of a big-endian bit-stream (or byte-stream, as all codes are

multiples of 8bits). The Compression codes are:

 PGA Tour 96, 97, 98 (*.* and *.VIV*) (with method 10FBh)
 Need for Speed 3 Hot Pursuit (*.Q* with method 10FBh, 30FBh, 32FBh)

 FIFA - Road to World Cup 98 (*.PSH chunk C0h/C1h with method 10FBh)
 Sled Storm (MagDemo24: ART3\LOAD*.PSH chunk C0h/C1h with method 10FBh)
 WCW Mayhem (MagDemo28: WCWDEMO*.BIG*.PSH with chunk C0h/C1h with 10FBh)

 000h 2 Method (10FBh, or 11FBh,90FBh,91FBh) (big-endian)
 ... (3/4) Compressed size (24bit or 32bit) (optional)
 ... 3/4 Uncompressed size (24bit or 32bit) (big-endoan)
 Compressed data

 0ddzzzrrdddddddd rawlen=r(2), lzlen=z(3)+3, disp=d(10)+1
 10zzzzzzrrdddddddddddddd rawlen=r(2), lzlen=z(6)+4, disp=d(14+1

13.91 CDROM File Compression EA Methods (LZSS RefPack)

- 478/1136 -

http://wiki.niotso.org/RefPack

refpack_decompress:

13.92 CDROM File Compression EA Methods (Huffman)

Huffman

 110dzzrrddddddddddddddddzzzzzzzz rawlen=r(2), lzlen=z(10)+5, disp=d(17)+1
 111rrrrr rawlen=r(5)*4+4, lzlen=0
 111111rr rawlen=r(2), lzlen=0, endflag=1

 method=BigEndian16bit[src], src=src+2
 if (method AND 100h)>0 then src=src+3+method/8000h ;compressed size, if any
 if (method AND 8000h]=0 then dst_size=BigEndian24bit[src], src=src+3
 if (method AND 8000h)>0 then dst_size=BigEndian32bit[src], src=src+4
 endflag=0
 @@decompress_lop:
 if ([src] AND 80h)=0 then
 rawlen=[src] AND 03h
 lzlen=([src] AND 1Fh)/4+3
 disp=([src] AND 60h)*8+[src+1]+1
 src=src+2
 elseif ([src] AND 40h)=0 then
 rawlen=[src+1]/40h
 lzlen=[src] AND 3Fh+4
 disp=([src+1] AND 3Fh)*100h+[src+2]+1
 src=src+3
 elseif ([src] AND 20h)=0 then
 rawlen=[src] AND 03h
 lzlen=([src] AND 0Ch)*40h+[src+3]+5
 disp=([src] AND 10h)*1000h+[src+1]*100h+[src+2]+1
 src=src+4
 elseif ([src] AND FCh)=FCh then
 rawlen=[src] AND 03h
 lzlen=0
 src=src+1, endflag=1
 else
 rawlen=([src] AND 1Fh)*4+4
 lzlen=0
 src=src+1
 for i=1 to rawlen, [dst]=[src], src=src+1, dst=dst+1, next i
 for i=1 to lzlen, [dst]=[dst-disp], dst=dst+1, next i
 if endflag=0 then goto @@decompress_lop
 if (dst-dst_base)<>dst_size then error
 ret

 000h 2 Method (30FBh..35FBh) (big-endian)
 ... (3) Extra 3 bytes (only present if Method.bit8=1)
 ... 3 Decompressed Size (big-endian)
 ... 1 Escape code

13.92 CDROM File Compression EA Methods (Huffman)

- 479/1136 -

Huffman

 Number of codes per width
 Data placement for each code
 Compressed Data

 decompress_ea_huffman:
 method=GetBits(16) ;3xFBh ;-get method (30FBh..35FBh)
 if method AND 100h then dummy=GetBits(24) ;-skip extra (if any)
 dst_size=GetBits(24) ;-get uncompressed size
 ESC=GetBits(8) ;-get escape code
 huffwidth=0, huffcode=0, totalnumcodes=0 ;\
 while (huffcode shl (10h-huffwidth))<10000h ;
 num=GetVarLenCode ; get num codes per width
 huffwidth=huffwidth+1 ;
 numcodes_per_width[width]=num ;
 totalnumcodes=totalnumcodes+num ;
 huffcode=(huffcode*2)+num ;/
 for i=0 to FFh, data_defined_flags[i]=00h ;\
 dat=FFh, index=0 ;
 while index<totalnumcodes ;
 n=GetVarLenCode+1 ;- ; get/assign data values
 while n>0 ;search Nth notyet defined entry ;
 dat=(dat+1) AND FFh ;wrap in 8bit range! ;
 if data_defined_flags[dat]=0 then n=n-1 ;
 data_defined_flags[dat]=1 ;
 data_values[index]=dat, index=index+1 ;/
 huffcode=0000h, index=0 ;\
 InitEmptyHuffTree(data_tree) ;
 for width=1 to huffwidth ;
 for i=1 to numcodes_per_width[width] ; create huffman tree
 dat=data_values[index], index=index+1 ;
 CreateHuffCode(data_tree,dat,huffcode,width) ;
 huffcode=huffcode+(1 shl (10h-width) ;/
 @@decompress_lop: ;\
 dat=GetHuffCode(data_tree) ;
 if dat<>ESC ;
 [dst]=dat, dst=dst+1 ; decompress
 else ;
 num=GetVarLenCode ;
 if num=0 then ;
 if GetBits(1)=1 then goto @@decompress_done ;
 [dst]=GetBits(8), dst=dst+1 ;
 else ;
 dat=[dst-1] ;
 for i=0 to num-1, [dst]=dat, dst=dst+1 ;
 goto @@decompress_lop ;/
 @@decompress_done:
 if (dst-dst_base)<>dst_size then error ;-error check
 dst=dst_base, x=00h, y=00h ;\
 if (method AND FEFFh)=32FBh ; optional final
 for i=0 to dst_size-1, x=x+[dst+i], [dst+i]=x ; unfiltering
 if (method AND FEFFh)=34FBh ;

13.92 CDROM File Compression EA Methods (Huffman)

- 480/1136 -

13.93 CDROM File Compression EA Methods (BPE)

Byte-Pair Encoding

decompress_bpe:

 for i=0 to dst_size-1, x=x+[dst+i], y=y+x, [dst+i]=y ;/
 ret
 ;------------------
 GetVarLenCode:
 num=2
 while GetBits(1)=0, num=num+1
 return (GetBits(num)+(1 shl num)-4)
 GetBits(num):
 return "num" bits, fetched from big-endian bitstream
 GetHuffCode(data_tree):
 ...
 InitEmptyHuffTree(data_tree):
 ...
 CreateHuffCode(data_tree,dat,huffcode,width):
 ...
 numcodes_per_width[10h] ;9bit numcodes per width 0..15 (entry[0]=unused)
 data_values[100h] ;8bit data values for up to 100h huffman codes
 data_defined_flags[100h] ;1bit flags for data(00h..FFh)

 000h 2 Method (46FBh or 47FBh) (big-endian)
 ... (5) Extra 5 bytes (only present if Method=47FBh)
 ... 3 Decompressed Size (big-endian)
 ... 1 Escape code
 ... 1 Number of Dict entries (N)
 ... N*3 Dict (each 3 bytes: Index,Dat1,Dat2)
 Compressed Data

 method=BigEndian16bit[src], src=src+2
 if method=47FBh then src=src+5
 dst_size=BigEndian24bit[src], src=src+3
 esc=[src], src=src+1
 num=[src], src=src+1
 for i=0 to FFh, dict1[i]=i ;initially default=self (uncompressed bytes)
 for i=1 to num, j=[src], dict1[j]=[src+1], dict2[j]=[src+2], src=src+3
 @@decompress_lop:
 x=[src], src=src+1
 if x=dict1[x] then
 if x=esc then x=[src], src=src+1, if x=00h then goto @@decompress_done
 [dst]=x, dst=dst+1
 else
 heap[0]=x, i=1
 while i>0
 i=i-1, x=heap[i], a=dict1[x]

13.93 CDROM File Compression EA Methods (BPE)

- 481/1136 -

13.94 CDROM File Compression EA Methods (RLE)

Run-Length Encoding

Compression codes are:

decompress_bpe:

 if a=x then [dst]=x, dst=dst+1 ;\output data to
 else b=dict2[x], heap[i]=b, heap[i+1]=a, i=i+2 ;/dst or heap
 goto @@decompress_lop
 @@decompress_done:
 if (dst-dst_base)<>dst_size then error
 ret

 000h 2 Method (4AFBh=24bit or 4A31h=16bit) (big-endian)
 ... 2/3 Decompressed Size (24bit or 16bit) (big-endian)
 Compressed Data

 00h..3Fh Copy 0..3Fh uncompressed bytes
 40h..7Fh Load new fillbyte and fill 0..3Fh bytes
 80h..BFh Use old fillbyte and fill 0..3Fh bytes (initial fillbyte=00h)
 C0h..FFh Copy 0..3Fh bytes with constant value in upper 4bit

 method=BigEndian16bit[src], src=src+2
 if (method AND 00FFh)=31h then dst_size=BigEndian16bit[src], src=src+2
 if (method AND 00FFh)<>31h then dst_size=BigEndian24bit[src], src=src+3
 fillbyte=00h ;initially zero
 @@decompress_lop:
 type=[src]/40h, len=[src] AND 3Fh, src=src+1, dst_size=dst_size-len
 if type=0 then ;\uncompressed bytes
 for i=1 to len, [dst]=[src], src=src+1, dst=dst+1 ;/
 elseif type=1 then ;\
 fillbyte=[src], src=src+1 ; fill with new dat
 for i=1 to len, [dst]=fillbyte, dst=dst+1 ;/
 elseif type=2 then ;\fill with old dat
 for i=1 to len, [dst]=fillbyte, dst=dst+1 ;/
 elseif type=3 then
 x=[src], [dst]=x, src=src+1, dst=dst+1, x=x AND F0h
 for i=2 to len ;<-- or so?
 if (i AND 1)=0 then [dst]=x+([src]/10h) dst=dst+1
 if (i AND 1)=1 then [dst]=x+([src] AND 0Fh), dst=dst+1, src=src+1
 if dst_size<>0 then goto @@decompress_lop
 ret

13.94 CDROM File Compression EA Methods (RLE)

- 482/1136 -

13.95 CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

Inflate/Deflate is a common (de-)compression algorithm, used by ZIP, ZLIB, and GZIP.

Inflate - Core Functions

Inflate - Initialization & Tree Creation

Inflate - Headers and Checksums

PSX Disk Images

In PSX cdrom-images, ZLIB is used by the .CDZ cdrom-image format:

CDROM Disk Image/Containers CDZ

In PSX cdrom-images, Inflate is used by .PBP and .CHD cdrom-image formats:

CDROM Disk Images PBP (Sony)

CDROM Disk Images CHD (MAME)

PSX Games

In PSX games, ZLIB is used by:

In PSX games, GZIP is used by:

In PSX games, Inflate (with slightly customized block headers) is used by:

In PSX games, Inflate (with ignored block type, dynamic tree only) is used by:

 Twisted Metal 4 (MagDemo30: TM4DATA*.MR* and *.IMG*)
 Kula Quest / Kula World / Roll Away (*.PAK) (*.PAK*)
 (and probably more games... particulary files starting with "x")

 Final Fantasy VII (FF7) (BATTLE\TITLE.BIN)
 Gran Turismo 2 (MagDemo27: GT2*) (with corrupted/zeropadded GZIP footers)
 Mat Hoffman's Pro BMX (old demo) (MagDemo39: BMX\BMXCD.HED\TITLE_H.ZLB)

 Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\FE.WAD+STR)

 Project Horned Owl (COMDATA.BIN, DEMODATA.BIN, ROLL.BIN, ST*DATA.BIN)

13.95 CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

- 483/1136 -

13.96 Inflate - Core Functions

tinf_uncompress(dst,src)

tinf_inflate_uncompressed_block()

tinf_inflate_compressed_block()

tinf_decode_symbol(tree)

 tinf_init() ;init constants (needed to be done only once)
 tinf_align_src_to_byte_boundary()
 repeat
 bfinal=tinf_getbit() ;read final block flag (1 bit)
 btype=tinf_read_bits(2) ;read block type (2 bits)
 if btype=0 then tinf_inflate_uncompressed_block()
 if btype=1 then tinf_build_fixed_trees(), tinf_inflate_compressed_block()
 if btype=2 then tinf_decode_dynamic_trees(), tinf_inflate_compressed_block()
 if btype=3 then ERROR ;reserved
 until bfinal=1
 tinf_align_src_to_byte_boundary()
 ret

 tinf_align_src_to_byte_boundary()
 len=LittleEndian16bit[src+0] ;get len
 if LittleEndian16bit[src+2]<>(len XOR FFFFh) then ERROR ;verify inverse len
 src=src+4 ;skip len values
 for i=0 to len-1, [dst]=[src], dst=dst+1, src=src+1, next i ;copy block
 ret

 repeat
 sym1=tinf_decode_symbol(tinf_len_tree)
 if sym1<256
 [dst]=sym1, dst=dst+1
 if sym1>256
 len = tinf_read_bits(length_bits[sym1-257])+length_base[sym1-257]
 sym2 = tinf_decode_symbol(tinf_dist_tree)
 dist = tinf_read_bits(dist_bits[sym2])+dist_base[sym2]
 for i=0 to len-1, [dst]=[dst-dist], dst=dst+1, next i
 until sym1=256
 ret

 sum=0, cur=0, len=0
 repeat ;get more bits while code value is above sum
 cur=cur*2 + tinf_getbit()
 len=len+1
 sum=sum+tree.table[len]

13.96 Inflate - Core Functions

- 484/1136 -

tinf_read_bits(num) ;get N bits from source stream

tinf_getbit() ;get one bit from source stream

tinf_align_src_to_byte_boundary()

13.97 Inflate - Initialization & Tree Creation

tinf_init()

tinf_build_bits_base(bits,base,delta,base_val)

tinf_build_fixed_trees()

 cur=cur-tree.table[len]
 until cur<0
 return tree.trans[sum+cur]

 val=0
 for i=0 to num-1, val=val+(tinf_getbit() shl i), next i
 return val

 bit=tag AND 01h, tag=tag/2
 if tag=00h then tag=[src], src=src+1, bit=tag AND 01h, tag=tag/2+80h
 return bit

 tag=01h ;empty/end-bit (discard any bits, align src to byte-boundary)
 ret

 tinf_build_bits_base(length_bits, length_base, 4, 3)
 length_bits[28]=0, length_base[28]=258
 tinf_build_bits_base(dist_bits, dist_base, 2, 1)
 ret

 for i=0 to 29
 bits[i]=min(0,i-delta)/delta
 base[i]=base_val
 base_val=base_val+(1 shl bits[i])
 ret

 for i=0 to 6, tinf_len_tree.table[i]=0, next i ;[0..6]=0 ;len tree...
 tinf_len_tree.table[7,8,9]=24,152,112 ;[7..9]=24,152,112

13.97 Inflate - Initialization & Tree Creation

- 485/1136 -

tinf_decode_dynamic_trees()

tinf_build_tree(tree, first, num)

tinf_data

 for i=0 to 23, tinf_len_tree.trans[i+0] =i+256, next i ;[0..23] =256..279
 for i=0 to 143, tinf_len_tree.trans[i+24] =i+0, next i ;[24..167] =0..143
 for i=0 to 7, tinf_len_tree.trans[i+168]=i+280, next i ;[168..175]=280..287
 for i=0 to 111, tinf_len_tree.trans[i+176]=i+144, next i ;[176..287]=144..255
 for i=0 to 4, tinf_dist_tree.table[i]=0, next i ;[0..4]=0,0,0,0,0 ;\dist
 tinf_dist_tree.table[5]=32 ;[5]=32 ; tree
 for i=0 to 31, tinf_dist_tree.trans[i]=i, next i ;[0..31]=0..31 ;/
 ret

 hlit = tinf_read_bits(5)+257 ;get 5 bits HLIT (257-286)
 hdist = tinf_read_bits(5)+1 ;get 5 bits HDIST (1-32)
 hclen = tinf_read_bits(4)+4 ;get 4 bits HCLEN (4-19)
 for i=0 to 18, lengths[i]=0, next i
 for i=0 to hclen-1 ;read lengths for code length alphabet
 lengths[clcidx[i]]=tinf_read_bits(3) ;get 3 bits code length (0-7)
 tinf_build_tree(code_tree, lengths, 19) ;build code length tree
 for num=0 to hlit+hdist-1 ;decode code lengths for dynamic trees
 sym = tinf_decode_symbol(code_tree)
 len=1, val=sym ;default (for sym=0..15)
 if sym=16 then len=tinf_read_bits(2)+3, val=lengths[num-1] ;3..6 previous
 if sym=17 then len=tinf_read_bits(3)+3, val=0 ;3..10 zeroes
 if sym=18 then len=tinf_read_bits(7)+11, val=0 ;11..138 zeroes
 for i=1 to len, lengths[num]=val, num=num+1, next i
 tinf_build_tree(tinf_len_tree, 0, hlit) ;\build trees
 tinf_build_tree(tinf_dist_tree, 0+hlit, hdist) ;/
 ret

 for i=0 to 15, tree.table[i]=0, next i ;clear code length count table
 ;scan symbol lengths, and sum code length counts...
 for i=0 to num-1, x=lengths[i+first], tree.table[x]=tree.table[x]+1, next i
 tree.table[0]=0
 sum=0 ;compute offset table for distribution sort
 for i=0 to 15, offs[i]=sum, sum=sum+tree.table[i], next i
 for i=0 to num-1 ;create code to symbol xlat table (symbols sorted by code)
 x=lengths[i+first], if x<>0 then tree.trans[offs[x]]=i, offs[x]=offs[x]+1
 next i
 ret

 clcidx[0..18] = 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 ;constants

13.97 Inflate - Initialization & Tree Creation

- 486/1136 -

13.98 Inflate - Headers and Checksums

tinf_gzip_uncompress(dst, destLen, src, sourceLen)

tinf_zlib_uncompress(dst, destLen, src, sourceLen)

 typedef struct TINF_TREE:
 unsigned short table[16] ;table of code length counts
 unsigned short trans[288] ;code to symbol translation table

 TINF_TREE tinf_len_tree ;length/symbol tree
 TINF_TREE tinf_dist_tree ;distance tree
 TINF_TREE code_tree ;temporary tree (for generating the dynamic trees)
 unsigned char lengths[288+32] ;temporary 288+32 x 8bit ;\for dynamic tree
 unsigned short offs[16] ;temporary 16 x 16bit ;/creation

 unsigned char length_bits[30]
 unsigned short length_base[30]
 unsigned char dist_bits[30]
 unsigned short dist_base[30]

 src_start=src, dst_start=dst ;memorize start addresses
 if (src[0]<>1fh or src[1]<>8Bh) then ERROR ;check id bytes
 if (src[2]<>08h) then ERROR ;check method is deflate
 flg=src[3] ;get flag byte
 if (flg AND 0E0h) then ERROR ;verify reserved bits
 src=src+10 ;skip base header
 if (flg AND 04h) then src=src+2+LittleEndian16bit[src] ;skip extra data
 if (flg AND 08h) then repeat, src=src+1, until [src-1]=00h ;skip file name
 if (flg AND 10h) then repeat, src=src+1, until [src-1]=00h ;skip file comment
 hcrc=(tinf_crc32(src_start, src-src_start) & 0000ffffh)) ;calc header crc
 if (flg AND 02h) then x=LittleEndian16bit[src], src=src+2 ;get header crc
 if (flg AND 02h) then if x<>hcrc then ERROR ;verify header
 tinf_uncompress(dst, destLen, src, src_start+sourceLen-src-8) ;----> inflate
 crc32=LittleEndian32bit[src], src=src+4 ;get crc32 of decompressed data
 dlen=LittleEndian32bit[src], src=src+4 ;get decompressed length
 if (dlen<>destLen) then ERROR ;verify dest len
 if (crc32<>tinf_crc32(dst_start,dlen)) then ERROR ;verify crc32
 ret

 src_start=src, dst_start=dst ;memorize start addresses
 hdr=BigEndian16bit[src], src=src+2 ;get header
 if (hdr MOD 31)<>0 then ERROR ;check header checksum (modulo)
 if (hdr AND 20h)>0 then ERROR ;check there is no preset dictionary
 if (hdr AND 0F00h)<>0800h then ERROR ;check method is deflate
 if (had AND 0F000h)>7000h then ERROR ;check window size is valid

13.98 Inflate - Headers and Checksums

- 487/1136 -

tinf_adler32(src, length)

13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

LHA (formerly LHarc) is an old DOS compression tool with backwards compatibility for

LArc. LHA appears to have been particulary popular in Japan, and in the Amiga scene.

LHA archives are used by at least one PSX game:

And, there are various PSX games with compression based on LArc's method lz5:

CDROM File Compression LZ5 and LZ5-variants

Overall File Format

Default archive filename extension is .LZH for LHarc/LHA (lh*-methods), or .LZS for

LArc (lz*-methods).

Archives can contain multiple files, and are usually terminated by a 00h-byte:

There is no central directory, one must crawl all headers to create a list of files in the

archive.

Caution: There is a hacky test file (larc333\initial.lzs) with missing end byte (it does just

end at filesize).

 tinf_uncompress(dst, destLen, src, sourceLen-6) ;------> inflate
 chk=BigEndian32bit[src], src=src+4 ;get data checksum
 if src-src_start<>sourceLen then ERROR ;verify src len
 if dst-dst_start<>destLen then ERROR ;verify dst len
 if a32<>tinf_adler32(dst_start,destLen)) then ERROR ;verify data checksum
 ret

 s1=1, s2=0
 while (length>0)
 k=max(length,5552) ;max length for avoiding 32bit overflow before mod
 for i=0 to k-1, s1=s1+[src], s2=s2+s1, src=src+1, next i
 s1=s1 mod 65521, s2=s2 mod 65521, length=length-k
 return (s2*10000h+s1)

 PSX Championship Surfer (MagDemo43: HWX*.DAT) ;method lh5

 LHA Header+Data for 1st file
 LHA Header+Data for 2nd file
 End Marker (00h)

13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

- 488/1136 -

LHA Header v2 Headersize=xx00h would conflict with End Byte (as workaround, insert a

Nullbyte between Ext.Headers and Data to change Headersize to xx01h.

LHA Header v0 (with [14h]=00h)

Note: Reportedly, old LArc files don't have CRC16 (unknown if that is true, the ONLY

known version is LArc v3.33, which DOES have CRC16, if older versions didn't have that

CRC then they did perhaps behave as if E=(-2)?).

LHA Header v1 (with [14h]=01h)

 00h 1 Header Size (Method up to including Extended Area) (=16h+F+E)
 01h 1 Header Checksum, sum of bytes at [02h+(0..15h+F+E)]
 02h 5 Compression Method (eg. "-lh0-"=Uncompressed)
 07h 4 Compressed Size
 0Bh 4 Uncompressed Size
 0Fh 2 Last modified time (in MS-DOS format)
 11h 2 Last modified date (in MS-DOS format)
 13h 1 MS-DOS File attribute (usually 20h)
 14h 1 Header level (must be 00h for v0)
 15h 1 Path\Filename Length
 16h (F) Path\Filename (eg. "PATH\FILENAME.EXT")
 '\' may apper in the 2nd byte of Shift_JIS, processing
 of Shift_JIS is indispensable when you need full
 implementation of reading Pathname.
 16h+F 2 CRC16 (with initial value 0000h) on uncompressed file
 18h+F (E) Extended area (used by UNIX in v0)
 18h+F+E .. Compressed data

 00h 1 Header Size (Method up to including 1st Ext Size) (=19h+F+E)
 01h 1 Base Header Checksum, sum of bytes at [02h+(0..18h+F+E)]
 02h 5 Compression Method (eg. "-lh0-"=Uncompressed)
 07h 4 Skip size (size of all Extended Headers plus Uncompressed Size)
 0Bh 4 Uncompressed Size
 0Fh 2 Last modified time (in MS-DOS format)
 11h 2 Last modified date (in MS-DOS format)
 13h 1 Reserved (must be 20h) (but is 02h on Amiga)
 14h 1 Header level (must be 01h for v1)
 15h 1 Length of Filename (or 00h when name is in Extended Header)
 16h (F) Filename (eg. "FILENAME.EXT; path (if any) is in Extended Header)
 16h+F 2 CRC16 (with initial value 0000h) on uncompressed file
 18h+F 1 Compression Tool OS ID (eg. "M"=MSDOS)
 19h+F (E) Extended area (unused in v1, use Ext Headers instead)
 19h+F+E 2 Size of 1st Extended Header (0000h=None)
 1Bh+F+E .. Extended Header(s) (optional stuff)
 Compressed data

13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

- 489/1136 -

LHA Header v2 (with [14h]=02h)

LHA Header v3 (with [14h]=03h)

Kinda non-standard (supported only in late japanese LHA beta versions): Allows Header

and Ext.Headers to exceed 64Kbyte, which is rather useless.

Compression Methods

 00h 2 Header Size (whole Header including all Extended Headers)
 02h 5 Compression Method (eg. "-lh0-"=Uncompressed)
 07h 4 Compressed Size
 0Bh 4 Uncompressed Size
 0Fh 4 Last modified date and time (seconds since 1st Jan 1970 UTC)
 13h 1 Reserved (must be 20h) (but is 02h on Amiga)
 14h 1 Header level (must be 02h for v2)
 15h 2 CRC16 (with initial value 0000h) on uncompressed file
 17h 1 Compression Tool OS ID (eg. "M"=MSDOS)
 18h 2 Size of first Extended Header (0000h=None)
 1Ah .. Extended Header(s) (filename and optional stuff)
 ... 0/1 Nullbyte (End-Marker conflict: change Headersize xx00h to xx01h)
 Compressed data

 00h 2 Word size for 32bit Header entries (always 4=32bit)
 02h 5 Compression Method (eg. "-lh0-"=Uncompressed)
 07h 4 Compressed Size
 0Bh 4 Uncompressed Size
 0Fh 4 Last modified date and time (seconds since 1st Jan 1970 UTC)
 13h 1 Reserved (must be 20h)
 14h 1 Header level (must be 03h for v3)
 15h 2 CRC16 (with initial value 0000h) on uncompressed file
 17h 1 Compression Tool OS ID (eg. "M"=MSDOS)
 18h 4 Header Size (whole Header including all Extended Headers)
 1Ch 4 Size of first Extended Header (00000000h=None)
 20h .. Extended Header(s) (filename and optional stuff)
 Compressed data

 Method Len Window
 -lz4- - - - LArc Uncompressed File
 -lh0- - - - LHA Uncompressed File
 -lhd- - - - LHA Uncompressed Directory name entry
 -lzs- 2..17 2Kbyte LArc LZSS-Compressed (rare, very-very old) ;-15bit
 -lz5- 3..17 4Kbyte LArc LZSS-Compressed (LArc srandard) ;-16bit
 -lh1- 3..60 4Kbyte LHA LZHUF-Compressed (old LHA standard)
 -lh2- 3..256 8Kbyte LHA Obscure test (used in self-extractor)
 -lh3- 3..256 8Kbyte LHA Obscure test (experimental)
 -lh4- 3..256 4Kbyte LHA AR002-Compressed (rare, for small RAM) ;\4bit
 -lh5- 3..256 8Kbyte LHA AR002-Compressed (new LHA standard) ;/
 -lh6- 3..256 32Kbyte LHA AR002-Compressed (rare) ;\

13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

- 490/1136 -

Apart from above methods, there are various other custom hacks/extensions.

Extended Headers

Extension Type values:

Note: There appears to be no MAC specific format (instead, the LHA MAC version is

including a MacBinary header in the compressed files).

See also

The site below has useful links with info about headers (see LHA Notes), source code,

and test archives:

http://fileformats.archiveteam.org/wiki/LHA

 -lh7- 3..256 64Kbyte LHA AR002-Compressed (rare) ; 5bit
 -lh8- 3..256 64Kbyte LHA AR002-Compressed (accidently same as lh7) ;
 -lh9- 3..256 128Kbyte LHA AR002-Compressed (unimplemented proposal) ;
 -lha- 3..256 256Kbyte LHA AR002-Compressed (unimplemented proposal) ;
 -lhb- 3..256 512Kbyte LHA AR002-Compressed (unimplemented proposal) ;
 -lhc- 3..256 1Mbyte LHA AR002-Compressed (unimplemented proposal) ;
 -lhe- 3..256 2Mbyte LHA AR002-Compressed (unimplemented proposal) ;
 -lhx- 3..256 512Kbyte LHA AR002-Compressed (rare) ;/

 00h 1 Extension Type (00h..FFh, eg. 01h=Filename)
 01h .. Extension Data
 ... 2/4 Size of next Extended Header (0=None) (v1/v2=16bit, v3=32bit)

 00h CRC16 on whole Header with InitialValue=0000h and InitialCrcEntry=0000h
 01h Filename
 02h Directory name (with FFh instead of "\", and usually with trailing FFh)
 3Fh Comment (unspecified format/purpose)
 40h MS-DOS File attribute of MS-DOS format
 41h Windows FILETIME for last access, creation, and modification
 42h Filesize (uncompressed and compressed size, when exceeding 32bit)
 50h Unix Permission
 51h Unix User ID and Group ID
 52h Unix Group name
 53h Unix User name (owner)
 54h Unix Last modified time in time_t format
 7Dh Capsule offs/size (if the OS adds extra header/footer to the filebody)
 7Eh OS/2 Extended attribute
 7Fh Level 3 Attribute in Unix form and MS-DOS form
 FFh Level 3 Attribute in Unix form

13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)

- 491/1136 -

http://fileformats.archiveteam.org/wiki/LHA

13.100 CDROM File Compression UPX

UPX Compression (used in AmiDog's GTE test)

UPX is a tool for creating self-decompressing executables. It's most commonly used for

DOS/Windows EXE files, but it does also support consoles like PSX. The PSX support was

added in UPX version 1.90 beta (11 Nov 2002).

13.101 CDROM File Compression LZMA

LZMA is combining LZ+Huffman+Probabilities. The LZ+Huffman bitstream is rather

simple (using hardcoded huffman trees), the high compression ratio is reached by

predicting probabilities for the bitstream values (that is, the final compressed data is

smaller than the bitstream).

LZMA Bitstreams

Apart from the bitstream, one must know several parameters (which may be hardcoded,

or stored in custom file headers in front of the bitstream):

.lzma files (LZMA_Alone format from LZMA SDK)

 000h 88h Standard PS-X EXE header
 088h 20h Unknown
 0A8h 4 ASCII ID "UPX!"
 0ACh 1Eh Unknown
 0CAh 9Ah ASCII "$info: This file is ..."
 164h 69Ch Zerofilled
 800h .. Leading zeropadding (to make below end on 800h-byte boundary)
 Decompression stub
 Compressed data (ending on 800h-byte boundary)

 000h 1 Ignored byte (usually 00h, unknown purpose)
 001h .. Bitstream with actual compression codes
 EOS end code (end of stream) (optional)
 Ignored byte (present in case of Normalization after last code)
 Padding to byte-boundary

 Three decompression parameters: lc, lp, pb
 Decompressed size (required if the bitstream has no EOS end code)
 Dictionary size (don't care when decompressing the whole file to memory)
 Presence/Absence of EOS end code

13.100 CDROM File Compression UPX

- 492/1136 -

The files are often starting with 5Dh,00h,00h. However, there's no real File ID, and there's

no CRC, the format is rather unsuitable for file sharing.

The end of the bitstream is indicated by EOS end code, or by Decompressed Size entry

(or both).

.lz files (LZIP)

LZIP files can contain one or more "LZIP Members" plus optional extra data:

Whereas, a normal .lz file contains only one "Member", without extra data.

Each of the "LZIP Member(s)" is having following format:

The dictionary size should be 1000h..20000000h bytes, computed as so:

The LZIP format doesn't really allow to determine the uncompressed size before

decompression (one must either decompress the whole file to detect the size, or one

could try to find the Footer at end of file; which requires weird heuristics because the LZIP

manual is explicitely stating that it's valid to append extra data after the Footer).

http://www.nongnu.org/lzip/manual/lzip_manual.html#File-format

.chd (MAME compressed CDROM and HDD images)

The CHD format has its own headers and supports several compression methods

including LZMA. Leaving apart the CHD specific headers, the raw LZMA bitstreams are

 000h 1 Parameters (((pb*5)+lp)*9)+lc (usually 5Dh) ;\
 001h 4 Dictionary Size in bytes (usually 10000h) ; Header
 005h 8 Decompressed Size in bytes (or -1=Unknown) ;/
 00Dh 1 LZMA ignored 1st byte of bitstream (00h) ;\LZMA
 00Eh .. LZMA bitstream (with optional EOS end code) ;/

 000h .. LZIP Member(s)
 Optional extra data (if any) (eg. zeropadding or some SHA checksum)

 000h 5 ID and version ("LZIP",01h) ;\LZIP Header
 005h 1 Dictionary size (5bit+3bit code, see below) ;/
 006h .. LZMA bitstream (with lc=3, lp=0, pb=2) (with EOS end code)
 ... 4 CRC32 on uncompressed data ;\
 ... 8 Size of uncompressed data ; LZIP Footer
 ... 8 Size of compressed data (including header+footer) ;/

 temp = 1 SHL (hdr[005h] AND 1Fh)
 dict_size = temp - (temp/10h)*(hdr[005h]/20h)

13.101 CDROM File Compression LZMA

- 493/1136 -

http://www.nongnu.org/lzip/manual/lzip_manual.html#File-format

stored as so:

.xz files (XZ Utils)

This is a slightly overcomplicated format with LZMA2 compression and optional filters.

CDROM File Compression XZ

.7z files (7-Zip archives)

The 7z format defines many compression methods. The ones normally used are LZMA2

(default for 7-Zip 9.30 alpha +), LZMA (default for 7-Zip prior to 9.30 alpha), PPMd, and

bzip2.

http://fileformats.archiveteam.org/wiki/7z

LZMA2 (used in .7z and .xz files)

LZMA2 is a container format with LZMA chunks. The LZMA function is slightly

customized: It can optionally skip some LZMA initialization steps (and thereby re-use

the dictionary/state from previous chunks). The chunks are:

LZMA status gets reset depending on the Chunk ID:

 000h .. LZMA bitstream (with lc=3, lp=0, pb=2) (without EOS end code)

 000h 6 ID ("7z",BCh,AFh,27h,1Ch)

 ChunkID=00h - Last chunk:
 000h 1 Chunk ID (00h=End)
 ChunkID=01h..02h - Uncompressed chunks:
 000h 1 Chunk ID (01h=Uncompressed+ResetDictionary, 02h=Uncompressed)
 001h 2 Uncompressed Data Size-1 (big-endian)
 003h .. Uncompressed Data (to be copied to destination and dictionary)
 Note: The uncompressed data is stored in LZMA dictionary, and
 the last uncompressed byte is updating the LZMA prevbyte.
 ChunkID=03h..7Fh - Invalid chunks:
 000h 1 Chunk ID (03h..7Fh=Invalid)
 ChunkID=80h..FFh - LZMA-compressed chunks:
 000h 1 Chunk ID (80h/A0h/C0h/E0h + Upper5bit(UncompressedSize-1))
 001h 2 LSBs(UncompressedSize-1) (big-endian)
 003h 2 CompressedSize-1 (big-endian)
 005h (1) Parameters (((pb*5)+lp)*9)+lc (only present if ChunkID=C0h..FFh)
 LZMA bitstream (without EOS end code)

13.101 CDROM File Compression LZMA

- 494/1136 -

http://fileformats.archiveteam.org/wiki/7z

Note: dict/prev reset means that previous byte is assumed to be 00h (and old dictionary

content isn't used, somewhat allowing random access or multicore decompression).

Apart from the chunks, LZMA2 does usually contain a Dictionary Size byte:

LZMA Source code

Compact LZMA decompression ASM code can be found here:

https://github.com/ilyakurdyukov/micro-lzmadec

Above code is for self-decompressing executables (for plain LZMA, ignore the stuff about

EXE/ELF headers). The two "static" versions are size-optimized (they contain weird and

poorly commented programming tricks, and do require additional initialization code from

"test_static.c"). For normal purposes, it's probably better to port the 64bit fast version

to 32bit (instead of dealing with the trickery in the 32bit static version).

13.102 CDROM File Compression XZ

Overall Structure of .xz File

Note: To determine the total uncompressed size, one must process the file backwards,

starting at footer of last stream.

 ChunkID dict/prev lc/lp/pb state dist[0-3] probabilities code/range
 01h reset - - - - -
 02h - - - - - -
 80h+n - - - - - reset
 A0h+n - - reset reset reset reset
 C0h+n - reset reset reset reset reset
 E0h+nn reset reset reset reset reset reset
 (Note: Those resets occur before processing the chunk data)

 Dictionary Size byte (00h..28h = 4K,6K,8K,12K,16K,24K,..,2G,3G,4G)
 Which can be decoded as so:
 if (param AND 1)=0 then dict_size=1000h shl (param/2)
 if (param AND 1)=1 then dict_size=1800h shl (param/2)
 if param=28h then dict_size=FFFFFFFFh ;4GB-1
 if param>28h then error
 In .xz files, that byte is stored alongsides with the Filter ID.

 000h .. Stream(s)

13.102 CDROM File Compression XZ

- 495/1136 -

https://github.com/ilyakurdyukov/micro-lzmadec

Stream

Index List

Compressed Block

 000h 6 Header ID (FDh,"7zXZ",00h) (FDh,37h,7Ah,58h,5Ah,00h) ;\
 006h 2 Checksum Type (0000h, 0100h, 0400h or 0A00h) ; Header
 008h 4 Header CRC32 on above 2 bytes ;/
 00Ch .. Compressed Block(s) ;-Block(s)
 Index List ;-Index
 ... 4 Footer CRC32 on below 6 bytes ;\
 ... 4 Index List Size/4-1 ; Footer
 ... 2 Checksum Type (must be same as in Header) ;
 ... 2 Footer ID ("YZ") (59h,5Ah) ;/
 Optional Zeropadding (multiple of 4 bytes) ;-Padding
 Checksum Type (for Block checksums):
 0000h=None
 0100h=CRC32 (little-endian)
 0400h=CRC64 (little-endian)
 0A00h=SHA256 (big-endian)
 Other=Reserved

 000h 1 Index Indicator (00h) (as opposed to 01h..FFh in Block Headers)
 001h VL Number of Records (must be same as number of Blocks in Stream)
 Index Record(s)
 Zeropadding to 4-byte boundary
 ... 4 CRC32 on above bytes
 Index Record:
 000h VL Unpadded Block Size (BlockHeader + CompressedData + 0 + Checksum)
 ... VL Uncompressed Block Size

 000h 1 Block Header Size/4-1 (01h..FFh = 8..400h bytes) ;\
 001h 1 Block Flags ;
 002h (VL) Compressed Size ;present if Flags.bit6 = 1 ; Header
 ... (VL) Uncompressed Size ;present if Flags.bit7 = 1 ;
 Filter Info 0 (LAST filter when DECOMPRESSING) ;
 ... (..) Filter Info 1 ;present if Flags.bit0-1 = 1,2,3 ;
 ... (..) Filter Info 2 ;present if Flags.bit0-1 = 2,3 ;
 ... (..) Filter Info 3 ;present if Flags.bit0-1 = 3 ;
 Zeropadding to 4-byte boundary ;
 ... (..) Optional Zeropadding (multiple of 4 bytes) ;
 ... 4 CRC32 on above bytes ;/
 Compressed Data ;-Data
 Zeropadding to 4-byte boundary ;-Pad
 ... (..) Checksum on uncompressed Data (None/CRC32/CRC64/SHA256) ;-Check
 Block Flags:
 0-1 Number of filters-1 (0..3 = 1..4 filters)
 2-5 Reserved (0)
 6 Compressed Size field is present (0=No, 1=Present)

13.102 CDROM File Compression XZ

- 496/1136 -

Note: The first decompression filter must be LZMA2, which reads from compressed data

stream, and writes to decompressed data (and also implies the size of compressed/

decompressed data). The other filters (if any) are unfiltering the decompressed data.

Filter 21h: LZMA2 Compression Method

This "filter" is the actual compression method (XZ supports only one method).

It can be combined with BCJ/Delta filters (whereas, LZMA2 must be always used as

LAST compression filter, aka FIRST decompression filter).

Filter 03h: Delta Filter

The filter parameter is 1 byte tall:

Filter 04h-09h: Executable Branch/Call/Jump (BCJ) Filters

These filters can replace relative jump addresses by absolute values.

 7 Uncompressed Size field is present (0=No, 1=Present)
 Filter Info:
 000h VL Filter ID
 ... VL Size of Filter Properties
 Filter Properties
 Filter IDs:
 03h Delta Filter (with 1 byte param)
 04h..09h Executable Filters (with 0 or 4 byte param)
 21h LZMA2 Compression (with 1 byte param)
 300h..4FFh Reserved to ease .7z compatibility
 20000h..7FFFFh Reserved to ease .7z compatibility
 2000000h..7FFFFFFh Reserved to ease .7z compatibility
 xxxxxxxxxxxxxxxxh Custom Registered IDs (obtained from Lasse Collin)
 3Frrrrrrrrrriiiih Custom Random IDs (40bit random+16bit filterno)
 4000000000000000h and up Reserved for internal use (don't use in xz files)

 The filter parameter is 1 byte tall:
 Dictionary Size byte (00h..28h = 4K,6K,8K,12K,16K,24K,..,2G,3G,4G)
 The compressed data contains:
 LZMA2 chunks (with LZMA-compressed data and/or uncompressed data)

 Distance-1 (00h..FFh = distance 1..100h)
 unfilter_delta(buf,len,param_byte):
 dist=byte(param)+1, i=dist ;init dist and skip first some unfiltered bytes
 while i<len, byte(buf[i]) = buf[i]+buf[i-dist], i=i+1

 ID Parameters Alignment Description
 04h 0 or 4 bytes 1 byte 80x86 filter (32bit or 64bit)

13.102 CDROM File Compression XZ

- 497/1136 -

The filter parameter field can 0 or 4 bytes tall:

 05h 0 or 4 bytes 4 bytes PowerPC filter (big endian)
 06h 0 or 4 bytes 16 bytes IA64 filter
 07h 0 or 4 bytes 4 bytes ARM filter (little endian)
 08h 0 or 4 bytes 2 bytes ARM Thumb filter (little endian)
 09h 0 or 4 bytes 4 bytes SPARC filter
 0Ah,0Bh Inofficial hacks/proposals for ARM64?

 if param_size=0 then offset=00000000h
 if param_size=4 then offset=LittleEndian32bit(param)
 Nonzero offsets are intended for executables with multiple sections and
 cross-section jumps. The offset shall/must match the filter's alignment.
 unfilter_bcj_x86(buf,len,offset):
 i=0, len=len-4, offset=offset+4
 while i<len
 x=byte[buf+i], i=i+1
 if (x AND FEh)=E8h ;Opcode=E8h or E9h
 x=LittleEndian32bit[buf+i]
 if ((x+01000000h) AND FE000000h)=0 ;MSB=00h or FFh
 LittleEndian32bit[buf+i]=SignExpandLower25bit(x-i-offset)
 i=i+4
 unfilter_bcj_arm(buf,len,offset):
 i=0, len=len/4, offset=(offset+8)/4
 while i<len
 x=LittleEndian32bit[buf+i*4]
 if (x AND FF000000h)=EB000000h
 LittleEndian32bit[buf+i*4]=((x-i-offset) and 00FFFFFFh)+EB000000h
 i=i+1
 unfilter_bcj_armthumb(buf,len,offset):
 i=0, len=len/2-1, offset=(offset+4)/2
 while i<len
 x=LittleEndian32bit[buf+i*2]
 if (x AND F800F800h)=F800F000h
 msw=LittleEndian16bit[buf+i*2+0] AND 7FFh
 lsw=LittleEndian16bit[buf+i*2+2] AND 7FFh
 x=msw*800h+lsw-i-offset
 LittleEndian16bit[buf+i*2+0]=F000h+(7FFh and (x/800h))
 LittleEndian16bit[buf+i*2+2]=F800h+(7FFh and (x/1))
 i=i+1
 unfilter_bcj_sparc(buf,len,offset):
 i=0, len=len/4, offset=offset/4
 while i<len
 x=BigEndian32bit[buf+i*4]
 if (x AND FFC00000h)=40000000h or (x AND FFC00000h)=7FC00000h
 x=SignExpandLower23bit(x-i-offset)
 BigEndian32bit[buf+i*4]=(x AND 3FFFFFFFh)+40000000h
 i=i+1
 unfilter_bcj_powerpc(buf,len,offset):
 i=0, len=len/4, offset=offset/4
 while i<len
 x=BigEndian32bit[buf+i*4]
 if (x AND FC000003h)=48000001h

13.102 CDROM File Compression XZ

- 498/1136 -

Cyclic Redundancy Checks (CRCs)

CRC32 uses 32bit (with polynomial=EDB88320h). CRC64 does basically use the same

function (with 64bit values and polynomial=C96C5795D7870F42h).

Endianness and Variable Length (VL) Integers

Little-endian is used for 16bit/32bit/64bit values (Flags, Sizes, CRCs).

Big-endian is used for 256bit SHA256 and for values within LZMA2 chunks.

Variable length integers (marked VL in above tables) are used for Sizes and IDs, these

values may contain max 63bit, stored in 1-9 bytes:

Notes and References

XZ Utils for Windows is claimed to work on Win98 (that is, it will throw an error about

missing MSVCRT.DLL:___mb_cur_max_func). XZ Utils for DOS does work on Win98.

Official XZ file format specs for can be found at:

 BigEndian32bit[buf+i*4]=(((x/4-i-offset) AND 00FFFFFFh)*4)+48000001h
 i=i+1
 unfilter_bcj_ia64(buf,len,offset):
 i=0, len=len/10h, offset=offset/10h
 xlat[0..1Fh]=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,6,6,0,0,7,7,4,4,0,0,4,4,0,0
 while i<len
 flags=xlat[byte[buf] and 1Fh] ;shared 5bit for three 41bit opcodes
 for slot=0 to 2
 if flags and (1 shl slot) ;process three 41bit opcodes
 bitbase=slot*41+5
 hi=byte[buf+(bitbase+37)/8] shr ((bitbase+37) and 7) and 0Fh
 lo=LittleEndian16bit[buf+(bitbase+9)/8] shr ((bitbase+9) and 7) and 07h
 if hi=5 and lo=0
 mid=LittleEndian32bit[buf+(bitbase+13)/8]
 x=mid shr ((bitbase+13) and 7)
 x=x and 8FFFFFh, if (x and 800000h) then x=x-700000h
 x=x-i-offset
 x=x and 1FFFFFh, if (x and 100000h) then x=x+700000h
 mid=mid AND NOT (8FFFFFh shl ((bitbase+13) and 7)) ;strip old
 mid=mid OR x shl ((bitbase+13) and 7)) ;place new
 LittleEndian32bit[buf+(bitbase+13)/8]=mid ;apply
 i=i+1, buf=buf+10h

 decode_variable_len_integer:
 i=0, num=0
 @@lop:
 x=[src], src=src+1, num=num+((x and 7Fh) shl i), i=i+7
 if x AND 80h then goto @@lop
 return num

13.102 CDROM File Compression XZ

- 499/1136 -

https://tukaani.org/xz/format.html

The BCJ filters aren't documented in XZ specs, but are defined in XZ source code, see

src\liblzma\simple*.c). There's also this mail thread about semi-official ARM64 filters:

https://www.mail-archive.com/xz-devel@tukaani.org/msg00537.html

13.103 CDROM File Compression FLAC audio

FLAC is a lossless audio compression format.

FLAC file format

The whole file can be read as big-endian bitstream (although bitstream reading is mainly

required for the Frame bodies) (the Frame header/footer and Metadata blocks are byte-

aligned and can be read as byte-stream).

Metadata Block format:

Metadata Block Types:

FLAC METADATA_BLOCK_STREAMINFO

 000h 4 FLAC ID ("fLaC")
 004h .. Metadata block with STREAMINFO
 Metadata block(s) with further info (optional)
 FLAC Frame(s)

 1bit Last Metadata block flag (1=Last, 0=More blocks follow)
 7bit Block Type (see below)
 24bit Size of following metadata in bytes (N)
 N*8bit Metadata (depending on Type)

 00h = STREAMINFO
 01h = PADDING
 02h = APPLICATION
 03h = SEEKTABLE
 04h = VORBIS_COMMENT
 05h = CUESHEET
 06h = PICTURE
 .. = Reserved
 7Fh = Invalid (to avoid confusion with a frame sync code)

 16bit Minimum Block size in samples (10h..FFFFh) ;\min=max implies
 16bit Maximum Block size in samples (10h..FFFFh) ;/fixed blocksize

13.103 CDROM File Compression FLAC audio

- 500/1136 -

https://tukaani.org/xz/format.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00537.html

More info

The FLAC file format is documented here:

https://xiph.org/flac/format.html

Source code for a compact FLAC decoder can be found here:

https://www.nayuki.io/page/simple-flac-implementation

13.104 CDROM File Compression ARJ

ARJ archives contain several chunks

ARJ main "comment" header, with [00Ah]=2

This is stored at the begin of the archive. The format is same as for local file header (but

with file-related entries set to zero, or to global security settings).

 24bit Minimum Frame size in bytes (or 0=Unknown)
 24bit Maximum Frame size in bytes (or 0=Unknown)
 20bit Sample rate in Hertz (01h..9FFF6h = 1..655350 Hz)
 3bit Number of channels-1 (00h..07h = 1..8 channels)
 5bit Bits per sample-1 (03h..1Fh = 4..32 bits) (max 24bit implemented)
 36bit Total number of samples per channel (or 0=Unknown)
 128bit MD5 on unencoded audio data (...in which format? endian/interleave?)

 Main header chunk
 Local file chunk(s)
 Chapter chunk(s), backup related, exist only in newer archives
 End Marker

 000h 2 ARJ ID (EA60h, aka 60000 decimal)
 002h 2 Header size (from 004h up to including Filename+Comment) (max 2600)
 004h 1 Header size (from 004h up to including Extra Data) (1Eh+extra)
 005h 1 Archiver version number (01h..0xh)
 006h 1 Minimum archiver version to extract (usually 01h)
 007h 1 Host OS
 008h 1 ARJ Flags (bit0-7, see below)
 009h 1 Security version (2 = current)
 00Ah 1 File Type (must be 2=ARJ Comment in main header)
 00Bh 1 Reserved/Garbage (LSB of Archive creation Date/Time, same as [00Ch])
 00Ch 4 Date/Time when archive was created
 010h 4 Date/Time when archive was last modified
 014h 4 Zero (or Secured Archive size, excluding Security and Protection)
 018h 4 Zero (or Security envelope file position) (after End Marker)

13.104 CDROM File Compression ARJ

- 501/1136 -

https://xiph.org/flac/format.html
https://www.nayuki.io/page/simple-flac-implementation

ARJ local file header, with [00Ah]=0,1,3,4

This occurs at the begin of each file in the archive.

Entry 3Eh might be meant to contain Original Size of TEXT files (with CR,LFs), however,

the entry is just set to 00000000h in ARJ 2.75a. Or maybe it's meant to mean size of

whole file (in split-volumes)?

 01Ch 2 Zero (or Filespec position in filename) (0) (what is that??)
 01Eh 2 Zero (or Security envelope size in bytes) (78h, if any)
 020h 1 Zero (or >2.50?: Encryption version, 0-1=Old, 2=New, 4=40bit GOST)
 021h 1 Zero (or >2.50?: Last chapter (eg. 4 when having chapter 1..4)
 022h (1) Extra data: ARJ Protection factor ;\extra,
 023h (1) Extra data: ARJ Flags (bit0=ALTVOLNAME, bit1=ReservedBit) ; if any
 024h (2) Extra data: Spare bytes ;/
 Filename, max 500 bytes ("FILENAME.ARJ",00h)
 Comment, max 2048 bytes ("ASCII Comment",00h)
 ... 4 CRC32 on Header (from 004h up to including Comment)
 ... 2 Size of 1st extended header (usually 0=none)
 ... (0) Extended Header(s?) (usually none such)

 000h 2 ARJ ID (EA60h, aka 60000 decimal)
 002h 2 Header size (from 004h up to including Filename+Comment) (max 2600)
 004h 1 Header size (from 004h up to including Extra Data) (1Eh+extra)
 005h 1 Archiver version number
 006h 1 Minimum archiver version to extract (usually 01h)
 007h 1 Host OS
 008h 1 ARJ Flags (bit0,2-5)
 009h 1 Method
 00Ah 1 File Type (0=Binary, 1=Text, 3=Directory Name, 4=Volume Name)
 00Bh 1 Reserved/Garbage (LSB of Archive update Date/Time?)
 00Ch 4 Date/Time modified
 010h 4 Filesize, compressed (max 7FFFFFFFh)
 014h 4 Filesize, uncompressed
 018h 4 CRC32 on uncompressed file data
 01Ch 2 Zero (or Filespec position in filename) (what is that??)
 01Eh 2 File access mode (aka MSDOS file attribute) (20h=Normal)
 020h 1 Zero (or >2.50?: first chapter of file's lifespan)
 021h 1 Zero (or >2.50?: last chapter of file's lifespan)
 022h (4) Extra data: Extended file position (maybe for split?) ;\extra,
 026h (4) Extra data: Date/Time accessed ;\ARJ ; 0,4 or 10h
 03Ah (4) Extra data: Date/Time created ; 2.62 ; bytes
 03Eh (4) Extra data: Original file size even for volumes ;/ ;/
 Filename, max 500 bytes ("PATH/FILENAME.EXT",00h)
 Comment, max 2048 bytes ("ASCII Comment",00h)
 ... 4 CRC32 on Header (from 004h up to including Comment)
 ... 2 Size of 1st extended header (usually 0=none)
 ... (0) Extended Header(s?) (usually none such)
 Compressed file data

13.104 CDROM File Compression ARJ

- 502/1136 -

ARJ backup "chapter" header (ARJ >2.50?) (exists in 2.75a), with [00Ah]=5

This is rarely used and supported only in newer ARJ versions. The format is same as for

local file header (but with file-related entries being nonsense in TECHNOTE; in practice,

those nonsense values seem to be zero).

ARJ End Marker (with [002h]=0000h)

This is stored at the end of the archive.

Note: The End Marker may be followed by PROTECT info and Security envelope.

ARJ Method [009h]

 000h 2 ARJ ID (EA60h, aka 60000 decimal)
 002h 2 Header size (from 004h up to including Filename+Comment) (max 2600)
 004h 1 Header size (from 004h up to including Extra Data) (1Eh+extra)
 005h 1 Archiver version number (eg. 0Ah=2.75a)
 006h 1 Minimum archiver version to extract (usually 01h)
 007h 1 Host OS
 008h 1 ARJ Flags (usually 00h)
 009h 1 Method (usually 01h, although chapters have no data) what file???
 00Ah 1 File Type (must be 5=ARJ Chapter)
 00Bh 1 Reserved/Garbage (LSB of Chapter Date/Time, same as [00Ch])
 00Ch 4 Date/Time stamp created
 010h 4 Zero (or reportedly, ?) what question?
 014h 4 Zero (or reportedly, ?) what question?
 018h 4 Zero (or reportedly, original file's CRC32) what file???
 01Ch 2 Zero (or reportedly, entryname position in filename) what file???
 01Eh 2 Zero (or reportedly, file access mode) what file???
 020h 1 Chapter range start (01h=First chapter?) what range???
 021h 1 Chapter range end (contains same value as above) what range???
 022h (4) Extra data: Extended file position (usually none such)what extra???
 Filename ("<<<001>>>",00h for First chapter)
 Comment ("",00h)
 ... 4 CRC32 on Header (from 004h up to including Comment)
 ... 2 Size of 1st extended header (usually 0=none)
 ... (0) Extended Header(s?) (usually none such)

 000h 2 ARJ ID (EA60h, aka 60000 decimal)
 002h 2 Header size (0=End)

 0 = stored (uncompressed)
 1 = compressed most (default) (Window=6800h=26Kbyte, Chars=255, Tree=31744)
 2 = compressed medium (Window=5000h=20Kbyte, Chars=72, Tree=30720)
 3 = compressed less (Window=2000h=8Kbyte, Chars=32, Tree=30720)
 4 = compressed least/fastest (Window=6800h? or 8000h?)

13.104 CDROM File Compression ARJ

- 503/1136 -

ARJ File Type [00Ah]

ARJ Flags (in Main [008h])

ARJ Flags (in Local [008h])

ARJ Flags (in Chapter [008h])

Host OS [007h]

 8 = no data, no CRC ;\unknown if/where that is used (maybe only used
 9 = no data ;/internally, and never stored in actual files?)

 0 = binary file (default)
 1 = text file (with converted line breaks, via -t1 switch)
 2 = ARJ comment header (aka ARJ main file header)
 3 = directory name
 4 = volume label (aka disc name)
 5 = ARJ chapter label (aka begin of newer backup sections)

 0 GARBLED
 1 OLD_SECURED has old signature (with signature in Main Header?)
 1 ANSIPAGE ANSI codepage used by ARJ32 (for what? for "FILENAME.ARJ"?)
 2 VOLUME presence of succeeding volume
 3 ARJPROT
 4 PATHSYM archive name translated ("\" changed to "/")
 5 BACKUP obsolete
 6 SECURED has new signature (in security envelope?)
 7 ALTNAME dual-name archive

 0 GARBLED passworded file
 1 NOT USED
 2 VOLUME continued file to next volume (file is split)
 3 EXTFILE file starting position field (for split files)
 4 PATHSYM filename translated ("\" changed to "/")
 5 BACKUP_FLAG obsolete

 0 GARBLED ;\
 1 RESERVED ;
 2 VOLUME ; what does that mean in Chapters???
 3 EXTFILE ;
 4 PATHSYM ;/
 5 BACKUP obsolete < 2.50a ;-how can obsolete exist in Chapters???
 6 RESERVED

13.104 CDROM File Compression ARJ

- 504/1136 -

ARJ Method 1-3 (LHA/LZH compression)

These methods are same as LHA's "-lh6-" compression method (albeit the three ARJ

methods are allocating slighly less memory for the sliding window).

ARJ Method 4 (custom fastest compression)

get_bits(N) is same as in method 1-3 (fetching N bits, MSB first, starting with bit7 of first

byte).

ARJ Glossary & Oddities

BACKUPs seem to keep old files (instead overwrting them by newer files)

CHAPTERs seems to be a new backup type (instead of [008h].Bit5=Backup flag).

COMMENTS can be text... with ANSI.SYS style ANSI escape codes?

DATE/TIME stamps seem to be MSDOS format (16bit date plus 16bit time)

EXTENDED headers seem to be unused, somewhat inspired on LHA format but with

CRC32 instead CRC16 (unknown if the "1st extended header" can be followed by 2nd,

3rd, and further extended headers in LHA fashion) (bug: older ARJ versions are

reportedly treating the extended CRC32 as 16bit value).

GARBLED seems to refer to encrypted password protected archives.

 0=MSDOS, 1=PRIMOS, 2=UNIX, 3=AMIGA, 4=MACDOS (aka MAC-OS)
 5=OS/2, 6=APPLE GS, 7=ATARI ST, 8=NEXT
 9=VAX VMS, 10=WIN95, 11=WIN32 (aka WinNT or so?)

 @@decompress_lop:
 if dst>=dst_end then goto @@decompress_done
 width=count_ones(max=7), len = get_bits(width) + (1 shl width)+1
 if len=2 then
 [dst]=get_bits(8), dst=dst+1
 else ;len>=3
 width=count_ones(max=4)+9, disp = get_bits(width) + (1 shl width)-1FFh
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 goto @@decompress_lop
 @@decompress_done:
 ret
 ;---
 count_ones(max):
 num=0
 @@lop:
 if get_bits(1)=1 then
 num=num+1, if num<max then goto @@lop
 return num

13.104 CDROM File Compression ARJ

- 505/1136 -

PROTECTED seems to mean Error Correction added in newer ARJ archives.

SECURED seems to mean archive with signature from registered manufacturers.

SPLIT aka VOLUMEs means large ARJ's stored in fragments on multiple disks.

TEXT (aka [00Ah]=1 aka -t1 switch aka "C Text" aka "7-bit text") converts linebreaks

from CR,LF to LF to save memory (the uncompressed size and uncompressed CRC32

entries refer to that converted LF format, not to the original CR,LF format; the official

name "7-bit text" is nonsense: All characters are stored as 8bit values, not 7bit values).

TIMEBOMB causes newer ARJ versions to refuse to work (and request the user to check

for non-existing newer updates) (eg. ARJ 2.86 is no longer working, ARJ 2.75a does still

work without timebomb).

See also

The various ARJ versions include .TXT or .DOC files (notably, ARJ.TXT is user manual,

TECHNOTE.TXT contains hints on the ARJ file format). There's also an open source

version.

13.105 CDROM File Compression ARC

ARC Archives

ARC is an old DOS and CP/M compression tool from 1985-1990. ARC files contain

chunks in following format:

The chunksize depends on the Method:

Compression Methods (aka "header versions"):

 000h 1 Fixed ID (1Ah)
 001h 1 Compression Method (00h..1Fh)
 002h 13 Filename ("FILENAME.EXT",00h) (garbage-padded if shorter)
 00Fh 4 Filesize, compressed
 013h 4 File Timestamp in MSDOS format
 017h 2 CRC16 with initial value 0000h on uncompressed/decrypted file
 019h (4) Filesize, uncompressed ;<-- not present for Method=1
 Compressed file data (size as stored in [00Fh])

 Method 00h and 1Fh --> Chunksize=02h (archive/subdir end markers)
 Method 01h --> Chunksize=19h+[0Fh] (old uncompressed ARC archives)
 Others Methods --> Chunksize=1Dh+[0Fh] (normal case)

13.105 CDROM File Compression ARC

- 506/1136 -

Information items use standard 1Dh-byte headers (with [002h]="",00h,

[00Fh]=SizeOfAllItem(s), [019h]=Junk. The data part at offset 01Dh can contain one or

more item(s) in following format:

Information item types as used by ARC 6.0:

File attributes can contain following uppercase chars:

 00h End-of-archive marker (1Ah,00h)
 01h ARC v? Uncompressed (with short 19h-byte header)
 02h ARC v? Uncompressed (with normal 1Dh-byte header)
 03h ARC v? Packed (RLE90) Used for small files
 04h ARC v? Squeezed (RLE90+Huffman) Based on CP/M Squeeze
 05h ARC v4.00 Crunched (OldRandomizedLZW) Derived from LZWCOM
 06h ARC v4.10 Crunched (RLE90+OldRandomizedLZW) Alike CP/M Crunch v1.x
 07h ARC vBeta? Crunched (RLE90+NewRandomizedLZW) Leaked beta version?
 08h ARC v5.00 Crunched (RLE90+ClearGap12bitLZW) Most common ARC method
 09h Inofficial Squashed (ClearGap13bitLZW) Used by PKARC/PKPAK
 0Ah ARC v7.xx Trimmed (RLE90+LZHUF) Based on LHArc lh1
 0Ah Inofficial Crushed (RLE90+LZW/LZMW?) PAK
 0Bh Inofficial Distilled (LZ77+Huffman) PAK v2.0
 14h-1Dh ARC v6.0 Used/reserved for Information items:
 14h Archive info
 15h Extended File info (maybe a prefix(?) for actual file entries?)
 16h OS-specific info
 1Eh-27h ARC v6.0 Used/reserved for Control items:
 1Eh ARC v6.00 Subdir (nested ARC-like format, created by the "z" option)
 1Fh ARC v6.00 End-of-subdir marker (1Ah,1Fh)
 48h Not used in ARC ;\Hyper archives start with 1Ah,48h or 1Ah,53h
 53h Not used in ARC ;/(an unrelated format that also starts with 1Ah)
 80h-xxh Not used in ARC ;-Spark archives (ARC-like, with extended headers)

 000h 2 Item size (LEN)
 002h 1 Item Subtype
 003h .. Item Data (LEN-3 bytes)

 Method=14h, Subtype=0 Archive description (eg. "Comment blah",00h)
 Method=14h, Subtype=1 Archive creator program name (eg. "ARC 7.12 ...",00h)
 Method=14h, Subtype=2 Archive modifier program name
 Method=15h, Subtype=0 File description (eg. "Comment blah",00h)
 Method=15h, Subtype=1 File long filename (if not MS-DOS "8.3" filename)
 Method=15h, Subtype=2 File extended date-time info (reserved)
 Method=15h, Subtype=3 File Icon (reserved)
 Method=15h, Subtype=4 File attributes (see below) (eg. "RWHSN",00h)
 Method=16h, Subtype=.. Operating system info (reserved)

 R=ReadAccess, W=WriteAccess, H=HiddenFile, 1=SystemFile, N=NetworkShareable

13.105 CDROM File Compression ARC

- 507/1136 -

Sub-directories

Sub-directories are implemented as nested ARC files - about same as when storing the

sub-directory files in SUBDIR.ARC, and including that SUBDIR.ARC file in the main

archive with Method 02h. Except that:

It's using Method 1Eh (instead Method 02h), with filename SUBDIR (instead

SUBDIR.ARC), and with [019h]=Nonsense (instead uncompressed size), and the nested

file ends with Method 1Fh (instead Method 00h).

RLE90 (run-length compression with value 90h used as escape code)

ARC does use raw RLE90 for small files (eg. 4-byte "aaaa"). ARC does also use RLE90

combined with other methods (perhaps because ARC wasn't very fast, compressing

100Kbytes could reportedly take several minutes; and without RLE90 pre-compression it

might have been yet slower).

RLE90 is used by ARC (and Spark and ArcFS), StuffIt, and BinHex (some of these may

handle "prevbyte" differently; the handling in ARC is somewhat stupid as it cannot

compress repeating 90h-bytes).

Squeeze

 90h,00h Output 90h, but DON'T change prevbyte ;<-- ARC
 90h,00h Output 90h, and DO set prevbyte=90h ;<-- BinHex
 90h,00h Output 90h, and UNKNOWN what to do ;<-- StuffIt
 90h,01h..03h Output prevbyte 00h..02h times (this is not useful)
 90h,04h..FFh Output prevbyte 03h..FEh times (this does save memory)
 xxh Output xxh, and memorize prevbyte=xxh
 arc_decompress_rle90:
 src_end = src+src_size
 prevbyte = <initially undefined in ARC source code>
 @@decompress_lop:
 if src>=src_end then goto @@decompress_done
 x=[src], src=src+1
 if x<>90h then
 [dst]=x, dst=dst+1, prevbyte=x ;output x, and memorize prevbyte=x
 else ;x=90h
 x=[src], src=src+1
 if x=00h then
 [dst]=90h, dst=dst+1 ;output 90h, but DO NOT change prevbyte
 if BinHex then prevbyte=90h ;for BinHex, DO change prevbyte
 else
 for i=1 to x-1, [dst]=prevbyte, dst=dst+1, next i
 goto @@decompress_lop

13.105 CDROM File Compression ARC

- 508/1136 -

http://fileformats.archiveteam.org/wiki/Squeeze

Randomized LZW

 000h 2 Number of Tree entries (0..100h) (when 0, assume tree=FEFFh,FEFFh)
 002h N*4 Tree entries (16bit node0, 16bit node1)
 Huffman bitstream (starting in bit0 of first byte)
 Maybe supposedly padding to byte boundary?
 The 16bit nodes are:
 0000h..00FFh Next Tree index
 0100h..FEFEh Invalid
 FEFFh End of compressed data
 FF00h..FFFFh Data values FFh..00h (these are somewhat inverted/reversed)
 arc_decumpress_squeeze:
 if [src]=0000h then tree=empty_tree, else tree=src+2 ;-start tree
 InitBitstreamLsbFirst(src+2+[src]*4) ;-start bitstream
 @@decompress_lop:
 index=0000h ;\
 while index<FEFFh ; huffman decode
 index=[tree+index*4+GetBits(1)*2] ;/
 if index>FEFFh then ;-check end code
 [dst]=(index XOR FFh) AND FFh), dst=dst+1 ;-store data
 goto @@decompress_lop
 return
 empty_tree dw FEFFh,FEFFh ;upen empty tree, ARC defines two 1bit END codes

 arc_decompress_randomized_lzw:
 num_free=1000h, stack=empty, oldcode=-1
 for i=0 to FFFh, lzw_parent[i]=EEEEh ;mark all codes as unused
 for i=0 to FFh, create_code(FFFFh,i) ;codes for 00h..FFh with parent=none
 @@decompress_lop:
 if src>=src_end then goto @@decompress_done
 code=GetBitsMsbFirst(12), i=code
 if lzw_parent[i]=EEEEh then i=oldcode, push(oldbyte) ;-for KwKwK strings
 while lzw_parent[i]<>FFFFh, push(lzw_data[i]), i=lzw_parent[i]
 oldbyte=lzw_data[i], [dst]=oldbyte, dst=dst+1
 if oldcode<>-1 then create_code(oldcode,oldbyte)
 oldcode=code
 while stack<>empty, [dst]=pop(), dst=dst+1
 goto @@decompress_lop
 @@decompress_done:
 ret
 ;---
 create_code(parent,data):
 if num_free=0 then goto @@no_further_codes, else num_free=num_free-1 ;-full
 i=(parent+data) AND 0000FFFFh ;\
 if method=7 then i=(i*3AE1h) AND FFFh ;new "fast" randomizer ;
 else i=(sqr(i OR 800h)/40h) AND FFFh ;old "slow" randomizer ;
 if lzw_parent[i]=EEEEh then goto @@found_free ; alloc
 while lzw_sibling[i]>0000h, do i=lzw_sibling[i] ;find chain end ; code
 e=i, i=(i+65h) AND FFFh ;memorize chain end & do some random skip ;
 while lzw_parent[i]<>EEEEh, do i=(i+1) AND FFFh ;find a free code ;

13.105 CDROM File Compression ARC

- 509/1136 -

http://fileformats.archiveteam.org/wiki/Squeeze

Codes are always 12bit (unlike normal LZW that often starts with 9bit codes).

There won't be any new codes created if the table is full, the existing codes can be kept

used if they do match the remaining data (unfortunatly this LZW variant has no Clear

code for resetting the table when they don't match).

Instead of just using the first free entry, code allocation is using some weird pseudo-

random-sibling logic (which is totally useless and will slowdown decompression, but

compressed files do contain such randomized codes, so it must be reproduced here).

ClearGap LZW

This is more straight non-randomized LZW with Clear codes (and weird gaps after Clear

codes). The compression (and gaps) are same as for nCompress (apart from different

headers):

CDROM File Compression nCompress.Z

Method 8 does have 0Ch as first byte (indicating max 12bit codesize, this must be always

0Ch, the ARC decoder supports only that value). Method 9 uses max 13bit codesize (but

doesn't have any leading codesize byte).

LZHUF

This is based on LHArc lh1. Like lh1, it does have 13Ah data/len codes, and 1000h

distance codes. There are two differences:

Notes

ARC file/directory names are alphabetically sorted, that does apply even when adding

files to an existing archive (they are inserted at alphabetically sorted locations rather

than being appended at end of archive).

 lzw_sibling[e]=i ;weirdly, i=0 will make it behave as sibling=none ;
 @@found_free: ;/
 lzw_data[i]=data, lzw_parent[i]=parent, lzw_sibling[i]=0000h ;-apply
 @@no_further_codes:
 ret

 ARC Method 8 with 1-byte header (0Ch) --> nCompress 3-byte header 1Fh,9Dh,8Ch
 ARC Method 9 without header --> nCompress 3-byte header 1Fh,9Dh,8Dh

 Differences LHArc method lh1 ARC method 0Ah
 Data/len codes: 100h..139h=Len(3..3Ch) 100h=End, 101h..139h=Len(3..3Bh)
 Initial dictionary: 20h-filled Uninitialized

13.105 CDROM File Compression ARC

- 510/1136 -

ARC files can be encrypted/garbled with password (via "g" option), the chunk header

doesn't contain any flags for indicating encrypted files (except, the CRC16 will be wrong

when not supplying the correct password).

ARC end-marker (1Ah,00h) may be followed by additional padding bytes, or by

additional information from third-party tools:

See also

http://fileformats.archiveteam.org/wiki/ARC_(compression_format)

https://www.fileformat.info/format/arc/corion.htm

http://cd.textfiles.com/pcmedic/utils/compress/arc520s.zip - source code

https://github.com/ani6al/arc - source code, upgraded with method 9 and 4

https://entropymine.wordpress.com/2021/05/11/arcs-trimmed-compression-scheme/

http://www.textfiles.com/programming/FORMATS/arc-lbr.pro - benchmarks

13.106 CDROM File Compression RAR

RAR is a compression format for enthusiastic users (who love to download the latest

RAR version before being able to decompress those RAR files).

RAR v1.3 (March 1994, used only in RAR 1.402)

This format was only used by RAR 1.402, and discontinued after three months when

RAR 1.5 got released.

 PKARC/PKPAK adds comments (starting with "PK",AAh,55h)
 PAK adds extended records (described in PAK.DOC file in the v2.51)

 File Header:
 000h 4 ID "RE~^" (aka 52h,45h,7Eh,5Eh)
 004h 2 Header Size (usually 0007h, or bigger when Comment/Ext1 exist)
 006h 1 Archive Flags (80h or xxh)
 ... (2) Archive Comment Size ;\Only present when ArchiveFlags.bit1=1
 ... (..) Archive Comment Data ;/
 ... (2) Ext1 Size ;\Only present when ArchiveFlags.bit5=1
 ... (..) Ext1 Data ;/
 Unknown (TECHNOTE hints sth can be here, when bigger HeaderSize?)
 Archive Flags:
 0 Volume (maybe related to split-volume on several floppies?)

13.106 CDROM File Compression RAR

- 511/1136 -

http://fileformats.archiveteam.org/wiki/ARC_(compression_format)
https://www.fileformat.info/format/arc/corion.htm
http://cd.textfiles.com/pcmedic/utils/compress/arc520s.zip
https://github.com/ani6al/arc
https://entropymine.wordpress.com/2021/05/11/arcs-trimmed-compression-scheme/
http://www.textfiles.com/programming/FORMATS/arc-lbr.pro

RAR 1.5 (June 1994) and newer

Overall Chunk Format:

 1 Comment
 2 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 3 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 4 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 5 EXT1
 6 Unspecified (maybe unused)
 7 Unspecified (maybe unused, but... it's usually 1)
 File Data blocks:
 000h 4 Filesize, compressed
 004h 4 Filesize, uncompressed
 008h 2 Checksum on uncompressed? file (sum=LeftRotate16bit(sum+byte[i])
 00Ah 2 Header Size (usually 0015h+FilenameLength)
 00Ch 4 File Modification Timestamp in MSDOS format
 010h 1 File Attribute in MSDOS format (20h=Normal)
 011h 1 Flags
 012h 1 Version (0=0.99, 1=1.00, 2=1.30) (always 2 in public version)
 013h 1 Filename Length
 014h 1 Method (00h=m0a=Stored, 03h=m3a=Default) (1..5 = fastest..best)
 ... (2) File Comment Length ;\Only present if FileFlags.bit3=1
 ... (..) File Comment Data ;/
 Filename ("PATH\FILENAME.EXT", without any end marker)
 Unknown (TECHNOTE hints sth can be here, when bigger HeaderSize?)
 Compressed file data
 File Flags:
 0 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 1 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 2 Unknown? (non-english description is in 1.402's TECHNOTE.DOC)
 3 Comment (non-english description is in 1.402's TECHNOTE.DOC)
 4-7 Unspecified (maybe unused)

 000h 2 Chunk Header CRC; Lower 16bit of CRC32 on [002h..HdrSize-1 or less]
 002h 1 Chunk Type (72h..7Ah)
 003h 2 Chunk Flags
 005h 2 Chunk Header Size
 007h (4) Data block size ;<-- Only present if Flags.bit15=1
 Header values (depending on Chunk Type and Chunk Header Size)
 Data block ;<-- Only present if Flags.bit15=1
 Chunk Types:
 72h="r"=Marker block (with "r" being 3rd byte in ID "Rar!",1Ah)
 73h="s"=Archive header
 74h="t"=File header
 75h="u"=Old style Comment header (nested within Type 73h/74h)
 76h="v"=Old style Authenticity information
 77h="w"=Old style Subblock
 78h="x"=Old style Recovery record
 79h="y"=Old style Authenticity information
 7AH="z"=Subblock
 Chunk Flags:

13.106 CDROM File Compression RAR

- 512/1136 -

Type 72h, Marker Block (MARK_HEAD)

This 7-byte ID occurs at the begin of RAR files (or after the executable in case of self-

extracting files).

Type 73h, Archive Header (MAIN_HEAD)

Type 74h, File Header (File in Archive)

 0-13 Flags, meaning depends on Chunk Type
 14 If set, older RAR versions (before 1.52 or so?) will ignore the
 block and remove it when the archive is updated. If clear, the
 block is copied to the new archive file when the archive is
 updated;
 or does "older" mean older than the "archiver version"?
 15 Data Block present (0=No, 1=Yes, with size at [007h])

 000h 7 ID ("Rar!",1Ah,07h,00h) (or "Rar!",1Ah,07h,01h for RAR 5.0)
 The above ID can be somewhat parsed as normal chunk header, as so:
 000h 2 Faux CRC (6152h, no actual valid CRC)
 002h 1 Chunk Type (72h)
 003h 2 Faux Flags (1A21h, no actual meaning)
 005h 2 Chunk Header size (0007h)

 000h 2 CRC32 AND FFFFh of fields HEAD_TYPE to RESERVED2
 002h 1 Chunk Type: 73h
 003h 2 Archive HeaderFlags
 005h 2 Header size (usually 000Dh) (plus Comment Block, if any)
 007h 2 RESERVED1 (0000h)
 009h 4 RESERVED2 (0000011Dh)
 ... (..) Comment block ;<-- only present if Flags.bit1=1
 ... (..) Reserved for additional blocks
 Archive Header Chunk Flags:
 0 Volume attribute (archive volume) (split-volume? volume-label? what?)
 1 Archive comment present ;<-- used only before RAR 3.x
 RAR 3.x uses "the separate comment block" and does not set this flag.
 2 Archive lock attribute
 3 Solid attribute (solid archive)
 4 New volume naming scheme (0=Old="name.???", 1=New="name.partN.rar")
 5 Authenticity information present ;<-- used only before RAR 3.x
 6 Recovery record present
 7 Chunk headers are encrypted
 8 First volume ;<-- set only by RAR 3.0 and later
 9-13 Reserved for internal use
 14-15 See overall Chunk Format

 000h 2 CRC32 AND FFFFh on HEAD_TYPE to FILEATTR and file name
 002h 1 Header Type: 74h
 003h 2 Bit Flags
 005h 2 File header full size including file name and comments
 007h 4 Compressed file size (can be bigger than uncompressed)

13.106 CDROM File Compression RAR

- 513/1136 -

 00Bh 4 Uncompressed file size
 00Fh 1 Operating system used for archiving
 010h 4 CRC32 on uncompressed file
 014h 4 File Modification Timestamp in MSDOS format
 018h 1 RAR version needed to extract file (Major*10+Minor) (min=0Fh=1.5)
 019h 1 Compression Method (usually 35h in RAR 1.52)
 01Ah 2 Filename size
 01Ch 4 File Attribute in MSDOS format (20h=Normal, Upper24bit=whatever=0)
 ... (..) Comment block ;-Only present if Flags.bit3=1
 ... (4) MSBs of compressed file size ;\Only present if Flags.Bit8=1
 ... (4) MSBs of uncompressed file size ;/
 Filename ("PATH\FILENAME.EXT")
 ... (..) Filename extra fields (see Flags.bit9+bit11)
 ... (8) Encryption SALT ;-Only present if Flags.Bit10=1
 ... (..) Extended Time, variable size ;-Only present if Flags.Bit12=1
 ... (..) * other new fields may appear here.
 Compressed file data
 File Chunk Flags:
 0 File continued from previous volume
 1 File continued in next volume
 2 File encrypted with password
 3 File comment present ;<-- used only before RAR 3.x
 RAR 3.x uses the separate comment block and does not set this flag.
 4 Information from previous files is used (solid flag) ;RAR 2.0 and later
 5-7 Dictionary bits (for RAR 2.0 and later)
 8 64bit Filesizes (for files "larger than 2Gb")
 9 Unicode Filename, this can be in Dual or Single name form:
 Dual name: "NormalName",00h,"UnicodeName" ;<-- in UTF-8 or what?
 Single name: "UnicodeName" ;<-- in UTF-8
 10 Header contains 8-byte Encryption SALT entry
 11 Backup File (with version number ";n" appended to filename)
 12 Extended Time field present
 13-14 -
 15 Data Block present (always 1=With 32bit size at [007h], or 64bit size)
 Dictionary Bits (bit5-7)
 00h=Dictionary Size 64 Kbyte
 01h=Dictionary Size 128 Kbyte ;\
 02h=Dictionary Size 256 Kbyte ; RAR 2.0 and up
 03h=Dictionary Size 512 Kbyte ;
 04h=Dictionary Size 1024 Kbyte ;/
 05h=Dictionary Size 2048 Kbyte ;\RAR ?? and up
 06h=Dictionary Size 4096 Kbyte ;/
 07h=File is a directory ;-RAR 2.0 and up
 Operating System Indicators:
 00h=MS DOS
 01h=OS/2
 02h=Windows
 03h=Unix
 04h=Mac OS
 05h=BeOS
 ??h=Android?
 Compression Method:
 35h=Default in RAR 1.52 (used even when file is too small to be compressed)
 xxh=Other methods (unknown values)

13.106 CDROM File Compression RAR

- 514/1136 -

Type 75h, Comment block:

Sub-formats

The RAR format is comprised of many sub-formats that have changed over the years.

The different formats and their descriptions are as follows:

See also

Older RAR versions did include a TECHNOTE file describing the file format of those

versions (TECHNOTE for 1.402 exist in unknown-language only, perhaps russian, and

TECHNOTE was discontinued somewhere between 2.5 and 2.9).

There is official decompression source code for newer RAR versions.

13.107 CDROM File Compression ZOO

ZOO Archives

 30h=Stored (RAR 2.00 supports uncompressed small files and -m0 switch)
 N/A=Stored (RAR 1.52 simply ignores "-m0" switch, and enforces "-m1" or so)

 000h 2 Header CRC of fields from HEAD_TYPE to COMM_CRC
 002h 1 Chunk Type: 75h
 003h 2 Chunk Flags (unknown if/which flags are used)
 005h 2 Chunk Header size (0Eh+Compressed comment size)
 007h 2 Uncompressed comment size
 009h 1 RAR version needed to extract comment
 00Ah 1 Packing Method
 00Ch 2 Comment CRC
 00Eh .. Compressed comment data

 * 1.3 (Does not have the RAR! signature)
 o There is difficulty finding information regarding this sub-format.
 * 1.5
 o Utilizes a proprietary compression method that is not public.
 o Considered the root model of subsequent formats.
 o A detailed list of information can be found here.
 * 2.0
 o Utilizes a proprietary compression method that is not public.
 o Based off of version 1.5 of the RAR file format.
 * 3.0
 o Utilizes the PPMII and Lempel-Ziv (LZSS)] algorithms.
 o Encryption now uses cipher block chaining (AES?-CBC) instead of AES
 o Based off of version 1.5 of the RAR file format.

13.107 CDROM File Compression ZOO

- 515/1136 -

Notes:

Method LZW is quite straight, the bitstream is fetched LSB first, codesize is initially 9bit,

 File Header:
 000h 20 Text Message (usually "ZOO #.## Archive.",1Ah,00h,00h)
 014h 4 ID (FDC4A7DCh) (use this ID for detection, and ignore above text)
 018h 4 Offset to first Chunk (22h or 2Ah+commentsize?)
 01Ch 4 Offset to first Chunk, negated (-22h or -2Ah-commentsize?)
 020h 1+1 Version needed to extract (Major,Minor) (usually 1,01 or 2,00)
 022h (1) Archive Header Type (01h) ;\
 023h (4) Offset to Archive Comment (0=None) ; v2.00 and
 027h (2) Length of Archive Comment (0=None) ; up only
 029h (1) Version Data (01h or 03h) "HVDATA" ;/
 File Chunks:
 000h 4 ID (FDC4A7DCh)
 004h 1 Type of directory entry (1=Old, 2=New, with extra entries)
 005h 1 Compression method (0=Stored, 1=LZW/default, 2=LZH)
 006h 4 Offset to next Chunk
 00Ah 4 Offset to File Data
 00Eh 4 File Modification Date/time in MSDOS format
 012h 2 CRC16 on uncompressed file (with initial value 0000h)
 014h 4 Filesize, uncompressed
 018h 4 Filesize, compressed
 01Ch 1+1 Version needed to extract (Major,Minor) (usually 1,00 or 2,01)
 01Eh 1 Deleted flag (0=Normal, 1=Deleted)
 01Fh 1 File structure (unknown purpose)
 020h 4 Offset of comment field (0=None)
 024h 2 Length of comment field (0=None)
 026h 13 Short Filename ("FILENAME.EXT",00h, garbage padded if shorter)
 033h (1) Unknown (4Fh) (or 00h when with comment?) ;-Type=1
 033h (2) Length of 038h and up (0Ah+longname+dirname) ;\
 035h (1) Timezone (signed) (7Fh=Unknown) ;
 036h (2) CRC16 on Header (000h..037h+[033h], with [036h]=0000h) ;
 038h (1) Length of Long Filename (0=None, use Short Filename) ;
 039h (1) Length of Directory name (0=None) ; Type=2
 03Ah (..) Long Filename ("longfilename.ext",00h) (if any) ;
 ... (..) Directory name ("/path",00h) (if any) ;
 ... (2) System ID (0=Unix, 1=DOS, 2=Portable) (but for DOS=0) ;
 ... (3) File Attributes (24bit) (but for DOS=0) ;
 ... (1) Backup Flags (bit7=On, bit6=Last, bit0-3=Generation) ;
 ... (2) Backup File Version Number (for backup copies) ;/
 ... 5 File Leader aka Fudge Factor ("@)#(",00h) ;\
 File Data ; All types
 File Comment (if any) (ASCII, "Text string",0Ah) ;/
 Last Chunk:
 000h 4 ID (FDC4A7DCh)
 004h (30h) Zerofilled ;-Type 1
 004h (1) Fixed (02h) ;\
 005h (31h) Zerofilled ; Tyoe 2
 036h (2) CRC16 on Header (with [036h]=0000h) (always 83FCh) ;/
 ... (..) Comments may be stored here (if added after archive creation)
 ... (..) Padding, if any (1Ah-filled in some files)

13.107 CDROM File Compression ZOO

- 516/1136 -

max 13bit, with two special codes (100h=Clear, 101h=Stop), there aren't any gaps after

clear codes, the unusual part is that the bitstream does start with a clear code.

Method LZH is slower, requires Zoo 2.10, and is used only when specifiying "h" option in

commandline. LZH has 8Kbyte window, same as LHA's "lh5", with an extra end marker

(blocksize=0000h=end).

Comments may be stored anywhere in the middle or at the end of the archive (even

after the zerofilled last chunk) (depending on whether the comment or further files

where last added to the archive).

Zoo is from 1986-1991, long filenames were supported only for OSes that did support

them at that time (ie. not for DOS/Windows).

When adding new files, Zoo defaults to maintain backups of old files in the archive (older

files are marked as "deleted" via [01Eh]=1, but are kept in the archive; until the user

issues command "P" for repacking/removing deleted files) (Zoo 2.xx can additionally use

a "generation" limit of 0..15, which means to keep 0..15 older copies).

All offsets are originated from begin of archive.

Zoo Tiny format (single-file) (commandline "z" option)

This format is called Tiny in Zoo source code, but isn't documented in the Zoo manual or

Zoo help screen. Tiny can contain only a single file (alike gzip). The purpose appears to

be using Tiny as temporary files when moving files from one archive to another (without

needing to decompress & recompress the file), for example:

The tiny/temp file extensions have the middle character changed to "z" (eg. "tzt" instead

of "txt").

Going by zoo source code, the format should look as so:

 zoo xz source.too testfile.txt ;extract to tiny/temp file testfile.tzt
 zoo az dest.zoo testfile.txt ;import from tiny/temp file testfile.tzt

 000h 2 Zoo Tiny ID (07FEh)
 002h 1 Type (01h)
 003h 1 Compression Method
 004h 4 Date/time in MSDOS format
 008h 2 CRC16 on uncompressed file, or what (?)
 00Ah 4 Filesize, uncompressed
 00Eh 4 Filesize, compressed
 012h 1 Major_ver
 013h 1 Minor_ver
 014h 2 Comment size (0=None)
 016h 13 Short Filename
 023h .. File data ... plus comment, if any?

13.107 CDROM File Compression ZOO

- 517/1136 -

But, files from Zoo DOS version are reportedly starting with 07h,01h (instead FEh,07h,

01h).

And, using Zoo DOS version with "z" option in Win98 does merely display "Zoo: FATAL: I/

O error or disk full."

Zoo Filter format (for modem streaming) (commandline "f" command)

This command is documented in the Zoo manual, although it isn't actually supported in

Zoo DOS version. The intended purpose is to use Zoo as a filter to speedup modem

transfers.

Going by some information snippets, the transfer format appears to be somewhat as so:

The transfer uses stdin/stdout instead of source/dest filenames (although, the OS

commandline interface may allow to assign filenames via ">" and "\<").

There is no compression method entry (so both sides must know whether they shall use

LZW or LZH).

Unknown if there are any transfer size entries, or LZW/LZH end codes, or maybe the

streaming is infinite (with CRCs inserted here ot there)?

13.108 CDROM File Compression nCompress.Z

nCompress is some kind of a Gzip predecessor. The program was originally called

"compress" and later renamed to "ncompress" (and sometimes called "(n)compress").

Compressed files have uppercase ".Z" attached to their original name.

nCompress.Z

The header is rather small and lacks info on decompressed size (ie. the one must

process the whole bitstream to determine the size, and accordingly, the fileformat

doesn't allow padding to be appended at end of file). To detect .Z files, examine the first

three bytes, and best also check that the leading 9bit codes don't exceed num_codes

(with num_codes increasing from 101h and up for each new code).

 000h 2 Zoo Filter ID (32h,5Ah)
 Compressed data
 ... 2 CRC16 on uncompressed file, or what (?)

 000h 2 ID (1Fh,9Dh)
 002h 1 Mode (MaxBits(9..16) + bit7=WithClearCode) (usually 90h)
 003h .. ClearGap LZW compressed data (or raw LZW when mode.bit7=0)

13.108 CDROM File Compression nCompress.Z

- 518/1136 -

Compression is relative straight LZW, resembling 8bit GIFs, with 9bit initial codesize, with

preset codes 000h..0FFh=Data and (optional) 100h=Clear code (there is no End code).

Codes are allocated from 101h and up (100h and up if without Clear code).

The bitstream is fetched LSB first (starting in bit0 of first byte). The decoder is

prefetching groups of eight codes (N-bytes with eight N-bit codes), the odd part is that

Clear codes are discarding those prefetched bytes (so Clear codes will be followed by

Gaps with unused bytes).

ClearGap LZW is also used by ARC Method 8 and 9.

13.109 CDROM File Compression Octal Oddities (TAR, CPIO,

RPM)

Below are file formats with unix/linux-style octal numbers (unknown if they are serious

about using that formats, or if they do consider them as decently amusing, or

whatever).

Compression

TAR and CPIO are uncompressed archives, however, they are usually enclosed in a

compressed Gzip file (or some other compression format like nCompress, Bzip2).

TAR format (1979)

TAR Chunk format:

 0000h .. TAR Chunk(s)
 ... 400h TAR End Marker (400h bytes zerofilled)
 Zerofilled (whatever further padding)

 000h 100 text Filename ("path/filename.ext",00h)
 064h 8 octal Mode Flags
 06Ch 8 octal User ID
 074h 8 octal Group ID
 07Ch 12 octal Filesize
 088h 12 octal File modification time (seconds since 01 Jan 1970)
 094h 8 octal Header Checksum (sum of byte[0..1F3h], with [94h..9Bh]=20h)
 09Ch 1 text Type (00h or "0" for normal files)
 09Dh 100 text Whatever link name
 101h 8 text Tar ID (6x00h or "ustar",00h,"00" or "ustar ",00h)
 109h 32 text User Name (owner)
 129h 32 text Group Name
 149h 8 octal Device major ;\device number (when Type="4")
 151h 8 octal Device minor ;/

13.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

- 519/1136 -

TAR numeric values are weirdly stored as octal ASCII strings, often decorated with leading

or trailing spaces. For example, 8-byte octal value 123o (53h) can look as so (with "."

meaning 00h end-byte):

See also: https://www.gnu.org/software/tar/manual/html_node/Standard.html

CPIO Format (1977) (and MAC .PAX files)

The chunks are simple, but they do exist in five weirdly different variants:

Binary, little-or-big-endian:

 159h 155 ? Whatever prefix ;-when ID="ustar",00h,"00" or 6x00h
 159h 131 ? Whatever prefix ;\
 1DCh 12 octal File access time ; when ID="ustar ",00h
 1E8h 12 octal File status-change time ;/
 1F4h 12 - Zeropadding to 200h-byte boundary
 200h .. - File data (Filesize bytes)
 - Zeropadding to 200h-byte boundary

 "0000123." <-- normal weirdness, with leading zeroes and end-byte ("."=00h)
 " 123 . " <-- extra weird, leading/trailing spaces, mis-placed end-byte
 " 123 " <-- extra weird, leading/trailing spaces, without end-byte

 0000h .. CPIO Chunk(s) (with actual files)
 ... 57h CPIO Chunk (with filename "TRAILER!!!",00h)
 Zeropadding to 200h-byte boundary (not always present)

 Align 2, Binary, little-endian (but partial "big-endian" for 2x16bit pairs)
 Align 2, Binary, big-endian
 Align 1, Ascii, octal strings
 Align 4, Ascii, hexadecimal lowercase strings, checksum=0)
 Align 4, Ascii, hexadecimal lowercase strings, checksum=sum of bytes in file)

 000h 2 binary 16bit ID (71C7h) ;-little-or big endian
 002h 2 binary 16bit dev ;\
 004h 2 binary 16bit ino ; same
 006h 2 binary 16bit mode ; endianness
 008h 2 binary 16bit uid ; as in ID
 00Ah 2 binary 16bit gid ;
 00Ch 2 binary 16bit nlink ; (but be aware
 00Eh 2 binary 16bit rdev ; of the fixed
 010h 2 binary 16bit File modification time, upper 16bit ;\ ; upper/lower
 012h 2 binary 16bit File modification time, lower 16bit ;/ ; 16bit order
 014h 2 binary 16bit Filename size (including ending 00h) ; for time and
 016h 2 binary 16bit Filesize, upper 16bit ;\ ; filesize)
 018h 2 binary 16bit Filesize, lower 16bit ;/ ;/
 01Ah .. text Filename, terminated by 00h ("path/filename",00h)
 binary Zeropadding to 2-byte boundary

13.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

- 520/1136 -

https://www.gnu.org/software/tar/manual/html_node/Standard.html

Ascii/octal CPIO Chunk format:

Ascii/hex CPIO Chunk format:

CPIO numeric values are weird octal ASCII strings (eg. 6-byte "000123"), but, unlike TAR,

without extra oddities like spaces or end-bytes.

https://www.systutorials.com/docs/linux/man/5-cpio/

RPM Format (1997) (BIG-ENDIAN)

RPM files contain Linux installation packages. The RPM does basically contain a CPIO

archive bundled with additional header/records with installation information.

 binary File data (Filesize bytes)
 binary Zeropadding to 2-byte boundary

 000h 6 octal 18bit ID "070707" (=71C7h)
 006h 6 octal 18bit dev ;\unique file id
 00Ch 6 octal 18bit ino ;/within archive
 012h 6 octal 18bit Mode (file attributes)
 018h 6 octal 18bit User ID of owner
 01Eh 6 octal 18bit Group ID
 024h 6 octal 18bit nlink (related to duplicated dev/ino?)
 02Ah 6 octal 18bit rdev (system-defined info on char/blk devices)
 030h 11 octal 33bit File modification time
 03Bh 6 octal 18bit Filename size (including ending 00h)
 041h 11 octal 33bit Filesize
 04Ch .. text Filename, terminated by 00h ("path/filename",00h)
 binary File data (Filesize bytes)

 000h 6 hex 24bit ID "070701"=Without Checksum, or "070702"=With Checksum
 006h 8 hex 32bit ino (does that 32bit value include 16bit "dev"?)
 00Eh 8 hex 32bit mode
 016h 8 hex 32bit uid
 01Eh 8 hex 32bit gid
 026h 8 hex 32bit nlink
 02Eh 8 hex 32bit mtime
 036h 8 hex 32bit Filesize
 03Eh 8 hex 32bit devmajor
 046h 8 hex 32bit devminor
 04Eh 8 hex 32bit rdevmajor
 056h 8 hex 32bit rdevminor
 05Eh 8 hex 32bit Filename size (including ending 00h)
 066h 8 hex 32bit Checksum, sum of all bytes in file, zero when ID=070701
 06Eh .. text Filename, terminated by 00h ("path/filename",00h)
 binary Zeropadding to 4-byte boundary
 binary File data (Filesize bytes)
 binary Zeropadding to 4-byte boundary

13.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

- 521/1136 -

https://www.systutorials.com/docs/linux/man/5-cpio/

File Header (aka Lead) (60h bytes):

Signature/Info Records (10h+N*10h+SIZ bytes):

Item Type values:

Item Tag values:

RPM source code packages are often bundled with a .spec file (inside of the CPIO

archive), that .spec file contains source code in text format for creating the RPM header/

records.

 000h 60h File Header (officially called "Lead" instead of "Header")
 060h .. Signature Record (contains "Header Record" in "Signature format")
 Padding (to 8-byte boundary)
 Info Record (called "Header" and also uses "Signature format")
 Archive file (usually a GZIP compressed CPIO) (called "Payload")

 000h 4 File ID (EDh,ABh,EEh,DBh) (aka octal string "\355\253\356\333")
 004h 1 Major version (3)
 005h 1 Minor version (0)
 006h 2 Type (0=Binary Package, 1=Source Package)
 008h 2 Architecture ID (defined in ISO/IEC 23360)
 00Ah 66 Package name, terminated by 00h
 04Ch 2 Operating System ID (1)
 04Eh 2 Signature Type (5)
 050h 16 Reserved space (officially undefined, usually zerofilled)

 000h 4 Record ID (8Eh,ADh,E8h,01h) (aka octal string "\216\255\350\001")
 004h 4 Reserved (zerofilled) (aka octal string "\000\000\000\000")
 008h 4 Number of Item List entries (N)
 00Ch 4 Size of Item Data (SIZ)
 010h N*10h Item List (4x32bit each: Tag, Type, Offset, Size)
 ... SIZ Item Data (referenced via Offset/Size entries in above list)

 00h=NULL Not Implemented
 01h=CHAR Unknown, maybe unsigned 8bit (unaligned)
 02h=INT8 Unknown, maybe signed 8bit (unaligned)
 03h=INT16 Unknown, maybe signed 16bit (align2)
 04h=INT32 Unknown, maybe signed 323bit (align4)
 05h=INT64 Reserved, maybe signed 643bit (maybe align8)
 06h=STRING Variable, NUL terminated string (unaligned)
 07h=BIN Unknown, reportedly 1-byte size??? (unaligned)
 08h=STRING_ARRAY Variable, Sequence of NUL terminated strings (unaligned)
 09h=I18NSTRING Variable, Sequence of NUL terminated strings (unaligned)

 There are dozens of required & optional tag values defined.

13.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)

- 522/1136 -

File Extensions

13.110 CDROM File Compression MacBinary, BinHex, PackIt,

StuffIt, Compact Pro

Below are related to MAC filesystems (where the file body consists of separate Data and

Resource forks), and file type/creator values (resembling filename extensions).

MacBinary I,II,III format (v1,v2,v3)

MacBinary contains a single uncompressed file, used for transferring MAC files via

network, or storing MAC files on non-MAC filesystems.

PackIt/StuffIt archives do often have leading MacBinary headers. MacBinary doesn't

have any unique filename extension (.bin may be used, more often it's using the same

extension as the enclosed file, eg. .sit if it contains a StuffIt archive).

Also, archives without explicit MAC support may use MacBinary format within

compressed files (eg. LZH archives created with LHA MAC version).

 Basic extensions:
 .cpio (CPIO)
 .pax (CPIO for MAC)
 .rpm (RPM installation package for RPM package manager)
 .spec (RPM source file for creating RPM header/records)
 .tar (TAR, tape archive)
 Double extensions (and short forms like tgz):
 .tgz short for .tar.gz (gzip)
 .tbz short for .tar.bz2 (bzip2)
 .txz short for .tar.xz (XZ)
 .tlz short for .tar.lz (Lzip) or .tar.lzma (LZMA_Alone)
 .tzst short for .tar.zst (zstandard)
 .tsz short for .tar.sz (Sunzip)
 .taz short for .tar.Z (nCompress or possibly some other compressed format)
 .tz short for .tar.Z (nCompress or possibly some other compressed format)
 .spm short for .src.rpm (RPM source code package)

 000h 1 Old version number, must be kept at zero for compatibility
 001h 1 Length of filename (1..63) (though v3 says 1..31)
 002h 63 Filename (only "length" bytes are significant)
 041h 4 File type (normally expressed as four characters)
 045h 4 File creator (normally expressed as four characters)
 049h 1 Finder flags, bit8-15 (see [065h] for bit0-7)
 04Ah 1 Zero (must be 00h for compatibility)
 04Bh 2 File Vertical position within its window
 04Dh 2 File Horizontal position within its window
 04Fh 2 File Window or folder ID

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 523/1136 -

CRC16-XMODEM: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

BinHex 4.0 (.hqx) (ASCII, RLE90, big-endian)

Decoding binhex files is done via following steps (in that order):

ASCII to BINARY:

 051h 1 Protected flag (bit0=Protected, whatever that is)
 052h 1 Zero (must be 00h for compatibility)
 053h 4 Filesize, Data Fork (0=None)
 057h 4 Filesize, Resource Fork (0=None)
 05Bh 4 File Timestamp, creation
 05Fh 4 File Timestamp, last modification
 063h 27 v1: Reserved (zerofilled)
 063h 2 v2/v3: Length of Get Info comment (if any, usually 0000h)
 065h 1 v2/v3: Finder Flags, bit0-7 (see [049h] for bit8-15)
 066h 6 v2: Reserved (zerofilled)
 066h 4 v3: ID ("mBIN"=MacBinary III)
 06Ah 1 v3: Script of file name (from fdScript field of an fxInfo record)
 06Bh 1 v3: Extended Finder flags (from fdXFlags field of fxInfo record)
 06Ch 8 v2/v3: Reserved (zerofilled)
 074h 4 v2/v3: Length of "total files" when "packed files are unpacked", uh?
 078h 2 v2/v3: Extended Header size (reserved for future, always 0000h)
 07Ah 1 v2/v3: MacBinary II uploader version (81h=v2, 82h=v3)
 07Bh 1 v2/v3: MacBinary II downloader minimum version (81h=v2)
 07Ch 2 v2/v3: CRC16-XMODEM on [000h..07Bh]
 07Eh 2 Reserved for computer type and OS ID (0000h)
 Extended Header (if any, maybe stored here? when [078h]>0)
 Padding to 80h-byte boundary
 Data Fork (if any)
 Padding to 80h-byte boundary
 Resource Fork (if any)
 Padding to 80h-byte boundary
 Get Info comment (if any, usually none)

 1) ASCII to BINARY conversion (similar to BASE64)
 2) RLE90 decompression of whole file (header+data+resource+crc's)
 3) Processing the header+data+resource from the decompressed binary
 4) For Multipart files, repeat above steps for each part

 The file may start with some text message, comments, description. Skip any
 such text lines until reaching a line that contains this 45-byte ID string:
 (This file must be converted with BinHex 4.0)
 That line should be followed by following characters (each char representing
 6bit binary value, MSB first, first char is bit7-2 of first byte):
 !"#$%&'()*+,- char(21h..2Dh) --> bin(00h..0Ch)
 0123456 char(30h..36h) --> bin(0Dh..13h)
 89 char(38h..39h) --> bin(14h..15h)
 @ABCDEFGHIJKLMN char(40h..4Eh) --> bin(16h..24h)
 PQRSTUV char(50h..56h) --> bin(25h..2Bh)

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 524/1136 -

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

RLE90 Decompression:

Decompressed Binary (big-endian):

Multipart files:

 XYZ[char(58h..5Bh) --> bin(2Ch..2Fh)
 `abcdef char(60h..66h) --> bin(30h..36h)
 hijklm char(68h..6Dh) --> bin(37h..3Ch)
 pqr char(70h..72h) --> bin(3Dh..3Fh)
 : char(3Ah) --> start/end marker
 CR/LF char(0Dh/0Ah) --> linebreaks per 64 chars (CR and/or LF)
 SPC/TAB char(09h/20h) --> blanks (reportedly in some files)

 RLE90 decompression is same as in ARC files, except, code 90h,00h is handled
 differently: ARC keeps prevbyte=unchanged, BinHex sets prevbyte=90h.
 RLE90 compression is somewhat optional: 90h must be encoded as 90h,00h,
 but many encoders don't bother to compress repeating bytes (eg. many files
 contain "!!!!!!!!" chars aka uncompressed 00h-filled bytes).
 There is no way to know the decompressed size before decompression (either
 decompress the whole file and allocate more memory as needed, or decompress
 only the header (filename+16h bytes) and then compute decompressed size as
 filename+16h+data+2+resource+2 bytes).

 The decompressed binary contains following data (similar as MacBinary):
 00h 1 Length of Filename (1..63)
 01h .. Filename ("FILENAME.EXT")
 01h+N 1 Version (00h)
 02h+N 4 File Type
 06h+N 4 File Creator
 0Ah+N 2 Finder Flags
 0Ch+N 4 Filesize, uncompressed, Data Fork
 10h+N 4 Filesize, uncompressed, Resource Fork
 14h+N 2 Header CRC16-XMODEM on uncompressed 14h+N bytes
 16h+N .. Data Fork
 ... 2 Data Fork CRC16-XMODEM on uncompressed Data Fork
 Resource Fork
 ... 2 Resource Fork CRC16-XMODEM on uncompressed Resource Fork
 Padding (might reportedly occur in some files)
 Caution: There is a document that does claim that the CRC field should be be
 set to 0000h before CRC calculation, and that the CRC would be computed on
 Size+2 bytes (up to including he CRC field), that appears to be nonsense,
 the CRC is computed on Size+0 bytes, not Size+2.

 Emails or other text documents may contain multiple binhex files, if so,
 each part should be reportedly followed by a line containing:
 --- end of part NN ---
 Unknown if there are any .hqx files with such multipart stuff.
 Unknown if the next part starts with "(This file must.." or just with ":".

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 525/1136 -

Note: Many files with .hqx extension are actually raw .sit or .cpt files (maybe because

somebody had removed the binhex encoding without altering the filename extension).

PackIt (.pit) (Macintosh) (1986) (big-endian)

MAC File Type,Creator IDs = "PIT ","PIT " \<-- normal (=uncompressed?)

MAC File Type,Creator IDs = "PIT ","UPIT" \<-- other (=compressed?)

 Bitstream for Uncompressed File Entries:
 32bits Uncompressed Header[000h..003h] (Method/Crypto="PMag")
 ..bits Uncompressed Header[004h..061h] (uncompressed size = 5Eh)
 ..bits Uncompressed Data+Resource+CRC (uncompressed size = Data+Rsrc+2)
 Bitstream for Compressed File Entries:
 32bits Uncompressed Header[000h..003h] (Method/Crypto="PMa4")
 ..bits Compressed Huffman Tree (for decoding following bits)
 ..bits Compressed Header[004h..061h] (uncompressed size = 5Eh)
 ..bits Compressed Data+Resource+CRC (uncompressed size = Data+Rsrc+2)
 ..bits Padding to 8bit-boundary (byte align next File Entry)
 Bitstream for Archive End Marker (after last file):
 32bits Uncompressed Header[000h..003h] (Method/Crypto="PEnd")
 File Entry Format:
 000h 4 Method/Crypto (usually "PMag"=Uncompressed, "PMa4"=Huffman)
 004h 1 Filename length
 005h 63 Filename ("FILENAME", garbage padded)
 044h 4 File Type
 048h 4 File Creator
 04Ch 2 Finder flags
 04Eh 2 Locked?
 050h 4 Filesize, uncompressed, Data fork
 054h 4 Filesize, uncompressed, Resource fork
 058h 4 Timestamp, creation
 05Ch 4 Timestamp, modification
 060h 2 CRC16-XMODEM on [004h..05Fh]
 Data Fork
 Resource Fork
 ... 2 CRC16-XMODEM on uncompressed Data+Resource forks
 Method/Crypto:
 "PEnd" = Archive End marker (4-byte end marker, without filename etc.)
 "PMag" = Uncompressed
 "PMa1" = Uncompressed, Encrypted Simple
 "PMa2" = Uncompressed, Encrypted DES
 "PMa3" = Uncompressed, Encrypted reserved
 "PMa4" = Huffman
 "PMa5" = Huffman, Encrypted Simple
 "PMa6" = Huffman, Encrypted DES
 "PMa7" = Huffman, Encrypted reserved
 Decompression: ;for PackIt (and also for StuffIt method 03h)
 InitBitstreamMsbFirst(src) ;-src is after "PMa4" PackIt ID
 tree=GetMem(200h*4) ;-alloc tree (probably less needed)
 num_entries=0 ;\init tree
 root=GetTreeEntry ;/
 while dst<dst_end ;-decompress, till end...

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 526/1136 -

http://www.network172.com/early-mac-software/packit-source-code/ - official

StuffIt (.sit) (Macintosh) (old format) (1987) (big-endian)

MAC File Type,Creator IDs = "SIT!","SIT!" (version=01h).

MAC File Type,Creator IDs = "SITD","SIT!" (version=02h).

MAC File Type,Creator IDs = "APPL","STi0" (whatever, with ID="ST65")

 index=root ;\
 while index<FF00h ; huffman decode
 index=[tree+index*4+GetBits(1)*2] ;/
 [dst]=index AND FFh, dst=dst+1 ;-store data
 return
 ;---
 GetTreeEntry:
 if GetBits(1)=1 then
 return GetBits(8)+FF00h ;-final data entry
 else
 index=num_entries ;-current index
 num_entries=num_entries+1 ;-alloc next index
 [tree+index*4+0*2] = GetTreeEntry ;-recursive call for node0
 [tree+index*4+1*2] = GetTreeEntry ;-recursive call for node1
 return index

 StuffIt Archive Header:
 000h 4 ID ("SIT!", short for StuffIt)
 Reportedly, there are several alternate IDs:
 "SIT!","ST46","ST50","ST60","ST65","STin","STi2","STi3","STi4"
 Unknown why, and if some do differ somehow (ST65 appears to be
 same as SIT!) (for STi, the "i" might be short for it? installer?)
 004h 2 Number of entries in root directory
 006h 4 Total size of archive
 00Ah 4 ID ("rLau", short for Raymond Lau)
 00Eh 1 Version number (01h=v1.x-v1.5.x, 02h=v1.6-v4.5)
 00Fh 7 Reserved (zerofilled) ;-when version=01h
 00Fh 1 Unknown (C6h or FFh) ;\
 010h 4 Offset to first root entry (16h or elsewhere!) ; when version=02h
 014h 2 Unknown (0001h or FFFFh) ;/
 File Entries:
 000h 1 Compression method, Resource fork
 001h 1 Compression method, Data fork
 002h 1 Filename length (1..63 for version=01h, 1..31 for version=02h)
 003h 1Fh Filename ("FILENAME.EXT", garbage padding)
 022h 20h Filename further chars ;-when version=01h
 022h 2 Filename+size CRC ;\
 024h 2 Unknown (always 0000h or 0986h?) ; when version=02h
 026h 4 Unknown Resource fork related ;maybe window ;
 02Ah 4 Unknown Data fork related ;coords ? ;
 02Eh 1 Unknown Data fork related ;
 02Fh 1 Unknown Resource fork related ;
 030h 2 Number of child entries (excluding End marker) ;

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 527/1136 -

http://www.network172.com/early-mac-software/packit-source-code/

Common methods are 02h,03h,0Dh (rarely also 00h,01h,05h) (and 0Fh for StuffIt5).

Folders have BOTH methods set to 20h. Uncompressed Data size is WHAT? (maybe sum

of all decompressed files in that folder?) Compressed Data size is size in SIT file including

70h-byte folder end-marker. The Folder END marker has both methods set to 21h. The

Folder END marker has NONSENSE data size entries?

When version=01h (eg. blackfor.sit), folder/file entries start at offset 16h, and are

ordered as so:

 032h 4 Offset to previous entry ;
 036h 4 Offset to next entry ;
 03Ah 4 Offset to parent entry ;
 03Eh 4 Offset to first child (or -1 for file entries) ;/
 042h 4 File type (eg. "APPL")
 046h 4 File creator (eg. "ACTA")
 04Ah 2 Finder flags (2100h)
 04Ch 4 Creation date
 050h 4 Modification date
 054h 4 Filesize, uncompressed, Resource fork (0=None)
 058h 4 Filesize, uncompressed, Data fork (0=None)
 05Ch 4 Filesize, compressed, Resource fork (0=None)
 060h 4 Filesize, compressed, Data fork (0=None)
 064h 2 CRC16 on uncompressed(?) Resource fork (0=None)
 066h 2 CRC16 on uncompressed(?) Data fork (0=None)
 068h 1 Pad bytes for encrypted Resource? (00h)
 069h 1 Pad bytes for encrypted Data? (00h)
 06Ah 2 Unknown Data fork related (0000h, or 0004h=Encrypted?)
 06Ch 2 Unknown Resource fork related (0000h, or 0004h=Encrypted?)
 06Eh 2 CRC16 on Header [000h..06Dh] with initial=0000h
 070h .. Compressed Data, Resource fork (if any) (size=[05Ch])
 Compressed Data, Data fork (if any) (size=[060h])
 StuffIt Methods:
 00h Uncompressed
 01h RLE90 (same as... unknown if this is like BinHex, or like ARC)
 02h ClearGap LZW (same as nCompress, 14bit, with Clear(+gap), no Stop code)
 03h Huffman (same as PackIt "PMa4" method)
 05h LZHUF (same as LHA "lh1" method)
 06h Fixed Huffman Segmented. PackBits, then optional Huffman coding.
 The set of Huffman codes is predefined, but the meaning
 of a code can be different in each segment
 08h MW (Miller-Wegman, presumably LZMW)
 0Dh LZ+Huffman (?) ;-StuffIt and StuffIt5
 0Eh Installer (uh?)
 0Fh Arsenic (BWT and arithmetic coding) ;-StuffIt5 only?
 1xh Encrypted methods (same as above, plus encryption)
 20h Folder start ;\StuffIt (not StuffIt5)
 21h Folder end ;/

 Folder start
 Child entries
 Folder end
 Folder start

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 528/1136 -

When version=02h (eg. cabletron.sit), folder/file entries start at offset from archive

header [010h] (which can be anywhere at offset 16h, or near end of archive), and are

ordered as specified in file header entries [022h..041h].

StuffIt 5 (.sit) (Macintosh, Windows) (1997) (big-endian)

 Child entries
 Folder end

 StuffIt Archive Header:
 000h 82 ID "StuffIt (c)1997",...,"/StuffIt/",0Dh,0Ah,1Ah,00h)
 052h 1 Version (always 05h)
 053h 1 Flags (can be 00h, 10h, 80h) (bit4=what?, bit7=Encrypted)
 054h 4 Total size of archive
 058h 4 Offset to first entry in root directory (64h, plus Extra Data)
 05Ch 2 Number of entries in root directory
 05Eh 4 Same as [058h] (maybe one is 1st entry, and other is Header size)?
 062h 2 Header CRC16 on [000h..[05xh]-1] with [062h]=0000h and initial=0
 064h .. Extra Data (see below)
 File/Folder entries
 Extra data can be:
 None (when [58h]=64h) ;with Flags=00h
 05h,76h,35h,B9h,87h,11h ;maybe 05h=Length? ;with Flags=80h=crypto
 0Dh,A5h,A5h,"Reserved",A5h,A5h,00h) ;maybe 0Dh=Length? ;with Flags=10h=what?
 File/Folder entries:
 000h .. Base Header
 OS Header (depending on OS Type in Base Header)
 Resource fork (if any) (MAC only, not Windows)
 Data fork (if any)
 Base Header:
 000h 4 ID (A5A5A5A5h) (or B4B4B4B4h=corrupted charset conversion maybe?)
 004h 1 OS Type (1=Mac, 3=Windows)
 005h 1 Unknown (0)
 006h 2 Base Header size (41h) (30h+IV?+Filename+Comment)
 008h 1 Unknown (0) (maybe Flags MSB?)
 009h 1 Flags (bit3=Comment, bit6=Folder, bit5=Encrypted)
 00Ah 4 Timestamp, Creation (Mac OS format, seconds since 1904)
 00Eh 4 Timestamp, Modification (Mac OS format, seconds since 1904)
 012h 4 Offset of previous entry (0=None)
 016h 4 Offset of next entry (0=None)
 01Ah 4 Offset of parent folder entry (0=None)
 01Eh 2 Filename size (F)
 020h 2 Base Header CRC-16 on [000h..[006h]-1]
 022h (4) Offset of first child entry in folder (FFFFFFFFh=End) ;\Folder
 026h (4) Size of complete directory ; (if Flags
 02Ah (4) Unknown ; bit6=1)
 02Eh (2) Number of child entries (excluding folder End marker) ;/
 022h (4) Data fork uncompressed size ;\
 026h (4) Data fork compressed size ;
 02Ah (2) Data fork CRC-16 (0 for method 0Fh) ; File
 02Ch (2) Data fork Unknown (0000h) ; (if Flags
 02Eh (1) Data fork compression method (00h,0Dh,0Fh) ; bit6=0)

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 529/1136 -

StuffIt 5 seems to only use 00h, 0Dh and 0Fh. See "StuffItSpecs" for descriptions of the

algorithms.

StuffIt X (.sitx) (Macintosh, Windows) (20xx?)

The StuffIt X headers are somehow compressed/compacted (there are very few 00h bytes

even when filesize entries should have zeroes in MSBs).

https://github.com/incbee/Unarchiver/blob/master/XADMaster/XADStuffItXParser.m

 02Fh (1) Data fork Encryption IV? size ;
 ... (..) Data fork Encryption IV? data ;/
 File/Folder name ("FILENAME.EXT")
 ... (2) Comment size (K) ;\Comment
 ... (2) Comment Unknown (0) ; (if Flags
 ... (..) Comment data ;/bit3=1)
 OS Header for Mac (OS=1):
 000h 2 Flags2 (bit0=HasResource, bit4=same as archive header [053h] ?)
 002h 2 CRC16 on OS Header (with [002h]=0000h, initial=0)
 004h 4 Mac OS file type ;\
 008h 4 Mac OS file creator ; as so for Files
 00Ch 2 Mac OS Finder flags ; (seems to contain
 00Eh 2 Mac OS Unknown ; other stfuff/junk
 010h 4 Mac OS Unknown ; for Folders)
 014h 4 Mac OS Unknown ;
 018h 4 Mac OS Unknown ;
 01Ch 4 Mac OS Unknown ;
 020h 4 Mac OS Unknown ;/
 024h (4) Resource fork uncompressed size ;\
 028h (4) Resource fork compressed size ; only if
 02Ch (2) Resource fork CRC-16 (0 for method 0Fh) ; Flags2
 02Eh (2) Resource fork Unknown ; bit0=1
 030h (1) Resource fork compression method ;
 031h (1) Resource fork Encryption IV? size ;
 ... (..) Resource fork Encryption IV? data ;/
 OS Header for Windows (OS=3):
 000h 2 Flags 2 (bit4=same as archive header [053h] ?)
 002h 2 CRC16 on OS Header (with [002h]=0000h, initial=0)
 004h 4 Windows File Attribute (20h=Normal, 10h=Folder)
 008h 08h Windows Zerofilled
 010h 4 Windows Timestamp last accessed?
 014h 4 Windows Unknown (0005xxxxh)
 018h 08h Windows Zerofilled

 StuffIt Archive Header:
 000h 8 ID "StuffIt!" (reportedly "StuffIt?" also exists)
 008h .. Unknown...

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 530/1136 -

https://github.com/incbee/Unarchiver/blob/master/XADMaster/XADStuffItXParser.m

Compact Pro aka Compactor (.cpt) (Macintosh) (1990s) (big-endian)

MAC File Type,Creator IDs = "PACT","CPCT".

Compact Pro (originally called Compactor) was a MAC archiver competing with StuffIt.

There's also a DOS tool (ExtractorPC) for extracting .cpt files on PCs (albeit released

in .EXE.sit.hqx format, making it unlikely that PC users could have used it).

RLE8182 Compression:

 Archive header:
 000h 1 File ID (always 01h)
 001h 1 Volume number (01h for single-volume, Other=Unknown)
 002h 2 Random Volume ID? (...must be same in all split volume files?)
 004h 4 Offset to Footer (from begin of file)
 008h .. Compressed files (resource+data fork pairs)
 Footer (directory information)
 Footer format:
 000h 4 CRC32 XOR FFFFFFFFh on following bytes
 004h 2 Number of entries in root folder (including all child entries)
 006h 1 Comment length (usually 00h=None)
 007h N Comment
 007h+N .. File/Folder entries
 Folder entries, with [000h].bit=1:
 000h 1 Foldername length (N), plus bit7=Type (1=Folder)
 001h N Foldername ("FOLDERNAME")
 001h+N 2 Number of entries in this folder (including all child entries)
 File entries, with [000h].bit=0:
 000h 1 Filename length (N), plus bit7=Type (0=File)
 001h N Filename ("FILENAME.EXT")
 001h+N 1 Volume number (01h for single-volume, Other=Unknown)
 002h+N 4 Offset to compressed Resource (followed by compressed Data)
 006h+N 4 File type
 00Ah+N 4 File creator
 00Eh+N 4 Timestamp, creation (seconds since 1904)
 012h+N 4 Timestamp, modification (seconds since 1904)
 016h+N 2 Finder flags
 018h+N 4 CRC32 XOR FFFFFFFFh on uncompressed Resource + Data forks
 01Ch+N 2 Method/Flags (see below)
 01Eh+N 4 Filesize, uncompressed, Resource fork
 022h+N 4 Filesize, uncompressed, Data fork
 026h+N 4 Filesize, compressed, Resource fork
 02Ah+N 4 Filesize, compressed, Data fork
 Method/Flags:
 0 Encryption (0=None, 1=Encrypted, unknown how)
 1 Method for Resource fork (0=RLE8182, 1=RLE8182+LZSSHUF)
 2 Method for Data fork (0=RLE8182, 1=RLE8182+LZSSHUF)
 3-15 Unknown/unused (0)
 Note: RLE8182 and RLE8182+LZSSHUF are also used by Mac DiskDoubler.

 This is same as RLE90, with two-byte escape code (81h,82h instead of 90h):
 81h,82h,00h Output 81h,82h

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 531/1136 -

LZSSHUF Compression:

DecompressLzsshuf:

 81h,82h,01h..03h Output prevbyte 00h..02h times (this is not useful)
 81h,82h,04h Output prevbyte 03h times (useful if prev=81h, next=82h)
 81h,82h,05h..FFh Output prevbyte 04h..FEh times (this does save memory)
 81h,xxh Output 81h, and then process xxh
 81h,padding Output 81h, at end of file (with padding<>82h)
 xxh Output xxh (unless it is 81h)
 Note: prevbyte is the previous output byte (ie. that stored at [dst-1]).
 If the uncompressed file ends with 81h, then the compressed file MUST contain
 a dummy padding byte (the RLE decoder in macutils sets a prefix flag upon 81h,
 but doesn't output it to dst until receiving the padding byte, which could be
 81h, or any value other than 82h).

 This uses LZSS-style flag bits (to distinguish between data and len/disp),
 combined with three Huffman trees (for data, len, disp values). The sliding
 window is 2000h bytes (8Kbytes). The format appears to be a simplified variant
 or LHA compression (but gets complicated by inventing weird corner cases).

 if uncompressed_size=0 then goto @@all_done ;-empty (eg. for unused forks)
 [dst+0000h..1FFCh]=uninitialized ;\
 [dst+1FFDh..1FFFh]=00h,00h,00h ; prefill sliding window
 dst+dst+2000h ;/
 @@block_lop:
 InitBitstreamMsbFirst(src)
 GetLzsshufTree(data_tree,100h) ;tree for data=00h..FFh
 GetLzsshufTree(len_tree,40h) ;tree for len=00h..3Fh (0,1 usually unused)
 GetLzsshufTree(disp_tree,80h) ;tree for dispUpper7bit=00h..7Fh
 block_org=src, blocksize=0 ;block origin (after above trees)
 @@decompress_lop:
 if src>=src_end then goto @@all_done ;<-- this may overshoot on padding bits
 if out>=out_end then goto @@all_done ;<-- more precise; if RleOnTheFly
 if blocksize>=1FFF0h AND type=CompactPro then goto @@block_done
 if blocksize>=0FFF0h AND type=Disc Double then goto @@block_done
 if GetBits(1)=1 then
 [dst]=GetHuffCode(data_tree), dst=dst+1, blocksize=blocksize+2
 else
 len=GetHuffCode(len_tree)+0, blocksize=blocksize+3
 disp=GetHuffCode(disp_tree)*40h+GetBits(6), if disp=0000h then disp=2000h
 for i=1 to len, [dst]=[dst-disp], dst=dst+1, next i
 if RleOnTheFly then forward above byte(s) to RLE (which advances "out" ptr)
 goto @@decompress_lop
 @@block_done:
 ;the decoder does prefetch data in 16bit units, and it does always have
 ;16..31 bits prefetched, these bits are discarded at block end...
 src=src+2+((src-block_org) AND 1) ;discard 16..31 bits (till 16bit-boundary)
 goto @@block_lop ;start next block, with new trees
 @@all_done:
 ret

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 532/1136 -

GetLzsshufTree(tree,max):

Minor Corner cases:

Incomplete Trees

End of Last Block

See also:

https://github.com/dgilman/macutils/blob/master/macunpack/cpt.c - source code

https://github.com/MacPaw/XADMaster/wiki/CompactProSpecs - confused anti-specs

Self-Extracting Archives (SEA)

The abbreviation SEA (and extension .sea) is used for several self-extracting MAC

archives. The Resource fork contains an executable (as indicated by Type="APPL") which

 num=GetBits(8)*2, if num>max then goto error ;number of symbols (00h and up)
 for i=0 to num-1, codesizes[i]=GetBits(4) ;sizes (1..15 bits, or 0=unused)
 lzh_explode_tree(tree,codesizes,num) ;alike LHA trees
 ret

 Disp=0 acts as Disp=2000h (don't care when using ringbuf[index AND 1FFFh])
 Len=0..1 could be definied in the len_tree (but are usually size=0bit=unused)
 Unknown if disp_tree & len_tree can be empty (when using data_tree only)?
 RLE ending with 81h,padding should only output 81h (see RLE8182 description)

 A few .cpt files (eg. ABC's-1.09.cpt.hqx\..\Colin's ABC's\Message.h) have
 incomplete trees (like only one disp code, "0"=DispUpper7bit=00h, without
 defining any further huffman codes like "1" or "1xxx").
 This isn't much of a problem (except, one may need to remove incomplete tree
 error checking in the "lzh_explode_tree" function).

 End of Last Block is usually determined by forwarding the LZSSHUF output
 directly to the RLE8182 decompressor (which does then check if uncompressed
 size is reached) (marked "RleOnTheFly" in above sample code).
 Alternately, one could decompress in separate steps (LZSSHUF to tempbuf, and
 then tempbuf to RLE8182), but that requires to deal with padding bits.
 - padding seems to be 16..31 bits (?) alike at end of blocksize
 - padding bits are (always?) zeroes, which act as flag=0=compressed
 - compressed data occupies at least flg(1),len(1),disp(1),displsbs(6)=9bits
 That can lead to decoding a few extra codes (with lengths up to 3Fh each),
 so the tempbuf must have trailing space for writing that garbage padding.
 And, those padding bits tend to translate to disp=0000h (aka disp=2000h),
 which can cause reads from the whole sliding window, so tempbuf requires
 2000h leading bytes to avoid page faults (not just the 3 initialized bytes).

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 533/1136 -

https://github.com/dgilman/macutils/blob/master/macunpack/cpt.c
https://github.com/MacPaw/XADMaster/wiki/CompactProSpecs

contains the decompressor, and the Data fork contains the archive.

There are some oddities for .sea files found in internet:

Note: Not to be confused with ARC archives from System Enhancement Associates (SEA).

Mac OS Data forks

The Data fork contains the "normal data" part of the file (eg. anything

like .TXT .DOC .GIF .JPG .WAV .ZIP .LZH .SIT .PIT .CPT etc).

Mac OS Resource forks

The Resource fork can contain executable code resources (similar to .EXE files; with File

Type="APPL"), and various other resources (fonts, icons, text strings for dialog boxes,

etc). Those resources are stored in a filesystem-style archive and can be accessed with

IDs and/or name strings.

 MAC File Type,Creator IDs = "APPL","aust" (StuffIt).
 MAC File Type,Creator IDs = "APPL","EXTR" (CompactPro).
 MAC File Type,Creator IDs = "APPL","DSEA" (DiskDoubler).

 StuffIt .sea files: These are often raw StuffIt archives (apparently
 somebody had removed the MacBinary header and the resource fork with
 the decompressor).
 CompactPro .sea files: These are often stored as MacBinary without 80h-byte
 padding appended to the Data and Resource forks.
 That applies to "Santa.sea" but other such files have OTHER corruptions,
 which may include wrong Size and/or garbage in reserved MacBinary fields?

 Resource fork Header:
 000h 4 Offset to Resource Data section (from start of file) (100h)
 004h 4 Offset to Resource Map section (from start of file) (100h+DataSiz)
 008h 4 Size of Resource Data section (can be 0=None)
 00Ch 4 Size of Resource Map section
 010h F0h Unknown (can contain filename/type.. MAYBE just garbage padding?)
 100h .. Resource Data section, contains Data Record(s)
 Resource Map section
 Data Record(s) in Resource Data section (usually at offset 100h and up):
 000h 4 Size of Data for this record
 004h .. Data for this record
 Resource Map section:
 000h 4 Offset to Resource Data section (from start of file) ;\
 004h 4 Offset to Resource Map section (from start of file) ; same as in
 008h 4 Size of Resource Data section ; header
 00Ch 4 Size of Resource Map section ;/
 010h 4 Zero (internally used by Resource Manager, nextResourceMap)

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 534/1136 -

Compressed Resources (when Attributes.bit0=1)

 014h 2 Zero (internally used by Resource Manager, fileRef)
 016h 2 Map Attributes
 0-4 Zero (reserved)
 5 Zero (internally used by Resource Manager, changed)
 6 Zero (internally used by Resource Manager, need compression)
 7 Resource map is read-only
 8-15 Zero (reserved)
 018h 2 Offset to Type List (from start of resource map) (usually 1Ch ?)
 01Ah 2 Offset to Name List (from start of resource map)
 Type List
 Resource List (with one or more entry for each entry in Type List)
 Name List (each name consists of 8bit NameLength, plus name string)
 Type List follows the header and contains an array of resource type records.
 000h 2 Number of Type Records, minus one (FFFFh=None, 0000h=One, etc.)
 002h N*8 Type Records
 Type Record format:
 000h 4 Resource Type (four-character constant)
 004h 2 Number of Resource List entries, minus one (0000h=One, etc.)
 006h 2 Offset to first Resource List entry (from start of Type List)
 Resource List entries:
 000h 2 Resource ID (C000h..FFFFh=Special/Owned)
 002h 2 Offset to Resource Name (from start of Name List) (FFFFh=None)
 004h 1 Attributes
 0 Resource data is compressed (0=No, 1=Compressed)
 1 Zero (internally used by Resource Manager, changed)
 2 Load Resource as soon as file is opened (0=No, 1=Preload)
 3 Resource is read-only (0=No, 1=Protected)
 4 Resource may not be moved in memory (0=No, 1=Locked)
 5 Resource may be paged out of memory (0=No, 1=Purgeable)
 6 Load Resource to (0=Application heap, 1=System Heap)
 7 Zero (reserved)
 005h 3 Offset to Resource Data (from start of Resource Data section)
 008h 4 Zero (internally used by Resource Manager, resourcePtr)
 Note: Some (or all?) 16bit offsets are reportedly signed (max 32Kbyte), the
 24bit offsets are reportedly unsigned (max 16Mbyte).

 Compressed resource have a standarized header, the decompression function(s)
 are supposed to be stored in separate "dmcp" resource (unknown if the OS is
 also providing standard decompression functions).
 000h 4 ID (always A89F6572h for compressed resource)
 004h 2 Always 0012h (maybe compression header size)
 006h 1 Type (08h=Type8, 09h=Type9)
 007h 1 Always 01h
 008h 4 Uncompressed resource size
 00Ch 1 For Type8: workingBufferFractionalSize ;\
 00Dh 1 For Type8: expansionBufferSize ; Type8
 00Eh 2 For Type8: dcmpID (ID in "dmcp" decompress resource) ;
 010h 2 For Type8: Zero (reserved?) ;/
 00Ch 2 For Type9: dcmpID (ID in "dmcp" decompress resource) ;\Type9
 00Eh 4 For Type9: decompressor_specific_parameters_with_io ;/
 012h .. Compressed Resource Data

13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro

- 535/1136 -

http://formats.kaitai.io/compressed_resource/

Owned Resources (with Resource ID=C000h..FFFFh):

https://github.com/kreativekorp/ksfl/wiki/Macintosh-Resource-File-Format

The upper 5bit (mask F800h) indicate the resource type of the owner, the middle 6bit

(mask 07E0h) indicate the resource id of the owner, and the lower 5bit (mask 001Fh)

indicate the "sub-id" of the owned resource.

The Mac OS Resource Manager used this scheme to ensure that certain types of

programs, themselves stored in resources, could find the other resources they needed

even if the resources had to be renumbered to avoid conflicts. Utilities such as Font/DA

Mover that were used to install and remove these programs used this scheme to ensure

that all associated resources were installed or removed as well, and renumber the

resources if necessary to avoid conflicts.

13.111 CDROM File XYZ and Dummy/Null Files

Dummy/Null Files

Most PSX discs have huge zerofilled dummy files with about 32Mbytes, using filenames

like DUMMY, NUL, NULL, or ZNULL, this is probably done to tweak the disc to have valid

sector numbers at the end of disc (to help the drive head to know which sector it is on).

Of course, Sony could as well pad the discs with longer Lead-Out areas, but the dummy

files may have been needed during development with CDRs (though burning such large

files doesn't exactly speed up development).

There are different ways to make sure that the file is at end of the disc:

- Some CDROM burning tools may allow to specify which file is where

- Some games have the file alphabetically sorted as last file in last folder

 ID MSBs Owner Type Notes
 C000h DRVR driver or desk accessory
 C800h WDEF window definition: code to draw windows
 D000h MDEF menu definition: code to draw menus
 D800h CDEF control definition: code to draw UI widgets
 E000h PDEF printer driver
 E800h PACK utility code package/library used by the Mac OS
 F000h cdev control panel; owner id is set to 1
 F800h reserved reserved for future use

13.111 CDROM File XYZ and Dummy/Null Files

- 536/1136 -

http://formats.kaitai.io/compressed_resource/
https://github.com/kreativekorp/ksfl/wiki/Macintosh-Resource-File-Format

- Some games have the file declared as audio track

- Some games (additionally) have large zeropadding at end of their archive file

XYZ Files

To reduce seek times, it can make sense to have the boot files & small files at the begin

of the disc.

Some games seem to use alphabetically sorted file/folder names to tweak Movies and

XA-audio to be located at the end of disc (eg. using ZMOVIE as folder name).

13.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)

File.IMG - 2352 (930h) bytes per sector

Contains the sector data, recorded at 930h bytes per sector. Unknown if other sizes are

also used/supported (like 800h bytes/sector, or even images with mixed sizes of 800h

and 930h for different tracks).

File.SUB - 96 (60h) bytes per sector (subchannel P..W with 96 bits each)

Contains subchannel data, recorded at 60h bytes per sector.

Optionally, the .SUB file can be omitted (it's needed only for discs with non-standard

subchannel data, such like copy-protected games). And, some CloneCD disc images are

bundled with an empty 0-byte .SUB file (which is about same as completely omitting

the .SUB file).

File.CCD - Lead-in info in text format

Contains Lead-in info in ASCII text format. Lines should be terminated by 0Dh,0Ah. The

overall CCD filestructure is:

 00h..0Bh 12 Subchannel P (Pause-bits, usually all set, or all cleared)
 0Ch..17h 12 Subchannel Q (ADR/Control, custom info, CRC-16-CCITT)
 18h..5Fh .. Subchannel R..W (usually zero) (can be used for CD-TEXT)

 [CloneCD] ;File ID and version
 [Disc] ;Overall Disc info
 [CDText] ;CD-TEXT (included only if present)
 [Session N] ;Session(s) (numbered 1 and up)

13.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)

- 537/1136 -

Read on below for details on the separate sections.

[CloneCD]

[Disc]

[CDText]

[Session 1]

Above are unknown, PreGapMode might be 0=Audio, 1=Mode1, 2=Mode2 for pregap,

though unknown for which pregap(s) of which track(s), presumably for first track?

[Entry 0]

[Entry 0..2] are usually containing Point A0h..A2h info. [Entry 3..N] are usually TOC info

for Track 1 and up.

 [Entry N] ;Lead-in entries (numbered 0..."TocEntries-1")
 [TRACK N] ;Track info (numbered 1 and up)

 Version=3 ;-version (usually 3) (rarely 2)

 TocEntries=4 ;-number of [Entry N] fields (lead-in info blocks)
 Sessions=1 ;-number of sessions (usually 1)
 DataTracksScrambled=0 ;-unknown purpose (usually 0)
 CDTextLength=0 ;-total size of 18-byte CD-TEXT chunks (usually 0)
 CATALOG=NNNNNNNNNNNNN ;-13-digit EAN-13 barcode (included only if present)

 Entries=N ;number of following entries (CDTextLength/18) (not /16)
 Entry 0=80 00 NN NN NN NN NN NN NN NN NN NN NN NN NN NN ;entry 0
 Entry 1=80 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN ;entry 1
 ...
 Entry XX=8f NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN ;entry N-1
 Note: Each entry contains 16 bytes (ie. "18-byte CD-TEXT" with CRC excluded)
 "NN NN NN.." consists of 2-digit lowercase HEX numbers (without leading "0x")

 PreGapMode=2 ;-unknown purpose (usually 1 or 2) (or 0)
 PreGapSubC=1 ;-unknown purpose (usually 0 or 1)

 Session=1 ;-session number that this entry belongs to (usually 1)
 Point=0xa0 ;-point (0..63h=Track, non-BCD!) (A0h..XXh=specials) Q2
 ADR=0x01 ;-lower 4bit of ADR/Control (usually 1) Q0.lo
 Control=0x04 ;-upper 4bit of ADR/Control (eg. 0=audio, 4=data) Q0.hi

13.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)

- 538/1136 -

[TRACK 1] ;-track number (non-BCD) (1..99)

Missing Sectors & Sector Size

The .CCD file doesn't define the "PreGapSize" (the number of missing sectors at begin of

first track). It seems to be simply constant "PreGapSize=150". Unless one is supposed

to calculate it as "PreGapSize=((PMin*60+PSec)*75+PFrame)-PLBA".

The SectorSize seems to be also constant, "SectorSize=930h".

Non-BCD Caution

All Min/Sec/Frame/Track/Index values are expressed in non-BCD, ie. they must be

converted to BCD to get the correct values (as how they are stored on real CDs).

Exceptions are cases where those bytes have other meanings: For example, "PSec=32"

does normally mean BcdSecond=32h, but for Point A0h it would mean

DiscType=20h=CD-ROM-XA).

The Point value is also special, it is expressed in hex (0xNN), but nonetheless it is non-

BCD, ie. Point 1..99 are specified as 0x01..0x63, whilst, Point A0h..FFh are specified as

such (ie. as 0xA0..0xFF).

Versions

Version=1 doesn't seem to exist (or it is very rare). Version=2 is quite rare, and it

seems to lack the [TRACK N] entries (meaning that there is no MODE and INDEX

information, except that the INDEX 1 location can be assumed to be same as PLBA).

 TrackNo=0 ;-usually/always 0 (as [Entry N]'s are in Lead-in) Q1
 AMin=0 ;\current MSF address Q3
 ASec=0 ; (dummy zero values) (actual content Q4
 AFrame=0 ; would be current lead-in position) Q5
 ALBA=-150 ;/ALBA=((AMin*60+ASec)*75+AFrame)-PreGapSize
 Zero=0 ;-probably reserved byte from Q channel Q6
 PMin=1 ;\referenced MSF address (non-BCD!), for certain Q7
 PSec=32 ; Point's, PMin may contain a Track number, and PSec Q8
 PFrame=0 ; the disc type value (that without non-BCD-glitch) Q9
 PLBA=6750 ;/PLBA=((PMin*60+PSec)*75+PFrame)-PreGapSize

 MODE=2 ;-mode (0=Audio, 1=Mode1, 2=Mode2)
 ISRC=XXXXXNNNNNNN ;-12-letter/digit ISRC code (included only if present)
 INDEX 0=N ;-1st sector with index 0, missing EVEN if any?
 INDEX 1=N ;-1st sector with index 1, usually same as track's PLBA
 INDEX 2=N ;-1st sector with index 2, if any
 etc.

13.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)

- 539/1136 -

Version=3 is most common, this version includes [TRACK N] entries, but often only with

INDEX=1 (and up, if more indices), but without INDEX 0 (on Track 1 it's probably

missing due to pregap, on further Tracks it's missing without reason) (so, only ways to

reproduce INDEX=0 would be to guess it being located 2 seconds before INDEX=1, or,

to use the information from the separate .SUB file, if that file is present; note: presence

of index 0 is absolutely required for some games like PSX Tomb Raider 2).

Entry & Points & Sessions

The [Entry N] fields are usually containing Point A0h,A1h,A2h, followed by Point 1..N

(for N tracks). For multiple sessions: The session is terminated by Point B0h,C0h. The

next session does then contain Point A0h,A1h,A2h, and Point N+1..X (for further tracks).

The INDEX values in the [TRACK N] entries are originated at the begin of the

corresponding session, whilst PLBA values in [Entry N] entries are always originated at

the begin of the disk.

13.113 CDROM Disk Images CDI (DiscJuggler)

Overall Format

Sector Data

Contains Sector Data for sector 00:00:00 and up (ie. all sectors are stored in the file,

there are no missing "pregap" sectors).

Sector Size can be 800h..990h bytes/sector (sector size may vary per track).

 Sector Data (sector 00:00:00 and up) ;-body
 Number of Sessions (1 byte) <--- located at "Filesize-Footersize"
 Session Block for 1st session (15 bytes) ;\
 nnn-byte info for 1st track ; 1st session
 nnn-byte info for 2nd track (if any) ;
 etc. ;/
 Session Block for 2nd session (15 bytes) ;\
 nnn-byte info for 1st track ; 2nd session (if any)
 nnn-byte info for 2nd track (if any) ;
 etc. ;/
 etc. ;-further sessions (if any)
 Session Block for no-more-sessions (15 bytes) ;-end marker
 nnn-byte Disc Info Block ;-general disc info
 Entrypoint (4 bytes) <--- located at "Filesize-4"

13.113 CDROM Disk Images CDI (DiscJuggler)

- 540/1136 -

Number of Sessions (1 byte)

Session Block (15-bytes)

Track/Disc Header (30h+F bytes) (used in Track Blocks and Disc Info Block)

Track Block (E4h+F+I+T bytes)

 00h 1 Number of Sessions (usually 1)

 00h 1 Unknown (00h)
 01h 1 Number of Tracks in session (01h..63h) (or 00h=No More Sessions)
 02h 7 Unknown (00h-filled)
 09h 1 Unknown (01h)
 0Ah 3 Unknown (00h-filled)
 0Dh 2 Unknown (FFh,FFh)

 00h 12 Unknown (FFh,FFh,00h,00h,01h,00h,00h,00h,FFh,FFh,FFh,FFh)
 0Ch 3 Unknown (DAh,0Ah,D5h or 64h,05h,2Ah) (random/id/chksum?)
 0Fh 1 Total Number of Tracks on Disc (00h..63h) (non-BCD)
 10h 1 Length of below Path/Filename (F)
 11h (F) Full Path/Filename (eg. "C:\folder\file.cdi")
 11h+F 11 Unknown (00h-filled)
 1Ch+F 1 Unknown (02h)
 1Dh+F 10 Unknown (00h-filled)
 27h+F 1 Unknown (80h)
 28h+F 4 Unknown (00057E40h) (=360000 decimal) (disc capacity 80 minutes?)
 2Ch+F 2 Unknown (00h,00h)
 2Eh+F 2 Medium Type (0098h=CD-ROM, 0038h=DVD-ROM)

 00h 30h+F Track/Disc Header (see above)
 30h+F 02h Number of Indices (usually 0002h) (I=Num*4)
 32h+F (I) 32bit Lengths (per index) (eg. 00000096h,00007044h)
 32h+FI 04h Number of CD-Text blocks (usually 0) (T=Num*18+VariableLen's)
 36h+FI (T) CD-Text (if any) (see "mirage_parser_cdi_parse_cdtext")
 36h+FIT 02h Unknown (00h,00h)
 38h+FIT 01h Track Mode (0=Audio, 1=Mode1, 2=Mode2/Mixed)
 39h+FIT 07h Unknown (00h,00h,00h,00h,00h,00h,00h)
 40h+FIT 04h Session Number (starting at 0) (usually 00h)
 44h+FIT 04h Track Number (non-BCD, starting at 0) (00h..62h)
 48h+FIT 04h Track Start Address (eg. 00000000h)
 4Ch+FIT 04h Track Length (eg. 000070DAh)
 50h+FIT 0Ch Unknown (00h-filled)
 5Ch+FIT 04h Unknown (00000000h or 00000001h)
 60h+FIT 04h read_mode (0..4)
 0: Mode1, 800h, 2048
 1: Mode2, 920h, 2336
 2: Audio, 930h, 2352

13.113 CDROM Disk Images CDI (DiscJuggler)

- 541/1136 -

Disc Info Block (5Fh+F+V+T bytes)

Entrypoint (4 bytes) (located at "Filesize-4")

 3: Raw+PQ, 940h, 2352+16 non-interleaved (P=only 1bit)
 4: Raw+PQRSTUVW, 990h, 2352+96 interleaved
 64h+FIT 4 Control (Upper 4bit of ADR/Control, eg. 00000004h=Data)
 68h+FIT 1 Unknown (00h)
 69h+FIT 4 Track Length (eg. 000070DAh) (same as above)
 6Dh+FIT 4 Unknown (00h,00h,00h,00h)
 71h+FIT 12 ISRC Code 12-letter/digit (ASCII?) string (00h-filled if none)
 7Dh+FIT 4 ISRC Valid Flag (0=None, Other?=Yes?)
 81h+FIT 1 Unknown (00h)
 82h+FIT 8 Unknown (FFh,FFh,FFh,FFh,FFh,FFh,FFh,FFh)
 8Ah+FIT 4 Unknown (00000001h)
 8Eh+FIT 4 Unknown (00000080h)
 92h+FIT 4 Unknown (00000002h) (guess: maybe audio num channels??)
 96h+FIT 4 Unknown (00000010h) (guess: maybe audio bits/sample??)
 9Ah+FIT 4 Unknown (0000AC44h) (44100 decimal, ie. audio sample rate?)
 9Eh+FIT 2Ah Unknown (00h-filled)
 C8h+FIT 4 Unknown (FFh,FFh,FFh,FFh)
 CCh+FIT 12 Unknown (00h-filled)
 D8h+FIT 1 session_type ONLY if last track of a session (else 0)
 (0=Audio/CD-DA, 1=Mode1/CD-ROM, 2=Mode2/CD-XA)
 D9h+FIT 5 Unknown (00h-filled)
 DEh+FIT 1 Not Last Track of Session Flag (0=Last Track, 1=Not Last)
 DFh+FIT 1 Unknown (00h)
 E0h+FIT 4 address for last track of a session? (otherwise 00,00,FF,FF)

 00h 30h+F Track/Disc Header (see above)
 30h+F 4 Disc Size (total number of sectors)
 34h+F 1 Volume ID Length (V) ;\from Primary Volume Descriptor[28h..47h]
 35h+F (V) Volume ID String ;/(ISO Data discs) (unknown for Audio)
 35h+FV 1 Unknown (00h)
 36h+FV 4 Unknown (01h,00h,00h,00h)
 3Ah+FV 4 Unknown (01h,00h,00h,00h)
 3Eh+FV 13 EAN-13 Code 13-digit (ASCII?) string (00h-filled if none)
 4Bh+FV 4 EAN-13 Valid Flag (0=None, Other?=Yes?)
 4Fh+FV 4 CD-Text Length in bytes (T=Num*1)
 53h+FV (T) CD-Text (for Lead-in) (probably 18-byte units?)
 53h+FVT 8 Unknown (00h-filled)
 5Bh+FVT 4 Unknown (06h,00h,00h,80h)

 00h 4 Footer Size in bytes

13.113 CDROM Disk Images CDI (DiscJuggler)

- 542/1136 -

13.114 CDROM Disk Images CUE/BIN/CDT (Cdrwin)

.CUE/.BIN (CDRWIN)

CDRWIN stores disk images in two separate files. The .BIN file contains the raw disk

image, starting at sector 00:02:00, with 930h bytes per sector, but without any TOC or

subchannel information. The .CUE file contains additional information about the separate

track(s) on the disk, in ASCII format, for example:

The .BIN file does not contain ALL sectors, as said above, the first 2 seconds are not

stored in the .BIN file. Moreover, there may be missing sectors somewhere in the middle

of the file (indicated as PREGAP in the .CUE file; PREGAPs are usually found between Data

and Audio Tracks).

The MM:SS:FF values in the .CUE file are logical addresses in the .BIN file, rather than

physical addresses on real CDROMs. To convert the .CUE values back to real addresses,

add 2 seconds to all MM:SS:FF addresses (to compensate the missing first 2 seconds),

and, if the .CUE contains a PREGAP, then the pregap value must be additionally added to

all following MM:SS:FF addresses.

The end address of the last track is not stored in the .CUE, instead, it can be only

calculated by converting the .BIN filesize to MM:SS:FF format and adding 2 seconds (plus

any PREGAP values) to it.

FILE \<filename> BINARY|MOTOTOLA..or..MOTOROLA?|AIFF|WAVE|MP3

 FILE "PATH\FILENAME.BIN" BINARY
 TRACK 01 MODE2/2352
 INDEX 01 00:00:00 ;real address = 00:02:00 (+2 seconds)
 TRACK 02 AUDIO
 PREGAP 00:02:00 ;two missing seconds (NOT stored in .BIN)
 INDEX 01 08:09:29 ;real address = 08:13:29 (+2 seconds +pregap)
 TRACK 03 AUDIO
 INDEX 00 14:00:29 ;real address = 14:04:29 (+2 seconds +pregap)
 INDEX 01 14:02:29 ;real address = 14:06:29 (+2 seconds +pregap)
 TRACK 04 AUDIO
 INDEX 00 18:30:20 ;real address = 18:34:20 (+2 seconds +pregap)
 INDEX 01 18:32:20 ;real address = 18:36:20 (+2 seconds +pregap)

 (must appear before any other commands, except CATALOG)
 (uh, may also appear before further tracks)

13.114 CDROM Disk Images CUE/BIN/CDT (Cdrwin)

- 543/1136 -

FLAGS DCP 4CH PRE SCMS

INDEX NN MM:SS:FF

TRACK NN datatype

PREGAP MM:SS:FF

POSTGAP MM:SS:FF

Duration of silence at the begin (PREGAP) or end (POSTGAP) of a track. Even if it isn't

specified, the first track will always have a 2-second pregap.

The gaps are NOT stored in the BIN file.

REM comment

Allows to insert comments/remarks (which are usually ignored). Some third-party tools

are mis-using REM to define additional information.

CATALOG 1234567890123

ISRC ABCDE1234567

PERFORMER "The Band"

SONGWRITER "The Writer"

TITLE "The Title"

These entries allow to define basic CD-Text info directly in the .CUE file.

Some third-party utilites allow to define additional CD-Text info via REM lines, eg. "REM

 AUDIO ;930h ;bytes 000h..92Fh
 CDG ;? ;?
 MODE1/2048 ;800h ;bytes 010h..80Fh
 MODE1/2352 ;930h ;bytes 000h..92Fh
 MODE2/2336 ;920h ;bytes 010h..92Fh
 MODE2/2352 ;930h ;bytes 000h..92Fh
 CDI/2336 ;920h ;?
 CDI/2352 ;930h ;bytes 000h..92Fh

 (ISRC must be after TRACK, and before INDEX)

13.114 CDROM Disk Images CUE/BIN/CDT (Cdrwin)

- 544/1136 -

GENRE Rock".

Alternately, more complex CD-Text data can be stored in a separate .CDT file.

CDTEXTFILE "C:\LONG FILENAME.CDT"

Specifies an optional file which may contain CD-TEXT. The .CDT file consists of raw 18-

byte CD-TEXT fragments (which may include any type of information, including exotic

one's like a "Message" from the producer). For whatever reason, there's a 00h-byte

appended at the end of the file. Alternately to the .CDT file, the less exotic types of CD-

TEXT can be defined by PERFORMER, TITLE, and SONGWRITER commands in the .CUE

file.

Missing

Unknown if newer CUE/BIN versions do also support subchannel data.

Malformed .CUE files

Some .CCD files are bundled with uncommon/corrupted .CUE files, with entries as so:

Normally, that should look as so:

The purpose of the malformed .CUE might be unsuccessful compatibility, or tricking

people into thinking that .CCD works better than .CUE.

13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

File.MDF - Contains sector data (optionally with sub-channel data)

Contains the sector data, recorded at 800h..930h bytes per sector, optionally followed

by 60h bytes subchannel data (appended at the end of each sector). The stuff seems to

be start on 00:02:00 (ie. the first 150 sectors are missing; at least it is like so when

"Session Start Sector" is -150).

The subchannel data (if present) consists of 8 subchannels, stored in 96 bytes (each

 TRACK 1 MODE2/2352 ;three spaces indent, and 1-digit track
 INDEX 1 00:00:00 ;three spaces indent, and 1-digit index

 TRACK 01 MODE2/2352 ;two spaces indent, and 2-digit track
 INDEX 01 00:00:00 ;four spaces indent, and 2-digit index

13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

- 545/1136 -

byte containing one bit per subchannel).

The 96 bits (per subchannel) can be translated to bytes, as so:

File.MDS - Contains disc/lead-in info (in binary format)

An MDS file's structure consists of the following stuff ...

Header (58h bytes)

Session-Blocks (18h bytes)

 Bit7..0 = Subchannel P..W (in that order, eg. Bit6=Subchannel Q)

 1st..8th bit = Bit7..Bit0 of 1st byte (in that order, ie. MSB/Bit7 first)
 9st..16th bit = Bit7..Bit0 of 2nd byte ("")
 17th.. = etc.

 Header (58h bytes)
 Session block(s) (usually one 18h byte entry)
 Data blocks (N*50h bytes)
 Index blocks (usually N*8 bytes)
 Filename blocks(s) (usually one 10h byte entry)
 Filename string(s) (usually one 6 byte string)
 Read error(s) (usually none such)

 00h 16 File ID ("MEDIA DESCRIPTOR")
 10h 2 Unknown (01h,03h or 01h,04h or 01h,05h) (Fileformat version?)
 12h 2 Media Type (0=CD-ROM, 1=CD-R, 2=CD-RW, 10h=DVD-ROM, 12h=DCD-R)
 14h 2 Number of sessions (usually 1)
 16h 4 Unknown (02h,00h,00h,00h)
 1Ah 2 Zero (for DVD: Length of BCA data)
 1Ch 8 Zero
 24h 4 Zero (for DVD: Offset to BCA data)
 28h 18h Zero
 40h 4 Zero (for DVD: Offset to Disc Structures) (from begin of .MDS file)
 44h 0Ch Zero
 50h 4 Offset to First Session-Block (usually 58h) (from begin of .MDS file)
 54h 4 Offset to Read errors (usually 0=None) (from begin of .MDS file)

 00h 4 Session Start Sector (starting at FFFFFF6Ah=-150 in first session)
 04h 4 Session End Sector (XXX plus 150 ?)
 08h 2 Session number (starting at 1) (non-BCD)
 0Ah 1 Number of Data Blocks with any Point value (Total Data Blocks)
 0Bh 1 Number of Data Blocks with Point>=A0h (Special Lead-In info)
 0Ch 2 First Track Number in Session (01h..63h, non-BCD!)
 0Eh 2 Last Track Number in Session (01h..63h, non-BCD!)

13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

- 546/1136 -

Data-Blocks (50h bytes)

Block 0..2 are usually containing Point A0h..A2h info. Block 3..N are usually TOC info for

Track 1 and up.

For Point>=A0h, below 44h bytes at [0Ch..4Fh] are zero-filled

Trackmode:

Index Blocks (usually 8 bytes per track)

 10h 4 Zero
 14h 4 Offset to First Data-Block (usually 70h) (from begin of .MDS file)

 00h 1 Track mode (see below for details)
 01h 1 Number of subchannels in .MDF file (0=None, 8=Sector has +60h bytes)
 02h 1 ADR/Control (but with upper/lower 4bit swapped, ie. MSBs=ADR!) Q0
 03h 1 TrackNo (usually/always 00h; as this info is in Lead-in area) Q1
 04h 1 Point (Non-BCD!) (Track 01h..63h) (or A0h and up=Lead-in info) Q2
 05h 4 Zero (probably dummy MSF and reserved byte from Q channel) Q3..Q6?
 09h 1 Minute (Non-BCD!) ;\MM:SS:FF of Point'ed track Q7
 0Ah 1 Second (Non-BCD!) ; (or disc/lead-out info when Point>=A0h) Q8
 0Bh 1 Frame (Non-BCD!) ;/ Q9

 0Ch 4 Offset to Index-block for this track (from begin of .MDS file)
 10h 2 Sector size (800h..930h) (or 860h..990h if with subchannels)
 12h 1 Unknown (02h) (maybe number of indices?)
 13h 11h Zero
 24h 4 Track start sector, PLBA (00000000h=00:02:00)(or 00000096h=00:02:00?)
 28h 8 Track start offset (from begin of .MDF file)
 30h 4 Number of Filenames for this track (usually 1)
 34h 4 Offset to Filename Block for this track (from begin of .MDS file)
 38h 18h Zero

 (upper 4bit seem to be meaningless?)
 00h=None (used for entries with Point=A0h..FF)
 A9h=AUDIO ;sector size = 2352 930h ;bytes 000h..92Fh
 AAh=MODE1 ;sector size = 2048 800h ;bytes 010h..80Fh
 ABh=MODE2 ;sector size = 2336 920h ;bytes 010h..92Fh
 ACh=MODE2_FORM1 ;sector size = 2048 800h ;bytes 018h..817h (incomplete!)
 ADh=MODE2_FORM2 ;sector size = 2324+0? 914h ;bytes 018h..91Bh (incomplete!)
 ADh=MODE2_FORM2 ;sector size = 2324+4? 918h ;bytes ??..?? (contains what?)
 ECh=MODE2 ;sector size = 2448 990h ;(930h+60h) (with subchannels)

 00h 4 Number of sectors with Index 0 (usually 96h or zero)
 04h 4 Number of sectors with Index 1 (usually size of main-track area)

13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

- 547/1136 -

Index blocks are usually/always 8 bytes in size (two indices per track, even when

recording a CD with more than 2 indices per track).

The MDS file does usually contain Index blocks for \<all> Data Blocks (ie. including

unused dummy Index Blocks for Data Blocks with Point>=A0h).

Filename Blocks (10h bytes)

Normally all tracks are sharing the same filename block (although theoretically the tracks

could use separate filename blocks; with different filenames).

Filename Strings (usually 6 bytes)

Contains the filename of the of the sector data (usually "*.mdf", indicating to use the

same name as for the .mds file, but with .mdf extension).

Read errors aka DPM data blocks (present if errors occured during recording)

Instead of (or additionally to) read errors, there may be also hundreds of Kbytes of

unknown stuff appended (text strings in 8bit or 16bit format, binary numbers, and huge

zerofilled blocks).

Missing

Unknown if/how this format supports EAN-13, ISRC, CD-TEXT.

 00h 4 Offset to Filename (from begin of .MDS file)
 04h 1 Filename format (0=8bit, 1=16bit characters)
 05h 11 Zero

 00h 6 Filename, terminated by zero (usually "*.mdf",00h)

 00h 4 Unknown (1)
 04h 4 Offset to following stuff
 08h 4 Unknown (2)
 0Ch 4 Unknown (7)
 10h 4 Unknown (1)
 14h 4 Number of read errors (E)
 18h E*4 LBA's for sectors with read errors (0 and up)

13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)

- 548/1136 -

13.116 CDROM Disk Images NRG (Nero)

.NRG (NERO)

Nero is probably the most bloated and most popular CD recording software. The first

part of the file contains the disk image, starting at sector 00:00:00, with 800h..930h

bytes per sector. Additional chunk-based information is appended at the end of the file,

usually consisting of only four chunks: CUES,DAOI,END!,NERO (in that order).

Chunk Entrypoint (in last 8/12 bytes of file)

Cue Sheet (summary of the Table of Contents, TOC)

below EIGHT bytes repeated for each track/index,

of which, first FOUR bytes are same for both CUES and CUEX,

next FOUR bytes for CUES,

or, next FOUR four bytes for CUEX,

Caution: Above may contain two position 00:00:00 entries: one nonsense entry for Track

00 (lead-in), followed by a reasonable entry for Track 01, Index 00.

Disc at Once Information

 4 File ID "NERO"/"NER5"
 4/8 Fileoffset of first chunk

 4 Chunk ID "CUES"/"CUEX"
 4 Chunk size (bytes)

 1 ADR/Control from TOC (usually LSBs=ADR=1=fixed, MSBs=Control=Variable)
 1 Track (BCD) (00h=Lead-in, 01h..99h=Track N, AAh=Lead-out)
 1 Index (BCD) (usually 00h=pregap, 01h=actual track)
 1 Zero

 1 Zero
 1 Minute (BCD) ;starting at 00:00:00 = 2 seconds before ISO vol. descr.
 1 Second (BCD)
 1 Sector (BCD)

 4 Logical Sector Number (HEX) ;starting at FFFFFF6Ah (=00:00:00)

13.116 CDROM Disk Images NRG (Nero)

- 549/1136 -

below repeated for each track,

End of chain

Track Information (contained only in Track at Once images)

 4 Chunk ID "DAOI"/"DAOX"
 4 Chunk size (bytes)
 4 Garbage (usually same as above Chunk size)
 13 EAN-13 Catalog Number (13-digit ASCII) (or 00h-filled if none/unknown)
 1 Zero
 1 Disk type (00h=Mode1 or Audio, 20h=XA/Mode2) (and probably 10h=CD-I?)
 1 Unknown (01h)
 1 First track (Non-BCD) (01h..63h)
 1 Last track (Non-BCD) (01h..63h)

 12 ISRC in ASCII (eg. "USXYZ9912345") (or 00h-filled if none/unknown)
 2 Sector size (usually 800h, 920h, or 930h) (see Mode entry for more info)
 1 Mode:
 0=Mode1/800h ;raw mode1 data (excluding sync+header+edc+errorinfo)
 3=Mode2/920h ;almost full sector (exluding first 16 bytes; sync+header)
 6=Mode2/930h ;full sector (including first 16 bytes; sync+header)
 7=Audio/930h ;full sector (plain audio data)
 Mode values from wikipedia:
 00h for data Mode1/800h
 02h
 03h for Mode 2 Form 1 data eh? FORM1??? Mode2/920h
 05h for raw data Mode1?/930h
 06h for raw Mode 2/form 1 data Mode2/930h
 07h for audio Audio/930h
 0Fh for raw data with sub-channel Mode1?/930h+WHAT?
 10h for audio with sub-channel Audio/930h+WHAT?
 11h for raw Mode 2/form 1 data with sub-channel Mode2/WHAT?+WHAT?
 Note: Some newer files do actually use different sector sizes for each
 track (eg. 920h for the data track, and 930h for any following audio
 tracks), older files were using the same sector size for all tracks
 (eg. if the disk contained 930-byte Audio tracks, then Data tracks
 were stored at the same size, rather than at 800h or 920h bytes).
 3 Unknown (always 00h,00h,01h)
 4/8 Fileoffset 1 (Start of Track's Pregap) (with Index=00h)
 4/8 Fileoffset 2 (Start of actual Track) (with Index=01h and up)
 4/8 Fileoffset 3 (End of Track) (aka begin of next track's pregap)

 4 Chunk ID "END!"
 4 Chunk size (always zero)

 4 Chunk ID "TINF"/"ETNF"/"ETN2"
 4 Chunk size (bytes)

13.116 CDROM Disk Images NRG (Nero)

- 550/1136 -

below repeated for each track,

Unknown 1 (contained only in Track at Once images)

Unknown 2 (contained only in Track at Once images)

Session Info (begin of a session) (contained only in multi-session images)

CD-Text (contained only in whatever images)

below repeated for each fragment,

Media Type? (contained only in whatever images)

 4/4/8 Track fileoffset ;\32bit in TINF/ETNF chunks,
 4/4/8 Track length (bytes) ;/64bit in ETN2 chunks
 4 Mode (should be same as in DAO chunks, see there) (implies sector size)
 0/4/4 Start lba on disc ;\only in ETNF/ETN2 chunks,
 0/4/4 Unknown? ;/not in TINF chunks

 4 Chunk ID "RELO"
 4 Chunk size (bytes)
 4 Zero

 4 Chunk ID "TOCT"
 4 Chunk size (bytes)
 1 Disk type (00h=Mode1 or Audio, 20h=XA/Mode2) (and probably 10h=CD-I?)
 1 Zero (00h)

 4 Chunk ID "SINF"
 4 Chunk size (bytes)
 4 Number of tracks in session

 4 Chunk ID None/"CDTX"
 4 Chunk size (bytes) (must be a multiple of 18 bytes)

 18 Raw 18-byte CD-text data fragments

 4 Chunk ID "MTYP"
 4 Chunk size (bytes)
 4 Unknown? (00000001h for CDROM) (maybe other value for DVD)

13.116 CDROM Disk Images NRG (Nero)

- 551/1136 -

Optional Filenames (names where the image was generated from?)

Optional Volume name

Notes

Newer/older .NRG files may contain 32bit/64bit values (and use "OLD"/"NEW" chunk

names) (as indicated by the "/" slashes).

CAUTION: All 16bit/32bit/64bit values are in big endian byte-order.

Missing

Unknown if newer NRG versions do also support subchannel data.

13.117 CDROM Disk Image/Containers CDZ

.CDZ is a compressed disk image container format (developed by pSX Author, and used

only by the pSX emulator). The disk is split into 64kbyte blocks, which allows fast

random access (without needing to decompress all preceeding sectors).

However, the compression ratio is surprisingly bad (despite of being specifically designed

for cdrom compression, the format doesn't remove redundant sector headers, error

correction information, and EDC checksums).

.CDZ File Structure

.CDZ Chunk Format

Chunk Header in v0 (unreleased prototype):

 4 Chunk ID "AFNM"
 4 Chunk size (bytes)
 .. Track Filenames (eg. "Track1.wav",0,"Track2.wav",0)

 4 Chunk ID "VOLM"
 4 Chunk size (bytes)
 .. Name (eg. "Audio CD",00h)

 FileID ("CDZ",00h for cdztool v0/v1, or "CDZ",01h for cdztool v2 and up)
 One or two Chunk(s)

13.117 CDROM Disk Image/Containers CDZ

- 552/1136 -

Chunk Header in v1 (first released version):

Chunk Header in v2 and up (later versions):

Chunk Body (same in all versions):

Chunk Footer in v0 (when above header didn't have the "ZLIB" ID):

Chunk Footer in v1 and up:

The "Compressed ZLIB Data" parts contain Deflate'd data (starting with 2-byte ZLIB

header, and ending with 4-byte ZLIB/ADLER checksum), for details see:

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

.CDZ Chunks / Content

The chunk(s) have following content:

 4 32bit Decompressed Size (of all blocks) (must be other than "ZLIB")

 4 ZLIB ID ("ZLIB")
 8 64bit Decompressed Size (of all blocks)

 4 Chunk ID (eg. "CUE",00h)
 8 Chunk Size in bytes (starting at "ZLIB" up to including Footer, if any)
 4 ZLIB ID ("ZLIB")
 8 64bit Decompressed Size (of all blocks)

 4 Number of Blocks (N)
 4 Block 1 Compressed Size (CS.1)
 4 Block 1 Decompressed Size (always 00010000h, except last block)
 CS.1 Block 1 Compressed ZLIB Data (starting with 78h,9Ch)
 ;\
 4 Block N Compressed Size (CS.N) ; further block(s)
 4 Block N Decompressed Size ; (if any)
 CS.N Block N Compressed ZLIB Data ;/

 4*N Directory Entries for N blocks ;-this ONLY for BIN chunk

 BPD*(N-1) Directory Entries for N-1 blocks ;\this ONLY for BIN chunk
 1 Bytes per Directory Entry (BPD) ;/(not for CUE/CCD/MDS)

 noname+noname --> .CUE+.BIN (cdztool v1 and below)
 "BIN",0 --> .ISO (cdztool v2? and up)
 "CUE",0+"BIN",0 --> .CUE+.BIN (cdztool v2 and up)
 "CCD",0+"BIN",0 --> .CCD+.IMG (cdztool v2 and up)

13.117 CDROM Disk Image/Containers CDZ

- 553/1136 -

Note: cdztool doesn't actually recognize files with .ISO extension (however, one can

rename them to .BIN, and then compress them as CUE-less .BIN file).

Cdztool.exe Versions

Note: v0 wasn't ever released (it's only noteworthy because later versions do have

backwards compatibility for decompressing old v0 files). v1 didn't work with all operating

systems (on Win98 it just says "Error: Couldn't create \<output>" no matter what one is

doing, however, v1 does work on later windows versions like WinXP or so?).

13.118 CDROM Disk Image/Containers ECM

ECM (Error Code Modeler by Neill Corlett) is a utility that removes unneccessary ECC

error correction and EDC error detection values from CDROM-images. This is making the

images a bit smaller, but the real size reduction isn't gained until subsequently

compressing the images via tools like ZIP. Accordingly, these files are extremly

uncomfortable to use: One most first UNZIP them, and then UNECM them.

.EXT.ECM - Double extension

ECM can be applied to various CDROM-image formats

(like .BIN, .CDI, .IMG, .ISO, .MDF, .NRG), as indicated by the double-extension. Most

commonly it's applied to .BIN files (hence using extension .BIN.ECM).

Example / File Structure

 "CCD",0+"BIN",01h --> .CCD+.IMG+.SUB (930h sectors, plus 60h subchannels)
 "MDS",0+"BIN",0 --> .MDS+.MDF (cdztool v5 only)

 cdztool.exe v0, unrelased prototype
 cdztool.exe v1, 22 May 2005, CRC32=620dbb08, 102400 bytes, pSX v1.0-5
 cdztool.exe v2, 02 Jul 2006, CRC32=bcb29c1e, 110592 bytes, pSX v1.6
 cdztool.exe v3, 22 Jul 2006, CRC32=4062ba82, 110592 bytes, pSX v1.7
 cdztool.exe v4, 13 Aug 2006, CRC32=7388dd3d, 118784 bytes, pSX v1.8-11
 cdztool.exe v5, 22 Jul 2007, CRC32=f25c1659, 155648 bytes, pSX v1.12-13

 45 43 4D 00 ;FileID "ECM",00h
 3C ;Type 0, Len=10h (aka 0Fh+1)
 00 FF FF FF FF FF FF FF FF FF FF 00 00 02 00 02 ;16 data bytes
 02 ;Type 2, Len=1 (aka 00h+1)
 00 00 08 00 00 00 00 00 00 00 00 00 00 00 ;804h data bytes
 3C ;Type 0, Len=10h (aka 0Fh+1)
 00 FF FF FF FF FF FF FF FF FF FF 00 00 02 01 02 ;16 data bytes

13.118 CDROM Disk Image/Containers ECM

- 554/1136 -

Type/Length Byte(s)

Type/Length is encoded in 1..5 byte(s), with "More=1" indicating that further length

byte(s) follow:

Length=FFFFFFFFh=End Indicator

The actual decompression LEN is: "LEN=Length+1"

ECM Decompression

Below is repeated LEN times (with LEN being the Length value plus 1):

Type 1-3 are reconstructing the missing bytes before saving. Type 2-3 are saving only

920h bytes, so (if the original image contained full 930h byte sectors) the missing 10h

bytes must be inserted via Type 0. Type 0 can be also used for copying whole sectors as-

is (eg. Audio sectors, or Data sectors with invalid Sync/Header/ECC/EDC values). And,

Type 0 can be used to store non-sector data (such like the chunks at the end of .NRG

or .CDI files).

Central Mistakes

There's a lot of wrong with the ECM format. The two central problems are that it doesn't

support data-compression (and needs external compression tools like zip/rar), and, that

it doesn't contain a sector look-up table (meaning that random access isn't possible

unless when scanning the whole file until reaching the desired sector).

 02 ;Type 2, Len=1 (aka 00h+1)
 00 00 08 00 00 00 00 00 00 00 00 00 00 00 ;804h data bytes
 ...
 FC FF FF FF 3F ;End Code (Len=FFFFFFFFh+1)
 NN NN NN NN ;EDC (on decompressed data)

 1st Byte: Bit7=More, Bit6-2=LengthBit4-0, Bit1-0=Type(0..3)
 2nd Byte: Bit7=More, Bit6-0=LengthBit5-11
 3rd Byte: Bit7=More, Bit6-0=LengthBit12-18
 4th Byte: Bit7=More, Bit6-0=LengthBit19-25
 5th Byte: Bit7-6=Reserved/Zero, Bit5-0=LengthBit26-31

 Type 0: load 1 byte, save 1 byte
 Type 1: load 803h bytes [0Ch..0Eh,10h..80Fh], save 930h bytes [0..92Fh]
 Type 2: load 804h bytes [14h..817h], save 920h bytes [10h..92Fh]
 Type 3: load 918h bytes [14h..91Bh], save 920h bytes [10h..92Fh]

13.118 CDROM Disk Image/Containers ECM

- 555/1136 -

Worst-case Scenario

As if ECM as such wouldn't be uncomfortable enough, you may expect typical ECM users

to get more things messed up. For example:

13.119 CDROM Subchannel Images

SBI (redump.org)

SBI Files start with a 4-byte FileID:

Then followed by entries as so:

Note: The PSX libcrypt protection relies on bad checksums (Q10..Q11), which will cause

the PSX cdrom controller to ignore Q0..Q9 (and to keep returning position data from most

recent sector with intact checksum).

Ironically, the SBI format cannot store the required Q10..Q11 checksum. The trick for

using SBI files with libcrypted PSX discs is to ignore the useless Q0..Q9 data, and to

assume that all sectors in the SBI file have wrong Q10..Q11 checksums.

M3S (Subchannel Q Data for Minute 3) (ePSXe)

M3S files are containing Subchannel Q data for all sectors on Minute=03 (the region

where PSX libcrypt data is located) (there is no support for storing the (unused) libcrypt

backup copy on Minute=09). The .M3S filesize is 72000 bytes (60 seconds * 75 sectors

* 16 bytes). The 16 bytes per sector are:

 A RAR file containing a 7Z file containing a ECM file containing a BIN file.
 The BIN containing only Track 1, other tracks stored in APE files.
 And, of course, the whole mess without including the required CUE file.

 4 bytes FileID ("SBI",00h)

 3 bytes real absolute MM:SS:FF address where the sub q data was bad
 1 byte Format: the format can be 1, 2 or 3:
 Format 1: complete 10 bytes sub q data (Q0..Q9)
 Format 2: 3 bytes wrong relative MM:SS:FF address (Q3..Q5)
 Format 3: 3 bytes wrong absolute MM:SS:FF address (Q7..Q9)

13.119 CDROM Subchannel Images

- 556/1136 -

Unfortunately, there are at least 3 variants of the format:

The third variant is definetly corrupt (and one should ignore such zerofilled entries). The

second variant is corrupt, too (but one might attempt to repair them by guessing the

missing checksum: if it contains normal position values assume correct crc, if it contains

uncommon values assume a libcrypted sector with bad crc).

The M3S format is intended for libcrypted PSX games, but, people seem to have also

recorded (corrupted) M3S files for unprotected PSX games (in so far, more than often, the

M3S files might cause problems, instead of solving them).

Note: The odd 16-byte format with 4-byte padding does somehow resemble the "P and Q

Sub-Channel" format 'defined' in MMC-drafts; if the .M3S format was based on the MMC

stuff: then the 16th byte might contain a Subchannel P "pause" flag in bit7.

CDROM Images with Subchannel Data

Most CDROM-Image formats can (optionally) contain subchannel recordings. The

downsides are: Storing all 8 subchannels for a full CDROM takes up about 20MBytes.

And, some entries may contain 'wrong' data (read errors caused by scratches cannot be

automatically repaired since subchannels do not contain error correction info).

If present, the subchannel data is usually appended at the end of each sector in the

main binary file (one exception is CloneCD, which stores it in a separate .SUB file

instead of in the .IMG file).

Interleaved Subchannel format (eg. Alcohol .MDF files):

 Q0..Q9 Subchannel Q data (normally position data)
 Q10..Q11 Subchannel Q checksum
 Q12..Q15 Dummy/garbage/padding (usually 00000000h or FFFFFFFFh)

 1. With CRC (Q0..Q11 intact) (and Q12..Q15 randomly 00000000h or FFFFFFFFh)
 2. Without CRC (only Q0..Q9 intact, but Q10..Q15 zerofilled)
 3. Without anything (only Q0 intact, but Q1..Q15 zerofilled)

 CCD/IMG/SUB (CloneCD) P-W 60h-bytes Non-interleaved (in separate .SUB file)
 CDI (DiscJuggler) P-Q 10h-bytes Non-interleaved (in .CDI file)
 "" P-W 60h-bytes Interleaved (in .CDI file)
 CUE/BIN/CDT (Cdrwin) N/A
 ISO (single-track) N/A
 MDS/MDF (Alcohol 120%) P-W 60h-bytes Interleaved (in .MDF file)
 NRG (Nero) P-W 60h-bytes Interleaved (in .NRG file)

 00h-07h 80 C0 80 80 80 80 80 C0 ;P=FFh, Q=41h=ADR/Control, R..W=00h
 08h-0Fh 80 80 80 80 80 80 80 C0 ;P=FFh, Q=01h=Track, R..W=00h

13.119 CDROM Subchannel Images

- 557/1136 -

Non-Interleaved Subchannel format (eg. CloneCD .SUB files):

Non-Interleaved P-Q 10h-byte Subchannel format:

13.120 CDROM Disk Images PBP (Sony)

.PBP

Sony's disc image format used on PSP. Can store multi-disc images in a single file.

Supports deflate data compression and some yet unknown audio compression. A

homebrew compressor can compress whole discs with deflate (which works, but it isn't

very good to compress audio sectors that way).

PBP Format (rev-engineered from homebrew DBALL.PBP)

 10h-17h 80 80 80 80 80 80 80 C0 ;P=FFh, Q=01h=Index, R..W=00h
 18h-1Fh 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=RelMinute, R..W=00h
 20h-27h 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=RelSecond, R..W=00h
 28h-2Fh 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=RelSector, R..W=00h
 30h-37h 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=Reserved, R..W=00h
 38h-3Fh 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=AbsMinute, R..W=00h
 40h-47h 80 80 80 80 80 80 C0 80 ;P=FFh, Q=02h=AbsSecond, R..W=00h
 48h-4Fh 80 80 80 80 80 80 80 80 ;P=FFh, Q=00h=AbsSector, R..W=00h
 50h-57h 80 80 C0 80 C0 80 80 80 ;P=FFh, Q=28h=ChecksumMsb, R..W=00h
 58h-5Fh 80 80 C0 C0 80 80 C0 80 ;P=FFh, Q=32h=ChecksumLsb, R..W=00h

 00h-0Bh FF FF FF FF FF FF FF FF FF FF FF FF ;Subchannel P (Pause)
 0Ch-17h 41 01 01 00 00 00 00 00 02 00 28 32 ;Subchannel Q (Position)
 18h-23h 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel R
 24h-2Fh 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel S
 30h-3Bh 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel T
 3Ch-47h 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel U
 48h-53h 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel V
 54h-5Fh 00 00 00 00 00 00 00 00 00 00 00 00 ;Subchannel W

 This is probably based on MMC protocol, which would be as crude as this:
 The 96 pause bits are summarized in 1 bit. Pause/Checksum are optional.
 00h-09h 41 01 01 00 00 00 00 00 02 00 ;Subchannel Q (Position)
 0Ah-0Bh 28 32 ;<-- OPTIONAL, can be zero! ;Subchannel Q (Checksum)
 0Ch-0Eh 00 00 00 ;Unused padding (zero)
 0F 80 ;<-- OPTIONAL, can be zero! ;Subchannel P (Bit7=Pause)

 000000h 4 ID (00h,"PBP")
 000004h 4 Version? (10000h) (but, reportedly "always 100h or 1000100h")
 000008h 4 Offset of the file PARAM.SFO (28h)
 00000Ch 4 Offset of the file ICON0.PNG (3D8h)

13.120 CDROM Disk Images PBP (Sony)

- 558/1136 -

 000010h 4 Offset of the file ICON1.PMF (3D8h) or ICON1.PNG
 000014h 4 Offset of the file PIC0.PNG (3D8h) or UNKNOWN.PNG
 000018h 4 Offset of the file PIC1.PNG (3D8h) or PICT1.PNG
 00001Ch 4 Offset of the file SND0.AT3 (3D8h)
 000020h 4 Offset of the file DATA.PSP (3D8h)
 000024h 4 Offset of the file DATA.PSAR (10000h)
 000028h .. PARAM.SFO file (zerofilled in homebrew PBP)
 0003D8h .. PNG files etc (zerofilled in homebrew PBP)
 010000h 0Ch ID "PSISOIMG0000"
 01000Ch 4 PBP Size-10000h (144740h)
 010010h 4 PBP Size-6420h (???) (14E320h)
 010014h .. Zerofilled
 010400h 0Bh Game ID ("_SCUS_94476" for Hot Shots Golf 2)
 01040Bh .. Zerofilled
 010800h A00h TOC List (0Ah-byte per entry) (unused entries are zerofilled)
 011200h 20h Zerofilled
 011220h 4 PBP Size-D2CFh (???) (147471h)
 011224h 4 Zero
 011228h 4 Unknown (7FFh)
 01122Ch 11h Game Name ("Hot Shots Golf",C2h,AEh,"2")
 01123Dh .. Zerofilled
 014000h .. Sector List (20h-byte per entry) (unused entries are zerofilled)
 Zerofilled
 110000h .. Deflated sectors (9300h bytes after decompression)
 15467Dh B8h One extra compression block that is NOT in Sector List ???
 154735h 0Bh Weird padding with ASCII "00000000000"
 154740h - End of file
 TOC List (Subchannel Q with ADR=1 during Lead-In):
 000h 1 ADR/Control (eg. 41h=Data Track)
 001h 1 Track (always 00h=Lead-in for all TOC List entries)
 002h 1 Point (A0h, A1h, A2h, or Track 01h and up) (BCD?)
 003h 3 Dummy MSF (usually 00:00:00 or weirdly 00:02:01) (BCD?)
 006h 1 Reserved (00h)
 007h 3 Actual MSF (or TOC info for Point=A0h,A1h) (BCD?)
 Example TOC (DBALL.PBP):
 41 00 A0 00 00 00 00 01 20 00 ;First Track (1) and Type (20h=CDROM-XA)
 41 00 A1 00 00 00 00 01 00 00 ;Last Track Number (1)
 41 00 A2 00 00 00 00 27 19 22 ;Lead-Out, uh at 27:19:22 in DBALL.PBP ???
 41 00 01 00 02 01 00 00 02 00 ;Track 1 at 00:02:00
 (remaining entries are zerofilled)
 Example TOC (PSALM69.PBP):
 01 00 01 00 02 00 00 00 00 00 ;Track 1 as audio <-- why that ???
 01 00 02 02 37 44 00 00 00 00 ;Track 2 as audio
 01 00 03 03 25 45 00 00 00 00 ;Track 3 as audio
 41 00 01 00 02 01 00 00 02 00 ;Track 1 as data <-- listed last?
 (remaining entries are zerofilled)
 (weirdly, most MM:SS:FF values are stored in byte[3..5] instead [7..9])
 (there are no point=A0h,A1h,A2h entries)
 Example TOC (GOOGLE_AI_TTS.PBP):
 01 00 01 00 02 00 00 00 00 00 ;Track 1 as audio
 01 00 02 00 02 30 00 00 00 00 ;Track 2 as audio, but without pregap?
 01 00 03 00 02 60 00 00 00 00 ;Track 3 as audio, but without pregap?
 01 00 04 00 03 15 00 00 00 00 ;Track 4 as audio, but without pregap?
 (remaining entries are zerofilled)

13.120 CDROM Disk Images PBP (Sony)

- 559/1136 -

Data Compression is using raw Deflate (without any zlib headers or the like), and it's

unfortunately just compressing the sectors as-is (without filtering out sector headers and

ECC/EDC values).

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

Audio Compression format is unknown:

Multi-disc format is unknown:

Retail files have "PGD" encryption:

13.121 CDROM Disk Images CHD (MAME)

All numbers are stored in Motorola (big-endian) byte ordering.

V1/V2 header (hdcomp):

V1/V2 contains harddisk related header entries (and apparently does't support cdroms).

 Sector List:
 000h 4 Offset-110000h to Sector(N*10h)
 004h 2 Compressed size of Sector(N*10h+(0..0Fh)) ;9300h=uncompressed?
 006h 2 Zero (but, reportedly "usually 1... and 0 for the last entry")
 008h 10h Zero (but, reportedly "first 10h bytes of SHA1 sum of 10h sectors")
 018h 8 Zero (padding)

 ?

 ?

 ?

 000h 08h ID "MComprHD" (MAME Compressed Hunks of Data)
 008h 4 Header size (4Ch=V1, 50h=V2)
 00Ch 4 Header version (probably 01h=V1, 02h=V2)
 010h 4 Flags (bit0=DriveHasParent, bit1=AllowWrites)
 014h 4 Compression type (0=None, 1=ZLIB)
 018h 4 Number of sectors per hunk
 01Ch 4 Total number of hunks represented
 020h 4 Number of cylinders on hard disk
 024h 4 Number of heads on hard disk
 028h 4 Number of sectors on hard disk
 02Ch 10h MD5 checksum on raw data
 03Ch 10h MD5 checksum on parent file
 N/A - V1: Uses fixed 200h-byte Sector size

13.121 CDROM Disk Images CHD (MAME)

- 560/1136 -

V3/V4 header (chdman):

V3/V4 are inventing new "metadata" for info about harddisks or cdroms.

V5 header (chdman):

 04Ch (4) V2: Number of bytes per sector
 ... ? Supposedly followed by map and/or data at whatever locations

 000h 08h ID "MComprHD" (MAME Compressed Hunks of Data)
 008h 4 Header size (78h=V3, 6Ch=V4)
 00Ch 4 Header version (03h=V3, 04h=V4)
 010h 4 Flags (bit0=DriveHasParent, bit1=AllowWrites)
 014h 4 Compression type (0=None, 1=ZLIB, 2=ZLIB_PLUS) (V4: 3=AV)
 018h 4 Total number of hunks represented (N) (92h)
 01Ch 08h Total size of all uncompressed hunks (N*2640h) (15D080h)
 024h 08h Offset to the first blob of metadata
 02Ch 10h V3: MD5 checksum on raw data ;\
 03Ch 10h V3: MD5 checksum on parent file ;
 04Ch 4 V3: Number of bytes per hunk (2640h=990h*4) ; V3
 050h 14h V3: SHA1 checksum on raw data ;
 064h 14h V3: SHA1 checksum on parent file ;/
 02Ch 4 V4: Number of bytes per hunk (2640h=990h*4) ;\
 030h 14h V4: SHA1 checksum on raw+meta ; V4
 044h 14h V4: SHA1 checksum on raw+meta of parent ;
 058h 14h V4: SHA1 checksum on raw data ;/
 ... N*10h Map entries (for each hunk)
 ... 10h Map end marker ("EndOfListCookie",00h)
 Metadata Chunk(s)
 Compressed Sectors (aka hunks)

 000h 8 ID "MComprHD" (MAME Compressed Hunks of Data)
 008h 4 Header size (7Ch=V5)
 00Ch 4 Header version (05h=V5)
 010h 4 Compressor 0 (usually "cdlz"=cdrom/lzma)
 014h 4 Compressor 1 (usually "cdzl"=cdrom/zlib)
 018h 4 Compressor 2 (usually "cdfl"=cdrom/flac)
 01Ch 4 Compressor 3 (usually 0=none)
 020h 8 Total size of all uncompressed hunks (N*4C80h-HunkPadding)
 028h 8 Offset to Map (3D797h)
 030h 8 Offset to first Metadata chunk (7Ch)
 038h 4 Number of bytes per hunk (512k maximum) (990h*8) (4C80h)
 03Ch 4 Number of bytes per sector (990h) (30h+60h)
 040h 14h SHA1 on raw data
 054h 14h SHA1 on raw+meta
 068h 14h SHA1 on raw+meta of parent (0=No parent)
 Metadata Chunk(s)
 Padding to BytesPerHunk-boundary ;\when uncompressed
 Uncompressed Sectors (aka hunks) ;/

13.121 CDROM Disk Images CHD (MAME)

- 561/1136 -

CHD Metadata

V3/V4/V5 METADATA

Overall Metadata chunk format:

There can be one or more chunks (eg. CHT2 chunk(s), one for each CDROM track).

V3/V4/V5 METADATA IN ASCII FORMAT

The ASCII items are separated by spaces as shown above (or commas for GDDD).

The last item in each chunk is terminated by 00h (at least so for CHTR/CHT2).

Most items are followed by a colon and decimal string (eg. TRACK:1), except,

TYPE,PGTYPE,SUBTYPE,PGSUB are followed by text strings (eg. TYPE:MODE2_RAW).

 Compressed Sectors (aka hunks) ;-when compressed
 Map

 000h 4 Chunk ID (aka Blob Tag) (eg. "CHT2" for each CDROM track)
 004h 1 Flags (00h=V3, 01h=V4/V5) ;maybe some kind of flag/type/version?
 005h 3 Chunk Data Size (24bit)
 008h 8 Offset to next Chunk (or 0=Last chunk)
 010h .. Chunk Data (eg. "TRACK:1 TYPE:MODE2_RAW ... POSTGAP:0",00h for CHT2)

 Summary of Chunk IDs and corresponding Data entries:
 ID_______Data___
 "GDDD" "CYLS,HEADS,SECS,BPS" ;-hard disk standard info ;\
 "IDNT" ? ;-hard disk identify info ; HDD
 "KEY " ? ;-hard disk key info ;/
 "CIS " ? ;-pcmcia CIS info ;-PCMCIA
 "CHCD" 94Ch-byte binary (4+99*24 bytes) ;\
 "CHTR" "TRACK TYPE SUBTYPE FRAMES" ; CD-ROM
 "CHT2" "TRACK TYPE SUBTYPE FRAMES PREGAP PGTYPE PGSUB POSTGAP" ;/
 "CHGT" ? ;\Sega
 "CHGD" "TRACK TYPE SUBTYPE FRAMES PAD PREGAP PGTYPE PGSUB POSTGAP" ;/GD-ROM
 "AVAV" "FPS WIDTH HEIGHT INTERLACED CHANNELS SAMPLERATE" ;\AV
 "AVLD" ? (A/V Laserdisc frame) ;/

 CYLS:# Hard disc number of cylinders
 HEADS:# Hard disc number of heads
 SECS:# Hard disc number of sectors
 BPS:# Hard disc bytes per sector
 TRACK:# CDROM current track number (1..99)
 TYPE:string CDROM sector type/size
 SUBTYPE:string CDROM subchannel info (usually "NONE")
 FRAMES:# CDROM number of sectors per track (with/without pregap?)
 PAD:# Sega GDROM only: whatever pad value?
 PREGAP:# CDROM ... maybe number of pregap sectors? (can be HUGE !!??)
 PGTYPE:string CDROM ... whatever type? (usually "MODE1"??)

13.121 CDROM Disk Images CHD (MAME)

- 562/1136 -

Caution:

AUDIO sectors are conventionally stored as 16bit little-endian samples, but CHD is storing

them in big-endian (unlike formats like CUE/BIN).

Caution:

Older CHDMAN versions (eg. v0.146) did use nonsense "PGTYPE:MODE1" for all tracks

(including audio tracks), later versions (eg. v0.246) did fix that issue; those newer files

include a "V" prefix to indicate that the entry contains "valid" info (eg. "PGTYPE:VAUDIO")

(except, Track 1 keeps using "PGTYPE:MODE1" without "V" and it's "MODE1" even on

MODE2 discs).

CHCD METADATA (94CH BYTES, PLUS 10H-BYTE METADATA HEADER)

 PGSUB:string CDROM ... whatever subchannel (usually "RW"??)
 POSTGAP:# CDROM ... maybe number of pstgap sectors? (usually 0)
 FPS:#.###### AV Video(?)-frames per second? with 6-digit fraction? (.avi?)
 WIDTH:# AV Width (maybe in pixels?)
 HEIGHT:# AV Height (maybe in pixels?) (with/without interlace?)
 INTERLACED:# AV Interlace (maybe a flag that might be maybe 0 or 1?)
 CHANNELS:# AV Channels (maybe audio mono/stereo or so?)
 SAMPLERATE:# AV Samplerate (maybe audio samplerate, maybe in Hertz?)
 For SUBTYPE and PGSUB:
 "RW" 60h-byte interleaved ;normal "cooked" 96 bytes per sector
 "RW_RAW" 60h-byte uninterleaved ;raw uninterleaved 96 bytes per sector
 "NONE" 0-byte ;no subcode data stored (default)
 (unknown how RAW and RW_RAW differ, one format does probably store 8 bits
 for 8 subchannels per byte... but unknown which format is doing so?)
 For TYPE and PGTYPE (and CHCD numeric type 0..7):
 "MODE1/2048" or "MODE1" CHCD=0 800h-byte ;\Data Mode1
 "MODE1/2352" or "MODE1_RAW" CHCD=1 930h-byte ;/
 "MODE2/2336" or "MODE2" ;\dupe? CHCD=2 920h-byte ;\
 "MODE2/2336" or "MODE2_FORM_MIX" ;/ CHCD=5 920h-byte ;
 "MODE2/2048" or "MODE2_FORM1" CHCD=3 800h-byte ; Data Mode2
 "MODE2/2324" or "MODE2_FORM2" CHCD=4 914h-byte ;
 "MODE2/2352" or "MODE2_RAW" or "CDI/2352" CHCD=6 930h-byte ;/
 "AUDIO" (stored as big-endian samples!!!) CHCD=7 930h-byte ;-Audio CD-DA

 000h 4 Number of tracks (N) (1..99)
 004h N*18h Track entries
 Zeropadding to 94Ch-byte size (when less than 99 tracks)
 Track entries:
 000h 4 Track Type (0..7, CHCD=# in above table) (eg. 6=MODE2_RAW)
 004h 4 Subchannel Type (0=RW, 1=RW_RAW, 2=None)
 008h 4 Sector Size (800h, 914h, 920h or 930h)
 00Ch 4 Subchannel Size (0 or 60h)
 010h 4 Number of Frames (aka number of sectors)
 014h 4 Padding Frames (0..3) (to make Total Frames a multiple of 4)

13.121 CDROM Disk Images CHD (MAME)

- 563/1136 -

CHD Maps

The Maps contain info (offset, size, compression method, etc.) for the separate

compression blocks.

V1/V2 MAP FORMAT (64BIT ENTRIES WITH 44BIT+20BIT):

Unknown if offset is in upper or lower 44bit.

V3/V4 MAP ENTRIES (PER HUNK):

V34_MAP_ENTRY_FLAG_TYPE_MASK = 0x0f; // what type of hunk

V34_MAP_ENTRY_FLAG_NO_CRC = 0x10; // no CRC is present (which CRC?)

V3-V4 entry types

Note: Secondary algorithm is NEVER used (it seems to have been intended for FLAC

CDDA, but that was apparently never actually implemented in V3/V4).

Blurp: Secondary algorithm is "usually FLAC CDDA" (unknown where that is defined, and

if one could also select other algorithms) ("usually FLAC" might mean "always FLAC" for

cdroms, and "not used" elsewhere).

V5 MAP FORMATS

 44bit Offset to compressed data
 20bit Size of compressed data (or uncompressed data when size=hunksize)

 000h 8 Offset to compressed data (64bit big-endian)
 008h 4 CRC32 on uncompressed data (32bit big-endian)
 00Ch 3 Size of compressed data (24bit mixed-endian: Mid, Low, High)
 00Fh 1 Flags, indicating compression info (=whut? maybe below V34 stuff?)

 V34_MAP_ENTRY_TYPE_INVALID = 0 invalid type
 V34_MAP_ENTRY_TYPE_COMPRESSED = 1 standard compression
 V34_MAP_ENTRY_TYPE_UNCOMPRESSED = 2 uncompressed data
 V34_MAP_ENTRY_TYPE_MINI = 3 mini: use offset as raw data
 V34_MAP_ENTRY_TYPE_SELF_HUNK = 4 same as another hunk in this file
 V34_MAP_ENTRY_TYPE_PARENT_HUNK = 5 same as a hunk in the parent file
 V34_MAP_ENTRY_TYPE_2ND_COMPRESSED = 6 compressed with secondary algorithm

 V5 uncompressed map format (when [filehdr+10h]=00000000h):
 000h N*4 Hunk List (32bit offsets: Offset/BytesPerHunk) (usually 1,2,3..)
 V5 compressed map format (when [filehdr+10h]<>00000000h):
 000h 4 Length of compressed map
 004h 6 Offset of first block (48bit) (E4h, after meta)
 00Ah 2 CRC16 on decompressed map entries
 00Ch 1 bits used to encode complength
 00Dh 1 bits used to encode self-refs

13.121 CDROM Disk Images CHD (MAME)

- 564/1136 -

UNCOMPRESSED V5 MAP LOADING (WHEN [FILEHDR+10H]=00000000H)

COMPRESSED V5 MAP LOADING (WHEN [FILEHDR+10H]\<>00000000H)

 00Eh 1 bits used to encode parent unit refs
 00Fh 1 Reserved for future use (probably zero)
 010h .. Compressed Map entries (bitstream with Huffman/RLE encoding)
 The decompressed map entries should look as shown below (one could store them
 differently, eg. as 32bit little endian values; however, they must be stored
 exactly as shown below when computing the CRC16 on decompressed map entries):
 000h 1 Compression type (0..3=Codec0..3, 4=Uncompressed, 5=Self, 6=Parent)
 001h 3 Compressed length (24bit big-endian)
 004h 6 Offset to compressed data (48bit big-endian)
 00Ah 2 CRC16 on decompressed data (big-endian)
 V5 compression codecs:
 0,0,0,0 = CHD_CODEC_NONE ;-unused (when using less than 4 codecs)
 "zlib" = CHD_CODEC_ZLIB ;\
 "lzma" = CHD_CODEC_LZMA ; general codecs
 "huff" = CHD_CODEC_HUFFMAN ;
 "flac" = CHD_CODEC_FLAC ;/
 "cdzl" = CHD_CODEC_CD_ZLIB ;\
 "cdlz" = CHD_CODEC_CD_LZMA ; general codecs with CD frontend
 "cdfl" = CHD_CODEC_CD_FLAC ;/
 "avhu" = CHD_CODEC_AVHUFF ;-A/V codecs

 readfile(src,NumberOfHunks*4) ;\
 i=0 ; load uncomoressed
 while i<NumberOfHunks ; map (needed only
 ofs=bigendian32bit[src+i*4]*BytesPerHunk ; for uncompressed
 byte[map+i*0Ch+00h]=04h ;typ=Uncompressed ; files, which can
 bigendian24bit[map+i*0Ch+01h]=BytesPerHunk ; be created via
 bigendian48bit[map+i*0Ch+04h]=ofs ; chdman commandline
 bigendian16bit[map+i*0Ch+0Ah]=none ;no crc ; options)
 ofs=ofs+len, i=i+1 ;/

 readfile(hdr,10h) ;\read map hdr and
 readfile(src,bigendian32bit[hdr+0]) ; compressed map
 InitBitstream(src,BigEndianMsbFirst) ;/
 i=0 ;\
 while i<10h ;
 val=GetBits(4), num=1 ;
 if val=01h then ; read huffman tree
 val=GetBits(4) ;
 if val<>01h then num=GetBits(4)+3 ;
 for j=1 to num, codesizes[i]=val, i=i+1 ;
 nonlzh_explode_tree(codetree,codesizes,10h) ;/
 i=0, typ=0, num=0 ;\
 while i<NumberOfHunks ;
 if num=0 ; load huffman coded
 x=GetHuffCode(codetree) ; map type values
 if x=07h then ;COMPRESSION_RLE_SMALL ;
 num=GetHuffCode(codetree)+03h ;

13.121 CDROM Disk Images CHD (MAME)

- 565/1136 -

noncrc16: Uses the same polynomial as for CDROM subchannels, but with initial value

FFFFh (instead 0) and with final value left un-inverted (instead of inverting it).

nonlzh_explode_tree: Uses the same concept as for LZH/ARJ huffman trees (it's storing

only the number of bits per each codes, and the codes are then automatically assigned).

But CHD is doing that backwards: It's starting with the biggest codes (instead of smallest

codes). For example, if you have three codes with size 1, 2, 2. The traditional standard

assignment would be 0, 10, 11. But CHD is instead assigning them as 00, 01, 1.

CHD Compression

COMPRESSION V1-V4 FORMAT 0 (UNCOMPRESSED)

COMPRESSION V5 0,0,0,0 (UNCOMPRESSED)

Uncompressed format can be selected in CHD Map entries (per hunk), and in CHD file

header (per whole file).

 elseif x=08h then ;COMPRESSION_RLE_LARGE ;
 num=GetHuffCode(codetree)*10h ;
 num=GetHuffCode(codetree)+num+13h ;
 else typ=x, num=1 ;
 byte[map+i*0Ch+0]=typ, i=i+1, num=num-1 ;/
 i=0, s=0, p=0 ;index,self,parent ;\
 o=bigendian48bit[hdr+4] ;offset ; load other
 while i<NumberOfHunks ; map items
 typ=byte[map+i*0Ch+00h], ofs=o, len=0, crc=0 ;
 if typ<04h then len=GetBits([hdr+0Ch]), crc=GetBits(16); ;Method 0..3
 elseif typ=04h then len=BytesPerHunk, crc=GetBits(16) ; ;Uncompressed
 elseif typ=05h then s=GetBits([hdr+0Dh]), ofs=s ; ;New Self
 elseif typ=06h then p=GetBits([hdr+0Eh]), ofs=p ; ;New Parent
 elseif typ=09h then typ=05h, ofs=s ; ;Old Self
 elseif typ=0Ah then typ=05h, s=s+1, ofs=s ; ;Old Self+1
 elseif typ=0Bh then typ=06h, p=i*SectorsPerHunk, ofs=p ; ;Direct Parent
 elseif typ=0Ch then typ=06h, ofs=p ; ;Old Parent
 elseif typ=0Dh then typ=06h, p=p+SectorsPerHunk, ofs=p ; ;Old Parent+1
 else goto error ;
 byte[map+i*0Ch+00h]=typ ;
 bigendian24bit[map+i*0Ch+01h]=len ;
 bigendian48bit[map+i*0Ch+04h]=ofs ;
 bigendian16bit[map+i*0Ch+0Ah]=crc ;
 o=o+len, i=i+1 ;/
 if bigendian16bit[hdr+0Ah]<>noncrc16(map,i*0Ch) then error ;-final crc check

 000h .. Uncompressed data

13.121 CDROM Disk Images CHD (MAME)

- 566/1136 -

COMPRESSION V1-V4 FORMAT 1 (ZLIB) (GENERIC DEFLATE)

COMPRESSION V1-V4 FORMAT 2 (ZLIB+) (GENERIC DEFLATE)

COMPRESSION V5 "ZLIB" (GENERIC DEFLATE)

COMPRESSION V5 "LZMA" (GENERIC LZMA)

COMPRESSION V5 "FLAC" (GENERIC FLAC)

COMPRESSION V5 "HUFF" (GENERIC HUFFMAN)

COMPRESSION V5 "CDZL" (CDROM DEFLATE+DELATE)

COMPRESSION V5 "CDLZ" (CDROM LZMA+DEFLATE)

COMPRESSION V5 "CDFL" (CDROM FLAC+DEFLATE)

COMPRESSION V5 "AVHU" (A/V MIXUP WITH HUFFMAN AND FLAC OR SO)

This isn't used on CDROMs and details are unknown/untested. It does reportedly exist in

different versions, and does combine different compression methods for audio and video

data.

 000h .. Deflate-compressed data

 000h .. LZMA-compressed data (with lc=3, lp=0, pb=2) (without EOS end code)

 000h 1 Output format for 16bit samples ("L"=Little-endian, "B"=Big-endian)
 001h .. FLAC-compressed data frame(s)

 000h .. Huffman-compressed data (small tree, large tree, plus data)

 000h .. ECC Flags, (SectorsPerHunk+7)/8 bytes ;little-endian, bit0=1st flag
 ... 2/3 Size of compressed Data part (SIZ) ;big-endian, 16bit or 24bit
 ... SIZ Deflate compressed Data part ;uncompressed=930h*N bytes
 Deflate compressed Subchannel part ;uncompressed=60h*N bytes

 000h .. ECC Flags, (SectorsPerHunk+7)/8 bytes ;little-endian, bit0=1st flag
 ... 2/3 Size of compressed Data part (SIZ) ;big-endian, 16bit or 24bit
 ... SIZ LZMA compressed Data part ;uncompressed=930h*N bytes
 Deflate compressed Subchannel part ;uncompressed=60h*N bytes

 000h .. FLAC-compressed Data Frame(s) ;uncompressed=930h*N bytes
 Deflate compressed Subchannel part ;uncompressed=60h*N bytes

13.121 CDROM Disk Images CHD (MAME)

- 567/1136 -

COMPRESSION V4 FORMAT 3 (AV)

Unknown, maybe same/similar as "avhu".

COMPRESSION V3-V4 SECONDARY COMPRESSION METHOD (FLAC CDDA)

CHD source code claims that V3-V4 maps support "FLAC CDDA", but it doesn't actually

seem to support that (audio discs compressed with chdman v0.145 are merely using

Deflate).

CHD Compression for CDROMs

CDROM "CDZL" AND "CDLZ"

If the sector's ECC flag is set:

The Size entry is 16bit (when N*990h\<10000h) or 24bit (when N*990h>=10000h), the

size entry has no real purpose, however, it may be useful for:

CDROM "CDFL"

There are no ECC flags (since Audio sectors don't have ECC).

There is no size entry (one must decompress the whole FLAC part to find the begin of

the Subchannel part).

The FLAC output is always stored in BIG-ENDIAN format (because CHD likes to use big-

endian for audio sectors, unlike formats like CUE/BIN).

CDROM SUBCHANNEL DATA

The Data part and Subchannel part must be interleaved after decompression (to form

990h-byte sectors with 930h+60h bytes). The CHD map's CRC is then computed on that

interleaved data.

Most CHD files use metadata SUBTYPE:NONE which means that the 60h-byte

subchannel data is simply zerofilled and one must replace it by default Index/Position

values (AFTER the above CRC check). The CHD metadata lacks accurate info about

Index values; the PREGAP part is supposedly meant to have Index=0 and the remaining

 Fix the 0Ch-byte Sync mark at [000h..00Bh]
 Fix the 114h-byte ECC data at [81Ch..92Fh] in relation to Mode at [00Fh]
 Fixing just means to overwrite those values (there's no XOR-filter or so).
 CHD doesn't filter EDC values, MM:SS:FF:Mode Sector headers, nor Subheaders.

 decompressing the subchannel part without decompressing the whole data part,
 and for using libraries that don't return the end of the compressed data part

13.121 CDROM Disk Images CHD (MAME)

- 568/1136 -

sectors Index=1).

Although CHD files can contain subchannel data, CHDMAN has very limited support for

creating such files (the most practical way seems to be to convert CCD/IMG/SUB to

TOC/BIN and then convert that to CHD format).

CHD CDROM Sector Sizes

Decompressed CHD CDROM Sectors are always 990h bytes tall (930h+60h). However,

the Metadata TYPE/SUBTYPE entries may specify smaller sizes (corresponding to the

format of the original TOC/BIN or CUE/BIN image). CHD does arrange that data as so:

That is somewhat okay for V3/V4 files, but involves two design mistakes that conflict with

the V5 format:

Note: The CHD Map CRC checks are done on the above arrangement (including

zeropadding, and any prior ECC-unfiltering).

After the CRC check, one most relocate the Sector/Subchannel parts to their actual

locations (and replace zeropadding by actual Sync marks, header, sub-header, ECC/EDC,

and Subchannel data as needed).

CHD Compression Methods

DEFLATE

This is raw Deflate (despite of being called "zlib" in chd headers and source code; there

aren't any ZLIB headers nor Adler checksums). V1-V4 does distinguish between "zlib"

and "zlib+" (both are using normal Deflate) (V3/V4 are always using "zlib+") (the "+"

does probably just mean that file was compressed with improved compression ratio).

CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)

LZMA

This contains a raw LZMA bitstream (without .lzma or .lz headers). The LZMA bitstream

starts with 8 ignored bits, if Normalization occurs after last compression code, then it

 000h Sector Data (800h, 914h, 920h or 930h bytes)
 ... Subchannel Data (0 or 60h bytes)
 ... Zeropadding to 990h-byte size (0..190h bytes)

 - The ECC-Filter works only for 930h-byte sectors (920h does also contain
 ECC, but CHD can't filter that, resulting in very bad compression ratio)
 - The last 60h-byte are supposed to be Deflate-compressed Subchannel Data
 (but 800h..920h+60h sectors actually contain Zeropadding in that location)

13.121 CDROM Disk Images CHD (MAME)

- 569/1136 -

will also end with 8 ignored bits (those ignored bits aren't CHD-specific, they do also

occur in other LZMA-based formats).

CDROM File Compression LZMA

FLAC

The data consists of raw FLAC Frames (without FLAC file header or FLAC metadata

blocks), the format is always signed 16bit/stereo (NumChannels=2 SampleDepth=16),

the sample rate is don't care for compression purposes (the FLAC Frame headers have it

set to 09h=44100Hz).

Each FLAC Frame starts with a 14bit Sync mark (3FFEh), and ends with 16bit CRC.

There are usually several FLAC frames per CHD hunk (one must decompress all FLAC

frames, until reaching the decompressed hunk size).

Each FLAC Frame contains Left samples, followed by Right samples. After

decompression, CHD does store them in interleaved form (L,R,L,R,etc.)

CDROM File Compression FLAC audio

HUFFMAN

This is using some custom CHD-specific Huffman compression.

 decompress_chd_huffman_hunk:
 InitBitstream(src,BigEndianMsbFirst) ;-init
 codesizes[0..17h]=00h ;initially all unused ;\
 codesizes[0]=GetBits(3) ;get first entry ;
 i=GetBits(3)+1 ;leading unused entries ; small
 @@small_tree_lop: ; tree
 val=GetBits(3) ;
 if val=07h then goto @@small_tree_done ;trailing unused entries ;
 codesizes[i]=val, i=i+1 ;apply entry ;
 if i<18h then goto @@small_tree_lop ;
 @@small_tree_done: ;
 nonlzh_explode_tree(codetree,codesizes,18h) ;/
 data=00h ;\
 @@large_tree_lop: ;
 val=GetHuffCode(codetree)-1 ;using small tree codes ; large
 if val>=00h then ; tree
 data=val, codesizes[i]=data, i=i+1 ;
 else ;
 len=GetBits(3)+2 ;
 if len=7+2 then len=GetBits(8)+7+2 ;
 for n=1 to len, codesizes[i]=datal, i=i+1 ;
 if i<100h then goto @@large_tree_lop ;
 nonlzh_explode_tree(codetree,codesizes,100h) ;/
 for n=1 to decompressed_size ;\data
 [dst]=GetHuffCode(codetree), dst=dst+1 ;using large tree codes ;/

13.121 CDROM Disk Images CHD (MAME)

- 570/1136 -

CHD Notes

TRACK/HUNK PADDING AND MISSING INDEX0 SECTORS

A normal CDROM contains a series of sectors. The CHD format is violating that in several

ways: It's removing Index0/Pregap sectors, and it's instead inserting dummy/padding

sectors between tracks.

That is, the critical parts are:

Missing Index0 might be a problem if a disc contains nonzero data between tracks (like

audio discs with applause in Index0 periods).

Track padding is total nonsense. The final hunk padding makes sense (but confusingly

that extra padding isn't included in the uncompressed size entry in CHD header).

PARENT REFERENCES

Parent files are only used for writeable media like harddisks. The idea is to store the

original installation and operating system in a readonly Parent file, and to store changes

that file in a writeable Child file.

Unknown what determines which parent belongs to which child, and if parents can be

nested with other grandparents. Anyways, Parents aren't needed for CDROMs (except,

one could theoretically store CDROM patches in child files).

SELF REFERENCES

This can be used to reference to another identical hunk in the same file (eg. zerofilled

sectors or other duplicated data). There are some restrictions for CDROMs: Data sector

headers contain increasing sector numbers, so there won't be any identical sectors.

However, Audio sectors can be identical (unless they are stored with subchannel info,

which does also contain increasing sector numbers).

 Track <---- Track1---------> <---- Track2---------> <--End-->
 Section Index0 IndexN TrackPad Index0 IndexN TrackPad HunkPad
 Real Disc Yes Yes - Yes Yes - -
 CHD Header - Yes Yes - Yes Yes -
 CHD Data - Yes Yes - Yes Yes Yes

 Index0/pregap: Metadata PREGAP:sectors isn't stored in compressed data
 Track padding: Metadata FRAMES:sectors is rounded up to N*4 sectors
 Hunk padding: The last hunk is additionally rounded up to hunksize

13.121 CDROM Disk Images CHD (MAME)

- 571/1136 -

MINI

Mini is only used in V3/V4 maps. It does apparently store the "data" directly in the 8-

byte Map offset field.

Mini isn't used in V5 because the compressed V5 map doesn't contain any offset fields

(and things like zerofilled sectors could be as well encoded as Self instead of Mini).

CHDMAN VERSIONS

CHD files can (cannot) be generated with the CHDMAN.EXE tool:

Note: The compression tool was originally called HDCOMP (V1/V2), and later renamed to

CHDMAN (V3/V4/V5).

REFERENCES

CHD source code (see files cdrom.*, chd*.*, etc):

 XXX Unknown what kind of "data" that is
 (probably "normal compressed data", that happens to be 8 bytes or smaller).

 chdman hdr meta features/requirements/bugs/quirks/failures...
 v0.58 - - - ;-CHD didn't exist in older MAME versions
 v0.59 V1 - - ;\
 v0.71 V2 - - ; supports harddisk CHD files only, not cdrom
 v0.78 V3 xxxx - ;/
 v0.81 V3 CHCD bad ;-crashes after creating the CHD file header
 v0.90 V3 CHCD ok ;\
 v0.110 V3 CHCD ok ; requires cdrdao TOC/BIN as input (CUE/BIN does crash)
 v0.111 V3 CHTR ok ; (warning: BIN filenames may not contain space chars!)
 v0.112 V3 CHTR bug ; ;\works, but compression is somewhat bugged (files
 v0.118 V3 CHTR bug ; ;/are BIGGER instead of SMALLER after compression)
 v0.120 V3 CHTR ok ;
 v0.130 V3 CHTR ok ;
 v0.131 V4 CHTR ok ;/
 v0.140 V4 CHT2 ok ;\requires "unicows.dll" (=Quintessential Media Player)
 v0.145 V4 CHT2 ok ;/
 v0.146 V5 CHT2 bad ;\says output file already exists (crashes on -f force)
 v0.154 V5 CHT2 bad ;/
 v0.155 V5 CHT2 bad ;\crashes instantly (shortly before CreateEventW)
 v0.160 V5 CHT2 bad ;/
 v0.161 V5 CHT2 bad ;\says output file already exists (crashes on -f force)
 v0.169 V5 CHT2 bad ;/
 v0.170 V5 CHT2 bad ;\missing KERNEL32.DLL:AddVectoredExceptionHandler
 v0.217 V5 CHT2 bad ;/
 v0.218 V5 CHT2 bad ;\requires "newer version of windows" (64bit)
 v0.247 V5 CHT2 bad ;/

13.121 CDROM Disk Images CHD (MAME)

- 572/1136 -

https://github.com/mamedev/mame/tree/master/src/lib/util

CHDMAN commandline tool for generating chd files:

https://github.com/mamedev/mame/blob/master/src/tools/chdman.cpp

CHD decompression clone with useful comments:

https://github.com/SnowflakePowered/chd-rs/tree/master/chd-rs/src

CHD format reverse-engineering thread:

http://www.psxdev.net/forum/viewtopic.php?f=70&t=3980

13.122 CDROM Disk Images Other Formats

.ISO - A raw ISO9660 image (can contain a single data track only)

Contains raw sectors without any sub-channel information (and thus it's restricted to the

ISO filesystem region only, and cannot contain extras like additional audio tracks or

additional sessions). The image should start at 00:02:00 (although I wouldn't be

surprised if some \<might> start at 00:00:00 or so). Obviously, all sectors must have

the same size, either 800h or 930h bytes (if the image contains only Mode1 or Mode2/

Form1 sectors then 800h bytes would usually enough; if it contains one or more Mode2/

Form2 sectors then all sectors should be 930h bytes).

Handling .ISO files does thus require to detect the image's sector size, and to search the

sector that contains the first ISO Volume Descriptor. In case of 800h byte sectors it may

be additionally required to detect if it is a Mode1 or Mode2/Form1 image; for PSX

images (and any CD-XA images) it'd be Mode2.

.C2D

Something. Can contain compressed or uncompressed CDROM-images. Fileformat and

compression ratio are unknown. Also unknown if it allows random-access.

Some info on (uncompressed) .C2D files can be found in libmirage source code.

.ISZ - compressed ISO file with 800h-byte sectors (UltraISO)

This contains a compressed ISO filesystem, without supporting any CD-specific features

like Tracks, FORM2 sectors, or CD-DA Audio.

13.122 CDROM Disk Images Other Formats

- 573/1136 -

https://github.com/mamedev/mame/tree/master/src/lib/util
https://github.com/mamedev/mame/blob/master/src/tools/chdman.cpp
https://github.com/SnowflakePowered/chd-rs/tree/master/chd-rs/src
http://www.psxdev.net/forum/viewtopic.php?f=70&t=3980

http://www.ezbsystems.com/isz/iszspec.txt

The format might be suitable for PC CDROMs, but it's useless for PSX CDROMs.

.MDX

Reportedly a "compressed" MDS/MDF file, supported by Daemon Tools.

Other info says that MDX is just MDS/MDF merged into a single file, without mentioning

any kind of "compression" support.

Basically... Daemon Tools is Adware that can merge MDS+MDF into one MDX file... with

additional Advertising?

However, the MDS+MDF format is completely different than MDX format:

.CU2/.BIN

Custom format used by PSIO (an SD-card based CDROM-drive emulator connected to

PSX expansion port). The .CU2 file is somewhat intended to be smaller and easier to

parse than normal .CUE files, the drawback is that it's kinda non-standard, and doesn't

support INDEX and ADSR information. A sample .CUE file looks as so:

All track numbers and MM:SS:FF values are decimal. The ASCII strings should be as

shown above, but they are simple ignored by the PSIO firmware (eg. using "popcorn666"

instead of "size" or "track02" should also work). The first track should be marked "data1",

but PSIO ignores that string, too (it does always treat track 1 as data, and track 2-99 as

audio; thus not supporting PSX games with multiple data tracks). The "trk end" value

 000h 10h ID ("MEDIA DESCRIPTOR") (weirdly, same as in Alcohol .MDS)
 010h 2 Unknown (02h,01h) (maybe version or so)
 012h 1Ah Copyright string (A9h," 2000-2015 Disc Soft Ltd.")
 02Ch 4 Unknown (FFFFFFFFh)
 030h 4 Offset to Unknown Footer (322040h) (N*800h+40h)
 034h 4 Unknown (0)
 038h 4 Unknown (B0h)
 03Ch 4 Unknown (0)
 040h N*800h Sector Data
 322040h 270h Unknown (Advertising IDs? CRCs? Encrypted CUE sheet? Garbage?)

 ntracks 3
 size 39:33:17
 data1 00:02:00
 track02 31:36:46
 track03 36:03:17
 ;(insert 2 blanks lines here, and insert 1 leading space in next line)
 trk end 39:37:17

13.122 CDROM Disk Images Other Formats

- 574/1136 -

http://www.ezbsystems.com/isz/iszspec.txt

should be equal to the "size" value plus 4 seconds (purpose is unknown, PSIO does just

ignore the "trk end" value).

CU2 creation seems to require CDROM images in "CUE/BIN redump.org format" (with

separate BIN files for each track), the CUE is then converted to a CU3 file (which is used

only temporarily), until the whole stuff is finally converted to a CU2 file (and with all

tracks in a single BIN file). Tools like RD2PSIO (aka redump2psio) or PSIO's own

SYSCON.ZIP might help on doing some of those steps automatically.

Alongsides, PSIO uses a "multidisc.lst" file... for games that require more than one

CDROM disc?

CD Image File Format (Xe - Multi System Emulator)

This is a rather crude file format, used only by the Xe Emulator. The files are meant to

be generated by a utility called CDR (CD Image Ripper), which, in practice merely

displays an "Unable to read TOC." error message.

The overall file structure is, according to "Xe User's Manual":

The header "definition" from the "Xe User's Manual" is as unclear as this:

Unknown if MM:SS:FF values and/or First+Last Track numbers are BCD or non-BCD.

Unknown if Last track is separately defined even if there is only ONE track.

Unknown if Track 2 and up include ADR/Control (and if yes: where?).

 header: 200h bytes header (see below)
 data: 990h bytes per sector (2352 Main, 96 Sub), 00:00:00->Lead Out

 000h 00
 001h 00
 002h First Track
 003h Last Track
 004h Track 1 (ADR << 4) | CTRL ;\
 005h Track 1 Start Minutes ; Track 1
 006h Track 1 Start Seconds ;
 007h Track 1 Start Frames ;/
 ;-Probably Further Tracks (?)
 n+0 Last Track Start Minutes ;\
 n+1 Last Track Start Seconds ; Last Track
 n+2 Last Track Start Frames ;
 n+3 Last Track (ADR << 4) | CTRL ;/
 n+4 Lead-Out Track Start Minutes ;\
 n+5 Lead-Out Track Start Seconds ; Lead-Out
 n+6 Lead-Out Track Start Frames ;
 n+7 Lead-Out Track (ADR << 4) | CTRL ;/
 ... 00
 1FFh 00

13.122 CDROM Disk Images Other Formats

- 575/1136 -

Unknown if ADR/Control is really meant to be \<before> MM:SS:FF on Track 1.

Unknown if ADR/Control is really meant to be \<after> MM:SS:FF on Last+Lead-Out.

Unknown if this format does have a file extension (if yes: which?).

Unknown if subchannel data is meant to be interleaved or not.

The format supports only around max 62 tracks (in case each track is 4 bytes).

There is no support for "special" features like multi-sessions, cd-text.

13.122 CDROM Disk Images Other Formats

- 576/1136 -

14. Controllers and Memory Cards

Controllers/Memory Cards

Controller and Memory Card Overview

Controller and Memory Card Signals

Controller and Memory Card Multitap Adaptor

Controllers

Controllers - Communication Sequence

Controllers - Standard Digital/Analog Controllers

Controllers - Mouse

Controllers - Racing Controllers

Controllers - Lightguns

Controllers - Configuration Commands

Controllers - Vibration/Rumble Control

Controllers - Analog Buttons (Dualshock2)

Controllers - Dance Mats

Controllers - Pop'n Controllers

Controllers - Taiko Controllers (Tatacon)

Controllers - Densha de Go! / Jet de Go! Controllers

Controllers - Fishing Controllers

Controllers - PS2 DVD Remote

Controllers - I-Mode Adaptor (Mobile Internet)

Controllers - Additional Inputs

Controllers - Misc

Memory Cards

Memory Card Read/Write Commands

Memory Card Data Format

Memory Card Images

Memory Card Notes

Pocketstation (Memory Card with built-in LCD screen and buttons)

Pocketstation

14. Controllers and Memory Cards

- 577/1136 -

Pinouts

Pinouts - Controller Ports and Memory-Card Ports

14.1 Controller and Memory Card Overview

Controllers and memory cards connect to the console using a serial protocol and are

accessed through SIO0 registers:

Serial Interfaces (SIO)

The protocol used is similar to standard SPI, with no start/stop bytes and no parity

(even though SIO0 has support for it). Unlike typical SPI, only one byte is transferred at

a time and a separate wire (/ACK) is used by the device to signal the PS1 that it is ready

to exchange the next byte. For more details see:

Controller and Memory Card Signals

Device addressing

Each controller port and its respective memory card slot are wired in parallel, and the /

CSn signals select both the controller and the memory card when asserted. This

selection is narrowed down through a simple addressing scheme, where the first byte

sent by the console after asserting /CSn is the address of the device that shall reply. All

devices must keep the DAT line idle before receiving this byte. Once the address is sent,

the device that was addressed shall pull /ACK low to signal its presence and start

exchanging bytes.

The following addresses are known to be used:

DSR (/ACK) Controller and Memory Card - Byte Received Interrupt

Gets set after receiving a data byte - that only if an /ACK has been received from the

peripheral (ie. there will be no IRQ if the peripheral fails to send an /ACK, or if there's no

peripheral connected at all).

Device Address

Standard controller 01h

Yaroze Access Card 21h

PS2 multitap (incompatible with PS1) 21h

PS2 DVD remote receiver 61h

Memory card 81h

14.1 Controller and Memory Card Overview

- 578/1136 -

I_STAT.7 is edge triggered (that means it can be acknowledge before or after

acknowledging SIO0_STAT.9). However, SIO0_STAT.9 is NOT edge triggered (that means

it CANNOT be acknowledged while the external /IRQ input is still low; ie. one must first

wait until SIO0_STAT.7=0, and then set SIO0_CTRL.4=1) (this is apparently a hardware

glitch; note: the LOW duration is circa 100 clock cycles).

/IRQ10 (/IRQ) Controller - Lightpen Interrupt

Pin 8 on Controller Port. Routed directly to the Interrupt Controller (at 1F80107xh).

There are no status/enable bits in the SIO0_registers (at 1F80104xh).

Plugging and Unplugging Cautions

During plugging and unplugging, the Serial Data line may be dragged LOW for a

moment; this may also affect other connected devices because the same Data line is

shared for all controllers and memory cards (for example, connecting a joypad in slot 1

may corrupt memory card accesses in slot 2).

Moreover, the Sony Mouse does power-up with /ACK=LOW, and stays stuck in that state

until it is accessed at least once (by at least sending one 01h byte to its controller port);

this will also affect other devices (as a workaround one should always access BOTH

controller ports; even if a game uses only one controller, and, code that waits for /

ACK=HIGH should use timeouts).

Emulation Note

After sending a byte, the Kernel waits 100 cycles or so, and does THEN acknowledge any

old IRQ7, and does then wait for the new IRQ7. Due to that bizarre coding, emulators

can't trigger IRQ7 immediately within 0 cycles after sending the byte.

BIOS Functions

Controllers can be probably accessed via InitPad and StartPad functions,

BIOS Joypad Functions

Memory cards can be accessed by the filesystem (with device names "bu00:" (slot1) and

"bu10:" (slot2) or so). Before using that device names, it seems to be required to call

InitCard, StartCard, and _bu_init (?).

 Actually, DSR means "more-data-request",
 accordingly, it does NOT get triggered after receiving the LAST byte.

14.1 Controller and Memory Card Overview

- 579/1136 -

Synchronous I/O

The data is transferred in units of bytes, via separate input and output lines. So, when

sending byte, the hardware does simultaneously receive a response byte.

One exception is the address byte (which selects either the controller, or the memory

card) until that byte has been sent, neither the controller nor memory card are selected

(and so the first "response" byte should be ignored; probably containing more or less

stable high-z levels).

The other exception is, when you have send all command bytes, and still want to receive

further data, then you'll need to send dummy command bytes (should be usually 00h)

to receive the response bytes.

14.2 Controller and Memory Card Signals

Overview

Address byte (01h) being sent

 ____ _____
 /CS __/
 ______ ____ ____ ____ ____ _________
 SCK |||||||| |||||||| |||||||| |||||||| ||||||||
 ____ _____
 MOSI '=[Addr]====[Cmd]====[Tap]====[Param]====[Param]==='

 MISO ---------------===[IDlo]====[IDhi]====[Data]====[Data]===------
 _______________ _________ _________ _________ _________________
 /ACK |_| |_| |_| |_|

--- High impedance
=== Any state (don't care)

 /CS __
 ______ _ _ _ _ _ _ _ __________________ _ _ _ _
 SCK |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_|
 __________ ___
 MOSI 1 |_0___0___0___0___0___0___0____________________0_| 1 |_0___0_

 MISO ---=======' 1 |_0___0___0_
 __ ____________________
 /ACK |___|

14.2 Controller and Memory Card Signals

- 580/1136 -

Notes:

All bytes are sent LSB first.

The standard baud rate used by the kernel is ~250 kHz. Some controllers and memory

cards may work with faster rates, but others will not.

The clock polarity is high-when-idle (sometimes referred to as CPOL=1). Each bit is

output on a falling clock edge and sampled by the other end on the rising clock edge

that follows it (CPHA=1).

The device has to pull /ACK low for at least 2 µs to request the host to transfer another

byte. Once the last byte of the packet is transferred, the device shall no longer pulse /

ACK.

The kernel's controller driver will time out if /ACK is not pulled low by the device within

100 µs from the last SCK pulse. It will also ignore /ACK pulses sent within the first 2-3

µs (100 cycles) of the last SCK pulse.

Devices should not respond immediately when /CS is asserted, but should wait for the

address byte to be sent and only send an /ACK pulse back and start replying with data

if the address matches.

14.3 Controller and Memory Card Multitap Adaptor

SCPH-1070 (Multitap)

The Multitap is an external adaptor that allows to connect 4 controllers, and 4 memory

cards to one controller port. When using two adaptors (one on each slot), up to 8

controllers and 8 memory cards can be used.

Multitap Controller Access

Normally joypad reading is done by sending this bytes to the pad:

And with the multitap, there are even two different ways how to access extra pads:

--- High impedance
=== Any state (don't care)

•

•

•

•

•

•

 01 42 00 00 .. ;normal read

14.3 Controller and Memory Card Multitap Adaptor

- 581/1136 -

The first method seems to be the more commonly used one (and its special ID is also

good for detecting the multitap); see below for details.

The second method works more like "normal" reads, among other it's allowing to transfer

more than 4 halfwords per slot (unknown if any existing games are using that feature).

The IRQ10 signal (for Konami Lightguns) is simply wired to all four slots via small

resistors (without special logic for activating/deactivating the IRQ on certain slots).

Multitap Controller Access, Method 1 Details

Below LONG response is activated by sending "01h" as third command byte; observe

that sending that byte does NOT affect the current response. Instead, it does request

that the NEXT command shall return special data, as so:

With this method, the Multitap is always sending 4 halfwords per slot (padded with FFFFh

values for devices like Digital Joypads and Mice; which do use less than 4 halfwords); for

empty slots it's padding all 4 halfwords with FFFFh.

Sending the request is possible ONLY if there is a controller in Slot A (if controller Slot A is

empty then the Slot A access aborts after the FIRST byte, and it's thus impossible to send

the request in the THIRD byte).

Sending the request works on access to Slot A, trying to send another request during the

LONG response is glitchy (for whatever strange reason); one must thus REPEATEDLY do

TWO accesses: one dummy Slot A access (with the request), followed by the long Slot

A+B+C+D access.

In practice:

Toggling REQ on/off after each command: Returns responses toggling between normal

Slot A data and long Slot A+B+C+D data.

 01 42 01 00 .. ;method 1: receive special ID and data from ALL four pads
 0n 42 00 00 .. ;method 2: receive data from pad number "n" (1..4)

 Halfword 0 --> Controller ID for MultiTap (5A80h=Multitap)
 Halfword 1..4 --> Player A (Controller ID, Buttons, Analog Inputs, if any)
 Halfword 5..8 --> Player B (Controller ID, Buttons, Analog Inputs, if any)
 Halfword 9..12 --> Player C (Controller ID, Buttons, Analog Inputs, if any)
 Halfword 13..16 --> Player D (Controller ID, Buttons, Analog Inputs, if any)

 Previous access had REQ=0 and returned Slot A data ---> returns Slot A data
 Previous access had REQ=0 and returned Slot A-D data -> returns Slot A data
 Previous access had REQ=1 and returned Slot A data ---> returns Slot A-D data
 Previous access had REQ=1 and returned Slot A-D data -> returns garbage
 Previous access had REQ=1 and returned garbage -------> returns Slot A-D data

14.3 Controller and Memory Card Multitap Adaptor

- 582/1136 -

Sending REQ=1 in ALL commands: Returns responses toggling between Garbage and long

Slot A+B+C+D data.

Both of the above is working (one needs only the Slot A+B+C+D part, and it doesn't

matter if the other part is Slot A, or Garbage; as long as the software is able/aware of

ignoring the Garbage). Garbage response means that the multitap returns ONLY four

bytes, like so: Hiz,80h,5Ah,LSB (ie. the leading HighZ byte, the 5A80h Multitap ID, and

the LSB of the Slot A controller ID), and aborts transfer after that four bytes.

Multitap Memory Card Access

Normally memory card access is done by sending this bytes to the card:

And with the multitap, memory cards can be accessed as so:

That's the way how its done in Silent Hill. Although for the best of confusion, it doesn't

actually work in that game (probably the developer has just linked in the multitap library,

without actually supporting the multitap at higher program levels).

Multitap Games

 80 xx ;normal access

 8n xx ;access memory card in slot "n" (1..4)

 Bomberman / Bomberman Party Edition (requires Multitap on Port 2 instead of 1)
 Bomberman World
 Breakout: Off the Wall Fun
 Circuit Breakers
 Crash Team Racing
 FIFA series soccer games
 Frogger
 Gauntlet: Dark Legacy
 Hot Shots Golf 2 & 3
 Jigsaw Island: Japan Graffiti / Jigsaw Madness (requires Multitap on Port 2 instead of
1)
 NBA Live (any year) (up to 8 players with two multitaps)
 Need For Speed 3
 Need For Speed 5
 Poy Poy (4 players hitting each other with rocks and trees)
 Running Wild
 S.C.A.R.S. (requires Multitap on Port 2 instead of 1)
 Zen Nippon Pro Wrestling: Ouja no Tamashii (requires Multitap on Port 2 instead of 1)

14.3 Controller and Memory Card Multitap Adaptor

- 583/1136 -

Most Multitap games supporting up to 4 or 5 controllers require the device to be plugged

into Port 1, but a small number of games strangely require the device to be plugged into

Port 2 instead.

Multitap Versions

The cable connects to one of the PSX controller ports (which also carries the memory card

signals). The PSX memory card port is left unused (and is blocked by a small edge on the

Multitap's plug).

MultiTap Parsed Controller IDs

Halfword 0 is parsed (by the BIOS) as usually, ie. the LSB is moved to MSB, and LSB is

replaced by status byte (so ID 5A80h becomes 8000h=Multitap/okay, or xxFFh=bad).

Halfwords 1,5,9,13 are NOT parsed (neither by the BIOS nor by the Multitap hardware),

however, some info in the internet is hinting that Sony's libraries might be parsing these

IDs too (so for example 5A41h would become 4100h=DigitalPad/okay, or xxFFh=bad).

Power Supply

The Multitap is powered by the PSX controller port. Unknown if there are any power

supply restrictions (up to eight controllers and eight cards may scratch some limits,

especially when doing things like activating rumble on all joypads). However, the

Multitap hardware itself doesn't do much on supply restrictions (+3.5V is passed through

something; maybe some fuse, loop, or 1 ohm resistor or so) (and +7.5V is passed

without any restrictions).

 .------.
 SCPH-1070 | | SCPH-111
 (gray case) | | (white case)
 (for PSX) | D | (for PSone)
 | | .----------------.
 cable | | cable .' D C '.
 ''--.. | C | '''--..__| |
 \| | | |
 .----------------' | '. A B .'
 | | '----------------'
 | |
 | A B /
 '---------------------'

14.3 Controller and Memory Card Multitap Adaptor

- 584/1136 -

PS2 multitap

Sony made a multitap adapter for the PS2, however it is not compatible with the PS1 as

it plugs into both the controller and memory card ports (which are not wired in parallel

on the PS2). The protocol is also different: rather than modifying packets it seems to act

as a mostly-passive port multiplexer, accepting switching commands with address 61h.

Unknown if the PS2 multitap is backwards compatible with the SCPH-1070 protocol.

See also

Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

14.4 Controllers - Communication Sequence

Controller Communication Sequence

The TAP byte should be usually zero, unless one wants to activate Multitap (multi-player

mode), for details, see

Controller and Memory Card Multitap Adaptor

The two MOT bytes are meant to control the rumble motors (for normal non-rumble

controllers, that bytes should be 00h), however, the MOT bytes have no effect unless

rumble is enabled via config commands, for details, see

Controllers - Configuration Commands

Controllers - Vibration/Rumble Control

Controller ID (Halfword Number 0)

 Send Reply Comment
 01h Hi-Z Controller address
 42h idlo Receive ID bit0..7 (variable) and Send Read Command (ASCII "B")
 TAP idhi Receive ID bit8..15 (usually/always 5Ah)
 MOT swlo Receive Digital Switches bit0..7
 MOT swhi Receive Digital Switches bit8..15
 --- transfer stops here for digital pad (or analog pad in digital mode) ---
 00h adc0 Receive Analog Input 0 (if any) (eg. analog joypad or mouse)
 00h adc1 Receive Analog Input 1 (if any) (eg. analog joypad or mouse)
 --- transfer stops here for analog mouse ----------------------------------
 00h adc2 Receive Analog Input 2 (if any) (eg. analog joypad)
 00h adc3 Receive Analog Input 3 (if any) (eg. analog joypad)
 --- transfer stops here for analog pad (in analog mode) -------------------
 --- transfer stops here for nonstandard devices (steering/twist/paddle) ---

14.4 Controllers - Communication Sequence

- 585/1136 -

Known 16bit ID values are:

The PS2 DVD remote receiver identifies as either 5A41h (i.e. a digital controller) when

polled using standard controller commands, or 5A12h when using address 61h to access

the IR functionality.

14.5 Controllers - Standard Digital/Analog Controllers

Standard Controllers

 0-3 Number of following halfwords (01h..0Fh=1..15, or 00h=16 halfwords)
 4-7 Controller Type (or currently selected Controller Mode)
 8-15 Fixed (5Ah)

 xx00h=N/A (initial buffer value from InitPad BIOS function)
 5A12h=Mouse (two button mouse)
 5A23h=NegCon (steering twist/wheel/paddle)
 5A31h=Konami Lightgun (IRQ10-type)
 5A41h=Digital Pad (or analog pad/stick in digital mode; LED=Off)
 5A53h=Analog Stick (or analog pad in "flight mode"; LED=Green)
 5A63h=Namco Lightgun (Cinch-type)
 5A73h=Analog Pad (in normal analog mode; LED=Red)
 5A7xh=Dualshock2 (with variable number of inputs enabled)
 5A79h=Dualshock2 (with all analog/digital inputs enabled)
 5A80h=Multitap (multiplayer adaptor) (when activated)
 5A96h=Keyboard (rare lightspan keyboard)
 5AE3h=Jogcon (steering dial)
 5AE8h=Keyboard/Sticks (rare homebrew keyboard/segasticks adaptor)
 5AF3h=Config Mode (when in config mode; see rumble command 43h)
 FFFFh=High-Z (no controller connected, pins floating High-Z)

 ___ ___ ___ ___
 __/_L___ Analog Pad __/_R___ __/_L___ Digital Pad __/_R___
 / _ \--------------/ \ / _ \--------------/ \
_		_		/\		_		_		/\
	_ X _		SEL STA	[] ()			_ X _			[] ()
	_	___ ANALOG ___ ><			_		SEL STA	><		
______ / L \ LED / R \ ______/		_________/--------------_________/								
	Joy	--------	Joy							
/ ___/ ___/ \		/ \								
 ____/ ____/ ____/ ____/

 __Halfword 0 (Controller Info)___
 0-15 Controller Info (5A41h=digital, 5A73h=analog/pad, 5A53h=analog/stick)
 __Halfword 1 (Digital Switches)__
 0 Select Button (0=Pressed, 1=Released)
 1 L3/Joy-button (0=Pressed, 1=Released/None/Disabled) ;analog mode only

14.5 Controllers - Standard Digital/Analog Controllers

- 586/1136 -

Analog Mode Note

On power-up, the controllers are in digital mode (with analog inputs disabled). Analog

mode can be (de-)activated manually by pushing the Analog button. Alternately, analog

mode can be (de-)activated by software via rumble configuration commands (though

that's supported only on newer pads; those with two rumble motors). It is essential that

emulators and any third-party hardware have a way of manually toggling analog mode,

similar to original analog controllers, as certain games like Gran Turismo 1 will not

attempt to enter analog mode on their own, even if they support analog controls and

detect an analog controller.

Since analog pads boot in digital mode and will return the same ID byte as digital

controllers, the most common way of distinguishing between the 2 is to send a

Dualshock-only command (Typically command 43h - enter/exit config mode) and seeing

how the controller responds to it.

The analog sticks are mechanically restricted to a "circular field of motion" (most

joypads can reach "min/max" values only in "straight" horizontal or vertical directions,

but not in "diagonal" directions).

Analog Joypad Range

 2 R3/Joy-button (0=Pressed, 1=Released/None/Disabled) ;analog mode only
 3 Start Button (0=Pressed, 1=Released)
 4 Joypad Up (0=Pressed, 1=Released)
 5 Joypad Right (0=Pressed, 1=Released)
 6 Joypad Down (0=Pressed, 1=Released)
 7 Joypad Left (0=Pressed, 1=Released)
 8 L2 Button (0=Pressed, 1=Released) (Lower-left shoulder)
 9 R2 Button (0=Pressed, 1=Released) (Lower-right shoulder)
 10 L1 Button (0=Pressed, 1=Released) (Upper-left shoulder)
 11 R1 Button (0=Pressed, 1=Released) (Upper-right shoulder)
 12 /\ Button (0=Pressed, 1=Released) (Triangle, upper button)
 13 () Button (0=Pressed, 1=Released) (Circle, right button)
 14 >< Button (0=Pressed, 1=Released) (Cross, lower button)
 15 [] Button (0=Pressed, 1=Released) (Square, left button)
 __Halfword 2 (Right joystick) (analog pad/stick in analog mode only)_________
 0-7 adc0 RightJoyX (00h=Left, 80h=Center, FFh=Right)
 8-15 adc1 RightJoyY (00h=Up, 80h=Center, FFh=Down)
 __Halfword 3 (Left joystick) (analog pad/stick in analog mode only)__________
 0-7 adc2 LeftJoyX (00h=Left, 80h=Center, FFh=Right)
 8-15 adc3 LeftJoyY (00h=Up, 80h=Center, FFh=Down)
 __Further Halfword(s) (Dualshock2 only, and only if enabled)_________________
 0-7 .. Analog Button (if enabled) (00h=Released, FFh=Max Pressure)
 8-15 .. Analog Button (if enabled) (00h=Released, FFh=Max Pressure)

14.5 Controllers - Standard Digital/Analog Controllers

- 587/1136 -

Example min/center/max values for three different pads:

Values may vary for other pads and/or different temperatures.

Dual Analog Pad in LED=Green Mode

Basically same as normal analog LED=Red mode, with following differences:

Concerning the button names, the real analog-stick does NOT have re-arranged buttons

(eg. it's L1 button is in bit10), however, concerning the button locations, the analog

stick's buttons are arranged completely differently as on analog pads (so it might be

rather uncomfortable to play analog stick games on analog pads in LED=Red mode; the

LED=Green mode is intended to solve that problem).

Might be useful for a few analog-stick games like MechWarrior 2, Ace Combat 2, Descent

 ...''''''''''...
 ____ .''________________''._____ ___ 00h
 | .'' ''. |
 |.' '.| ___ 10h
 .' '.
 :| |:
 : | | : ___ 60h
 .' | .''''''. | '.
 : | .' '. | :
 : | : : | : ___ 80h
 : | : : | :
 : | '. .' | :
 '. | '......' | .' ___ A0h
 : | | :
 :| |:
 '. .' ___ F0h
 |'. .'|
 |__'..______________________..'__| ___ FFh
 . '.. ..' .
 00h '''..........''' FFh

 Big Circle --> Mechanically possible field of motion
 Square Area --> Digitally visible 8bit field of motion
 Small Circle --> Resting position when releasing the joystick

 SCPH-1150 Min=(00,00), Mid: (72..90,79..AC), Max=(FF,FF) at 25'C
 SCPH-1200 Min=(0E,0E), Mid: (6C..8A,75..79), Max=(ED,ED) at 16'C
 SCPH-110 Min=(11,11), Mid: (8A..9F,70..96), Max=(FD,FD) at 16'C

 ID is 5A53h (identifying itself as analog stick) (rather than analog pad)
 Left/right joy-buttons disabled (as for real analog stick, bits are always 1)
 Some buttons are re-arranged: bit9=L1 bit10=[] bit11=/\ bit12=R1 bit15=R2

14.5 Controllers - Standard Digital/Analog Controllers

- 588/1136 -

Maximum, and Colony Wars. In most other cases the feature is rather confusing (that's

probably why the LED=Green mode wasn't implemented on the Dual Shock).

See also

Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

14.6 Controllers - Mouse

Sony Mouse Controller

Sony Mouse Hardware Bug on Power-On

On Power-on (or when newly connecting it), the Sony mouse does draw /ACK to LOW on

power-on, and does then hold /ACK stuck in the LOW position.

For reference: Normal controllers and memory cards set /ACK=LOW only for around 100

clk cycles, and only after having received a byte from the console.

The /ACK pin is shared for both controllers and both memory cards, so the stuck /ACK is

also "blocking" all other connected controllers/cards. To release the stuck /ACK signal:

Send a command (at least one 01h byte) to both controller slots.

Sony Mouse Compatible Games

 __Halfword 0 (Controller Info)________________
 0-15 Controller Info (5A12h=Mouse)
 __Halfword 1 (Mouse Buttons)__________________
 0-7 Not used (All bits always 1)
 8-9 Unknown (Seems to be always 0) (maybe SNES-style sensitivity?)
 10 Right Button (0=Pressed, 1=Released)
 11 Left Button (0=Pressed, 1=Released)
 12-15 Not used (All bits always 1)
 __Halfword 2 (Mouse Motion Sensors)___________
 0-7 Horizontal Motion (-80h..+7Fh = Left..Right) (00h=No motion)
 8-15 Vertical Motion (-80h..+7Fh = Up..Down) (00h=No motion)

 3D Lemmings
 Alien Resurrection
 Area 51
 Ark of Time

14.6 Controllers - Mouse

- 589/1136 -

Note: There are probably many more mouse compatible games.

Certain games, mostly FPS games such as Quake II and Doom, have players plug a

standard digital/analog pad in port 1 and a mouse in port 2. This way, players can use the

mouse for aiming and shooting, while the pad can be used for moving, reloading, and so

on.

 Atari Anniversary Edition
 Atlantis: The Lost Tales
 Breakout: Off the Wall Fun
 Broken Sword: The Shadow of the Templars
 Broken Sword II: The Smoking Mirror
 Clock Tower: The First Fear
 Clock Tower II: The Struggle Within
 Command & Conquer: Red Alert
 Command & Conquer: Red Alert - Retaliation
 Constructor (Europe)
 Die Hard Trilogy
 Die Hard Trilogy 2: Viva Las Vegas
 Discworld
 Discworld II: Missing Presumed...!?
 Discworld Noir
 Dune 2000
 Final Doom
 Galaxian 3
 Ghoul Panic
 Klaymen Klaymen: Neverhood no Nazon (Japan)
 Lemmings and Oh No! More Lemmings
 Monopoly
 Music 2000
 Myst
 Neorude (Japan)
 Perfect Assassin
 Policenauts (Japan)
 Puchi Carat
 Quake II
 Railroad Tycoon II
 Rescue Shot
 Risk
 Riven: The Sequel to Myst
 RPG Maker
 Sentinel Returns
 SimCity 2000
 Syndicate Wars
 Tempest 2000 (Tempest X3)
 Theme Aquarium (Japan)
 Transport Tycoon
 Warhammer: Dark Omen
 Warzone 2100
 X-COM: Enemy Unknown
 X-COM: Terror from the Deep
 Z

14.6 Controllers - Mouse

- 590/1136 -

Sony Mouse Component List

PCB "TD-T41V/\, MITSUMI"

Component Side:

Solder/SMD Side:

Cable:

PS/2 and USB Mouse Adaptors

Some keyboard adaptors are also including a mouse adaptor feature (either by

simulating normal Sony Mouse controller data, or via more uncommon ways like using

the PSX expansion port).

Controllers - Keyboards

RS232 Mice

Below is some info on RS232 serial mice. That info isn't directly PSX related as the PSX

normally doesn't support those mice.

With some efforts, one can upgrade the PSX SIO port to support RS232 voltages, and

 1x 3pin 4.00MHz "[M]4000A, 85 2"
 2x 2pin button (left/right)
 1x 8pin connector (to cable with shield and 7 wires)
 1x 3pin "811, T994I"
 2x 3pin photo transistor (black) ;\or so, no idea which one is
 2x 2pin photo diode (transparent) ;/sender and which is sensor
 1x 2pin electrolyt capacitor 16V, 10uF

 1x 32pin "(M), SC442116, FB G22K, JSAA815B"
 1x 14pin "BA10339F, 817 L67" (Quad Comparator)
 2x 3pin "LC" (amplifier for photo diodes)
 1x 3pin "24-" (looks like a dual-diode or so)
 plus many SMD resistors/capacitors

 PSX.Controller.Pin1 DAT ---- brown -- Mouse.Pin4
 PSX.Controller.Pin2 CMD ---- red -- Mouse.Pin3
 PSX.Controller.Pin3 +7.5V ---- N/A
 PSX.Controller.Pin4 GND ---- orange -- Mouse.Pin7 GND (G)
 PSX.Controller.Pin5 +3.5V ---- yellow -- Mouse.Pin1
 PSX.Controller.Pin6 /CSn ---- green -- Mouse.Pin5
 PSX.Controller.Pin7 SCK ---- blue -- Mouse.Pin2
 PSX.Controller.Pin8 /IRQ ---- N/A
 PSX.Controller.Pin9 /ACK ---- purple -- Mouse.Pin6
 PSX.Controller.Shield -------- shield -- Mouse.Pin8 GND (SHIELD)

14.6 Controllers - Mouse

- 591/1136 -

with such a modded console one could use RS232 mice (in case one wants to do that).

The nocash PSX bios can map a RS232 mouse to a spare controller slot (thereby

simulating a Sony mouse), that trick may work with various PSX games.

Standard Serial Mouse

A serial mouse should be read at 1200 bauds, 7 data bits, no parity, 1 stop bit (7N1)

with DTR and RTS on. For best compatibility, the mouse should output 2 stop bits (so it

could be alternately also read as 7N2 or 8N1). When the mouse gets moved, or when a

button gets pressed/released, the mouse sends 3 or 4 characters:

Additionally, the mouse outputs a detection character (when switching RTS (or DTR?) off

and on:

Normally, the detection response consist of a single character (usually "M"), though some

mice have the "M" followed by 11 additional characters of garbage or version information

(these extra characters have bit6=0, so after detection, one should ignore all characters

until receiving the first data character with bit6=1).

 __First Character____________________
 6 First Character Flag (1)
 5 Left Button (1=Pressed)
 4 Right Button (1=Pressed)
 2-3 Upper 2bit of Vertical Motion
 0-1 Upper 2bit of Horizontal Motion
 __Second Character___________________
 6 Non-first Character Flag (0)
 5-0 Lower 6bit of Horizontal Motion
 __Third Character____________________
 6 Non-first Character Flag (0)
 5-0 Lower 6bit of Vertical Motion
 __Fourth Character (if any)__________
 6 Non-first Character Flag (0)
 5 Middle Button (1=Pressed)
 4 Unused ???
 3-0 Wheel ???

 "M" = Two-Button Mouse (aka "Microsoft" mouse)
 "3" = Three-Button Mouse (aka "Logitech" mouse)
 "Z" = Mouse-Wheel

14.6 Controllers - Mouse

- 592/1136 -

Mouse Systems Serial Mouse (rarely used)

Accessed at 1200 bauds, just like standard serial mouse, but with 8N1 instead 7N1, and

with different data bytes.

The strange duplicated 8bit motion values are usually simply added together, ie.

X=X1+X2 and Y=Y1+Y2, producing 9bit motion values.

Notes

The Sony Mouse connects directly to the PSX controller port. Alternately serial RS232

mice can be connected to the SIO port (with voltage conversion adaptor) (most or all

commercial games don't support SIO mice, nor does the original BIOS do so, however,

the nocash BIOS maps SIO mice to unused controller slots, so they can be used even

with commercial games; if the game uses BIOS functions to read controller data).

Serial Mice (and maybe also the Sony mouse) do return raw mickeys, so effects like

double speed threshold must (should) be implemented by software. Mice are rather

rarely used by PSX games. The game "Perfect Assassin" includes ultra-crude mouse

support, apparently without threshold, and without properly matching the cursor range

to the screen resolution.

14.7 Controllers - Racing Controllers

neGcon Racing Controller (Twist) (NPC-101/SLPH-00001/SLEH-0003)

 __First Byte_________________________
 7-3 First Byte Code (10000b)
 2 Left? Button (0=Pressed)
 1 Middle? Button (0=Pressed)
 0 Right? Button (0=Pressed)
 __Second Byte________________________
 7-0 Horizontal Motion (X1)
 __Third Byte_________________________
 7-0 Vertical Motion (Y1)
 __Fourth Byte________________________
 7-0 Horizontal Motion (X2)
 __Fifth Byte_________________________
 7-0 Vertical Motion (Y2)

 __Halfword 0 (Controller Info)___
 0-15 Controller Info (5A23h=neGcon)
 __Halfword 1 (Digital Switches)__
 0-2 Not used (always 1) (would be Select, L3, R3 on other pads)

14.7 Controllers - Racing Controllers

- 593/1136 -

The Twist controller works like a paddle or steering wheel, but doesn't have a wheel or

knob, instead, it can be twisted: To move into one direction (=maybe right?), turn its

right end away from you (or its left end towards you). For the opposite direction (=maybe

left?), do it vice-versa.

Namco Volume Controller (a paddle with two buttons) (SLPH-00015)

This is a cut-down variant of the neGcon, just a featureless small box. It does have the

same ID value as neGcon (ID=5A23h), but, it excludes most digital, and all analog

buttons.

 3 Start Button (0=Pressed, 1=Released)
 4 Joypad Up (0=Pressed, 1=Released)
 5 Joypad Right (0=Pressed, 1=Released)
 6 Joypad Down (0=Pressed, 1=Released)
 7 Joypad Left (0=Pressed, 1=Released)
 8-10 Not used (always 1) (would be L2, R2, L1 on other pads)
 11 R Button (0=Pressed, 1=Released) (would be R1 on other pads)
 12 B Button (0=Pressed, 1=Released) (would be /\ on other pads)
 13 A Button (0=Pressed, 1=Released) (would be () on other pads)
 14-15 Not used (always 1) (would be ><, [] on other pads)
 __Halfword 2 (Right joystick) (analog pad/stick in analog mode only)_________
 0-7 Steering Axis (00h=Left, 80h=Center, FFh=Right) (or vice-versa?)
 8-15 Analog I button (00h=Out ... FFh=In) (Out=released, in=pressed?)
 __Halfword 3 (Left joystick) (analog pad/stick in analog mode only)__________
 0-7 Analog II button (00h=Out ... FFh=In) (Out=released, in=pressed?)
 8-15 Analog L button (00h=Out ... FFh=In) (Out=released, in=pressed?)

 _____ _ _ _____ ____
 |__L_________/ || _______/__R__| / \
 / _ namco || neGcon \ / \
 | _| |_ || B | | |
 | |_ X _| ||.... II A | Rotation Axis ... | ... \|/
 | |_| || I | |
 | START || | \
 | ________ || ________ | __\
 | / _||_/ \ | /
 ____/ ____/

 | namco | Halfword 1 (digital buttons):
 | | Bit3 Button A (0=Pressed) (aka neGcon Start button)
 | A B | Bit13 Button B (0=Pressed) (aka neGcon A button aka () button)
 | | Other bits (not used, always 1)
 | _ | Halfword 2 and 3 (analog inputs):
 | (_) | Steering Axis (00h..FFh) (as for neGcon)
 |_______| Analog I,II,L button values (not used, always 00h)

14.7 Controllers - Racing Controllers

- 594/1136 -

SANKYO N.ASUKA aka Nasca Pachinco Handle (SLPH-00007)

Another cut-down variant of the neGcon (with ID=5A23h, too). But, this one seems to

have only one button. Unlike Namco's volume controller it doesn't look featureless. It

looks pretty much as shown in the ascii-arts image below. Seems to be supported by

several irem titles. No idea what exactly it is used for, it's probably not a sewing

machine controller, nor an electronic amboss.

Mad Catz Steering Wheel (SLEH-0006)

A neGcon compatible controller. The Twist-feature has been replaced by a steering wheel

(can be turned by 270 degrees), and the analog I and II buttons by foot pedals. The

analog L button has been replaced by a digital button (ie. in neGcon mode, the last byte

of the controller data can be only either 00h or FFh). When not using the pedals, the I/II

buttons on the wheel can be used (like L button, they aren't analog though).

Unlike the neGon, the controller has Select, >\< and [] buttons, and a second set of L/R

buttons (at the rear-side of the wheel) (no idea if L1/R1 or L2/R2 are at front?). Aside

from the neGcon mode, the controller can be also switched to Digital mode (see below

for button chart).

 ____ ____ Halfword 1 (digital buttons):
 | / _ \ Bit12 Button (0=Pressed) (aka neGcon B button aka /\ button)
 |_ / (_)) Other bits (not used, always 1)
 |_|___ /\ Halfword 2 and 3 (analog inputs):
 ____| |_ Steering Axis (00h..FFh) (as for neGcon)
 |__________| Analog I,II,L button values (not used, always 00h)

 / ____________________ \ Stick
 / / \ \ ___ Brakes Gas
 / () \ () II I
 / I \ / A \ \ / ___ ___
 / /\ II ____________MODE__/ B /\ \ | | | | |
 | | \ L _ R / | | | |!!!|_|!!!|___
 | |) _| |_ MadCatz (| |_|_ /|!!!| |!!!| /
 | | | |_ X _| | | | | | / |___| |___| /
 | | | |_| | | | / / =========== /
 | | \ SEL STA / | | / / =========== /
 \ __/ ______________________ __/ / / /_____________/
 ____/ ____/_/
 |___________________________|

14.7 Controllers - Racing Controllers

- 595/1136 -

MadCatz Dual Force Racing Wheel

Same as above, but with a new Analog mode (additionally to Digital and neGcon

modes). The new mode is for racing games that support only Analog Joypads (instead of

neGcon). Additionally it supports vibration feedback.

MadCatz MC2 Vibration compatible Racing Wheel and Pedals

Same as above, but with a redesigned wheel with rearranged buttons, the digital pad

moved to the center of the wheel, the L/R buttons at the rear-side of the wheel have

been replaced by 2-way butterfly buttons ("pull towards user" acts as normal, the new

"push away from user" function acts as L3/R3).

MadCatz Button Chart

Whereas, lt/rt/up/dn=Digital Pad, UP/DN=Left Analog Pad Up/Down, LT/RT=Right Analog

Pad Left/Right. Analog mode is supported only by the Dual Force and MC2 versions, L3/R3

only by the MC2 version.

Namco Jogcon (NPC-105/SLEH-0020/SLPH-00126/SLUH-00059)

 / ________________ \ ___ Stick Brakes Gas
 / / MC2 \ \ () ___ ___
 / /__________________\ \ \ / | | | |
 | A () _|_ I >< | | |!!!|_|!!!|___
 | B /\ _ | _ II [] | | /|!!!| |!!!| /
 ___| L2 / \ STA / \ R2 |_|_ / |___| |___| /
 / \ / | SEL | \ / \ / =========== /
 / ____\ |___| |___| /____ \ / =========== /
 /__/ ____________________/ __\ /_____________/

 Mode Buttons...................... Gas Brake Stick Wheel
 Digital >< [] () /\ L1 R1 L2 R2 L1 R1 >< () L1/R1 lt/rt
 Analog >< [] () /\ L1 R1 L2 R2 L3 R3 UP DN L1/R1 LT/RT
 Negcon I II A B L R L R L R I II up/dn Twist

 __Halfword 0 (Controller Info)___________________
 0-15 Controller Info (5AE3h=Jogcon in Jogcon mode) (ie. not Digital mode)
 halfword1: buttons: same as digital pad
 halfword2:
 0 unknown (uh, this isn't LSB of rotation?)
 1-15 dial rotation (signed offset since last read?) (or absolute position?)
 halfword3:
 0 flag: dial was turned left (0=no, 1=yes)

14.7 Controllers - Racing Controllers

- 596/1136 -

Rotations of the dial are recognized by an optical sensor (so, unlike potentiometers, the

dial can be freely rotated; by more than 360 degrees). The dial is also connected to a

small motor, giving it a real force-feedback effect (unlike all other PSX controllers which

merely have vibration feedback). Although that's great, the mechanics are reportedly

rather cheap and using the controller doesn't feel too comfortable. The Jogcon is used

only by Ridge Racer 4 for PS1 (and Ridge Racer 5 for PS2), and Breakout - Off the Wall

Fun.

The Mode button probably allows to switch between Jogcon mode and Digital Pad mode

(similar to the Analog button on other pads), not sure if the mode can be also changed by

software via configuration commands...? Unknown how the motor is controlled; probably

somewhat similar to vibration motors, ie. by the M1 and/or M2 bytes, but there must be

also a way to select clockwise and anticlockwise direction)...? The controller does

reportedly support config command 4Dh (same as analog rumble).

14.8 Controllers - Lightguns

There are two different types of PSX lightguns (which are incompatible with each other).

Namco Lightgun (GunCon)

Namco's Cinch-based lightguns are extracting Vsync/Hsync timings from the video signal

(via a cinch adaptor) (so they are working completely independed of software timings).

Controllers - Lightguns - Namco (GunCon)

 1 flag: dial was turned right (0=no, 1=yes)
 2-15 unknown

 ___ ________ ___
 __/_L___ / \ __/_R___
 / _ \ / LED MODE \-/ \
_		_	SEL STA	/\
	_ X _		________	[] ()
	_		/ \	><
_________/\/ \/__ ______/				
		JOGCON		
		DIAL		
	\ /			
	________/			
 _____/ _____/

14.8 Controllers - Lightguns

- 597/1136 -

Konami Lightgun (IRQ10)

Konami's IRQ10-based lightguns are using the lightgun input on the controller slot

(which requires IRQ10/timings being properly handled at software side).

Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)

The IRQ10-method is reportedly less accurate (although that may be just due to bugs at

software side).

Third-Party Lightguns

There are also a lot of unlicensed lightguns which are either IRQ10-based, or Cinch-

based, or do support both.

For example, the Blaze Scorpion supports both IRQ10 and Cinch, and it does additionally

have a rumble/vibration function; though unknown how that rumble feature is accessed,

and which games are supporting it).

Lightgun Games

Controllers - Lightguns - PSX Lightgun Games

Compatibilty Notes (IRQ10 vs Cinch, PAL vs NTSC, Calibration)

Some lightguns are reportedly working only with PAL or only with NTSC games

(unknown which guns, and unknown what is causing problems; the IRQ10 method

should be quite hardware independed, the GunCon variant, too, although theoretically,

some GunCon guns might have problems to extract Vsync/Hsync from either PAL or

NTSC composite signals).

Lightguns from different manufacturers are reportedly returning slightly different values,

so it would be recommended to include a calibration function in the game, using at least

one calibration point (that would also resolve different X/Y offsets caused by modifying

GP1 display control registers).

Lightguns are needing to sense light from the cathode ray beam; as such they won't

work on regions of the screen that contain too dark/black graphics.

14.9 Controllers - Lightguns - Namco (GunCon)

GunCon Cinch-based Lightguns (Namco)

14.9 Controllers - Lightguns - Namco (GunCon)

- 598/1136 -

Caution: The gun should be read only shortly after begin of VBLANK.

Error/Busy Codes

Coordinates X=0001h, Y=0005h indicates "unexpected light":

Coordinates X=0001h, Y=000Ah indicates "no light", this can mean either:

To avoid the BUSY error, one should read the gun shortly after begin of VBLANK (ie.

AFTER rendering, but still BEFORE vsync). Doing that isn't as simple as one might think:

On a NTSC console, time between VBLANK and VSYNC is around 30000 cpu clks, reading

the lightgun (or analog joypads) takes around 15000 cpu clks. So, reading two controllers

within that timeframe may be problematic (and reading up to eight controllers via

multitaps would be absolutely impossible). As a workaround, one may arrange the read-

order to read lightguns at VBLANK (and joypads at later time). If more than one lightgun

is connected, then one may need to restrict reading to only one (or maybe: max two)

guns per frame.

Minimum Brightness

Below are some average minimum brightness values, the gun may be unable to return

position data near/below that limits (especially coordinates close to left screen border

are most fragile). The exact limits may vary from gun to gun, and will also depend on

the TV Set's brightness setting.

 __Halfword 0 (Controller Info)___________________
 0-15 Controller Info (5A63h=Namco Lightgun; GunCon/Cinch Type)
 __Halfword 1 (Buttons)___________________________
 0-2 Not used (All bits always 1)
 3 Button A (Left Side) (0=Pressed, 1=Released) ;aka Joypad Start
 4-12 Not used (All bits always 1)
 13 Trigger Button (0=Pressed, 1=Released) ;aka Joypad O-Button
 14 Button B (Right Side) (0=Pressed, 1=Released) ;aka Joypad X-Button
 15 Not used (All bits always 1)
 __Halfword 2 (X)_________________________________
 0-15 8MHz clks since HSYNC (01h=Error, or 04Dh..1CDh)
 __Halfword 3 (Y)_________________________________
 0-15 Scanlines since VSYNC (05h/0Ah=Error, PAL=20h..127h, NTSC=19h..F8h)

 ERROR: Sensed light during VSYNC (eg. from a Bulb or Sunlight).

 ERROR: no light sensed at all (not aimed at screen, or screen too dark).
 BUSY: no light sensed yet (when trying to read gun during rendering).

14.9 Controllers - Lightguns - Namco (GunCon)

- 599/1136 -

The gun does also work with mixed colors (eg. white bold text on black background works

without errors, but the returned coordinates are a bit "jumpy" in that case; returning the

position of the closest white pixels).

BUG: On a plain RED screen, aiming at Y>=00F0h, the gun is randomly returning either Y,

or Y-80h (that error occurs in about every 2nd frame, ie. at 50% chance). It's strange...

no idea what is causing that effect.

Coordinates

The coordinates are updated in all frames (as opposed to some lightguns which do

update them only when pulling the trigger).

The absolute min/max coordinates may vary from TV set to TV set (some may show a

few more pixels than others). The relation of the gun's Screen Coodinates to VRAM

Coordinates does (obviously) depend on where the VRAM is located on the screen; ie. on

the game's GP1(06h) and GP1(07h) settings.

Vertical coordinates are counted in scanlines (ie. equal to pixels). Horizontal coordinates

are counted in 8MHz units (which would equal a resolution of 385 pixels; which can be,

for example, converted to 320 pixel resolution as X=X*320/385).

Misinformation (from bugged homebrew source code)

Namco Lightgun Drawing

 666666h Minimum Gray
 770000h Minimum Blue
 007700h Minimum Green
 000099h Minimum Red

 __Halfword 2 (X)_________________________________
 0-7 X-Coordinate (actual: see X-Offset) ;\with unspecified
 8-15 X-Offset (00h: X=X-80, Nonzero: X=X-80+220) ;/dotclock?
 __Halfword 3 (Y)_________________________________
 0-7 Y-Coordinate (actual: Y=Y-25) (but then, max is only 230, not 263 ?)
 8-15 Pad ID (uh, what id?) (reportedly too dark/bright error flag?)

 _-_______________________--_
 -----> | namco \\\\ \ Namco G-Con 45 (light gray) (cinch)
 sensor |............\\\\...|_
 |_ : :.. _____ _\
 | O :__../)))| (
 __________/ |_____/| \
 : : | |
 : : | | NPC-103

14.9 Controllers - Lightguns - Namco (GunCon)

- 600/1136 -

See also

Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103

14.10 Controllers - Lightguns - Konami Justifier/Hyperblaster

(IRQ10)

Overall IRQ10-Based Lightgun Access

The purpose of the "x0h" byte is probably to enable IRQ10 (00h=off, 10h=on), this would

allow to access more than one lightgun (with only one per frame having the IRQ enabled).

Standard IRQ10-based Lightguns (Konami)

The Controller Data simply consists of the ID and buttons states:

The coordinates aren't part of the controller data, instead they must be read from Timer 0

and 1 upon receiving IRQ10 (see IRQ10 Notes below).

Konami Lightgun Drawing

 A-Button (Left) Trigger | | SLPH-00034/SLEH-0007/SLUH-00035
 B-Button (Right) |______|

 Send 01h 42h 00h x0h 00h
 Reply HiZ 31h 5Ah buttons

 __Halfword 0 (Controller Info)___________________
 0-15 Controller Info (5A31h=Konami Lightgun; Timer/IRQ10 type)
 __Halfword 1 (Buttons)
 0-2 Not used (All bits always 1)
 3 Start Button (Left Side) (0=Pressed, 1=Released) ;aka Joypad Start
 4-13 Not used (All bits always 1)
 14 Back Button (Rear End) (0=Pressed, 1=Released) ;aka Joypad X-Button
 15 Trigger Button (0=Pressed, 1=Released) ;aka Joypad []-Button

 __ ______ _
 _|_________________/ ___ \ \ Konami Justifier/Hyperblaster (light green)
 | _______________ __ / \ \ \
 |__| _ _ _ _ |==| O| \O\ Back Button (Rear End)
 |__:_:_:_:_:__ |_____ / ((
 |_|) \ : \ \
 Trigger ___/| :...|.|.... Start Button (Left Side)

14.10 Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)

- 601/1136 -

Konami IRQ10 Notes

The PSX does have a lightgun input (Pin 8 of the controller), but, Sony did apparently

"forget" to latch the current cathode ray beam coordinates by hardware when sensing

the lightgun signal (quite strange, since that'd be a simple, inexpensive, and very

obvious feature for a gaming console).

Instead, the lightgun signal triggers IRQ10, and the interrupt handler is intended to

"latch" the coordinates by software (by reading Timer 0 and 1 values, which must

configured to be synchronized with the GPU).

That method requires IRQ handling to be properly implemented in software (basically,

IRQs should not be disabled for longer periods, and DMA transfers should not block the

bus for longer periods). In practice, most programmers probably don't realize how to do

that, to the worst, Sony seems to have delivered a slightly bugged library (libgun) to

developers.

For details on Timers, see:

Timers

In some consoles, IRQ10 seems to be routed through a Secondary IRQ Controller, see:

EXP2 DTL-H2000 I/O Ports

IRQ10 Priority

For processing IRQ10 as soon as possible, it should be assigned higher priority than all

other IRQs (ie. when using the SysEnqIntRP BIOS function, it should be the first/newest

element in priority chain 0). The libgun stuff assigns an even higher priority by patching

the BIOS exception handler, causing IRQ10 to be processed shortly before processing

the priority chains (the resulting IRQ priority isn't actually higher as when using 1st

element of chain 0; the main difference is that it skips some time consuming code which

pushes registers R4..R30). For details on that patch, see:

BIOS Patches

Even if IRQ10 has highest priority, execution of (older) other IRQs may cause a new

IRQ10 to be executed delayed (because IRQs are disabled during IRQ handling), to

avoid that problem: Best don't enable any other IRQs except IRQ0 and IRQ10, or, if you

need other IRQs, best have them enabled only during Vblank (there are no scanlines

drawn during vblank, so IRQ10 should never trigger during that period). DMAs might

also slow down IRQ execution, so best use them only during Vblank, too.

 | | |
 | | | SLPH-00013/SLPH-00014/SLEH-0005/SLUH-00017
 / _|_|
 ___--

14.10 Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)

- 602/1136 -

IRQ10 Timer Reading

To read the current timer values the IRQ10 handler would be required to be called

\<immediately> after receiving the IRQ10 signal, which is more or less impossible; if

the main program is trying to read a mul/div/gte result while the mul/div/gte operation

is still busy may stop the CPU for some dozens of clock cycles, and active DMA transfers

or cache hits and misses in the IRQ handler may cause different timings, moreover,

timings may become completely different if IRQs are disabled (eg. while another IRQ is

processed).

However, IRQ10 does also get triggered in the next some scanlines, so the first IRQ10 is

used only as a notification that the CPU should watch out for further IRQ10's. Ie. the

IRQ10 handler should disable all DMAs, acknowledge IRQ10, and then enter a waitloop

that waits for the IRQ10 bit in I_STAT to become set again (or abort if a timeout occurs)

and then read the timers, reportedly like so:

No idea why PAL/NTSC should use different factors, that factors are looking quite silly/

bugged, theoretically, the pixel-to-clock ratio should be the exactly same for PAL and

NTSC...?

Mind that reading Timer values in Dotclock/Hblank mode is unstable, for Timer1 this can

be fixed by the read-retry method, for Timer0 this could be done too, but one would need

to subtract the retry-time to get a correct coordinate; alternately Timer0 can run at

system clock (which doesn't require read-retry), but it must be then converted to video

clock (mul 11, div 7), and then from video clock to dot clock (eg. div 8 for 320-pixel

mode).

Above can be repeated for the next some scanlines (allowing to take the medium values

as result, and/or to eliminate faulty values which are much bigger or smaller than the

other values). Once when you have collected enough values, disable IRQ10, so it won't

trigger on further scanlines within the current frame.

IRQ10 Bugs

BUG: The "libgun" library doesn't acknowledge the old IRQ10 \<immediately> before

waiting for a new IRQ10, so the timer values after sensing the new IRQ10 are somewhat

random (especially for the first processed scanline) (the library allows to read further

IRQ10's in further scanlines, which return more stable results).

No idea how many times IRQ10 gets typically repeated? Sporting Clays allocates a

 IF NTSC then X=(Timer0-140)*0.198166, Y=Timer1
 IF PAL then X=(Timer0-140)*0.196358, Y=Timer1

14.10 Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)

- 603/1136 -

buffer for up to 20 scanlines (which would cause pretty much of a slowdown since the

CPU is just waiting during that period) (nethertheless, the game uses only the first timer

values, ie. the bugged libgun-random values).

Unknown if/how two-player games (with 2 lightguns) are working with the IRQ10

method... if IRQ10 is generated ONLY after pressing the trigger button, then it may

work, unless both players have Trigger pressed at the same time... and, maybe one can

enable/disable the lightguns by whatever commmand being sent to the controller

(presumably that "x0h" byte, see above), so that gun 1 generates IRQ10 only in each

second frame, and gun 2 only in each other frame...?

14.11 Controllers - Lightguns - PSX Lightgun Games

PSX Lightgun Games

Some games are working only with IRQ10 or only with Cinch, some games support both

methods:

 Area 51 (Mesa Logic/Midway) (IRQ10)
 Crypt Killer (Konami) (IRQ10)
 Die Hard Trilogy 1: (Probe Entertainment) (IRQ10)
 Die Hard Trilogy 2: Viva Las Vegas (n-Space) (IRQ10/Cinch)
 Elemental Gearbolt (Working Designs) (IRQ10/Cinch)
 Extreme Ghostbusters: Ultimate Invasion (LSP) (Cinch)
 Galaxian 3 (Cinch)
 Ghoul Panic (Namco) (Cinch)
 Gunfighter: The Legend of Jesse James (Rebellion) (Cinch)
 Judge Dredd (Gremlin) (Cinch)
 Lethal Enforcers 1-2 (Konami) (IRQ10)
 Maximum Force (Midway) (IRQ10/Cinch)
 Mighty Hits Special (Altron) (EU/JPN) (Cinch)
 Moorhuhn series (Phenomedia) (Cinch)
 Point Blank 1-3 (Namco) (Cinch)
 Project Horned Owl (Sony) (IRQ10)
 Rescue Shot (Namco) (Cinch)
 Resident Evil: Gun Survivor (Capcom) (JPN/PAL versions) (Cinch)
 Silent Hill (IRQ10) ("used for an easter egg")
 Simple 1500 Series Vol.024 - The Gun Shooting (unknown type)
 Simple 1500 Series Vol.063 - The Gun Shooting 2 (unknown type)
 Snatcher (IRQ10)
 Sporting Clays (Charles Doty) (homebrew with buggy source code) (IRQ10/Cinch)
 Star Wars Rebel Assault II (IRQ10)
 Time Crisis, and Time Crisis 2: Project Titan (Namco) (Cinch)

14.11 Controllers - Lightguns - PSX Lightgun Games

- 604/1136 -

Note: The RPG game Dragon Quest Monsters does also contain IRQ10 lightgun code

(though unknown if/when/where the game does use that code).

14.12 Controllers - Configuration Commands

Some controllers can be switched from Normal Mode to Config Mode. The Config Mode

was invented for activating the 2nd rumble motor in SCPH-1200 analog joypads.

Additionally, the Config commands can switch between analog/digital inputs (without

needing to manually press the Analog button), activate more analog inputs (on

Dualshock2), and read some type/status bytes.

Normal Mode

Transfer length in Normal Mode is 5 bytes (Digital mode), or 9 bytes (Analog mode), or

up to 21 bytes (Dualshock2).

Configuration Mode

Transfer length in Config Mode is always 9 bytes.

Normal Mode - Command 42h "B" - Read Buttons (and analog inputs when enabled)

 42h "B" Read Buttons (and analog inputs when in analog mode)
 43h "C" Enter/Exit Configuration Mode (stay normal, or enter)

 40h "@" Unused, or Dualshock2: Get/Set ButtonAttr?
 41h "A" Unused, or Dualshock2: Get Reply Capabilities
 42h "B" Read Buttons AND analog inputs (even when in digital mode)
 43h "C" Enter/Exit Configuration Mode (stay config, or exit)
 44h "D" Set LED State (analog mode on/off)
 45h "E" Get LED State (and Type/constants)
 46h "F" Get Variable Response A (depending on incoming bit)
 47h "G" Get whatever values (response HiZ F3h 5Ah 00h 00h 02h 00h 01h 00h)
 48h "H" Unknown (response HiZ F3h 5Ah 00h 00h 00h 00h 01h 00h)
 49h "I" Unused
 4Ah "J" Unused
 4Bh "K" Unused
 4Ch "L" Get Variable Response B (depending on incoming bit)
 4Dh "M" Get/Set RumbleProtocol
 4Eh "N" Unused
 4Fh "O" Unused, or Dualshock2: Set ReplyProtocol

14.12 Controllers - Configuration Commands

- 605/1136 -

The normal read command, see Standard Controller chapter for details on buttons and

analog inputs. The xx/yy bytes have effect only if rumble is unlocked; use Command 43h

to enter config mode, and Command 4Dh to unlock rumble. Command 4Dh has billions of

combinations, among others allowing to unlock only one of the two motors, and to

exchange the xx/yy bytes, however, with the default values, xx/yy are assigned like so:

The Left/Large motor starts spinning at circa min=50h..60h, and, once when started

keeps spinning downto circa min=38h. The exact motor start boundary depends on the

current position of the weight (if it's at the "falling" side, then gravity helps starting), and

also depends on external movements (eg. it helps if the user or the other rumble motor is

shaking the controller), and may also vary from controller to controller, and may also

depend on the room temperature, dirty or worn-out mechanics, etc.

Normal Mode - Command 43h "C" - Enter/Exit Configuration Mode

When issuing command 43h from inside normal mode, the response is same as for

command 42h (button data) (and analog inputs when in analog mode) (but without M1

and M2 parameters). While in config mode, the ID bytes are always "F3h 5Ah" (instead of

the normal analog/digital ID bytes).

Caution: Additionally to activating configuration commands, entering config mode does

also activate a Watchdog Timer which does reset the controller if there's been no

communication for about 1 second or so. The watchdog timer remains active even when

returning to normal mode via Exit Config command. The reset does disable and lock

rumble motors, and switches the controller to Digital Mode (with LED=off, and analog

inputs disabled). To prevent this, be sure to keep issuing joypad reads even when not

needing user input (eg. while loading data from CDROM).

Caution 2: A similar reset occurs when the user pushes the Analog button; this is causing

rumble motors to be stopped and locked, and of course, the analog/digital state gets

 Send 01h 42h 00h xx yy (00h 00h 00h 00h) (...)
 Reply HiZ id 5Ah buttons (analog-inputs) (dualshock2 buttons...)

 yy.bit0-7 ---> Left/Large Motor M1 (analog slow/fast) (00h=stop, FFh=fastest)
 xx.bit0 ---> Right/small Motor M2 (digital on/off) (0=off, 1=on)

 Send 01h 43h 00h xx 00h (zero padded...) (...)
 Reply HiZ id 5Ah buttons (analog inputs...) (dualshock2 buttons...)

 xx=00h Stay in Normal mode
 xx=01h Enter Configuration mode

14.12 Controllers - Configuration Commands

- 606/1136 -

changed.

Caution 3: If config commands were used, and the user does then push the analog

button, then the 5Ah-byte gets replaced by 00h (ie. responses change from "HiZ id

5Ah ..." to "HiZ id 00h ...").

Config Mode - Command 42h "B" - Read Buttons AND analog inputs

Same as command 42h in normal mode, but with forced analog response (ie. analog

inputs and L3/R3 buttons are returned even in Digital Mode with LED=Off).

Config Mode - Command 43h "C" - Enter/Exit Configuration Mode

Equivalent to command 43h in normal mode, but returning 00h bytes rather than button

data, can be used to return to normal mode.

Back in normal mode, the rumble motors (if they were enabled) can be controlled with

normal command 42h.

Config Mode - Command 44h "D" - Set LED State (analog mode on/off)

The Led byte can be:

The Key byte can be:

 Send 01h 42h 00h M2 M1 00h 00h 00h 00h
 Reply HiZ F3h 5Ah buttons analog-inputs

 Send 01h 43h 00h xx 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah 00h 00h 00h 00h 00h 00h

 xx=00h Enter Normal mode (Exit Configuration mode)
 xx=01h Stay in Configuration mode

 Send 01h 44h 00h Led Key 00h 00h 00h 00h
 Reply HiZ F3h 5Ah 00h 00h Err 00h 00h 00h

 When Led=00h --> Digital mode, with LED=Off
 When Led=01h --> Analog mode, with LED=On/red
 When Led=02h..FFh --> Ignored (and, in case of dualshock2: set Err=FFh)

 When Key=00h..02h --> Unlock (allow user to push Analog button)
 When Key=03h --> Lock (stay in current mode, ignore Analog button)
 When Key=04h..FFh --> Acts same as (Key AND 03h)

14.12 Controllers - Configuration Commands

- 607/1136 -

The Err byte is usually 00h (except, Dualshock2 sets Err=FFh upon Led=02h..FFh; older

PSX/PSone controllers don't do that).

Config Mode - Command 45h "E" - Get LED State (and Type/constants)

Returns two interesting bytes:

The other bytes might indicate the number of rumble motors, analog sticks, or version

information, or so.

Config Mode - Command 46h "F" - Get Variable Response A

When ii=00h --> returns cc,dd,ee,ff = 01h,02h,00h,0ah

When ii=01h --> returns cc,dd,ee,ff = 01h,01h,01h,14h

Otherwise --> returns cc,dd,ee,ff = all zeroes

Note: This is called PadInfoAct in official docs, ii is the actuator (aka motor) and the last

response byte contains its current drain (10 or 20 units). Whereas, Sony inisits that

controllers should never exceed 60 units (eg. when having more than 2 joypads

connected to multitaps).

Config Mode - Command 47h "G" - Get whatever values

Purpose unknown.

Config Mode - Command 4Ch "L" - Get Variable Response B

 Send 01h 45h 00h 00h 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah Typ 02h Led 02h 01h 00h

 Led: Current LED State (00h=Off, 01h=On/red)
 Typ: Controller Type (01h=PSX/Analog Pad, 03h=PS2/Dualshock2)

 Send 01h 46h 00h ii 00h 00h 00h 00h 00h
 Reply Hiz F3h 5Ah 00h 00h cc dd ee ff

 Send 01h 47h 00h 00h 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah 00h 00h 02h 00h 01h 00h

 Send 01h 4Ch 00h ii 00h 00h 00h 00h 00h
 Reply Hiz F3h 5Ah 00h 00h 00h dd 00h 00h

14.12 Controllers - Configuration Commands

- 608/1136 -

When ii=00h --> returns dd=04h.

When ii=01h --> returns dd=07h.

Otherwise --> returns dd=00h.

Config Mode - Command 48h "H" - Unknown (response HiZ F3h 5Ah 4x00h 01h 00h)

When ii=00h..01h --> returns ee=01h.

Otherwise --> returns ee=00h.

Purpose unknown. The command does not seem to be used by any games.

Config Mode - Command 4Dh "M" - Get/Set RumbleProtocol

Controllers - Vibration/Rumble Control

Config Mode - Command 40h "@" Dualshock2: Get/Set ButtonAttr?

Config Mode - Command 41h "A" Dualshock2: Get Reply Capabilities

Config Mode - Command 4Fh "O" Dualshock2: Set ReplyProtocol

Controllers - Analog Buttons (Dualshock2)

Config Mode - Command 49h "I" - Unused

Config Mode - Command 4Ah "J" - Unused

Config Mode - Command 4Bh "K" - Unused

Config Mode - Command 4Eh "N" - Unused

Config Mode - Command 40h "@" - Unused (except, used by Dualshock2)

Config Mode - Command 41h "A" - Unused (except, used by Dualshock2)

Config Mode - Command 4Fh "O" - Unused (except, used by Dualshock2)

 Send 01h 48h 00h ii 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah 00h 00h 00h 00h ee 00h

14.12 Controllers - Configuration Commands

- 609/1136 -

These commands do return a bunch of 00h bytes. These commands do not seem to be

used by any games (apart from the Dualshock2 commands being used by Dualshock2

games).

Note

Something called "Guitar Hero controller" does reportedly also support Config

commands. Unknown if that thing does have the same inputs & rumble motors as

normal analog PSX joypads, and if it does return special type values.

14.13 Controllers - Vibration/Rumble Control

Rumble (aka "Vibration Function") is basically controlled by two previously unused bytes

of the standard controller Read command.

There are two methods to control the rumble motors, the old method is very simple (but

supports only one motor), the new method envolves a bunch of new configuration

commands (and supports two motors).

Old Method, one motor, no config commands (SCPH-1150, SCPH-1200, SCPH-110)

The SCPH-1150 doesn't support any special config commands, instead, rumble is solely

done via the normal joypad read command:

The rumble motor is simply controlled by three bits in the xx/yy bytes:

 Send 01h 4xh 00h 00h 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah 00h 00h 00h 00h 00h 00h

 SCPH-1150 DualAnalog Pad with 1 motor ;-old rumble method
 SCPH-1200 DualAnalog Pad with 2 motors, PSX-design ;\new rumble method
 SCPH-110 DualAnalog Pad with 2 motors, PSone-design ;/
 SCPH-10010 DualAnalog Pad with 2 motors, PS2/Dualshock2 ;-plus analog buttons
 Blaze Scorpion Lightgun with rumble ;\unknow how to control rumble
 Fishing controllers with rumble ;/
 SCPH-1180 Analog Pad without rumble ;\unknow if there're config commands
 SCPH-1110 Analog Stick without rumble ;/for analog mode (probably not)

 Send 01h 42h 00h xx yy (00h 00h 00h 00h)
 Reply HiZ id 5Ah buttons (analog-inputs)

 xx --> must be 40h..7Fh (ie. bit7=0, bit6=1) ;\switches motor on
 yy --> must be 01h,03h,...,FDh,FFh (ie. bit0=1) ;/

14.13 Controllers - Vibration/Rumble Control

- 610/1136 -

The motor control is digital on/off (no analog slow/fast), recommended values would be

yyxx=0140h=on, and yyxx=0000h=off.

LED state is don't care (rumble works with led OFF, RED, and GREEN). In absence of

config commands, the LED can be controlled only manually (via Analog button), the

current LED state is implied in the controller "id" byte.

For backwards compatibility, the above old method does also work on SCPH-1200 and

SCPH-110 (for controlling the right/small motor), alternately those newer pads can use

the config commands (for gaining access to both motors).

New Method, two motors, with config commands (SCPH-1200, SCPH-110)

For using the new rumble method, one must unlock the new rumble mode, for that

purpose Sony has invented a "slightly" overcomplicated protocol with not less than 16

new commands (the rumble relevant commands are 43h and 4Dh, also, command 44h

may be useful for activating analog inputs by software, and, once when rumble is

unlocked, command 42h is used to control the rumble motors). Anyways, here's the full

command set...

Controllers - Configuration Commands

And, the rumble-specific config command is described below...

Config Mode - Command 4Dh "M" - Get/Set RumbleProtocol

Bytes aa,bb,cc,dd,ee,ff control the meaning of the 4th,5th,6th,7th,8th,9th command byte

in the controller read command (Command 42h).

In practice, one would usually send either one of these command/values:

Alternately, one could swap the motors by swapping values in aa/bb. Or one could map

the motors anywhere to cc/dd/ee/ff (this will increase the command length in digital

mode, hence changing digital mode ID from 41h to 42h or 43h). Or, one could map

 Send 01h 4Dh 00h aa bb cc dd ee ff ;<-- set NEW aa..ff values
 Reply Hiz F3h 5Ah aa bb cc dd ee ff ;<-- returns OLD aa..ff values

 00h = Map Right/small Motor (Motor M2) to bit0 of this byte
 01h = Map Left/Large Motor (Motor M1) to bit0-7 of this byte
 02h..FEh = Unknown (can be mapped, maybe for extra motors/outputs)
 FFh = Map nothing to this byte

 Send 01h 4Dh 00h 00h 01h FFh FFh FFh FFh ;enable new method (two motors)
 Send 01h 4Dh 00h FFh FFh FFh FFh FFh FFh ;disable motor control

14.13 Controllers - Vibration/Rumble Control

- 611/1136 -

further rumble motors or other outputs to the six bytes (if any such controller would

exist).

In the initial state, aa..ff are all FFh, and the controller does then use the old rumble

control method (with only one motor). However, that old method gets disabled once when

having messed with config commands (unknown if/how one can re-enable the old method

by software).

Unknown Dualshock2 Vibration

Dualshock2 does reportedly have "two more levels of vibration", unknown what that

means and if it's used by any PSX or PS2 games... it might refer to the small motor

which usually has only 2 levels (on/off) and might have 4 levels (fast/med/slow/off) on

dualshock2... but, if so, it's unknown how to control/unlock that feature.

Also, the PSone controller (SCPH-110) appear to have been released shortly after

Dualshock2, unknown if that means that it might have that feature, too.

Note

Rumble is a potentially annoying feature, so games that do support rumble should also

include an option to disable it.

14.14 Controllers - Analog Buttons (Dualshock2)

Dualshock2 has three new commands (40h,41h,4Fh) for configuring analog buttons.

Additionally, Command 45h does return a different type byte for Dualshock2.

Dualshock2 is a PS2 controller. However, it can be also used with PSX games (either by

connecting the controller to a PSX console, or by playing a PSX game on a PS2 console).

The analog button feature is reportedly rarely used by PS2 games (and there aren't any

PSX games known to use it).

Config Mode - Command 40h "@" Dualshock2: Get/Set ButtonAttr?

Allows to change twelve 3bit values (with Idx=00h..0Bh, and Val=00h..03h). Default is

Val=02h. Purpose is unknown, the 12 values might be related to the 12 analog buttons,

but there is no noticable difference between Val=0,1,2,3. Maybe it does have some subtle

 Send 01h 40h 00h Idx Val 00h 00h 00h 00h ;<-- Set NEW Val, array[Idx]=Val
 Reply HiZ F3h 5Ah 00h 00h Val 00h 00h 00h ;<-- Old Val (or FFh when Idx>0Bh)

14.14 Controllers - Analog Buttons (Dualshock2)

- 612/1136 -

effects on things like...

Config Mode - Command 41h "A" Dualshock2: Get Reply Capabilities

This seems to return a constant bitmask indicating which reply bytes can be enabled/

disabled via Command 4Fh (ie. 3FFFFh = 18 bits).

Config Mode - Command 4Fh "O" Dualshock2: Set ReplyProtocol

This can output some 48bit value (bit0=aa.bit0, bit47=ff.bit7), used to enable/disable

Reply bytes in the controller read command (Command 42h).

Usually, one would use one of the following command/values:

 Digital button sensitivity, or Analog button sensitivity, or
 Analog button bit-depth/conversion speed, or something else?

 Send 01h 41h 00h 00h 00h 00h 00h 00h 00h
 Reply HiZ F3h 5Ah FFh FFh 03h 00h 00h 00h

 Send 01h 41h 00h aa bb cc dd ee ff
 Reply HiZ F3h 5Ah 00h 00h 00h 00h 00h 00h

 - HighZ (always transferred) 1st byte
 - ID/Mode/Len (always transferred) 2nd byte
 - 5Ah (always transferred) 3rd byte
 0 LSB of digital buttons (0=No, 1=Yes) 4th byte
 1 MSB of digital buttons (0=No, 1=Yes) 5th byte
 2 RightJoyX (0=No, 1=Yes) 6th byte
 3 RightJoyY (0=No, 1=Yes) 7th byte
 4 LeftJoyX (0=No, 1=Yes) 8th byte
 5 LeftJoyY (0=No, 1=Yes) 9th byte
 6 DPAD Right (0=No, 1=Yes) button 00h 10th byte
 7 DPAD Left (0=No, 1=Yes) button 01h 11th byte
 8 DPAD Up (0=No, 1=Yes) button 02h 12th byte
 9 DPAD Down (0=No, 1=Yes) button 03h 13th byte
 10 Button /\ (0=No, 1=Yes) button 04h 14th byte
 11 Button () (0=No, 1=Yes) button 05h 15th byte
 12 Button >< (0=No, 1=Yes) button 06h 16th byte
 13 Button [] (0=No, 1=Yes) button 07h 17th byte
 14 Button L1 (0=No, 1=Yes) button 08h 18th byte
 15 Button R1 (0=No, 1=Yes) button 09h 19th byte
 16 Button L2 (0=No, 1=Yes) button 0Ah 20th byte
 17 Button R2 (0=No, 1=Yes) button 0Bh 21st byte
 18-39 Must be 0 (otherwise command is ignored)
 40-47 Unknown (no effect?)

14.14 Controllers - Analog Buttons (Dualshock2)

- 613/1136 -

The transfer order is 1st..21st byte as shown above (unless some bits are cleared, eg. if

bit0-5=0 and bit6=1 then DPAD Right would appear as 4th byte instead of 10th byte).

The command length increases/decreases depening on the number of enabled bits. The

transfer length is always 3+N*2 bytes (including a 00h padding byte when the number of

enabled bits is odd). The analog mode ID byte changes depending on number of

halfwords.

CAUTION: Sending Command 44h does RESET the Command 4Fh setting (either to

DigitalMode=000003h or AnalogMode=00003Fh; same happens when toggling mode via

Analog button).

Note: Some Dualshock2 Config Mode commands do occassionally send 00h, 5Ah, or FFh

as last (9th) reply byte (unknown if that is some error/status thing, or garbage).

Analog Button Sensitivity

The pressure sensors are rather imprecise and results may vary on various factors,

including the pressure angle.

Software can safely distinguish between soft and hard pressure.

Medium pressure is less predictably: The values do not increase linearily, it's difficult to

apply a specific amount of medium pressure (such like 80h..9Fh), increasing pressure

may sometimes jump from 24h to FFh, completely skipping the medium range.

Relying on the medium range might work for accelleration buttons (where the user could

still adjust the pressure when the accelleration is too high or too low); but it would be

very bad practice to assign irreversible actions to medium pressure (such like Soft=Load,

Medium=Save, Hard=Quit).

Digital Button Sensitivity

Digital inputs are converting the analog inputs as so:

 Send 01h 41h 00h 03h 00h 00h 00h 00h 00h Digital buttons
 Send 01h 41h 00h 3Fh 00h 00h 00h 00h 00h Digital buttons + analog sticks
 Send 01h 41h 00h FFh FFh 03h 00h 00h 00h Enable all 18 input bytes

 00h Button released
 01h..2Fh Normal (soft) pressure
 30h..FEh Medium pressure
 FFh Hard pressure

14.14 Controllers - Analog Buttons (Dualshock2)

- 614/1136 -

Digital inputs are working even when also having analog input enabled for the same

button.

See also

[https://gist.github.com/scanlime/5042071] - tech (=mentions unknown details)

[https://store.curiousinventor.com/guides/PS2/] - guide (=omits unknown stuff)

14.15 Controllers - Dance Mats

PSX Dance Mats are essentially normal joypads with uncommonly arranged buttons, the

huge mats are meant to be put on the floor, so the user could step on them.

Dance Mat vs Joypad Compatibility

There are some differences to normal joypads: First of, the L1/L2/R1/R2 shoulder

buttons are missing in most variants. And, the mats are allowing to push Left+Right and

Up+Down at once, combinations that aren't mechanically possible on normal joypads

(some dancing games do actually require those combinations, whilst some joypad

games may get confused on them).

Dance Mat Unknown Things

Unknown if the mat was sold in japan, and if so, with which SLPH/SCPH number.

Unknown if the mat's middle field is also having a button assigned.

Unknown if the mat is having a special controller ID, or if there are other ways to detect

mats (the mats are said to be compatible with skateboard games, so the mats are

probably identifying themselves as normal digital joypad; assuming that those

skateboard games haven't been specifically designed for mats).

Dance Mat Games

The mats can be reportedly also used with whatever skateboard games.

 Analog=00h --> not pressed
 Analog=01h..FFh --> pressed (no matter if soft, medium, or hard pressure)

 D.D.R. Dance Dance Revolution 2nd Remix
 (and maybe whatever further games)

14.15 Controllers - Dance Mats

- 615/1136 -

Dance Mat Variants

There is the US version (DDR Dance Pad, SLUH-00071), and a slightly different

European version (Official Dance Mat, SLEH-00023: shiny latex style with perverted

colors, and Start/Select arranged differently). The japanese version (RU017) resembles

the US version, but without Triangle/Square symbols drawn in lower left/right edges.

And there is a handheld version (with additional L1/L2/R2/R1 buttons; maybe

unlicensed; produced as MINI DDR, and also as Venom Mini Dance Pad).

 US Version (white/black/red/blue) Handheld Version (blue/gray)
 __________.---------.___________ _____/ MINI _____
\ /		D.D.R.												
SELECT '-------' START		L1 L2 SEL STA R2 R1												
------------.------.------------		___ ___ ___												
.''''. / \ .''''.			X		^		O							
	\/		/\		.''.				___		___		___	
	/\		/..\		'..'			___ .---. ___						
'....' '.		.' '....'			<		Stay		>					
.-------. .''''''''. .-------.			___		Cool!		___							
/ /	.' '.	\ \|	___ '___' ___											
/	--		--	\			[]		v		/\|			
\	--	Stay Cool!	--	/			___		___		___			
\ \| '. .'	/ /		___________________											
'-------' '........' '-------'														
.''''. .'		'. .''''.	Gothic Dance Mat (black/silver)											
	/\		\''/			''			_.----------._					
	/__\		\/			..				\ SEL STA /	This one			
'....' \ / '....'		'--------'	wasn't ever											
 '------------'------'------------' | .----------. | produced,
 | | .''''. | | as cool as
 European Version (pink/blue/yellow) | | | /\ | | | it could have
 __________.---------.___________ | | | /..\ | | | been, the lame
 | \ SEL STA / | | | '.||.' | | marketing
 | '-------' | | +----------+ | people didn't
 |----------.----------.----------| | | .''''. | | even think
 | .''''. | .''''. | .''''. | | | | /\ | | | about it.
	\/			/\			.''.					/..\				
	/\			/..\			'..'				'.		.'			
'....'	'.		.'	'....'		+----------+										
----------+-.. ..-+----------			.'		'.											
.'/	'. / '''' \ .'	\'.				\''/										
	/	--	/ \|--	\					\/							
	\	--	\ /	--	/				'....'							
'.\|.' \ / '.	/.'		+----------+													
----------+-'' ''-+----------			.'		'.											
.''''.	.'		'.	.''''.				\''/								
	/\			\''/				''						\/		
	/__\			\/				..					'....'			
'....'	'....'	'....'		'----------' '												
 '----------|----------|----------' '--------------'

14.15 Controllers - Dance Mats

- 616/1136 -

Stay Cool?

Despite of the "Stay Cool!" slogan, the mat wasn't very cool - not at all! It offered only

two steps back-and-forth, and also allowed to do extremly uncool side-steps. Not to

mention that it would melt when dropping a burning cigarette on it. Stay Away!

14.16 Controllers - Pop'n Controllers

Controllers used for Konami's Pop'n Music series. At least a few different versions of the

controller (Pop'n Controller, Pop'n Controller 2, larger arcade-size version, possibly

others and in different color variations) have been released for the PS1 and PS2.

Unknown if the controllers released in the PS2 era have any additional commands not

present in the original Pop'n Controller, but they are supposedly fully compatible with

PS1 Pop'n Music games.

Pop'n Controllers report as digital controllers (ID byte 41h), but the left, right, and down

d-pad controls are not connected to any physical buttons and are always reported as

pressed (in the first transferred button byte, bits 5-7 are always 0). Pop'n Music games

check these bits to determine if a Pop'n Controller is connected and will change the in-

game controls accordingly if so.

14.17 Controllers - Taiko Controllers (Tatacon)

Drum controllers made by Namco and used by the Taiko no Tatsujin series on the PS2

(but compatible with the PS1, even though no PS1 Taiko game was ever made). These

controllers behave like standard digital pads (ID 41h) and contain four hit sensors

mapped to the following buttons:

Dedicated start and select buttons are also present. Unlike Pop'n Controllers, no

additional buttons are hardcoded to be always pressed.

Sensor Button Bit

Left ka (rim) L1 10

Right ka (rim) R1 11

Left don (center) D-pad left 7

Right don (center) Circle 13

14.16 Controllers - Pop'n Controllers

- 617/1136 -

14.18 Controllers - Densha de Go! / Jet de Go! Controllers

Controllers used for Taito's Densha de Go! and Jet de Go! series. Unknown what method

is being used by Densha de Go! and Jet de Go! games for detecting these controllers.

The workings of Densha de Go! PSX controllers have been extensively researched in

the ddgo-controller-docs repo.

The Jet de Go! PSX controller comes in gray and black color. It seems to work the

same as an analog controller and supports vibration. The steering wheel is mapped to

the left stick (wheel rotation as horizontal, wheel raise/lower as vertical axis). The

thrust throttle seems mapped to the right stick Y-axis full range (so half throttle

matches vertically centered right stick).

14.19 Controllers - Fishing Controllers

The fishing rods are (next to lightguns) some of the more openly martial playstation

controllers - using the credo that "as long as you aren't using dynamite: it's okay to kill

them cause they don't have any feelings."

PSX Fishing Controller Games

•

•

 Action Bass (Syscom Entertainment) (1999) (SLPH-00100)
 Bass Landing (ASCII/agetec) (1999) (SLPH-00100, SLUH-00063)
 Bass Rise, Fishing Freaks (Bandai) (1999) (BANC-0001)
 Bass Rise Plus, Fishing Freaks (Bandai) (2000) (BANC-0001, SLPH-00100)
 Breath of Fire IV (Capcom) (SLUH-00063)
 Championship Bass (EA Sports) (2000) (SLUH-00063)
 Fish On! Bass (Pony Canyon) (1999) (BANC-0001, SLPH-00100)
 Fisherman's Bait 2/Exiting Bass2 - Big Ol'Bass(Konami)(SLPH-00100,SLUH-00063)
 Fishing Club: (series with 3 titles) (have "headset-logo" on back?)
 Lake Masters II (1999) (Dazz/Nexus) (SLPH-00100)
 Lake Masters Pro (1999) (Dazz/Nexus) (BANC-0001, SLPH-00100)
 Let's Go Bassfishing!: Bass Tsuri ni Ikou! (Banpresto) (1999) (SLPH-00100)
 Matsukata Hiroki no World Fishing (BPS The Choice) (1999) (SLPH-00100)
 Murakoshi Seikai-Bakuchou Nihon Rettou (Victor) (SLPH-00100)
 Murakoshi Masami-Bakuchou Nippon Rettou:TsuriConEdition (1999) (SLPH-00100)
 Pakuchikou Seabass Fishing (JP, 03/25/99) (Victor) (SLPH-00100)
 Perfect Fishing: Bass Fishing (2000) (Seta) (yellow/green logo)
 Perfect Fishing: Rock Fishing (2000) (Seta) (yellow/green logo)
 Oyaji no Jikan: Nechan, Tsuri Iku De! (2000) (Visit) (BANC-0001, SLPH-00100)
 Reel Fishing II / Fish Eyes II (2000)(Natsume/Victor)(SLPH-00100, SLUH-00063)
 Simple 1500 Series Vol. 29: The Tsuri (2000) (yellow/green logo)
 Suizokukan Project: Fish Hunter e no Michi (1999)(Teichiku)(SLPH-00100)
 Super Bass Fishing (1999) (King) (BANC-0001, SLPH-00100, yellow/green logo)
 Super Black Bass X2 (2000) (Starfish) (SLPH-00100)

14.18 Controllers - Densha de Go! / Jet de Go! Controllers

- 618/1136 -

https://github.com/MarcRiera/ddgo-controller-docs

Logos on CD Covers

US Fishing games should have a "SLUH-00063" logo. European Fishing games don't

have any fishing logos; apparently fishing controllers haven't been officially released/

supported in Europe.

Japanese Fishing games can have a bunch of logos: Usually BANC-0001 or SLPH-00100

(or both).

Moreover, some japanese games have a yellow/green fishing logo with japanese text

(found on Perfect Fishing: Bass Fishing, Perfect Fishing: Rock Fishing, Simple 1500

Series Vol. 29: The Tsuri, Super Bass Fishing) (unknown if that logo refer to other

special hardware, or if it means the "normal" BANC-0001 or SLPH-00100 controllers.

And Moreover, some japanese games have some sort of "headset" logos with japanese

text, these seem to have same meaning as SLPH-00100; as indicated by photos on CD

cover of Tsuwadou Keiryuu Mizuumihen (Best Edition) (2000); that CD cover also has a

"headset 2" logo, which seems to mean a newer PS2 variant of the SLPH-00100.

PSX Fishing Controllers

Of these, the ASCII/agetec controllers seem to be most popular (and most commonly

supported). The Bandai contoller is also supported by a couple of games (though the

Bandai controller itself seems to be quite rare). The Interact/Naki controllers are probably

just clones of the ASCII/agetec ones. The Hori controller is quite rare (and with its string

 Tsuwadou Keiryuu Mizuumihen (Best Edition)(2000) (ASCII PS1+PS2 controllers?)
 Tsuwadou Seabass Fishing (PlayStation the Best) (1999) (Oz Club) (SLPH-00100)
 Uki Uki Tsuri Tengoku Nagami/Uokami Densetsu Oe (2000) (Teichiku)(SLPH-00100)
 Umi no Nushi Tsuri-Takarajima ni Mukatte (1999)(Victor)(BANC-0001,SLPH-00100)
 Winning Lure (Hori) (2000) (for Hori HPS-97 controller) AKA HPS-98 ?

 ASCII Tsuricon SLPH-00100 (also marked with a second serial, ASC-0514TR, on the
packaging box)
 ASCII Tsuricon 2 ASC-0521TR2 (has a mode switch with 3 settings. "1" is original
Tsuricon mode, "2" is Tsuricon 2 mode. Unknown what the unnumbered mode does)
 Sammy Tsuricon 2 SMY-0506FS (looks to be identical to the ASCII Tsuricon 2)
 Sammy Tsuricon 2+ SMY-0511FS (unknown what the differences between this and the
Tsuricon 2 are)
 Agetec Bass Landing Fishing Controller SLUH-00063 (US version of ASCII's SLPH-00100
controller)
 Bandai Fishing Controller BANC-0001 (dark gray/blue) (has less buttons than ASCII/
agetec)
 Interact Fission (light gray/blue)(similar to ASCII/agetec, 2 extra buttons?)
 Naki (transparent blue) (looks like a clone of the ASCII/agetec controllers)
 Hori HPS-97/HPS-98 (black/gray) (a fishing rod attached to a plastic fish)

14.19 Controllers - Fishing Controllers

- 619/1136 -

and plastic fish, it's apparently working completely different than the other fishing

controllers).

Tech Info (all unknown)

Unknown how to detect fishing controllers.

Unknown how to read buttons, joystick, crank, motion sensors.

Unknown how to control rumble/vibration.

Unknown if/how Bandai differs from ASCII/agetec (aside from less buttons).

Unknown how the Hori thing works.

ASCII SLPH-00100 / agetec SLUH-00063 (silver)

Bandai BANC-0001 (dark gray/blue)

 __|___|__
 | | _ __
 | | | | | |=|__| <--- crank handle
 | | SEL STA | | | |
 | | | |---| \ ASCII SLPH-00100
 | \ / |---| / agetec SLUH-00063
 / L1 R1 \ | | __
 | L2 .---. R2 | |_|=|__|
 | | joy | |
 | |stick| | <------- analog thumb controlled joystick
 | /\ '---' >< |
 | [] () |
 \ ASCII /
 '.___________.' ___ 10 buttons (SEL,STA,L1,L2,R1,R2,/\,[],(),><)
 \ _____ /
 | | Note: many (not all) agetec controllers
 | | have the >< and () buttons exchanged
 | |
 | | Aside from the crank/buttons/joystick,
 | | the controller reportedly contains:
 | | some sort of motion sensors?
 | | some kind of rumble/vibration?
 | |
 '.___.'
 '--...___ cable

 __|___|__
 _| | _ __
 | .---. |\ | |=|__| <--- crank handle
 || joy | | | | |
 ||stick| | |-#-| \

14.19 Controllers - Fishing Controllers

- 620/1136 -

Hori HPS-97 / HPS-98 (black/gray)

 | '---' | |-#-| /
 / \ | \ | | __
 | | ... | | |_|=|__|
 | | : : | ()|
 | |O :___: O| | <--- two buttons: () and ><
 | |- |___| -| ><| and some slide switch with I and 0 positions?
 | | | |
 \ | BANDAI | / unknown if the joystick is digital or analog
 '.________/_.'
 | | unknown if there are motion sensors and/or rumble
 '. .'
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 '.___.'
 '--...___ cable

 ----------------O
 .'' \ HPS-97 (controller bundled with game)
 : \ \ HPS-98 (controller only, for HPS-96 game)
 __|___|__ \ short \
 | | elastic \
 | | pole \
 | | \ <--- string (from pole to
 | SW? | _ __ \ reel inside of fish)
 / \ | |=|__| \
 | .---. | | | \
 | () | joy | |--| \ \ ___
 | |stick| |--| / \ / /
 | () '---' | | | __ \ ...---''''''--. /|
 | | |_|=|__| <--- crank \ ' '/ |
 \ () () / handle '..| |.
 '.___________.' |__________________| :
 \ / \ plastic fish :
 | | joystick, (presumable some heavy :
 | | four buttons, stationary thing that :
 | | and a switch? rests on floor) :
 | | (presumably with :
 | | motor-driven reel?) :
 | | :
 | | the two cables do probably connect :
 | | to both of the PSX controller slots :
 '.___.' cable 2 ---'
 '--...___ cable 1

14.19 Controllers - Fishing Controllers

- 621/1136 -

14.20 Controllers - PS2 DVD Remote

An accessory released by Sony for the PS2, consisting of an infrared remote control and

a receiver dongle that plugs into a controller port. The remote features all standard

controller buttons (including L3/R3) as well as additional controls for the PS2's DVD

player.

The receiver behaves very differently from any other known device: it does not respond

to any command until a button on the remote is pressed. When a valid IR code is

received it will start accepting commands for about 2000-2500 ms, then become

unresponsive again. It will initially behave as two different devices, one with address

01h acting like a standard digital controller and the other with address 61h exposing IR

codes as received from the remote.

Command 04h - IR poll (and disable controller mode)

Returns the IR code of the currently pressed button and its length in bits, or 000000h if

no button is pressed (and the receiver is still responding to commands). Received codes

seem to "stick around" for some time even after the button has been released; when a

button is held down the remote resends its code every 45 ms, so the receiver presumably

keeps returning the same code for about 50 ms as a debouncing measure.

The code is returned LSB first and MSB aligned, i.e. it should be right-shifted by (24 - len)

bits to obtain the "raw" code as sent by the remote. For instance:

 Send Reply Comment
 61h N/A IR receiver address
 04h 12h Receive ID bits 0-7, send command byte
 00h 5Ah Receive ID bits 8-15
 00h len Receive code length (20 for DVD remote, 0 if no button is pressed)
 00h code Receive code bits 16-23
 00h code Receive code bits 8-15
 00h code Receive code bits 0-7

 Code sent by remote (first bit after preamble to last bit):
 0000 0000 1011 1001 0010
 Code sent by remote (MSB to LSB):
 0100 1001 1101 0000 0000
 Data returned by receiver:
 code[16:23] = 01001001
 code[8:15] = 11010000
 code[0:7] = 0000xxxx ; xxxx = (24 - len) bits of padding (all zeroes)
 Reassembled MSB-aligned code (MSB to LSB):
 0100 1001 1101 0000 0000 xxxx

14.20 Controllers - PS2 DVD Remote

- 622/1136 -

The receiver will stop acting like a digital controller and replying to address 01h after this

command is sent for the first time. Command 06h can be used to restore controller

functionality (see below), unknown if there is also a watchdog to automatically restore

controller mode if no IR poll commands are issued.

Command 06h, 03h - Re-enable controller mode

Command 0Fh - Unknown

This command exists (the receiver will keep pulling /ACK low) but its purpose is

currently unknown. It could possibly be an alternate poll command that does not disable

controller mode.

IR code format

The DVD remote always emits 20-bit IR codes. The receiver does return the length of

the code, but it's unclear if it can receive codes with lengths other than 20 bits.

 Send Reply Comment
 61h N/A IR receiver address
 06h 12h Receive ID bits 0-7, send command byte 1
 03h 5Ah Receive ID bits 8-15, send command byte 2
 00h ? Receive unknown data, send padding
 00h ?
 00h ?
 00h ?

14.20 Controllers - PS2 DVD Remote

- 623/1136 -

All non-controller buttons on the remote are arranged in an 8x16 button matrix, shown

below (transposed for readability):

Each button in the matrix is assigned a code as follows:

Controller buttons are handled separately and assigned different codes:

Arrow buttons are a special case, as they are controller buttons but also have matrix

codes assigned. For those the remote alternates between both codes (see below).

Col Row 0 Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

0 1 Previous Slow <<

1 2 Next Slow >>

2 3 Play

3 4 Scan << Subtitle

4 5 Scan >> Display Audio

5 6 Shuffle Angle

6 7

7 8

8 9 Time Stop

9 0 Pause Up

10 Title A<->B Down

11 Enter DVD Menu Left

12 Repeat Right

13

14 Return

15 Clear Program

 code = 49D00h OR (row << 4) OR (column) ; sent LSB first

 ; where row = 0..7, column = 0..15

 code = DAD50h OR (id) ; sent LSB first

 ; where id = 0..15, index of the bit that would normally represent the button
 ; in the bitfield returned by a controller poll command
 ; (i.e. 0=Select, 1=L3, 2=R3, 3=Start, 4=Up, 5=Right, etc.)

14.20 Controllers - PS2 DVD Remote

- 624/1136 -

Low-level IR protocol

The remote emits IR pulses modulated with a 38 kHz carrier, as most remotes do. Codes

are sent as a 2460 µs "preamble" pulse followed by 24 data pulses, each of which can

be either 1250 µs (if the respective bit is 1) or 650 µs (if the respective bit is 0) long.

After each pulse including the preamble, the remote waits 530 µs before sending the

next pulse.

Every code is always sent at least 3 times in a row (more if the button is held down but

not necessarily a multiple of 3), approximately every 45 ms. For arrow buttons the

matrix code is sent 3 times first, then the respective controller button code is sent 3

times, then the sequence repeats until the button is released (with the total number of

codes sent always being a multiple of 6 in this case).

Built-in IR receivers

In later PS2 models, Sony integrated the IR receiver into the console. Assuming the

built-in receivers used the same circuitry as the external dongle, this may explain its

weird behavior: the receiver was likely designed to be wired in parallel with one of the

controller ports, and to be unresponsive until the remote is actually in use to avoid

interfering with another controller plugged into the same port. Whether or not the

integrated receivers are connected this way has not been confirmed.

There is a second revision of the DVD remote with power and eject buttons, meant to be

used with the PS2 models that have a built-in receiver. Weirdly enough, however, it

seems to be incompatible with the older receiver dongle.

14.21 Controllers - I-Mode Adaptor (Mobile Internet)

The I-Mode Adaptor cable (SCPH-10180) allows to connect an I-mode compatible mobile

phone to the playstation's controller port; granting a mobile internet connection to

japanese games.

PSX Games for I-Mode Adaptor (Japan only)

 Doko Demo Issyo (PlayStation the Best release only) (Sony) 2000
 Doko Demo Issyo Deluxe Pack (Bomber eXpress/Sony) 2001
 Hamster Club-I (SLPS-03266) (Jorudan) 2002
 iMode mo Issyo: Dokodemo Issho Tsuika Disc (Bomber/Sony) 2001
 Keitai Eddy (iPC) 2000 (but, phone connects to SIO port on REAR side of PSX?)
 Komocchi (Victor) 2001
 Mobile Tomodachi (Hamster) 2002

14.21 Controllers - I-Mode Adaptor (Mobile Internet)

- 625/1136 -

The supported games should have a I-Mode adaptor logo on the CD cover (the logo

depicts two plugs: the PSX controller plug, and the smaller I-Mode plug).

Note: "Dragon Quest Monsters 1 & 2" was announced/rumoured to support I-mode

(however, its CD cover doesn't show any I-Mode adapter logo).

Tech Details (all unknown)

Unknown how to detect the thing, and how to do the actual data transfers.

The cable does contain a 64pin chip, an oscillator, and some smaller components (inside

of the PSX controller port connector).

Hardware Variant

Keitai Eddy seems to have the phone connect to the SIO port (on rear side of the PSX,

at least it's depicted like so on the CD cover). This is apparently something different

than the SCPH-10180 controller-port cable. Unknown what it is exactly - probably some

mobile internet connection too, maybe also using I-mode, or maybe some other

protocol.

14.22 Controllers - Keyboards

There isn't any official retail keyboard for PSX, however, there is a shitload of obscure

ways to connect keyboards...

Sony SCPH-2000 PS/2 Keyboard/Mouse Adaptor (prototype/with cable) (undated)

Sony SCPH-2000 PS/2 Keyboard/Mouse Adaptor (without cable) (undated)

A PS/2 to PSX controller port adaptor. Maybe for educational Lightspan titles?

There are two hardware variants of the adaptor:

Unknown ^how to access those adaptors, and unknown if the two versions differ at

software side. There seem to be not much more than a handful of people owning that

adaptors, and none of them seems to know how to use it, or even how to test if it's

 Motto Trump Shiyouyo! i-Mode de Grand Prix (Pure Sound) 2002
 One Piece Mansion (Capcom) 2001 (japanese version only)

 Adaptor with short cable to PSX-controller port (and prototype marking)
 Adaptor without cable, directly plugged into controller port (final version?)

14.22 Controllers - Keyboards

- 626/1136 -

working with existing software...

- Keyboard reading might work with the Online Connection CD.

- Mouse reading might work with normal mouse compatible PSX games.

Lightspan Online Connection CD Keyboard (1997)

The Online Connection CD is a web browser from the educational Lightspan series, the

CD is extremly rare (there's only one known copy of the disc).

The thing requires a dial-up modem connected to the serial port (maybe simply using

the same RS232 adaptor as used by Yaroze). User input can be done via joypad, or

optionally, via some external keyboard (or keyboard adaptor) hardware:

The num byte indicates number of following scancodes (can be num=FFh, maybe when

no keyboard connected?, or num=00h..0Bh for max 11 bytes, unless the last some bytes

should have other meaning, like status/mouse data or so).

The keyboard scancodes are in "PS/2 Keyboard Scan Code Set 2" format.

The binary contains some (unused) code for sending data to the keyboard by changing

the 4th-11th byte, and resuming normal operation by setting 4th and 11th byte back to

zero:

Maybe 4th and 11th byte are number of following bytes, with xxh being some command,

and FFh's just being bogus padding; the xxh looks more like an incrementing value

though.

Despite of the mouse-based GUI, the browser software doesn't seem to support mouse

hardware (neither via PS/2 mice, nor PSX mice). Instead, the mouse arrow can be merely

moved via joypad's DPAD, or (in a very clumsy fashion) via keyboard cursor keys.

Note: The browser uses SysEnqIntRP to install some weird IRQ handler that forcefully

aborts all controller (or memory card) transfers upon Vblank. Unknown if that's somehow

required to bypass bugs in the keyboard hardware. The feature is kinda dangerous for

memory card access (especially with fast memcard access in nocash kernel, which allows

to transfer more than one sector per frame).

 Send 01h 42h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 06h
 Reply HiZ 96h 5Ah num dat dat dat dat dat dat dat dat dat dat dat

 Send 01h xxh FFh FFh FFh FFh FFh 00h
 Send 00h 00h

14.22 Controllers - Keyboards

- 627/1136 -

Spectrum Emulator Keyboard Adaptor (v1/serial port) (undated)

Made by Anthony Ball. [http://www.sinistersoft.com/psxkeyboard]

Spectrum Emulator Keyboard & Sega Sticks Adaptor (v2/controller port) (2000)

Made by Anthony Ball. [http://www.sinistersoft.com/psxkeyboard]

This adaptor can send pad/stick data,

as well as pad/sticks+keyboard data,

The above mode(s) can be switched via ACPI Power/Sleep/Wake keys (on keyboards that

do have such keys).

For whatever reason, the PS/2 scancodes are translated to ASCII-style scancode values

(with bit7=KeyUp flag):

 [1F801058h]=00CEh ;SIO_MODE 8bit, no parity, 2 stop bits (8N2)
 [1F80105Ah]=771Ch ;SIO_CTRL rx enable (plus whatever nonsense bits)
 [1F80105Eh]=006Ch ;SIO_BAUD 19200 bps
 RX Keyboard Scancode (same ASCII-style as in later versions?)
 CTS Caps-Lock state
 DSR Num-Lock state

 Send 01h 42h 00h 0h 0h
 Reply HiZ 41h 5Ah PadA

 Send 01h 42h 00h 0h 0h 0h 0h 0h 0h 0h 0h 00h 00h 0h 0h 0h 0h 0h 0h
 Reply HiZ E8h 5Ah PadA PadB PadC PadD Ver Lock Buffer(0..5)

 Version=1 ; version number
 0 SCROLL ; scroll lock on
 1 NUM ; num lock on
 2 CAPS ; caps lock on
 3 DONETEST ; keyboard has just done a selftest
 4 EMUA ; emulation mode a
 5 EMUB ; emulation mode b

 01 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 69 1F
 60 21 22 68 24 25 5E 26 2A 28 29 5F 3D 2D 0B 0E 0F 67 2F 1E 2D
 27 51 57 45 52 54 59 55 49 4F 50 5B 5D 0D 10 61 62 37 38 39
 3B 41 53 44 46 47 48 4A 4B 4C 3A 40 23 34 35 36 2B
 02 5C 5A 58 43 56 42 4E 4D 3C 3E 3F 03 63 31 32 33
 04 05 06 20 07 08 09 0A 65 64 66 30 2E 6A

14.22 Controllers - Keyboards

- 628/1136 -

BUG: The thing conflicts with memory cards: It responds to ANY byte with value 01h (it

should do so only if the FIRST byte is 01h).

Homebrew PS/2 Keyboard/Mouse Adaptor (undated/from PSone era)

flg:

Made by Simon Armstrong. This thing emulates a standard PSX Mouse (and should thus

work with most or all mouse compatible games). Additionally, it's sending keyboard flags/

scancodes via unused mouse button bits.

Runix hardware add-on USB Keyboard/Mouse Adaptor (2001) (PIO extension port)

Runix is a homebrew linux kernel for PSX, it can be considered being the holy grail of

the open source scene because nobody has successfully compiled it in the past 16 years.

- USB host controller SL811H driver with keyboard and mouse support;

- RTC support.

file: drivers/usb/sl811h.c

TTY Console

The PSX kernel allows to output "printf" debug messages via stdout. In the opposite

direction, it's supporting to receive ASCII user input via "std_in_gets" (there isn't any

software actually using that feature though, except maybe debug consoles like DTL-

H2000).

 Send 01h 42h 00h 00h 00h 00h 00h
 Reply HiZ 12h 5Ah key flg dx dy

 bit0-1 = Always 11b (unlike Sony mouse)
 bit2 = Left Mouse Button (0=Pressed, 1=Released)
 bit3 = Right Mouse Button (0=Pressed, 1=Released)
 bit4-5 = Always 11b (like Sony mouse)
 bit6 = Key Release (aka F0h prefix) (0=Yes)
 bit7 = Key Extended (aka E0h prefix) (0=Yes)

14.22 Controllers - Keyboards

- 629/1136 -

14.23 Controllers - Additional Inputs

Reset Button

PSX only (not PSone). Reboots the PSX via /RESET signal. Probably including for

forcefully getting through the WHOLE BIOS Intro, making it rather useless/annoying? No

idea if it clears ALL memory during reboot?

CDROM Shell Open

Status bit of the CDROM controller. Can be used to sense if the shell is opened (and also

memorizes if the shell was opened since last check; allowing to sense possible disk

changes).

PocketStation

Memory Card with built-in LCD screen and Buttons (which can be used as miniature

handheld console). However, when it is connected to the PSX, the buttons are vanishing

in the cartridge slot, so the buttons cannot be used as additional inputs for PSX games.

Serial Port PSX only (not PSone)

With an external adaptor (voltage conversion), the serial port can be used (among

others) to connect a RS232 Serial Mouse. Although, most or all commercial games with

mouse input are probably (?) supporting only Sony's Mouse (on the controller port)

(rather than standard RS232 devices on the serial port).

TTY Debug Terminal

If present, the external DUART can be used for external keyboard input, at the BIOS

side, this is supported as "std_in".

14.24 Controllers - Misc

Standard Controllers

 SCPH-1010 digital joypad (with short cable)
 SCPH-1080 digital joypad (with longer cable)
 SCPH-1030 mouse (with short cable)
 SCPH-1090 mouse (with longer cable)

14.23 Controllers - Additional Inputs

- 630/1136 -

Special Controllers

SLPH-0001 (nejicon)

BANDAI "BANC-0002" - 4 Buttons (Triangle, Circle, Cross, Square) (nothing more)

Joystick

 SCPH-1092 mouse (european?)
 SCPH-1110 analog joystick
 SCPH-1150 analog joypad (with one vibration motor, with red/green led)
 SCPH-1180 analog joypad (without vibration motors, with red/green led)
 SCPH-1200 analog joypad (with two vibration motors) (dualshock)
 SCPH-110 analog joypad (with two vibration motors) (dualshock for psone)
 SCPH-10010 dualshock2 (analog buttons, except L3/R3/Start/Select) (for ps2)
 SCPH-1070 multitap

 SCPH-4010 VPick (guitar-pick controller) (for Quest for Fame, Stolen Song)

 __________ __________
 | | | ^ | ^
 | L1 R1 | | X <+> O | <+> = Digital Stick
 \ ___| <--- L2 [] ---> |___ v / v
 | | <--- R2 /\ ---> | |
 ___| |___________________________| |___ Not sure if all buttons
 | | | SEL STA =?= | | | are shown at their
 | | | | | | correct locations?
 | | |_ [] /\ _| | | (drawing is based on
 | _| / L1 R1 \ |_ | below riddle/lyrics)
 | _____/ X O _____/ |
 | /___\ L2 R2 /___\ |
 | |
 | |
 ___/

 The thumb buttons on the left act as L1 and R1,
 the trigger is L2, the pinky button is R2
 The thumb buttons on the right act as X and O,
 the trigger is Square and the pinky button is Triangle.
 I find this odd as the triggers should've been L1 and R1,
 the pinkies L2 and R2.
 The buttons are redundantly placed on the base as large buttons like what
 you'd see on a fight/arcade stick. Also with Start and Select.
 There is also a physical analog mode switch,
 not a button like on dual shock.

14.24 Controllers - Misc

- 631/1136 -

MX4SIO

The MX4SIO is a homebrew microSD card adapter for the PS2 that plugs into a memory

card slot, taking advantage of the fact that SD cards support an SPI mode which is more

or less compatible with SIO0. The adapter is completely passive and has the card wired

up as follows:

Unfortunately, this design has a fatal flaw that makes it unusable as-is on the PS1: /ACK

is permanently shorted to ground, taking down the entire controller bus. However, it

should be possible to use the MX4SIO on a PS1 with custom driver code once the

MX4SIO's /ACK pin is masked out with some tape, or if no other controllers or memory

cards are plugged in.

Note that, as SD cards do not employ the addressing scheme used by standard

controllers and memory cards, the MX4SIO should get its own dedicated /CSn pin and

not share the port with a controller (i.e. if the MX4SIO is plugged in slot 2, then

controller port 2 shall be left unused).

14.25 Memory Card Read/Write Commands

Reading Data from Memory Card

uSD pin Name Wired to MC pin

1 D2 / NC -

2 D3 / /CS /CS

3 CMD / MOSI CMD / MOSI

4 VCC +3.5V

5 SCK SCK

6 GND GND , /ACK

7 D0 / MISO DAT / MISO

8 D1 / NC -

 Send Reply Comment
 81h N/A Memory card address
 52h FLAG Send Read Command (ASCII "R"), Receive FLAG Byte
 00h 5Ah Receive Memory Card ID1
 00h 5Dh Receive Memory Card ID2
 MSB (00h) Send Address MSB ;\sector number (0..3FFh)
 LSB (pre) Send Address LSB ;/
 00h 5Ch Receive Command Acknowledge 1 ;<-- late /ACK after this byte-pair

14.25 Memory Card Read/Write Commands

- 632/1136 -

Non-sony cards additionally send eight 5Ch bytes after the end flag.

When sending an invalid sector number, original Sony memory cards respond with FFFFh

as Confirmed Address (and do then abort the transfer without sending any data,

checksum, or end flag), third-party memory cards typically respond with the sector

number ANDed with 3FFh (and transfer the data for that adjusted sector number).

Writing Data to Memory Card

Get Memory Card ID Command

This command is supported only by original Sony memory cards. Not sure if all sony cards

are responding with the same values, and what meaning they have, might be number of

sectors (0400h) and sector size (0080h) or whatever.

 00h 5Dh Receive Command Acknowledge 2
 00h MSB Receive Confirmed Address MSB
 00h LSB Receive Confirmed Address LSB
 00h ... Receive Data Sector (128 bytes)
 00h CHK Receive Checksum (MSB xor LSB xor Data bytes)
 00h 47h Receive Memory End Byte (should be always 47h="G"=Good for Read)

 Send Reply Comment
 81h N/A Memory card address
 57h FLAG Send Write Command (ASCII "W"), Receive FLAG Byte
 00h 5Ah Receive Memory Card ID1
 00h 5Dh Receive Memory Card ID2
 MSB (00h) Send Address MSB ;\sector number (0..3FFh)
 LSB (pre) Send Address LSB ;/
 ... (pre) Send Data Sector (128 bytes)
 CHK (pre) Send Checksum (MSB xor LSB xor Data bytes)
 00h 5Ch Receive Command Acknowledge 1
 00h 5Dh Receive Command Acknowledge 2
 00h 4xh Receive Memory End Byte (47h=Good, 4Eh=BadChecksum, FFh=BadSector)

 Send Reply Comment
 81h N/A Memory card address
 53h FLAG Send Get ID Command (ASCII "S"), Receive FLAG Byte
 00h 5Ah Receive Memory Card ID1
 00h 5Dh Receive Memory Card ID2
 00h 5Ch Receive Command Acknowledge 1
 00h 5Dh Receive Command Acknowledge 2
 00h 04h Receive 04h
 00h 00h Receive 00h
 00h 00h Receive 00h
 00h 80h Receive 80h

14.25 Memory Card Read/Write Commands

- 633/1136 -

Invalid Commands

Transfer aborts immediately after the faulty command byte, or, occasionally after one

more byte (with response FFh to that extra byte).

FLAG Byte

The initial value of the FLAG byte on power-up (and when re-inserting the memory card)

is 08h.

Bit3=1 is indicating that the directory wasn't read yet (allowing to sense memory card

changes). For some strange reason, bit3 is NOT reset when reading from the card, but

rather when writing to it. To reset the flag, games are usually issuing a dummy write to

sector number 003Fh, more or less unneccessarily stressing the lifetime of that sector.

Bit2=1 seems to be intended to indicate write errors, however, the write command

seems to be always finishing without setting that bit, instead, the error flag may get set

on the NEXT command.

Note: Some (not all) non-sony cards also have Bit5 of the FLAG byte set.

Timings

IRQ7 is usually triggered circa 1500 cycles after sending a byte (counted from the begin

of the first bit), except, the last byte doesn't trigger IRQ7, and, after the 7th byte of the

Read command, an additional delay of circa 31000 cycles occurs before IRQ7 gets

triggered (that strange extra delay occurs only on original Sony cards, not on cards from

other manufacturers).

There seems to be no extra delays in the Write command, as it seems, the data is

written on the fly, and one doesn't need to do any write-busy handling... although,

theoretically, the write shouldn't start until verifying the checksum... so it can't be done

on the fly at all...?

Notes

Responses in brackets are don't care, (00h) means usually zero, (pre) means usually

equal to the previous command byte (eg. the response to LSB is MSB).

Memory cards are reportedly "Flash RAM" which sounds like bullshit, might be battery

backed SRAM, or FRAM, or slower EEPROM or FLASH ROM, or vary from card to card...?

 Send Reply Comment
 81h N/A Memory card address
 xxh FLAG Send Invalid Command (anything else than "R", "W", or "S")

14.25 Memory Card Read/Write Commands

- 634/1136 -

14.26 Memory Card Data Format

Data Size

The memory is split into 16 blocks (of 8 Kbytes each), and each block is split into 64

sectors (of 128 bytes each). The first block is used as Directory, the remaining 15 blocks

are containing Files, each file can occupy one or more blocks.

Header Frame (Block 0, Frame 0)

Directory Frames (Block 0, Frame 1..15)

Filesize [04h..07h] and Filename [0Ah..1Eh] are stored only in the first directory entry of

a file (ie. with State=51h or A1h), other directory entries have that bytes zero-filled.

Filename Notes

The first some letters of the filename should indicate the game to which the file belongs,

in case of commercial games this is conventionally done like so: Two character region

code:

 Total Memory 128KB = 131072 bytes = 20000h bytes
 1 Block 8KB = 8192 bytes = 2000h bytes
 1 Frame 128 bytes = 80h bytes

 00h-01h Memory Card ID (ASCII "MC")
 02h-7Eh Unused (zero)
 7Fh Checksum (all above bytes XORed with each other) (usually 0Eh)

 00h-03h Block Allocation State
 00000051h - In use ;first-or-only block of a file
 00000052h - In use ;middle block of a file (if 3 or more blocks)
 00000053h - In use ;last block of a file (if 2 or more blocks)
 000000A0h - Free ;freshly formatted
 000000A1h - Free ;deleted (first-or-only block of file)
 000000A2h - Free ;deleted (middle block of file)
 000000A3h - Free ;deleted (last block of file)
 04h-07h Filesize in bytes (2000h..1E000h; in multiples of 8Kbytes)
 08h-09h Pointer to the NEXT block number (minus 1) used by the file
 (ie. 0..14 for Block Number 1..15) (or FFFFh if last-or-only block)
 0Ah-1Eh Filename in ASCII, terminated by 00h (max 20 chars, plus ending 00h)
 1Fh Zero (unused)
 20h-7Eh Garbage (usually 00h-filled)
 7Fh Checksum (all above bytes XORed with each other)

14.26 Memory Card Data Format

- 635/1136 -

followed by 10 character game code,

where the "AAAA" part does imply the region too; (SLPS/SCPS=Japan, SLUS/

SCUS=America, SLES/SCES=Europe) (SCxS=Made by Sony, SLxS=Licensed by Sony),

followed by up to 8 characters,

(which may identify the file if the game uses multiple files; this part often contains a

random string which seems to be allowed to contain any chars in range of 20h..7Fh, of

course it shouldn't contain "?" and "*" wildcards).

Broken Sector List (Block 0, Frame 16..35)

If Block0/Frame(16+N) indicates that a given sector is broken, then the data for that

sector is stored in Block0/Frame(36+N).

Broken Sector Replacement Data (Block 0, Frame 36..55)

Unused Frames (Block 0, Frame 56..62)

Write Test Frame (Block 0, Frame 63)

Reportedly "write test". Usually same as Block 0 ("MC", 253 zero-bytes, plus checksum

0Eh).

Title Frame (Block 1..15, Frame 0) (in first block of file only)

 "BI"=Japan, "BE"=Europe, "BA"=America

 in "AAAA-NNNNN" form ;for Pocketstation executables replace "-" by "P"

 "abcdefgh"

 00h-03h Broken Sector Number (Block*64+Frame) (FFFFFFFFh=None)
 04h-7Eh Garbage (usually 00h-filled) (some cards have [08h..09h]=FFFFh)
 7Fh Checksum (all above bytes XORed with each other)

 00h-7Fh Data (usually FFh-filled, if there's no broken sector)

 00h-7Fh Unused (usually FFh-filled)

14.26 Memory Card Data Format

- 636/1136 -

For more info on entries [50h..5Fh], see

Pocketstation File Header/Icons

Icon Frame(s) (Block 1..15, Frame 1..3) (in first block of file only)

Note: The icons are shown in the BIOS bootmenu (which appears when starting the

PlayStation without a CDROM inserted). The icons are drawn via GP0(2Ch) command, ie.

as Textured four-point polygon, opaque, with texture-blending, whereas the 24bit

blending color is 808080h (so it's quite the same as raw texture without blending). As

semi-transparency is disabled, Palette/CLUT values can be 0000h=FullyTransparent, or

8000h=SolidBlack (the icons are usually shown on a black background, so it doesn't make

much of a difference).

Data Frame(s) (Block 1..15, Frame N..63; N=excluding any Title/Icon Frames)

Note: Files that occupy more than one block are having only ONE Title area, and only one

Icon area (in the first sector(s) of their first block), the additional blocks are using sectors

0..63 for plain data.

 00h-01h ID (ASCII "SC")
 02h Icon Display Flag
 11h...Icon has 1 frame (static) (same image shown forever)
 12h...Icon has 2 frames (animated) (changes every 16 PAL frames)
 13h...Icon has 3 frames (animated) (changes every 11 PAL frames)
 Values other than 11h..13h seem to be treated as corrupted file
 (causing the file not to be listed in the bootmenu)
 03h Block Number (1-15) "icon block count" Uh?
 (usually 01h or 02h... might be block number within
 files that occupy 2 or more blocks)
 (actually, that kind of files seem to HAVE title frames
 in ALL of their blocks; not only in their FIRST block)
 (at least SOME seem to have such duplicated title frame,
 but not all?)
 04h-43h Title in Shift-JIS format (64 bytes = max 32 characters)
 44h-4Fh Reserved (00h)
 50h-5Fh Reserved (00h) ;<-- this region is used for the Pocketstation
 60h-7Fh Icon 16 Color Palette Data (each entry is 16bit CLUT)

 00h-7Fh Icon Bitmap (16x16 pixels, 4bit color depth)

 00h-7Fh Data

14.26 Memory Card Data Format

- 637/1136 -

Shift-JIS Character Set (16bit) (used in Title Frames)

Can contain japanese or english text, english characters are encoded like so:

Titles shorter than 32 characters are padded with 00h-bytes.

Note: The titles are \<usually> in 16bit format (even if they consist of raw english text),

however, the BIOS memory card manager does also accept 8bit characters 20h..7Fh (so,

in the 8bit form, the title could be theoretically up to 64 characters long, but,

nethertheless, the BIOS displays only max 32 chars).

For displaying Titles, the BIOS includes a complete Shift-JIS character set,

BIOS Character Sets

Shift-JIS is focused on asian languages, and does NOT include european letters (eg. such

with accent marks). Although the non-japanese PSX BIOSes DO include a european

character set, the BIOS memory card manager DOESN'T seem to translate any title

character codes to that character set region.

14.27 Memory Card Images

There are a lot of different ways to get a save from a memory card onto your PC's hard

disk, and these ways sometimes involve sticking some additional information into a

header at the beginning of the file.

Raw Memory Card Images (without header) (ie. usually 128K in size)

don't stick any header on the data at all, so you can just read it in and treat it like a raw

memory card.

All of these headers contain a signature at the top of the file. The three most common

formats and their signatures are:

 81h,40h --> SPC
 81h,43h..97h --> punctuation marks
 82h,4Fh..58h --> "0..9"
 82h,60h..79h --> "A..Z"
 82h,81h..9Ah --> "a..z"

 SmartLink .PSM,
 WinPSM .PS,
 DataDeck .DDF,
 FPSX .MCR,
 ePSXe .MCD...

14.27 Memory Card Images

- 638/1136 -

some programs will OMIT any blank or unallocated blocks from the end of the memory

card -- if only three save blocks on the card are in use, for example, saving the other

twelve is pointless.

Xploder and Action Replay Files (54 byte header)

This format contains only a single file (not a whole memory card). The filename should be

the same as used in the Memory Card Directory. The title is more or less don't care; it

may be the SHIFT-JIS title from the Title Sector converted to ASCII.

.MCS Files (Single Save Format)

MCS files consist of the 128 byte directory frame for the savefile's first block followed by

all of that savefile's blocks in linked list order. When importing this format, the directory

frame should be parsed for the save filename and the filesize while other fields should

be ignored. The rest of the directory frame fields and any extra directory frames, in the

case of multi-block saves, should be reconstructed based on the destination memory

card.

.GME Files (usually 20F40h bytes)

InterAct GME format, produced by the DexDrive.

This is a very strange file format, no idea where it comes from. It contains a F40h bytes

header (mainly zerofilled), followed by the whole 128K of FLASH memory (mainly

zerofilled, too, since it usually contains only a small single executable file).

 Connectix Virtual Game Station format (.MEM): "VgsM", 64 bytes
 PlayStation Magazine format (.PSX): "PSV", 256 bytes

 00h..14h Filename in ASCII, terminated by 00h (max 20 chars, plus ending 00h)
 15h..35h Title in ASCII, terminated by 00h (max 32 chars, plus ending 00h)
 36h.. File Block(s) (starting with the Title sector)

 000h 12 ASCII String "123-456-STD",00h
 00Ch 4 Usually zerofilled (or meaningless garbage in some files)
 010h 5 Always 00h,00h,01h,00h,01h
 015h 16 Copy of Sector 0..15 byte[00h] ;"M", followed by allocation states
 025h 16 Copy of Sector 0..15 byte[08h] ;00h, followed by next block values
 035h 11 Usually zerofilled (or meaningless garbage in some files)
 040h F00h Fifteen Description Strings (each one 100h bytes, padded with 00h)
 F40h 128K Memory Card Image (128K) (unused sectors 00h or FFh filled)

14.27 Memory Card Images

- 639/1136 -

14.28 Memory Card Notes

Sony PSX Memory Cards

Sony has manufactured only 128KByte memory cards for PSX, no bigger/smaller ones.

Sony PS2 Memory Cards

A special case would be PS2 cards, these are bigger, but PS2 cards won't fit into PSX

cards slots (unless when cutting an extra notch in the card edge connector), a PSX game

played on a PS2 console could theoretically access PS2 cards (if it supports the different

directory structure on that cards).

Third Party Cards with bigger capacity

Some third party cards contain larger memory chips, however, the PSX games/kernel

are supporting only regular 128Kbyte cards, so the extra memory can be used only by

dividing it into several 128Kbyte memory card images.

Selecting a different memory card image can be done by a switch or button on the card,

or via joypad key combinations (joypad/card are sharing the same signals, so the card

could watch the traffic on joypad bus, provided that the MIPS CPU is actually reading the

joypad).

Third Party Cards with bigger capacity and Data Compression

Some cards are additionally using data compression to increase the card capacity, but

that techinque is having rather bad reputation and could result in data loss. For

example, if a game has allocated four blocks on the memory card, then it'll expect to be

able to overwrite that four blocks at any time (without needing to handle "memory card

full" errors), however, if the card is full, and if the newly written data has worse

compression ratio, then the card will be unable to store the new game position (and may

have already overwritten parts of the old game position). As a workaround, such cards

may use a LED to warn users when running low on memory (ideally, there should be

always at least 128Kbytes of free memory).

Joytech Smart Card Adaptor

The smart card adaptor plugs into memory card slot, and allows to use special credit

card-shaped memory cards. There don't seem to be any special features, ie. the

hardware setup does just behave like normal PSX memory cards.

14.28 Memory Card Notes

- 640/1136 -

Datel VMEM (virtual memory card storage on expansion port)

The Datel/Interact VMEM exists as standalone VMEM cartridge, and some Datel Cheat

Devices do also include the VMEM feature. Either way, the VMEM connects to expansion

port, and contain some large FLASH memory, for storing multiple memory cards on it.

Unknown, how that memory is accessed (maybe it must be copied to a regular memory

card, or maybe they've somehow hooked the Kernel (or even the hardware signals?) so

that games could directly access the VMEM?

Passwords (instead of Memory Cards)

Some older games are using passwords instead of memory cards to allow the user to

continue at certain game positions. That's nice for people without memory card, but

unfortunately many of that games are restricted to it - it'd be more user friendly to

support both passwords, and, optionally, memory cards.

Yaroze Access Cards (DTL-H3020)

The Yaroze Access Card connects to memory card slot, the card resembles regular

memory cards, but it doesn't contain any storage memory. Instead, it does merely

support a very basic Access Card detection command:

Ie. when receiving 21h as first byte, it replies by an ACK, and does then output 0xh as

response to the next byte.

Without the Access Card, the Yaroze Bootdisc will refuse to work (the disc contains

software for transferring data to/from PC, for developing homebrew games).

Pocketstation (Memory Card with built-in LCD screen and buttons)

Pocketstation

 Send Reply Comment
 21h N/A? Probably replies HighZ (ie. probably reads FFh)?
 53h 0xh? Replies unknown 8bit value (upper 4bit are known to be zero)?

14.28 Memory Card Notes

- 641/1136 -

15. Pocketstation

Pocketstation Overview

Pocketstation I/O Map

Pocketstation Memory Map

Pocketstation IO Video and Audio

Pocketstation IO Interrupts and Buttons

Pocketstation IO Timers and Real-Time Clock

Pocketstation IO Infrared

Pocketstation IO Memory-Control

Pocketstation IO Communication Ports

Pocketstation IO Power Control

Pocketstation SWI Function Summary

Pocketstation SWI Misc Functions

Pocketstation SWI Communication Functions

Pocketstation SWI Execute Functions

Pocketstation SWI Date/Time/Alarm Functions

Pocketstation SWI Flash Functions

Pocketstation SWI Useless Functions

Pocketstation BU Command Summary

Pocketstation BU Standard Memory Card Commands

Pocketstation BU Basic Pocketstation Commands

Pocketstation BU Custom Pocketstation Commands

Pocketstation File Header/Icons

Pocketstation File Images

Pocketstation XBOO Cable

15.1 Pocketstation Overview

Sony's Pocketstation (SCPH-4000) (1998)

The Pocketstation is a memory card with built-in LCD screen and buttons; aside from

using it as memory storage device, it can be also used as miniature handheld console.

 CPU ARM7TDMI (32bit RISC Processor) (variable clock, max 7.995MHz)
 Memory 2Kbytes SRAM (battery backed), 16Kbytes BIOS ROM, 128Kbytes FLASH

15. Pocketstation

- 642/1136 -

The RTC Problem

The main problem of the Pocketstation seems to be that it tends to reset the RTC to 1st

January 1999 with time 00:00:00 whenever possible.

The BIOS contains so many RTC-reset functions, RTC-reset buttons, RTC-reset flags,

RTC-reset communication commands, RTC-reset parameters, RTC-reset exceptions, RTC-

reset sounds, and RTC-reset animations that it seems as if Sony actually WANTED the

Time/Date to be destroyed as often as possible.

The only possible reason for doing this is that the clock hardware is so inaccurate that

Sony must have decided to "solve" the problem at software engineering side, by erasing

the RTC values before the user could even notice time inaccuracies.

CPU Specs

For details on the ARM7TDMI CPUs opcodes and exceptions, check GBATEK at,

http://problemkaputt.de/gbatek.htm (or .txt)

The GBA uses an ARM7TDMI CPU, too.

Thanks to Exophase, Orion, Fezzik, Dr.Hell for Pocketstation info.

15.2 Pocketstation I/O Map

Memory and Memory-Control Registers

 Display 32x32 pixel LCD (black and white) (without any grayscales)
 Sound Mini Speaker "(12bit PCM) x 1 unit" / "8bit PCM with 12bit range"
 Controls 5 input buttons, plus 1 reset button
 Infrared Bi-directional (IrDA based)
 Connector Playstation memory card interface
 RTC Battery backed Real-Time Clock with time/date function
 Supply CR2032 Battery (3VDC) (used in handheld mode, and for SRAM/RTC)

 / _______ \
 | | | |
 | | LCD | | __
 | |_______| | Side Views | _|
 |_________/| || <-------- Button Cover
 | O | (Closed) (Open) ||
 | O O O | ____________ _____|| .------- Reset Button
 | O | | LCD ____ | | LCD \|__|_
 |___________| |___________|| |___________| <--- Memory card plug

 00000000h RAM (2KB RAM) (first 512 bytes bytes reserved for kernel)
 02000000h FLASH1 Flash ROM (virtual file-mapped addresses in this region)

15.2 Pocketstation I/O Map

- 643/1136 -

http://problemkaputt.de/gbatek.htm

Interrupts and Timers

Communication Ports, Audio/Video

 04000000h BIOS_ROM Kernel and GUI (16KB)
 06000000h F_CTRL Control of Flash ROM
 06000004h F_STAT Unknown?
 06000008h F_BANK_FLG FLASH virtual bank mapping enable flags(16 bits)(R/W)
 0600000Ch F_WAIT1 waitstates...?
 06000010h F_WAIT2 waitstates, and FLASH-Write-Control-and-Status...?
 06000100h F_BANK_VAL FLASH virtual bank mapping addresses (16 words) (R/W)
 06000300h F_EXTRA Extra FLASH (256 bytes, including below F_SN, F_CAL)
 06000300h F_SN_LO Extra FLASH Serial Number LSBs (nocash: 6BE7h)
 06000302h F_SN_HI Extra FLASH Serial Number MSBs (nocash: 426Ch)
 06000304h F_? Extra FLASH Unknown ? (nocash: 05CAh)
 06000306h F_UNUSED1 Extra FLASH Unused halfword (nocash: FFFFh)
 06000308h F_CAL Extra FLASH LCD Calibration (nocash: 001Ah)
 0600030Ah F_UNUSED2 Extra FLASH Unused halfword (nocash: FFFFh)
 0600030Ch F_? Extra FLASH Unknown ? (nocash: 0010h)
 0600030Eh F_UNUSED3 Extra FLASH Unused halfword (nocash: FFFFh)
 06000310h F_UNUSED4 Extra FLASH Unused (310..3FFh) (nocash: FFFFh-filled)
 08000000h FLASH2 Flash ROM (128KB) (physical addresses in this region)
 08002A54h F_KEY1 Flash Unlock Address 1 (W)
 080055AAh F_KEY2 Flash Unlock Address 2 (W)

 0A000000h INT_LATCH Interrupt hold (R)
 0A000004h INT_INPUT Interrupt Status (R)
 0A000008h INT_MASK_READ Read Interrupt Mask (R)
 0A000008h INT_MASK_SET Set Interrupt Mask (W)
 0A00000Ch INT_MASK_CLR Clear Interrupt Mask (W)
 0A000010h INT_ACK Clear Interrupt hold (W)
 0A800000h T0_RELOAD Timer 0 Maximum value
 0A800004h T0_COUNT Timer 0 Current value
 0A800008h T0_MODE Timer 0 Mode
 0A800010h T1_RELOAD Timer 1 Maximum value
 0A800014h T1_COUNT Timer 1 Current value
 0A800018h T1_MODE Timer 1 Mode
 0A800020h T2_RELOAD Timer 2 Maximum value
 0A800024h T2_COUNT Timer 2 Current value
 0A800028h T2_MODE Timer 2 Mode
 0B000000h CLK_MODE Clock control (CPU and Timer Speed) (R/W)
 0B000004h CLK_STOP Clock stop (Sleep Mode)
 0B800000h RTC_MODE RTC Mode
 0B800004h RTC_ADJUST RTC Adjust
 0B800008h RTC_TIME RTC Time (R)
 0B80000Ch RTC_DATE RTC Date (R)

 0C000000h COM_MODE Com Mode
 0C000004h COM_STAT1 Com Status Register 1 (Bit1=Error)
 0C000008h COM_DATA Com RX Data (R) and TX Data (W)
 0C000010h COM_CTRL1 Com Control Register 1

15.2 Pocketstation I/O Map

- 644/1136 -

BIOS and FLASH can be read only in 16bit and 32bit units (not 8bit).

Upon reset, BIOS ROM is mirrored to address 00000000h (instead of RAM).

For most I/O ports, it is unknown if they are (R), (W), or (R/W)...?

I/O ports are usually accessed at 32bit width, occassionally some ports are (alternately)

accessed at 16bit width. A special case are the F_SN registers which seem to be required

to be accessed at 16bit (not 32bit).

Memory Access Time

Memory Access Time for Opcode Fetch:

Memory Access Time for Data Read/Write:

For data access, it doesn't matter if the access is 8bit/16bit/32bit (unlike as for opcode

fetch, where 16bit/thumb can be faster than 32bit/arm). There seems to be no timing

differences for sequential/non-sequential access.

Additional memory waitstates can be added via F_WAIT2 (and F_WAIT1 maybe).

Invalid/Unused Memory Locations

 0C000014h COM_STAT2 Com Status Register 2 (Bit0=Ready)
 0C000018h COM_CTRL2 Com Control Register 2
 0C800000h IRDA_MODE Infrared Control (R/W)
 0C800004h IRDA_DATA Infrared TX Data
 0C80000Ch IRDA_MISC Infrared Unknown/Reserved
 0D000000h LCD_MODE Video Control (R/W)
 0D000004h LCD_CAL Video Calibration (?)
 0D000100h LCD_VRAM Video RAM (80h bytes; 32x32bit) (R/W)
 0D800000h IOP_CTRL IOP control
 0D800004h IOP_STAT Read Current Start/Stop bits? (R)
 0D800004h IOP_STOP Stop bits? (W)
 0D800008h IOP_START Start bits? (W)
 0D80000Ch IOP_DATA IOP data? (not used by bios)
 0D800010h DAC_CTRL DAC Control (R/W)
 0D800014h DAC_DATA DAC data
 0D800020h BATT_CTRL Battery Monitor Control

 WRAM 1 cycle (for ARM and THUMB)
 FLASH 2 cycles (for ARM), or 1 cycle (for THUMB)
 BIOS ?

 WRAM (and some F_xxx ports) 1 cycle
 VIRT/PHYS/XTRA_FLASH, BIOS, VRAM, I/O 2 cycles

 00000800h-00FFFFFFh Mirrors of 00000000h-000007FFh (2K RAM)
 01000000h-01FFFFFFh Invalid (read causes data abort) (unused 16MB area)

15.2 Pocketstation I/O Map

- 645/1136 -

Unsupported 8bit Reads

Unsupported 16bit Reads

garbage_byte (for unsupported 8bit reads)

The "garbage_byte" depends on the LSBs of the read address, prefetched opcodes, and

recent data fetches:

 020xxxxxh-0201FFFFh Invalid (read causes data abort) (disabled FLASH banks)
 02020000h-02FFFFFFh Invalid (read causes data abort) (no Virt FLASH mirrors)
 03000000h-03FFFFFFh Invalid (read causes data abort) (unused 16MB area)
 04004000h-04FFFFFFh Mirrors of 04000000h-04003FFFh (16K BIOS)
 05000000h-05FFFFFFh Invalid (read causes data abort)
 06000014h-060000FFh Zerofilled (or maybe mirror of a ZERO port?) (F_xxx)
 06000140h-060002FFh Zerofilled (or maybe mirror of a ZERO port?) (F_xxx)
 06000400h-06FFFFFFh Zerofilled (or maybe mirror of a ZERO port?) (F_xxx)
 07000000h-07FFFFFFh Invalid (read causes data abort) (unused 16MB area)
 08020000h-08FFFFFFh Mirrors of 08000000h-0801FFFFh (128K Physical FLASH)
 09000000h-09FFFFFFh Invalid (read causes data abort) (unused 16MB area)
 0A000014h-0A7FFFFFh Mirrors of 0A000008h-0A00000Bh (INT_MASK_READ) (I_xxx)
 0A80000Ch Mirror of 0A800000h-0A800003h (T0_RELOAD) (T0_xxx)
 0A80001Ch Mirror of 0A800000h-0A800003h (T0_RELOAD) (T1_xxx)
 0A80002Ch Mirror of 0A800000h-0A800003h (T0_RELOAD) (T2_xxx)
 0A800030h-0AFFFFFFh Mirrors of 0A800000h-0A800003h (T0_RELOAD) (T_xxx)
 0B000008h-0B7FFFFFh Mirrors of ? (CLK_xxx)
 0B800010h-0BFFFFFFh Mirrors of 0B800008h-0B80000Bh (RTC_TIME)
 0C00000Ch-0C00000Fh Zero (COM_xxx)
 0C00001Ch-0C7FFFFFh Zerofilled (or maybe mirror of a ZERO port?) (COM_xxx)
 0C800008h-0CFFFFFFh ? (IRDA_xxx)
 0D000008h-0D0000FFh Zerofilled (or maybe mirror of a ZERO port?) (LCD_xxx)
 0D000180h-0D7FFFFFh Zerofilled (or maybe mirror of a ZERO port?) (LCD_xxx)
 0D800018h ? (DAC_xxx)
 0D80001Ch ? (DAC_xxx)
 0D800024h-0DFFFFFFh Zerofilled (or maybe mirror of a ZERO port?) (BATT_xxx)
 0E000000h-FFFFFFFFh Invalid (read causes data abort) (unused 3872MB area)

 02000000h-0201FFFFh VIRT_FLASH ;\
 04000000h-04FFFFFFh BIOS_ROM ; "garbage_byte" (see below)
 06000300h-060003FFh EXTRA_FLASH ;
 08000000h-08FFFFFFh PHYS_FLASH ;/
 0A800001h-0AFFFFFFh Timer area, odd addresses (with A0=1) mirror to 0A800001h
 0B800001h-0BFFFFFFh RTC area, odd addresses (with A0=1) mirror to ...?

 0B800002h-0BFFFFFEh RTC area, odd addresses (with A1=1) mirror to 0B80000Ah

 garbage_word = (prefetch OR (ramdata AND FFFFFFD0h))
 garbage_byte = (garbage_word shr (8*(addr and 3))) AND FFh

15.2 Pocketstation I/O Map

- 646/1136 -

For ARM code, the "prefetch" is the 2nd next opcode after the LDRB:

For THUMB code, the "prefetch" is the 2nd next opcode after the LDRB (no matter if that

opcode is word-aligned or not), combined with the most recent ARM opcode prefetch (eg.

from the BX opcode switched from ARM to THUMB mode; that value may get changed on

interrupts):

The "ramdata" is related to most recent RAM read (eg. from POP or LDR opcodes that

have read data from RAM; however, writes to RAM, or literal pool reads from FLASH don't

affect it):

There might be some more/unknown things that affect the garbage (eg. opcode fetches

from RAM instead of FLASH, partial 8bit/16bit data reads from RAM, or reads from I/O

areas, current CPU clock speed, or unpredictable things like temperature).

Note: The garbage_byte is "used" by the pocketstation "Rockman" series games.

15.3 Pocketstation Memory Map

Overall Memory Map

00000000h..000001FFh - Kernel RAM

The first 200h bytes of RAM are reserved for the kernel.

 prefetch.bit0-31 = [curr_arm_opcode_addr+8] ;-eg. from arm LDRB

 prefetch.bit0-15 = [recent_arm_opcode_addr+8] ;-eg. from arm BX to thumb
 prefetch.bit16-31 = [curr_thumb_opcode_addr+4] ;-eg. from thumb LDRB

 ramdata.bit0-31 = [recent_ram_read_addr] ;-eg. from LDR/POP from RAM

 00000000h RAM RAM (2K) (or mirror of BIOS ROM upon reset)
 02000000h FLASH1 Flash ROM (virtual file-mapped addresses in this region)
 04000000h BIOS_ROM BIOS (16K) (Kernel and GUI)
 06000300h F_SN... Seems to contain a bunch of additional FLASH bytes?
 08000000h FLASH2 Flash ROM (128K) (physical addresses in this region)
 0D000100h LCD_VRAM Video RAM (128 bytes) (32x32 pixels, 1bit per pixel)

 0000000h 20h Exception handler opcodes (filled with LDR R15,[$+20h] opcodes)
 0000020h 20h Exception handler addresses (in ARM state, no THUMB bit here)
 0000040h 80h Sector buffer (and BU command parameter work space)
 00000C0h 8 ComFlags (see GetPtrToComFlags(), SWI 06h for details)

15.3 Pocketstation Memory Map

- 647/1136 -

Although one can modify that memory, one usually shouldn't do that, or at least one must

backup and restore the old values before returning control to the GUI or to other

executables. Otherwise, the only way to restore the original values would be to press the

Reset button (which would erase the RTC time/date).

00000200h..000007FFh - User RAM and User stack (stacktop at 800h)

This region can be freely used by the game. The memory is zerofilled when the game

starts.

02000000h - FLASH1 - Flash ROM (virtual file-mapped addresses in this region)

This region usually contains the currently selected file (including its title and icon

sectors), used to execute the file in this region, mapped to continous addresses at

2000000h and up.

08000000h - FLASH2 - Flash ROM (128K) (physical addresses in this region)

This region is used by the BIOS when reading the memory card directory (and when

writing data to the FLASH memory). The banking granularity is 2000h bytes (one

memory card block), that means that the hardware cannot map Replacement Sectors

which may be specified in the for Broken Sector List.

04000000h - BIOS ROM (16K) - Kernel and GUI

 00000C8h 2 BU Command FUNC3 Address (see GetPtrToFunc3addr() aka SWI 17h)
 00000CAh 1 Value from BU Command_50h, reset by SWI 05h (sense_auto_com)
 00000CBh 2 Not used
 00000CDh 1 Old Year (BCD, 00h..99h) (for sensing wrapping to new century)
 00000CEh 1 Alternate dir_index (when [0D0h]=0) (see SWI 15h and SWI 16h)
 00000CFh 1 Current Century (BCD, 00h..99h) (see GetBcdDate() aka SWI 0Dh)
 00000D0h 2 Current dir_index (for currently executed file, or 0=GUI)
 00000D2h 2 New dir_index (PrepareExecute(flag,dir_index,param), SWI 08h)
 00000D4h 4 New param (PrepareExecute(flag,dir_index,param), SWI 08h)
 00000D8h 8 Alarm Setting (see GetPtrToAlarmSetting() aka SWI 13h)
 00000E0h 4 Pointer to SWI table (see GetPtrToPtrToSwiTable() aka SWI 14h)
 00000E4h 3x4 Memory Card BU Command variables
 00000F0h 1 Memory Card FLAG byte (bit3=new_card, bit2=write_error)
 00000F1h 1 Memory Card Error offhold (0=none, 1=once)
 00000F2h 6 Not used
 00000F8h 4x4 Callback Addresses (set via SetCallbacks(index,proc), SWI 01h)
 0000108h 4 Snapshot ID (0xh,00h,"SE")
 000010Ch 74h IRQ and SWI stack (stacktop at 180h)
 0000180h 80h FIQ stack (stacktop at 200h)

15.3 Pocketstation Memory Map

- 648/1136 -

The "110" version does contain some patches, but does preserve same function addresses

as the "061" version, still it'd be no good to expect the BIOS to contain any code/data at

fixed locations (except maybe the GUI version string). Kernel functions can be accessed

via SWI Opcodes, and, from the PSX-side, via BU Commands.

Bus-Width Restrictions

FLASH and BIOS ROM seem to be allowed to be read only in 16bit and 32bit units, not in

8bit units? Similar restrictions might apply for some I/O ports...? RAM can be freely

read/written in 8bit, 16bit, and 32bit units.

Waitstates

Unknown if and how many waitstates are applied to the different memory regions. The

F_WAIT1 and F_WAIT2 registers seem to be somehow waitstate related. FLASH memory

does probably have a 16bit bus, so 32bit data/opcode fetches might be slower then

16bit reads...? Similar delays might happen for other memory and I/O regions...?

15.4 Pocketstation IO Video and Audio

0D000000h - LCD_MODE - LCD control word (R/W)

 4000000h 1E00h Begin of Kernel (usually 1E00h bytes)
 4000014h 4 BCD Date in YYYYMMDDh format (19981023h for ALL versions)
 4001DFCh 4 Core Kernel Version (usually "C061" or "C110")
 4001E00h 2200h Begin of GUI (usually 2200h bytes)
 4003FFCh 4 Japanese GUI Version (usually "J061" or "J110")

 0-2 Draw mode; seems to turn off bits of the screen;
 0: All 32 rows on ;\
 1: First 8 rows on ;
 2: Second 8 rows on ;
 3: Third 8 rows on ; (these are not necessarily all correct?)
 4: Fourth 8 rows on ;
 5: First 16 rows on ;
 6: Middle 16 rows on ;
 7: Bottom 16 rows on ;/
 3 CPEN (0=Does some weird fade out of the screen, 1=Normal)
 4-5 Refresh rate
 0: Makes a single blue (yes, blue, yes, on a black/white display)
 line appear at the top or middle of the screen - don't use!
 1: 64Hz? (might be 32Hz too, like 2)
 2: 32Hz
 3: 16Hz (results in less intensity on black pixels)

15.4 Pocketstation IO Video and Audio

- 649/1136 -

Software should usually set LCD_MODE.7 equal to INT_INPUT.Bit11 (docking flag). In

handheld mode, the button-side is facing towards the player, whilst in Docked mode

(when the Pocketstation is inserted into the PSX controller port), the button-side is facing

towards the PSX, so the screen coordinates become vice-versa, which can be "undone" by

the Rotation flag.

0D000004h - LCD_CAL - LCD Calibration (maybe contrast or so?)

Upon the reset, the kernel sets LCD_CAL = F_CAL AND 0000003Fh. Aside from that, it

doesn't use LCD_CAL.

0D000100h..D00017Fh - LCD_VRAM - 32x32 pixels, 1bit color depth (R/W)

This region consists of 32 words (32bit values),

The separate scanlines consist of 32bit each,

That [D000100h].Bit0=Upper-left arrangement applies if the Rotate bit in LCD_MODE.7 is

set up in the conventional way, if it is set the opposite way, then it becomes

[D00017Ch].Bit31=Upper-left.

The LCD_VRAM area is reportedly mirrored to whatever locations?

0D800010h - DAC_CTRL - Audio Control (R/W)

Note: Aside from the bit in DAC_CTRL, audio must be also enabled/disabled via

IOP_STOP/IOP_START bit5. Unknown if/which different purposes that bits have.

0D800014h - DAC_DATA - Audio D/A Converter

Unknown how many bits are passed to the D/A converter, probably bit8-15, ie. 8 bits...?

 6 Display active (0=Off, 1=On)
 7 Rotate display by 180 degrees (0=For Handheld Mode, 1=For Docked Mode)
 8-31 Unknown (should be zero)

 [D000100h]=Top, through [D00017Ch]=Bottom-most scanline

 Bit0=Left, through Bit31=Right-most Pixel (0=White, 1=Black)

 0 Audio Enable enable (0=Off, 1=On)
 1-31 Unknown, usually zero

15.4 Pocketstation IO Video and Audio

- 650/1136 -

The Pocketstation doesn't have any square wave or noise generator (nor a sound DMA

channel). So the output levels must be written to DAC_DATA by software, this is usually

done via Timer1/IRQ-8 (to reduce CPU load caused by high audio frequencies, it may be

much more recommended to use Timer2/FIQ-13, because the FIQ handler doesn't need

to push r8-r12).

For example, to produce a 1kHz square wave, the register must be toggled high/low at

2kHz rate. If desired, multiple channels can be mixed by software. High frequencies and

multiple voices may require high CPU speed settings, and thus increase battery

consumption (aside from that, battery consumption is probably increased anyways when

the speaker is enabled).

15.5 Pocketstation IO Interrupts and Buttons

0A000004h - INT_INPUT - Raw Interrupt Signal Levels (R)

The buttons are usually read directly from this register (rather than being configured to

trigger IRQs) (except in Sleep mode, where the Fire Button IRQ is usually used to

wakeup). Also, bit9-11 are often read from this register.

The direction keys seem to be separate buttons, ie. unlike as on a joystick or DPAD, Left/

Right (and Up/Down) can be simultaneously pressed...?

 0-7 Probably unused, usually zero (or fractional part when lowered volume)
 8-15 Signed Audio Outut Level (usually -7Fh..+7Fh) (probably -80h works too)
 16-31 Probably unused, usually sign-expanded from bit15

 Bit Type Meaning
 0 IRQ Button Fire (0=Released, 1=Pressed)
 1 IRQ Button Right (0=Released, 1=Pressed)
 2 IRQ Button Left (0=Released, 1=Pressed)
 3 IRQ Button Down (0=Released, 1=Pressed)
 4 IRQ Button Up (0=Released, 1=Pressed)
 5 ? Unknown? (?)
 6 FIQ (!) COM ;for the COM_registers? (via /SEL Pin?)
 7 IRQ Timer 0
 8 IRQ Timer 1
 9 IRQ RTC (square wave) (usually 1Hz) (when RTC paused: 4096Hz)
 10 IRQ Battery Low (0=Normal, 1=Battery Low)
 11 IRQ Docked ("IOP") (0=Undocked, 1=Docked to PSX) (via VCC Pin?)
 12 IRQ Infrared Rx
 13 FIQ (!) Timer 2
 14-15 N/A Not used

15.5 Pocketstation IO Interrupts and Buttons

- 651/1136 -

0A000008h - INT_MASK_SET - Set Interrupt Mask (W)

0A00000Ch - INT_MASK_CLR - Clear Interrupt Mask (W)

0A000008h - INT_MASK_READ - Read Interrupt Mask (R)

The locations of the separate bits are same as in INT_INPUT (see there).

0A000000h - INT_LATCH - Interrupt Request Flags (R)

0A000010h - INT_ACK - Acknowledge Interrupts (W)

The locations of the separate bits are same as in INT_INPUT (see there).

The interrupts seem to be edge-triggered (?), ie. when the corresponding bits in

INT_INPUT change from 0-to-1. Unknown if the request bits get set when the

corresponding interrupt is disabled in INT_MASK...?

ATTENTION: The GUI doesn't acknowledge Fire Button interrupts on wakeup... so, it

seems as if button interrupts are NOT latched... ie. the button "INT_LATCH" bits seem to

be just an unlatched mirror of the "INT_INPUT" bits... that might also apply for some

other interrupt...?

However, after wakeup, the gui does DISABLE the Fire Button interrupt, MAYBE that

does automatically acknowledge it... in that case it might be latched...?

Reading outside the readable region (that is where exactly?) seems to mirror to

0A000008h. Enabling IRQs for the buttons seems to make it impossible to poll them... is

that really true?

15.6 Pocketstation IO Timers and Real-Time Clock

Timer and RTC interrupts

 INT_MASK_SET Enable Interrupt Flags (0=No change, 1=Enable) (W)
 INT_MASK_CLR Disable Interrupt Flags (0=No change, 1=Disable) (W)
 INT_MASK_READ Current Interrupt Enable Flags (0=Disabled, 1=Enabled) (R)

 INT_LATCH Latched Interrupt Requests (0=None, 1=Interrupt Request) (R)
 INT_ACK Clear Interrupt Requests (0=No change, 1=Acknowledge) (W)

15.6 Pocketstation IO Timers and Real-Time Clock

- 652/1136 -

0A800000h - T0_RELOAD - Timer 0 Reload Value

0A800010h - T1_RELOAD - Timer 1 Reload Value

0A800020h - T2_RELOAD - Timer 2 Reload Value

Writes to this register are ignored if the timer isn't stopped?

0A800004h - T0_COUNT - Timer 0 Current value

0A800014h - T1_COUNT - Timer 1 Current value

0A800024h - T2_COUNT - Timer 2 Current value

Timer interrupts: The timers will automatically raise interrupts if they're enabled, there's

no need to set a bit anywhere for IRQs (but you need to enable the respect interrupts in

INT_MASK).

0A800008h - T0_MODE - Timer 0 Control

0A800018h - T1_MODE - Timer 1 Control

0A800028h - T2_MODE - Timer 2 Control

Timers are clocked by the System Clock (usually 4MHz, when CLK_MODE=7), divided by

the above divider setting. Note that the System Clock changes when changing the CPU

speed via CLK_MODE, so Timer Divider and/or Timer Reload must be adjusted

accordingly.

 INT_INPUT.7 Timer 0 IRQ ;used as 30Hz frame rate IRQ by GUI
 INT_INPUT.8 Timer 1 IRQ ;used as Audio square wave IRQ by GUI
 INT_INPUT.13 Timer 2 FIQ (this one via FIQ vector, not IRQ vector)
 INT_INPUT.9 RTC IRQ (usually 1Hz) (or 4096Hz when RTC paused)

 0-15 Reload Value (when timer becomes less than zero)

 0-15 Current value (decrementing)

 0-1 Timer Divider (0=Div2, 1=Div32, 2=Div512, 3=Div2 too)
 2 Timer Enable (0=Stop, 1=Decrement)
 3-15 Unknown (should be zero)

15.6 Pocketstation IO Timers and Real-Time Clock

- 653/1136 -

0B800000h - RTC_MODE - RTC control word

The selection bits can be:

When paused, the RTC IRQ bit in INT_INPUT.9 runs at 4096Hz (instead 1Hz).

0B800004h - RTC_ADJUST - Modify value (write only)

Writing a value here seems to increment the current selected parameter (by the RTC

control). What is perhaps (?) clear is that you have to wait for the RTC interrupt signal

to go low before writing to this.

0B800008h - RTC_TIME - Real-Time Clock Time (read only) (R)

Reading RTC_TIME seems to be somewhat unstable: the BIOS uses a read/retry loop,

until it has read twice the same value (although it does read the whole 32bit at once by a

LDR opcode, the data is maybe passed through a 8bit or 16bit bus; so the LSBs might be

a few clock cycles older than the MSBs...?).

0B80000Ch - RTC_DATE - Real-Time Clock Date (read only) (R)

 0 Pause RTC (0=Run/1Hz, 1=Pause/4096Hz)
 1-3 Select value to be modified via RTC_ADJUST
 4-31 Not used?

 00h = Second ;\
 01h = Minute ;
 02h = Hour ; used in combination with RTC_ADJUST
 03h = Day of Week ; while RTC is paused
 04h = Day ;
 05h = Month ;
 06h = Year ;/
 07h = Unknown ;-usually used when RTC isn't paused

 0-7 Seconds (00h..59h, BCD)
 8-15 Minutes (00h..59h, BCD)
 16-23 Hours (00h..23h, BCD)
 24-31 Day of week (1=Sunday, ..., 7=Saturday)

 0-7 Day (01h..31h, BCD)
 8-11 Month (01h..12h, BCD)
 16-23 Year (00h..99h, BCD)
 24-31 Unknown? (this is NOT used as century)

15.6 Pocketstation IO Timers and Real-Time Clock

- 654/1136 -

Reading RTC_DATE seems to require the same read/retry method as RTC_TIME (see

there). Note: The century is stored in battery-backed RAM (in the reserved kernel RAM

region) rather than in the RTC_DATE register. The whole date, including century, can be

read via SWI 0Dh, GetBcdDate().

15.7 Pocketstation IO Infrared

The BIOS doesn't contain any IR functions (aside from doing some basic initialization

and power-down stuff).

IR is used in Final Fantasy 8's Chocobo World (press Left/Right in the Map screen to go

to the IR menu), and in Metal Gear Solid Integral (Press Up in the main screen), and in

PDA Remote 1 & 2 (one-directional TV remote control).

0C800000h - IRDA_MODE - Controlling the protocol - send/recv, etc. (R/W)

0C800004h - IRDA_DATA - Infrared TX Data

Bits are usually encoded as long or short ON pulses, separated by short OFF pulses.

Where long is usually twice as long as short.

0C80000Ch - IRDA_MISC

Unknown? Reportedly reserved.

INT_INPUT.12 - IRQ - Infrared RX Interrupt

Seems to get triggered on raising or falling (?) edges of incoming data. The interrupt

handler seems to read the current counter value from one of the timers (usually Timer

2, with reload=FFFFh) to determine the length of the incoming IR pulse.

 0 Transfer Direction (0=Receive, 1=Transmit)
 1 Disable IRDA (0=Enable, 1=Disable)
 2 Unknown (reportedly IR_SEND_READY, uh?)
 3 Unknown (reportedly IR_RECV_READY, uh?)
 4-31 Unknown (should be zero)

 0 Transmit Data in Send Direction (0=LED Off, 1=LED On)
 1-31 Unknown (should be zero)

15.7 Pocketstation IO Infrared

- 655/1136 -

IR Notes

Mind that IR hardware usually adopts itself to the normal light conditions, so if it

receives an IR signal for a longer period, then it may treat that as the normal light

conditions (ie. as "OFF" state). To avoid that, one would usually send a group of ON-

OFF-ON-OFF pulses, instead of sending a single long ON pulse:

that might be maybe done automatically by the hardware...?

Reportedly, Bit4 of Port 0D80000Ch (IOP_DATA) is also somewhat IR related...?

15.8 Pocketstation IO Memory-Control

06000000h - F_CTRL

Written values are:

The GUI does additionally read from this register (and gets itself trapped in a bizarre

endless loop if bit0 was zero). Unknown if it's possible to re-enable ROM at location

00000000h by writing any other values to this register?

06000004h F_STAT

The kernel issues a dummy read from this address (before setting F_CTRL to

00000001h).

06000008h F_BANK_FLG ;FLASH virtual bank mapping enable flags (16 bits)(R/W)

 ___------------------___ One HIGH bit send as SINGLE-LONG-ON pulse (BAD)
 ___-_-_-_-_-_-_-_-_-____ One HIGH bit send as MULTIPLE-ON-OFF pulses (OK)

 0-31 Unknown

 00000000h Used when disabling all virtual flash banks
 00000001h Used before setting new virtual bank values
 00000002h Used after setting virtual bank enable bits
 03h Replace ROM at 00000000h by RAM (used after reset)

 0-31 Unknown

15.8 Pocketstation IO Memory-Control

- 656/1136 -

06000100h F_BANK_VAL ;FLASH virtual bank mapping addresses (16 words)(R/W)

This region contains 16 words, the first word at 06000100h for physical bank 0, the last

word at 0600013Ch for physical bank 15. Each word is:

Unused physical banks are usually mapped to 0Fh (and are additionally disabled in the

F_BANK_FLG register).

0600000Ch F_WAIT1 ;waitstates...?

Unknown, seems to control some kind of memory waitstates for FLASH (or maybe RAM or

BIOS ROM). Normally it is set to the following values:

Note: The kernels Docking/Undocking IRQ-11 handler does additionally do this:

"F_WAIT1=max(08h,(CLK_MODE AND 0Fh))" (that is a bug, what it actually wants to do

is to READ the current F_WAIT.Bit4 setting).

06000010h F_WAIT2 ;waitstates, and FLASH-Write-Control-and-Status...?

Unknown, seems to control some kind of memory waitstates, maybe for another memory

region than F_WAIT1, or maybe F_WAIT2 is for writing, and F_WAIT1 for reading or so.

 0-15 Enable physical banks 0..15 in virtual region (0=Disable, 1=Enable)
 16-31 Unknown (should be zero)

 0-3 Virtual bank number
 4-31 Should be 0

 0..3 Unknown/not tested
 4 hangs hardware? but that bit is used in some cases!
 5..31 Unknown/not tested

 F_WAIT1=00000000h when CPU Speed = 00h..07h
 F_WAIT1=00000010h when CPU Speed = 08h..0Fh

 0 no effect? but that bit is used in some cases! maybe write-enable?
 1 hangs hardware?
 2 no effect? READ: indicates 0=write-busy, 1=ready? (R)
 3 hangs hardware?
 4 makes FLASH slower?
 5 makes WRAM and F_xxx as slow as other memory (0=1 cycle, 1=2 cycles)
 6 hangs hardware? but that bit is used in some cases!
 7 no effect?
 8..31 Unknown/not tested

15.8 Pocketstation IO Memory-Control

- 657/1136 -

Normally it is set to the following values:

In SWI 0Fh and SWI 10h it is also set to:

Before completion, those SWIs do additionally,

08002A54h - F_KEY1 - Flash Unlock Address 1 (W)

080055AAh - F_KEY2 - Flash Unlock Address 2 (W)

Unlocks FLASH memory for writing. The complete flowchart for writing sector data (or

header values) is:

During the write operation one can (probably?) not read data (nor opcodes) from FLASH

memory, so the above code must be executed either in RAM, or in BIOS ROM (see SWI

03h, SWI 0Fh, SWI 10h).

 F_WAIT2=00000000h when CPU Speed = 00h..07h ;\same as F_WAIT1
 F_WAIT2=00000010h when CPU Speed = 08h..0Fh ;/

 F_WAIT2=00000021h ;SWI 10h, FlashWritePhysical(sector,src)
 F_WAIT2=00000041h ;SWI 0Fh, FlashWriteSerial(serial_number)

 wait until reading returns F_WAIT2.Bit2 = 1
 and then set F_WAIT2=00000000h

 if write_sector ;\
 F_WAIT2=00000021h ; write enable or so
 if write_header ;
 F_WAIT2=00000041h ;/
 [80055AAh]=FFAAh ;\
 [8002A54h]=FF55h ; unlock flash
 [80055AAh]=FFA0h ;/
 if write_sector ;\
 for i=0 to 3Fh ;
 [8000000h+sector*80h+i*2]=src[i*2] ; write data
 if write_header ;
 [8000000h]=new F_SN_LO value ;
 [8000002h]=new F_SN_HI value ;
 [8000008h]=new F_CAL value ;/
 first, wait 4000 clock cycles ;\wait
 then, wait until F_WAIT2.Bit2=1 ;/
 F_WAIT2=00000000h ;-write disable or so

15.8 Pocketstation IO Memory-Control

- 658/1136 -

06000300h - F_SN_LO - Serial Number LSBs

06000302h - F_SN_HI - Serial Number MSBs

06000308h - F_CAL - Calibration value for LCD

This seems to be an additional "header" region of the FLASH memory (additionally to the

128K of data). The F_SN registers contain a serial number or so (purpose unknown,

maybe intended as some kind of an "IP" address for more complex infrared network

applications), the two LO/HI registers must be read by separate 16bit LDRH opcodes (not

by a single 32bit LDR opcode). The F_CAL register contains a 6bit calibration value for

LCD_CAL (contrast or so?).

Although only the above 3 halfwords are used by the BIOS, the "header" is unlike to be 6

bytes in size, probably there are whatever number of additional "header" locations at

06000300h and up...?

Note: Metal Gear Solid Integral uses F_SN as some kind of copy protection (the game

refuses to run and displays "No copy" if F_SN is different as when the pocketstation file

was initially created).

F_BANK_VAL and F_BANK_FLG Notes

Observe that the physical_bank number (p) is used as array index, and that the virtual

bank number (v) is stored in that location, ie. table[p]=v, which is unlike as one may

have expected it (eg. on a 80386 CPU it'd be vice-versa: table[v]=p).

Due to the table[p]=v assignment, a physical block cannot be mirrored to multiple

virtual blocks, instead, multiple physical blocks can be mapped to the same virtual block

(unknown what happens in that case, maybe the data becomes ANDed together).

15.9 Pocketstation IO Communication Ports

0C000000h - COM_MODE - Com Mode

 0-15 Data

 0 Data Output Enable (0=None/HighZ, 1=Output Data Bits)
 1 /ACK Output Level (0=None/HighZ, 1=Output LOW)
 2 Unknown (should be set when expecting a NEW command...?)
 3-31 Unknown (should be zero)

15.9 Pocketstation IO Communication Ports

- 659/1136 -

0C000008h - COM_DATA - Com RX/TX Data

0C000004h - COM_STAT1 - Com Status Register 1 (Bit1=Error)

Seems to indicate whatever error (maybe /SEL disabled during transfer, or timeout, or

parity error or something else?) in bit1. Meaning of the other bits is unknown. Aside from

checking the error flag, the kernel does issue a dummy read at the end of each transfer,

maybe to acknowledge something, maybe the hardware simply resets the error bit after

reading (although the kernel doesn't handle the bit like so when receiving the 1st

command byte).

Aside from the above error flag, one should check if INT_INPUT.11 becomes zero during

transfer (which indicates undocking).

0C000014h - COM_STAT2 - Com Status Register 2 (Bit0=Ready)

0C000010h - COM_CTRL1 - Com Control Register 1

Used values are:

When doing the enable thing, Bit1 should be set to 0-then-1...? Bit0 might enable the

data shift register... and bit1 might be a master enable and master acknowledge for the

COM interrupt... or something else?

 0-7 Data (Write: to be transmitted to PSX, Read: been received from PSX)
 8-31 Unknown

 0 Unknown
 1 Error flag or so (0=Okay, 1=Error)
 2-31 Unknown

 0 Ready flag (0=Busy, 1=Ready) (when 8bits have been transferred)
 1-31 Unknown

 0 Unknown (should be set AT BEGIN OF A NEW command...?)
 1 Unknown (0=Disable something, 1=Enable something)
 2-31 Unknown (should be zero)

 00000000h = unknown? disable
 00000002h = unknown? enable
 00000003h = unknown? at BEGIN of a new command

15.9 Pocketstation IO Communication Ports

- 660/1136 -

0C000018h - COM_CTRL2 - Com Control Register 2

Used values are:

Maybe that two bits acknowledge the ready/error bits?

INT_INPUT.6 FIQ (!) COM for the COM_registers? (via /SEL Pin?)

INT_INPUT.11 IRQ Docked ("IOP") (0=Undocked, 1=Docked to PSX)

Probably senses the voltage on the cartridge slots VCC Pin. Becomes zero when

Undocked (and probably also when the PSX is switched off).

The Kernel uses IRQ-11 for BOTH sensing docking and undocking, ie. as if the IRQ would

be triggered on both 0-to-1 and 1-to-0 transistions... though maybe that feature just

relies on switch-bounce. For the same reason (switch bounce), the IRQ-11 handler

performs a delay before it checks the new INT_INPUT.11 setting (ie. the delay skips the

unstable switch bound period, and allows the signal to stabilize).

IOP_START/IOP_STOP.Bit1

The BIOS adjusts this bit somehow in relation to communication. Unknown when/why/

how it must be used. For details on IOP_START/IOP_STOP see Power Control chapter.

Opcode E6000010h (The Undefined Instruction) - Write chr(r0) to TTY

This opcode is used by the SN Systems emulator to write chr(r0) to a TTY style text

window. r0 can be ASCII characters 20h and up, or 0Ah for CRLF. Using that opcode is a

not too good idea because the default BIOS undef instruction handler simply runs into

an endless loop, so games that are using it (eg. Break-Thru by Jason) won't work on real

hardware. That, unless the game would change the undef instruction vector at [04h] in

Kernel RAM, either replacing it by a MOVS R15,R14 opcode (ignore exception and return

to next opcode), or by adding exception handling that outputs the character via IR or via

 0 Unknown (should be set, probably starts or acknowledges something)
 1 Unknown (should be set when expecting a NEW command...?)
 2-31 Unknown (should be zero)

 00000001h = unknown? used before AND after each byte-transfer
 00000003h = unknown? used after LAST byte of command (and when init/reset)

 (via FIQ vector, not IRQ vector)

15.9 Pocketstation IO Communication Ports

- 661/1136 -

whatever cable connection. Observe that an uninitialized FUNC3 accidently destroys

[04h], so first init FUNC3 handler via SWI 17h, before trying to change [04h], moreover,

mind that SWI 05h may reset FUNC3, causing the problem to reappear.

Altogether, it'd be MUCH more stable to write TTY characters to an unused I/O port...

only problem is that it's still unknown which I/O ports are unused... ie. which do neither

trap data aborts, nor do mirror to existing ports...?

15.10 Pocketstation IO Power Control

0B000000h - CLK_MODE - Clock control (CPU and Timer Speed) (R/W)

Allows to change the CPU clock (and Timer clock, which is usually one half of the CPU

clock, or less, depending on the Timer Divider). Possible values are:

Before changing CLK_MODE, F_WAIT1 and F_WAIT2 should be adjusted accordingly (see

there for details). Note that many memory regions have waitstates, the full CPU speed

can be reached mainly with code/data in WRAM.

For emulator authors: Note that some Pocketstation software will expect bit 4 of

CLK_MODE to go from 0 to 1 rather than just polling it until it's 1. For this reason,

emulating bit 4 as always being 1 can very likely break.

0B000004h - CLK_STOP - Clock stop (Sleep Mode)

Stops the CPU until an interrupt occurs. The pocketstation doesn't have a power-switch

nor standby button, the closest thing to switch "power off" is to enter sleep mode.

Software should do that when the user hasn't pressed buttons for 1-2 seconds (that,

only in handheld mode, not when docked to the PSX; where it's using the PSX power

 0-3 Clock Ratio (01h..08h, see below) (usually 7 = 3.99MHz) (R/W)
 4 Clock Change State (0=Busy, 1=Ready) (Read-only)
 5-15 ?

 00h = hangs hardware ;-don't use
 01h = 0.063488 MHz ;\
 02h = 0.126976 MHz ;
 03h = 0.253952 MHz ; 31*8000h / 1,2,4,8,16
 04h = 0.507904 MHz ;
 05h = 1.015808 MHz ;/
 06h = 1.998848 MHz ;\
 07h = 3.997696 MHz ; 61*8000h * 1,2,4
 08h = 7.995392 MHz ;/
 09h..0Fh = same as 08h ;-aliases

15.10 Pocketstation IO Power Control

- 662/1136 -

supply instead of the battery).

Wakeup is usually done by IRQ-0 (Fire Button) and IRQ-11 (Docking). If alarm is enabled,

then the GUI also enables IRQ-9 (RTC), and compares RTC_TIME against the alarm

setting each time when it wakes up.

Before writing to CLK_STOP, one should do:

The GUI uses CLK_STOP only for Standby purposes (not for waiting for its 30Hz "frame

rate" timer 0 interrupt; maybe that isn't possible, ie. probably CLK_STOP does completely

disable the system clock, and thus does stop Timer0-2...?)

0D800000h - IOP_CTRL - Configures whatever...? (R/W)

Unknown. Set to 0000000Fh by BIOS upon reset. Aside from that, the BIOS does never

use that register.

0D800004h - IOP_STAT (R) - Read Current bits? -- No, seems to be always 0

0D800004h - IOP_STOP (W) - Set IOP_DATA Bits

0D800008h - IOP_START (W) - Clear IOP_DATA Bits

These two ports are probably accessing a single register, writing "1" bits to IOP_STOP

sets bits in that register, and writing "1" bits to IOP_START clears bits... or vice-versa...?

Writing "0" bits to either port seems to leave that bits unchanged. The meaning of most

bits is still unknown:

 0 Stop Clock (1=Stop)
 1-15 ?

 DAC_CTRL=0 ;\disable sound
 IOP_STOP=20h ;/
 LCD_MODE=0 ;-disable video
 IRDA=whatever ;-disable infrared (if it was used)
 BATT_CTRL=BATT_CTRL AND FFFFFFFCh ;-do whatever
 INT_MASK_SET=801h ;-enable Docking/Fire wakeup interrupts

 0-3 Probably Direction for IOP_DATA bit0..3 (0=Input, 1=Output)
 4-31 Unknown/Unused (seems to be always zero)

 0 Unknown, STARTED by Kernel upon reset
 1 Red LED, Communication related (START=Whatever, STOP=Whatelse) (?)
 2 Unknown, STARTED by Kernel upon reset

15.10 Pocketstation IO Power Control

- 663/1136 -

Aside from Bit1, it's probably not neccessary to change the unknown bits...?

Sound is usually disabled by setting IOP_STOP=00000020h. IOP_STAT is rarely used.

Although, one piece of code in the BIOS disables sound by setting IOP_STOP=IOP_STAT

OR 00000020h, that is probably nonsense, probably intended to keep bits stopped if they

are already stopped (which would happen anyways), however, the strange code implies

that reading from 0D800004h returns the current status of the register, and that the bits

in that register seem to be 0=Started, and 1=Stopped...?

0D80000Ch - IOP_DATA (R)

Unknown. Not used by the BIOS. Reportedly this register is 0010h if IR Connection...?

This register is read by Rewrite ID, and by Harvest Moon. Maybe bit4 doesn't mean \<if>

IR connection exist, but rather \<contains> the received IR data level...?

0D800020h - BATT_CTRL - Battery Monitor Control?

Unknown. Somehow battery saving related. Upon reset, and upon leaving sleep mode,

the BIOS does set BATT_CTRL=00000000h. Before entering sleep mode, it does set

BATT_CTRL=BATT_CTRL AND FFFFFFFCh, whereas, assuming that BATT_CTRL was

00000000h, ANDing it with FFFFFFFCh would simply leave it unchanged... unless the

hardware (or maybe a game) sets some bits in BATT_CTRL to nonzero values...?

Battery Low Interrupt

Can be used to sense if the battery is low, if so, one may disable sound output and/or

reduce the CPU speed to increase the remaining battery lifetime. Unknown how long the

battery lasts, and how much the lifetime is affected by audio, video, infrared, cpu speed,

 3 Unknown, STARTED by Kernel upon reset
 4 Never STARTED nor STOPPED by BIOS (maybe an INPUT, read via IOP_DATA)
 5 Sound Enable (START=On, STOP=Off)
 6 Unknown, STOPPED by Kernel upon reset
 7-31 Unknown, never STARTED nor STOPPED by BIOS

 0 ?
 1 Red LED (0=On, 1=Off)
 2 ?
 3 ?
 4 Seems to be always 1 (maybe Infrared input?)
 5-31 Unknown/Unused (seems to be always zero)

 INT_INPUT.10 IRQ Battery Low (0=Normal, 1=Battery Low)

15.10 Pocketstation IO Power Control

- 664/1136 -

and sleep mode...?

The pocketstation can be also powered through the VCC pin (ie. when docked to the PSX,

then it's working even if the battery is empty; or even without battery).

15.11 Pocketstation SWI Function Summary

SWI Function Summary

BIOS functions can be called via SWI opcodes (from both ARM and THUMB mode) (in

ARM mode, the SWI function number is in the lower 8bit of the 24bit field; unlike as for

example on the GBA, where it'd be in the upper 8bit). Parameters (if any) are passed in

r0,r1,r2. Return value is stored in r0 (all other registers are left unchanged).

The BIOS uses the same memory region for SWI and IRQ stacks, so both may not occur

simultaneously, otherwise one stack would be destroyed by the other (normally that is no

problem; IRQs are automatically disabled by the CPU during SWI execution, SWIs aren't

used from inside of default IRQ handlers, and SWIs shouldn't be used from inside of

hooked IRQ handlers).

 SWI 00h - Reset() ;don't use out: everything destroyed
 SWI 01h - SetCallbacks(index,proc) out: old proc
 SWI 02h - CustomSwi2(r0..r6,r8..r10) out: r0
 SWI 03h - FlashWriteVirtual(sector,src) out: 0=okay, 1=failed
 SWI 04h - SetCpuSpeed(speed) out: old_speed
 SWI 05h - SenseAutoCom() out: garbage
 SWI 06h - GetPtrToComFlags() out: ptr (usually 0C0h)
 SWI 07h - ChangeAutoDocking(flags.16-18) out: incoming flags AND 70000h
 SWI 08h - PrepareExecute(flag,dir_index,param) out: dir_index (new or old)
 SWI 09h - DoExecute(snapshot_saving_flag) out: r0=r0 (failed) or r0=param
 SWI 0Ah - FlashReadSerial() out: F_SN
 SWI 0Bh - ClearComFlagsBit10() out: new [ComFlags] (with bit10=0)
 SWI 0Ch - SetBcdDateTime(date,time) out: garbage (RTC_DATE/10000h)
 SWI 0Dh - GetBcdDate() out: date (with century in MSBs)
 SWI 0Eh - GetBcdTime() out: time and day-of-week
 SWI 0Fh - FlashWriteSerial(serial_number) out: garbage (r0=0) ;old BIOS only!
 SWI 10h - FlashWritePhysical(sector,src) out: 0=okay, 1=failed
 SWI 11h - SetComOnOff(flag) out: garbage retadr to swi handler
 SWI 12h - TestSnapshot(dir_index) out: 0=normal, 1=MCX1 with 1,0,"SE"
 SWI 13h - GetPtrToAlarmSetting() out: ptr to alarm_setting
 SWI 14h - GetPtrToPtrToSwiTable() out: ptr-to-ptr to swi_table
 SWI 15h - MakeAlternateDirIndex(flag,dir_index) out: alt_dir_index (new/old)
 SWI 16h - GetDirIndex() out: dir_index (or alternate)
 SWI 17h - GetPtrToFunc3addr() out: ptr to func3 address
 SWI 18h - FlashReadWhateverByte(sector) out: [8000000h+sector*80h+7Eh]
 SWI 19h..FFh - garbage
 SWI 100h..FFFFFFh - mirrors of SWI 00h..FFh

15.11 Pocketstation SWI Function Summary

- 665/1136 -

15.12 Pocketstation SWI Misc Functions

SWI 01h - SetCallbacks(index,proc)

All callbacks are called via BX opcodes (ie. proc.bit0 can be set for THUMB code).

SetCallbacks returns the old proc value (usually zero). The callbacks are automatically

reset to zero when (re-)starting an executable, or when returning control to the GUI, so

there's no need to restore the values by software.

IRQ and FIQ Callbacks

Registers r0,r1,r12 are pushed by the kernels FIQ/IRQ handlers (so the callbacks can

use that registers without needing to push them). The FIQ handler can additionally use

r8..r11 without pushing them (the CPU uses a separate set of r8..r12 registers in FIQ

mode, nethertheless, the kernel DOES push r12 in FIQ mode, without reason). Available

stack is 70h bytes for the FIQ callback, and 64h bytes for the IRQ callback.

The callbacks don't receive any incoming parameters, and don't need to respond with a

return value. The callback should return to the FIQ/IRQ handler (via normal BX r14) (ie.

it should not try to return to User mode).

The kernel IRQ handler does (after the IRQ callback) process IRQ-11 (IOP) (which does

mainly handle docking/undocking), and IRQ-9 (RTC) (which increments the century if

the year wrapped from 99h to 00h).

And the kernel FIQ handler does (before the FIQ callback) process IRQ-6 (COM) (which

does, if ComFlags.Bit9 is set, handle bu_cmd's) (both IRQs and FIQs are disabled, and

the main program is stopped until the bu_cmd finishes, or until a joypad command is

identified irrelevant, among others that means that sound/timer IRQs aren't processed

during that time, so audio output may become distorted when docked).

When docked, the FIQ callback should consist of only a handful of opcodes, eg. it may

contain a simple noise, square wave generator, or software based sound "DMA" function,

but it should not contain more time-consuming code like sound envelope processing;

otherwise IRQ-6 (COM) cannot be executed fast enough to handle incoming commands.

 r0=0 Set SWI 02h callback (r1=proc, or r1=0=reset/default)
 r0=1 Set IRQ callback (r1=proc, or r1=0=none/default)
 r0=2 Set FIQ callback (r1=proc, or r1=0=none/default)
 r0=3 Set Download Notification callback (r1=proc, or r1=0=bugged/default)

15.12 Pocketstation SWI Misc Functions

- 666/1136 -

SWI 02h - CustomSwi2(r0..r6,r8..r10) out: r0

Calls the SWI2 callback function (which can be set via SWI 01h). The default callback

address is 00000000h (so, by default, it behaves identically as SWI 00h). Any

parameters can be passed in r0..r6 and r8..r10 (the other registers aren't passed to the

callback function). Return value can be stored in r0 (all other registers are pushed/

popped by the swi handler, as usually). Available space on the swi stack is 38h bytes.

SWI2 can be useful to execute code in privileged mode (eg. to initialize FIQ registers

r8..r12 for a FIQ based sound engine) (which usually isn't possible because the main

program runs in non-privileged user mode).

SWI 04h - SetCpuSpeed(speed) out: old_speed

Changes the CPU speed. The BIOS uses it with values in range 01h..07h. Unknown if

value 00h can be also used? The function also handles values bigger than 07h, of which,

some pieces of BIOS code look as if 08h would be the maximum value...?

Before setting the new speed, the function sets F_WAIT1 and F_WAIT2 to 00000000h

(or to 00000010h if speed.bit3=1). After changing the speed (by writing the parameter

to CLK_MODE) it does wait until the new speed is applied (by waiting for CLK_MODE.bit4

to become zero). The function returns the old value of CLK_MODE, anded with 0Fh.

15.13 Pocketstation SWI Communication Functions

Communication (aka BU Commands, received from the PSX via the memory card slot)

can be handled by the pocketstations kernel even while a game is running. However,

communications are initially disabled when starting a game, so the game should enable

them via SWI 11h, and/or via calling SWI 05h once per frame.

SWI 11h - SetComOnOff(flag)

Can be used to enable/disable communication. When starting an executable,

communication is initially disabled, so it'd be a good idea to enable them (otherwise the

PSX cannot communicate with the Pocketstation while the game is running).

When flag=0, disables communication: Intializes the COM_registers, disables IRQ-6

(COM), and clears ComFlags.9. When flag=1, enables communication: Intializes the

COM_registers, enables IRQ-6 (COM), sets ComFlags.9 (when docked), or clears

Sys.Flags.9 (when undocked), and sets FAST cpu_speed=7 (only when docked). The

function returns garbage (r0=retadr to swi_handler).

15.13 Pocketstation SWI Communication Functions

- 667/1136 -

SWI 06h - GetPtrToComFlags()

Returns a pointer to the ComFlags word in RAM, which contains several communication

related flags (which are either modified upon docking/undocking, or upon receiving

certain bu_cmd's). The ComFlags word consists of the following bits:

Bit16-18 can be changed via SWI 07h, ChangeAutoDocking(flags). Bit10 can be cleared

by SWI 0Bh, ClearComFlagsBit10().

SWI 07h - ChangeAutoDocking(flags.16-18)

Copies bit16-18 of the incoming parameter to ComFlags.16-18, specifying how the kernel

IRQ-11 (IOP) handler shall process docking/undocking from the PSX cartridge slot. The

function returns the incoming flags value ANDed with 70000h.

SWI 0Bh - ClearComFlagsBit10()

Resets ComFlags.Bit10, ie. enables bu_cmd_57h (write_sector) to write to the Broken

Sector region in FLASH memory (sector 16..55). SWI 0Bh returns the current ComFlags

value (the new value, with bit10=0).

Aside from calling SWI 0Bh, ComFlags.10 is also automatically cleared upon IRQ-10

(IOP) (docking/undocking). ComFlags.10 can get set/cleared by the Download

Notification callback.

 0-3 Whatever (set/cleared when docked/undocked, and modified by bu_cmd's)
 4-7 Not used (should be zero)
 8 IRQ-11 (IOP) occurred (set by irq handler, checked/cleared by SWI 05h)
 9 Communication Enabled And Docked (0=No, 1=Yes; prevents DoExecute)
 10 Reject writes to Broken Sector Region (sector 16..55) (0=No, 1=Yes)
 11 Start file request (set by bu_cmd_59h, processed by GUI, not by Kernel)
 12-15 Not used (should be zero)
 16 Automatically power-down DAC audio on insert/removal (0=No, 1=Yes)
 17 Automatically power-down IRDA infrared on insert/removal (0=No, 1=Yes)
 18 Automatically adjust LCD screen rotate on insert/removal (0=No, 1=Yes)
 19-27 Not used (should be zero)
 28 Indicates if a standard bu_cmd (52h/53h/57h) was received (0=No, 1=Yes)
 29 Set date/time request (set by bu_cmd FUNC0, processed by BIOS)
 30 Destroy RTC and Start GUI request (set by bu_cmd_59h, dir_index=FFFEh)
 31 Not used (should be zero)

 0-15 Not used (should be zero)
 16 Automatically power-down DAC audio on insert/removal (0=No, 1=Yes)
 17 Automatically power-down IRDA infrared on insert/removal (0=No, 1=Yes)
 18 Automatically adjust LCD screen rotate on insert/removal (0=No, 1=Yes)
 19-31 Not used (should be zero)

15.13 Pocketstation SWI Communication Functions

- 668/1136 -

SWI 05h - SenseAutoCom()

Checks if docking/undocking has occurred (by examining ComFlags.8, which gets set by

the kernel IRQ-11 (IOP) handler). If that flag was set, then the function does reset it,

and does then reset FUNC3=0000h and [0CAh]=00h (both only if docked, not when

undocked), and, no matter if docked or undocked, it enables communication; equivalent

to SetComOnOff(1); which sets/clears ComFlags.9. The function returns garbage

(r0=whatever).

The GUI is calling SWI 05h once per frame. The overall purpose is unknown. It's a good

idea to reset FUNC3 and to Enable Communication (although that'd be required only

when docked, not when undocked), but SWI 05h is doing that only on (un-)docking

transitions (not when it was already docked). In general, it'd make more sense to do

proper initializations via SWI 11h and SWI 17h as than trusting SWI 05h to do the job.

The only possibly useful effect is that SWI 05h does set/clear ComFlags.9 when docked/

undocked.

SWI 17h - GetPtrToFunc3addr()

Returns a pointer to a halfword in RAM which contains the FUNC3 address (for

bu_cmd_5bh and bu_cmd_5ch). The address is only 16bit, originated at 02000000h in

FLASH (ie. it can be only in the first 64K of the file), bit0 can be set for THUMB code.

The default address is zero, which behaves bugged: It accidently sets

[00000004h]=00000000h, ie. replaces the Undefined Instruction exception vector by a

"andeq r0,r0,r0" opcode, due to that NOP-like opcode, any Undefined Instruction

exceptions will run into the SWI vector at [00000008h], and randomly execute an SWI

function; with some bad luck that may execute one of the FlashWrite functions and

destroy the saved files.

Although setting 0000h acts bugged, one should restore that setting before returning

control to GUI or other executables; otherwise the address would still point to the

FUNC3 address of the old unloaded executable, which is worse than the bugged effect.

The FUNC3 address is automatically reset to 0000h when (if) SWI 05h (SenseAutoCom)

senses new docking.

Download Notification callback

Can be used to mute sound during communication, see SWI 01h,

SetCallbacks(index,proc), and BU Command 5Dh for details.

15.13 Pocketstation SWI Communication Functions

- 669/1136 -

15.14 Pocketstation SWI Execute Functions

SWI 08h - PrepareExecute(flag,dir_index,param)

dir_index should be 0=GUI, or 1..15=First block of game. When calling DoExecute,

param is passed to the entrypoint of the game or GUI in r0 register (see notes on GUI

\<param> values belows). For games, param may be interpreted in whatever way.

When flag=0, the function simply returns the old dir_index value. When flag=1, the new

dir_index and param values are stored in Kernel RAM (for being used by DoExecute);

the values are stored only if dir_index=0 (GUI), or if dir_index belongs to a file with

"SC" and "MCX0" or "MCX1" IDs in it's title sector. If dir_index was accepted, then the

new dir_index value is returned, otherwise the old dir_index is returned.

GUI \<param> values - for PrepareExecute(1,0,param)

PrepareExecute(1,0,param) prepares to execute the GUI (rather than a file). When

executing the GUI, \<param> consists of the following destructive bits:

The command numbers can be:

For Command 2xh and 3xh, the lower 4bit of the command (x) must be a valid dir_index

of the 1st block of a pocketstation executable, otherwise the BIOS erases the RTC time/

date. Bit8 is just a "funny" nag feature, allowing the user to change the alarm setting, but

with the changes being ignored (bit8 can be actually useful in BU Command 59h, after

FUNC2 was used for changing alarm).

SWI 09h - DoExecute(), or DoExecute(snapshot_saving_flag) for MCX1

Allows to return control to the GUI (when dir_index=0), or to start an executable (when

dir_index=1..15). Prior to calling DoExecute, parameters should be set via

PrepareExecute(1,dir_index,param), when not doing that, DoExecute would simply

 0-7 Command number (see below, MSBs=Primary command, LSBs=another dir_index)
 8 Do not store Alarm setting in Kernel RAM (0=Normal, 1=Don't store)
 9-31 Not used (should be zero)

 Command 0xh --> Erase RTC time/date
 Command 1xh --> Enter GUI Time Screen with speaker symbol
 Command 20h --> Enter GUI Time Screen with alarm symbol
 Command 2xh --> Prompt for new Date/Time, then start dir_index (x)
 Command 3xh --> Enter GUI File Selection Screen, with dir_index (x) selected
 Command xxh --> Erase RTC time/date (same as Command 0xh)

15.14 Pocketstation SWI Execute Functions

- 670/1136 -

restart the current executable (which may be a desired effect in some cases).

The "snapshot_saving_flag" can be ommited for normal (MCX0) files, that parameter is

used only for special (MCX1) files (see Snapshot Notes for details).

Caution: DoExecute fails (and returns r0=unchanged) when ComFlags.9=1 (which

indicates that communications are enabled, and that the Pocketstation is believed to be

docked to the PSX). ComFlags.9 can be forcefully cleared by calling SetComOnOff(0), or

it can be updated according to the current docking-state by calling SetComOnOff(1) or

SenseAutoCom().

SWI 16h - GetDirIndex()

Returns the dir_index for the currently executed file. If that value is zero, ie. if there is

no file executed, ie. if the function is called by the GUI, then it does instead return the

"alternate" dir_index (as set via SWI 15h).

SWI 15h - MakeAlternateDirIndex(flag,dir_index) out: alt_dir_index (new/old)

Applies the specified dir_index as "alternate" dir_index (for being retrieved via SWI 16h

for whatever purpose). The dir_index is applied only when flag=1, and only if dir_index

is 0=none, or if it is equal to the dir_index of the currently executed file (ie. attempts to

make other files being the "alternate" one are rejected). If successful, the new dir_index

is returned, otherwise the old dir_index is returned (eg. if flag=0, or if the index was

rejected).

SWI 12h - TestSnapshot(dir_index)

Tests if the specified file contains a load-able snapshot, ie. if it does have the "SC" and

"MCX1" IDs in the title sector, and the 01h,00h,"SE" ID in the snapshot header. If so, it

returns r0=1, and otherwise returns r0=0.

Snapshot Notes (MCX1 Files)

Snapshots are somewhat automatically loaded/saved when calling DoExecute:

If the old file (the currently executed file) contains "SC" AND "MCX1" IDs in the title

sector, then the User Mode CPU registers and User RAM at 200h..7FFh are automatically

saved in the files snapshot region in FLASH memory, with the snapshot_saving_flag

being applied as bit0 of the 0xh,00h,"SE" ID of the snapshot header).

If the new file (specified in dir_index) contains load-able snapshot data (ie. if it has "SC"

and "MCX1" IDs in title sector, and 01h,00h,"SE" ID in the snapshot region), then the

BIOS starts the saved snapshot data (instead of restarting the executable at its

15.14 Pocketstation SWI Execute Functions

- 671/1136 -

entrypoint). Not too sure if that feature is really working... the snapshot loader seems to

load User RAM from the wrong sectors... and it seems to jump directly to User Mode

return address... without removing registers that are still stored on SWI stack... causing

the SWI stack to underflow after loading one or two snapshots...?

15.15 Pocketstation SWI Date/Time/Alarm Functions

SWI 0Ch - SetBcdDateTime(date,time)

Sets the time and date, the parameters are having the same format as SWI 0Dh and

SWI 0Eh return values (see there). The SWI 0Ch return value contains only garbage

(r0=RTC_DATE/10000h).

SWI 0Dh - GetBcdDate()

Returns the current date, the lower 24bit are read from RTC_DATE, the century in upper

8bit is read from Kernel RAM.

SWI 0Eh - GetBcdTime()

Returns the current time and day of week, read from RTC_TIME.

SWI 13h - GetPtrToAlarmSetting()

Returns a pointer to a 64bit value in Kernel RAM, the upper word (Bit32-63) isn't

actually used by the BIOS, except that, the bu_cmd FUNC3 does transfer the whole

64bits. The meaning of the separate bits is:

 0-7 Day (01h..31h, BCD)
 8-11 Month (01h..12h, BCD)
 16-31 Year (0000h..9999h, BCD)

 0-7 Seconds (00h..59h, BCD)
 8-15 Minutes (00h..59h, BCD)
 16-23 Hours (00h..23h, BCD)
 24-31 Day of week (1=Sunday, ..., 7=Saturday)

 0-7 Alarm Minute (00h..59h, BCD)
 8-15 Alarm Hour (00h..23h, BCD)
 16 Alarm Enable (0=Off, 1=On)
 17 Button Lock (0=Normal, 1=Lock) (pressing all 5 buttons in GUI)
 18-19 Volume Shift (0=Normal/Loud, 1=Medium/Div4, 2=Mute/Off)

15.15 Pocketstation SWI Date/Time/Alarm Functions

- 672/1136 -

The RTC hardware doesn't have a hardware-based alarm feature, instead, the alarm

values must be compared with the current time by software. Alarm is handled only by the

GUI portion of the BIOS. The Kernel doesn't do any alarm handling, so alarm won't occur

while a game is executed (unless the game contains code that handles alarm).

Games are usually using only the lower 16bit of the charset address, ORed with

04000000h (although the full 32bit is stored in RAM).

15.16 Pocketstation SWI Flash Functions

SWI 10h - FlashWritePhysical(sector,src)

Writes 80h-bytes at src to the physical sector number (0..3FFh, originated at

08000000h), and does then compare the written data with the source data. Returns

0=okay, or 1=failed.

SWI 03h - FlashWriteVirtual(sector,src)

The sector number (0..3FFh) is a virtual sector number (originated at 02000000h), the

function uses the F_BANK_VAL settings to translate it to a physical sector number, and

does then write the 80h-bytes at src to that location (via the FlashWritePhysical

function). Returns 0=okay, or 1=failed (if the write failed, or if the sector number

exceeded the filesize aka the virtually mapped memory region).

SWI 0Ah - FlashReadSerial()

Returns the 32bit value from the two 16bit F_SN registers (see F_SN for details).

 20-22 Not used (should be zero)
 23 RTC Initialized (0=Not yet, 1=Yes, was initialized from within GUI)
 24-31 Not used (should be zero)
 32-63 Pointer to 8x8 BIOS Charset (characters "0"..."9" plus strange symbols)

 CHR(00h..09h) = Digits "0..9"
 CHR(0Ah) = Space " "
 CHR(0Bh) = Colon ":"
 CHR(0Ch) = Button Lock (used by Final Fantasy 8's Chocobo World)
 CHR(0Dh) = Speaker Medium; or loud if followed by chr(0Eh)
 CHR(0Eh) = Speaker Loud; to be appended to chr(0Dh)
 CHR(0Fh) = Speaker Off
 CHR(10h) = Battery Low (used by PocketMuuMuu's Cars)
 CHR(11h) = Alarm Off
 CHR(12h) = Alarm On
 CHR(13h) = Memory Card symbol

15.16 Pocketstation SWI Flash Functions

- 673/1136 -

SWI 0Fh - FlashWriteSerial(serial_number) ;old BIOS only!

Changes the 32bit F_SN value in the "header" region of the FLASH memory. The

function also rewrites the F_CAL value (but it simply rewrites the old value, so it's left

unchanged). The function isn't used by the BIOS, no idea if it is used by any games. No

return value (always returns r0=0).

This function is supported by the old "061" version BIOS only (the function is padded

with jump opcodes which hang the CPU in endless loops on newer "110" version).

SWI 18h - FlashReadWhateverByte(sector)

Returns [8000000h+sector*80h+7Eh] AND 00FFh. Purpose is totally unknown... the

actual FLASH memory doesn't contain any relevant information at that locations (eg. the

in the directory sectors, that byte is unused, usually zero)... and, reading some kind of

status or manufacturer information would first require to command the hardware to

output that info...?

15.17 Pocketstation SWI Useless Functions

SWI 00h - Reset() ;don't use, destroys RTC settings

Reboots the pocketstation, similar as when pressing the Reset button. Don't use! The

BIOS bootcode does (without any good reason) reset the RTC registers and alarm/

century settings in RAM to Time 00:00:00, Date 01 Jan 1999, and Alarm 00:00 disabled,

so, after reset, the user would need to re-enter these values.

Aside from the annoying destroyed RTC settings, the function is rather unstable: it does

jump to address 00000000h in RAM, which should usually redirect to 04000000h in

ROM, however, most pocketstation games are programmed in C language, where

"pointer" is usually pronounced "pointer?" without much understanding of whether/why/

how to initialize that "strange things", so there's a good probability that one of the

recently executed games has accidently destroyed the reset vector at [00000000h] in

battery-backed RAM.

SWI 14h - GetPtrToPtrToSwiTable()

Returns a pointer to a word in RAM, which contains another pointer which usually points

to SWI table in ROM. Changing that word could be (not very) useful for setting up a

custom SWI table in FLASH or in RAM. When doing that, one must restore the original

15.17 Pocketstation SWI Useless Functions

- 674/1136 -

setting before returning control to the GUI or to another executable (the setting isn't

automatically restored).

SWI service routine

The default SWI service routine is slightly finicky

It's important that the SWI service routine use a 16-bit load to fetch the comment field,

as most memory on the Pocketstation can't be safely read using ldrb . Any custom

handler needs to do the same, otherwise it won't work on real hardware. Also, for

emulator developers, be wary of the last pop as it abuses an ldm edge case (S bit set

with r15 in rlist - restores registers properly and then does CPSR = SPSR)

15.18 Pocketstation BU Command Summary

The Pocketstation supports the standard Memory Card commands (Read Sector, Write

Sector, Get Info), plus a couple of special commands.

BU Command Summary

push {r1-r12, lr} @ Backup SVC-mode registers
mrs r12, spsr @ Old CPSR in r12
nop

@ Check if we were previously in Thumb mode
@ And adjust LR accordingly to fetch the SWI comment field
tst r12, #0x20
subeq lr, #2
sub lr, #2

@ Fetch the comment field
ldrh r12, [lr]
and r12, #0xFF

@ Load function pointer for SWI handler and call it
mov lr, #0xE0 ; Pointer to SWI table in LR
ldr r11, [lr]
add r11, r11, r12, lsl #2 @ r11 = &swi_table[comment]
ldr r11, [r11] @ Get function pointer
mov lr, pc @ Set LR to return address
bx r11 @ Call SWI handler

@ Restore SVC regs, return from SWI service routine and restore SPSR into CPSR
pop {r1-r12, pc}^

15.18 Pocketstation BU Command Summary

- 675/1136 -

Commands 5Bh and 5Ch can use the following functions:

15.19 Pocketstation BU Standard Memory Card Commands

For general info on the three standard memory card commands (52h, 53h, 57h), and for

info on the FLAG response value, see:

Memory Card Read/Write Commands

BU Command 52h (Read Sector)

Works much as on normal memory cards, except that, on the Pocketstation, the Read

Sector command return 00h as dummy values; instead of the "(pre)" dummies that

occur on normal memory cards.

The Read Sector command does reproduce the strange delay (that occurs between 5Ch

and 5Dh bytes), similar as on normal original Sony memory cards, maybe original cards

did (maybe) actually DO something during that delay period, the pocketstation BIOS

simply blows up time in a wait loop (maybe for compatibility with original cards).

 50h Change a FUNC 03h related value or so
 51h N/A
 52h Standard Read Sector command
 53h Standard Get ID command
 54h N/A
 55h N/A
 56h N/A
 57h Standard Write Sector command
 58h Get an ID or Version value or so
 59h Prepare File Execution with Dir_index, and Parameter
 5Ah Get Dir_index, ComFlags, F_SN, Date, and Time
 5Bh Execute Function and transfer data from Pocketstation to PSX
 5Ch Execute Function and transfer data from PSX to Pocketstation
 5Dh Execute Custom Download Notification Function ;via SWI 01h with r0=3
 5Eh Get-and-Send ComFlags.bit1,3,2
 5Fh Get-and-Send ComFlags.bit0

 FUNC 00h - Get or Set Date/Time
 FUNC 01h - Get or Set Memory Block
 FUNC 02h - Get or Set Alarm/Flags
 FUNC 03h - Custom Function 3 ;via SWI 17h, GetPtrToFunc3addr()
 FUNC 80h..FFh - Custom Functions 80h..FFh ;via Function Table in File Header

15.19 Pocketstation BU Standard Memory Card Commands

- 676/1136 -

BU Command 53h (Get ID)

The Get ID command (53h) returns exactly the same values as normal original Sony

memory cards.

BU Command 57h (Write Sector)

The Write Sector command has two new error codes (additonally to the normal

47h="G"=Good, 4Eh="N"=BadChecksum, FFh=BadSector responses). The new error

codes are (see below for details):

And, like Read Sector, it returns 00h instead of "(pre)" as dummy values.

Write Error Code FDh (Directory Entries of currently executed file)

The FDh error code is intended to prevent the PSX bootmenu (or other PSX games) to

delete the currently executed file (which would crash the pocketstation - once when the

deleted region gets overwritten by a new file), because the PSX bootmenu and normal

PSX games do not recognize the new FDh error code the pocketstation does additionally

set FLAG.3 (new card), which should be understood by all PSX programs.

The FDh error code occurs only on directory sectors of the file (not on its data blocks).

However, other PSX games should never modify files that belong to other games (so

there should be no compatibility problem with other PSX programs that aren't aware of

the file being containing currently executed code).

However, the game that has created the executable pocketstation file must be aware of

that situation. If the file is broken into a Pocketstation Executable region and a PSX

Gameposition region, then it may modify the Gameposition stuff even while the

Executable is running. If the PSX want to overwrite the executable then it must first

ensure that it isn't executed (eg. by retrieving the dir_index of the currently executed

file via BU Command 5Ah, and comparing it against the first block number in the files

FCB at the PSX side; for file handle "fd", the first block is found at "[104h]

+fd*2Ch+24h" in PSX memory).

Write Error Code FEh (write-protected Broken Sector region, sector 16..55)

The write-protection is enabled by ComFlags.bit10 (which can be set/cleared via BU

Command 5Dh). That bit should be set before writing Pocketstation excecutables (the

 FDh Reject write to Directory Entries of currently executed file
 FEh Reject write to write-protected Broken Sector region (sector 16..55)

15.19 Pocketstation BU Standard Memory Card Commands

- 677/1136 -

Virtual Memory banking granularity is 2000h bytes, which allows to map whole blocks

only, but cannot map single sectors, which would be required for files with broken sector

replacements).

Unlike Error FDh, this error code doesn't set FLAG.3 for notifying normal PSX programs

about the error (which is no problem since normally Error FEh should never occur since

ComFlags.10 is usually zero). For more info on ComFlags.10, see SWI 0Bh aka

ClearComFlagsBit10(), and BU Command 5Dh.

15.20 Pocketstation BU Basic Pocketstation Commands

BU Command 50h (Change a FUNC 03h related value or so)

Might be somehow related to FUNC 03h...?

BU Command 58h (Get an ID or Version value or so)

BU Command 59h (Prepare File Execution with Dir_index, and Parameter)

The new dir_index can be the following:

 Send Reply Comment
 81h N/A Memory Card Access
 50h FLAG Send Command 50h
 VAL 00h Send new [0CAh], receive length of following data (00h)

 Send Reply Comment
 81h N/A Memory Card Access
 58h FLAG Send Command 58h
 (0) 02h Send dummy/zero, receive length of following data (02h)
 (0) 01h Send dummy/zero, receive whatever value (01h)
 (0) 01h Send dummy/zero, receive another value (01h)

 Send Reply Comment
 81h N/A Memory Card Access
 59h FLAG Send Command 59h
 (0) 06h Send dummy/zero, receive length of following data (06h)
 NEW OLD Send new dir_index.8-15, receive old dir_index.8-15
 NEW OLD Send new dir_index.0-7, receive old dir_index.0-7
 PAR (0) Send exec_parameter.0-7, receive dummy/zero
 PAR (0) Send exec_parameter.8-15, receive dummy/zero
 PAR (0) Send exec_parameter.16-23, receive dummy/zero
 PAR (0) Send exec_parameter.24-31, receive dummy/zero

15.20 Pocketstation BU Basic Pocketstation Commands

- 678/1136 -

Upon dir_index=0000h (Start GUI) or 0001..000Fh (start file), a request flag in

ComFlags.11 is set, the GUI does handle that request, but the Kernel doesn't handle it (so

it must be handled in the game; ie. check ComFlags.11 in your mainloop, and call

DoExecute when that bit is set, there's no need to call PrepareExecute, since that was

already done by the BU Command).

Caution: When dir_index=0000h, then \<param> should be a value that does NOT erase

the RTC time/date (eg. 10h or 20h) (most other values do erase the RTC, see SWI 08h for

details).

Upon dir_index=FFFEh, a similar request flag is set in ComFlags.30, and, the Kernel (not

the GUI) does handle that request in its FIQ handler (however, the request is: To reset

the RTC time/date and to start the GUI with uninitialized irq/svc stack pointers, so this

unpleasant and bugged feature shouldn't ever be used). Finally, dir_index=FFFFh allows

to read the current dir_index value (which could be also read via BU Command 5Ah).

BU Command 5Ah (Get Dir_index, ComFlags, F_SN, Date, and Time)

At midnight, the function may accidently return the date for the old day, and the time for

the new day.

 0000h..000Fh --> Request to Start GUI or File (with above parameter bits)
 0010h..FFFDh --> Not used, acts same as FFFFh (see below)
 FFFEh --> Request to Destroy RTC and Start GUI (with parameter 00000000h)
 FFFFh --> Do nothing (transfer all bytes, but don't store the new values)

 Send Reply Comment
 81h N/A Memory Card Access
 5Ah FLAG Send Command 5Ah
 (0) 12h Send dummy/zero, receive length of following data (12h)
 (0) INDX Send dummy/zero, receive curr_dir_index.bit8-15 (00h)
 (0) INDX Send dummy/zero, receive curr_dir_index.bit0-7 (00h..0Fh)
 (0) FLG Send dummy/zero, receive ComFlags.bit0 (00h or 01h)
 (0) FLG Send dummy/zero, receive ComFlags.bit1 (00h or 01h)
 (0) FLG Send dummy/zero, receive ComFlags.bit3 (00h or 01h)
 (0) FLG Send dummy/zero, receive ComFlags.bit2 (00h or 01h)
 (0) SN Send dummy/zero, receive F_SN.bit0-7 (whatever)
 (0) SN Send dummy/zero, receive F_SN.bit8-15 (whatever)
 (0) SN Send dummy/zero, receive F_SN.bit16-23 (whatever)
 (0) SN Send dummy/zero, receive F_SN.bit24-31 (whatever)
 (0) DATE Send dummy/zero, receive BCD Day (01h..31h)
 (0) DATE Send dummy/zero, receive BCD Month (01h..12h)
 (0) DATE Send dummy/zero, receive BCD Year (00h..99h)
 (0) DATE Send dummy/zero, receive BCD Century (00h..99h)
 (0) TIME Send dummy/zero, receive BCD Second (00h..59h)
 (0) TIME Send dummy/zero, receive BCD Minute (00h..59h)
 (0) TIME Send dummy/zero, receive BCD Hour (00h..23h)
 (0) TIME Send dummy/zero, receive BCD Day of Week (01h..07h)

15.20 Pocketstation BU Basic Pocketstation Commands

- 679/1136 -

BU Command 5Eh (Get-and-Send ComFlags.bit1,3,2)

BU Command 5Fh (Get-and-Send ComFlags.bit0)

15.21 Pocketstation BU Custom Pocketstation Commands

BU Command 5Bh (Execute Function and transfer data from Pocketstation to PSX)

See below for more info on the FUNC value and the corresponding functions.

BU Command 5Ch (Execute Function and transfer data from PSX to Pocketstation)

 Send Reply Comment
 81h N/A Memory Card Access
 5Eh FLAG Send Command 5Eh
 (0) 03h Send dummy/zero, receive length of following data (03h)
 NEW OLD Send new ComFlags.bit1, receive old ComFlags.bit1 (00h or 01h)
 NEW OLD Send new ComFlags.bit3, receive old ComFlags.bit3 (00h or 01h)
 NEW OLD Send new ComFlags.bit2, receive old ComFlags.bit2 (00h or 01h)

 Send Reply Comment
 81h N/A Memory Card Access
 5Fh FLAG Send Command 5Fh
 (0) 01h Send dummy/zero, receive length of following data (01h)
 NEW OLD Send new ComFlags.bit0, receive old ComFlags.bit0 (00h or 01h)

 Send Reply Comment
 81h N/A Memory Card Access
 5Bh FLAG Send Command 5Bh
 FUNC FFh Send Function Number, receive FFh (indicating variable length)
 (0) LEN1 Send dummy/zero, receive length of parameters (depending on FUNC)
 ... (0) Send parameters (LEN1 bytes), and receive dummy/zero
 <-------- at this point, the function is executed for the first time
 (0) LEN2 Send dummy/zero, receive length of data (depending on FUNC)
 (0) ... Send dummy/zero, receive data (LEN2 bytes) from pocketstation
 (0) FFh Send dummy/zero, receive FFh
 <-------- at this point, the function is executed for the second time

 Send Reply Comment
 81h N/A Memory Card Access
 5Ch FLAG Send Command 5Ch
 FUNC FFh Send Function Number, receive FFh (indicating variable length)
 (0) LEN1 Send dummy/zero, receive length of parameters (depending on FUNC)
 ... (0) Send parameters (LEN1 bytes), and receive dummy/zero
 <-------- at this point, the function is executed for the first time
 (0) LEN2 Send dummy/zero, receive length of data (depending on FUNC)

15.21 Pocketstation BU Custom Pocketstation Commands

- 680/1136 -

See below for more info on the FUNC value and the corresponding functions.

BU Command 5Dh (Execute Custom Download Notification Function)

Can be used to notify the GUI (or games that do support this function) about following

"download" operations (or uploads or other BU commands).

BU commands are handled inside of the kernels FIQ handler, that means both IRQs and

FIQs are disabled during a BU command transmission, so any IRQ or FIQ based audio

frequency generators will freeze during BU commands. To avoid distorted noise, it's best

to disable sound for the duration specified in bit0-7. If the PSX finishes before the

originally specified duration has expired, then it can resend this command with bit8=1 to

notify the pocketstation that the "download" has completed.

The Download Notification callback address can be set via SWI 01h, SetCallbacks(3,proc),

see there for details. At kernel side, the function execution is like so:

In the GUI, the bu_cmd_5dh_hook/callback handles parameter bits as so (and games

should probably handle that bits in the same fashion, too):

If PSX games send any of the standard commands (52h,53h,57h) to access the memory

card without using command 5Dh, then GUI automatically sets the duration to 01h (and

pauses sound only for that short duration).

 ... (0) Send data (LEN2 bytes) to pocketstation, receive dummy/zero
 (0) FFh Send dummy/zero, receive FFh
 <-------- at this point, the function is executed for the second time

 Send Reply Comment
 81h N/A Memory Card Access
 5Dh FLAG Send Command 5Dh
 (0) 03h Send dummy/zero, receive length of following data (03h)
 VAL (0) Send receive value.16-23 (whatever), receive dummy/zero
 VAL (0) Send receive value.8-15 (download flags), receive dummy/zero
 VAL (0) Send receive value.0-7 (download duration), receive dummy/zero

 If value.8-15 = 00h, then ComFlags.bit10=1, else ComFlags.bit10=0.
 If download_callback<>0 then call download_callback with r0=value.0-23.

 bit0-7 download duration (in whatever units... 30Hz, RTC, seconds...?)
 bit8 download finished (0=no, 1=yes, cancel any old/busy duration)
 bit9-23 not used by gui

15.21 Pocketstation BU Custom Pocketstation Commands

- 681/1136 -

FUNC 00h - Get or Set Date/Time (FUNC0)

LEN1 is 00h (no parameters), and LEN2 is 08h (eight data bytes):

At midnight, the function may accidently return the date for the old day, and the time for

the new day.

FUNC 01h - Get or Set Memory Block (FUNC1)

LEN1 is 05h (five parameters bytes):

LEN2 is variable (using the 5th byte of the above parameters):

Can be used to write to RAM (and eventually also to I/O ports; when you know what you

are doing). In the read direction it can read almost anything: RAM, BIOS ROM, I/O Ports,

Physical and Virtual FLASH memory. Of which, trying to read unmapped Virtual FLASH

does probably (?) cause a Data Abort exception (and crash the Pocketstation), so that

region may be read only if a file is loaded (check that dir_index isn't zero, via BU

Command 5Ah, and, take care not to exceed the filesize of that file).

BUG: When sending more than 2 data bytes in the PSX-to-Pocketstation direction, then

ADDR must be word-aligned (the BIOS tries to handle odd destination addresses, but

when doing that, it messes up the alignment of another internal pointer).

FUNC 02h - Get or Set Alarm/Flags (FUNC2)

LEN1 is 00h (no parameters), and LEN2 is 08h (eight data bytes):

 DATE Get or Send BCD Day (01h..31h)
 DATE Get or Send BCD Month (01h..12h)
 DATE Get or Send BCD Year (00h..99h)
 DATE Get or Send BCD Century (00h..99h)
 TIME Get or Send BCD Second (00h..59h)
 TIME Get or Send BCD Minute (00h..59h)
 TIME Get or Send BCD Hour (00h..23h)
 TIME Get or Send BCD Day of Week (01h..07h)

 ADDR Send Pocketstation Memory Address.bit0-7
 ADDR Send Pocketstation Memory Address.bit8-15
 ADDR Send Pocketstation Memory Address.bit16-23
 ADDR Send Pocketstation Memory Address.bit24-31
 LEN2 Send Desired Data Length (00h..80h, automatically clipped to max=80h)

 ... Get or Send LEN2 Data byte(s), max 80h bytes

15.21 Pocketstation BU Custom Pocketstation Commands

- 682/1136 -

Changing the alarm value while the GUI is running works only with some trickery: For a

sinister reason, the GUI copies the alarm setting to User RAM when it gets started, that

copy isn't affected by FUNC2, so the GUI believes that the old alarm setting does still

apply (and writes that old values back to Kernel RAM when leaving the GUI). The only

workaround is:

Test if the GUI is running, if so, restart it via Command 59h (with dir_index=0, and

param=0120h or similar, ie. with param.bit8 set), then execute FUNC2, then restart the

GUI again (this time with param.bit8 zero).

FUNC 03h - Custom Function 3 (aka FUNC3)

LEN1 is 04h (fixed) (four parameters bytes):

LEN2 is variable (depends on the return value of the 1st function call):

The function address can be set via SWI 17h, GetPtrToFunc3addr(), see there for details.

Before using FUNC 03h one must somehow ensure that the desired file is loaded (and that

it does have initialized the function address via SWI 17h, otherwise the pocketstation

would crash).

The FUNC3 address is automatically reset to 0000h when (if) SWI 05h (SenseAutoCom)

senses new docking.

Note: The POC-XBOO circuit uses FUNC3 to transfer TTY debug messages.

FUNC 80h..FFh - Custom Function 80h..FFh

LEN1 is variable (depends on the LEN1 value in Function Table in File Header):

 DATA Get or Send Alarm.bit0-7, Alarm Minute (00h..59h, BCD)
 DATA Get or Send Alarm.bit8-15, Alarm Hour (00h..23h, BCD)
 DATA Get or Send Alarm.bit16-23, Flags, see SWI 13h, GetPtrToAlarmSetting()
 DATA Get or Send Alarm.bit24-31, Not used (usually 00h)
 DATA Get or Send Alarm.bit32-39, BIOS Charset Address.0-7
 DATA Get or Send Alarm.bit40-47, BIOS Charset Address.8-15
 DATA Get or Send Alarm.bit48-55, BIOS Charset Address.16-23
 DATA Get or Send Alarm.bit56-63, BIOS Charset Address.24-31

 VAL Send Parameter Value.bit0-7
 VAL Send Parameter Value.bit8-15
 VAL Send Parameter Value.bit16-23
 VAL Send Parameter Value.bit24-31

 ... Get or Send LEN2 Data byte(s)

15.21 Pocketstation BU Custom Pocketstation Commands

- 683/1136 -

LEN2 is variable (depends on the return value of the 1st function call):

The function addresses (and LEN1 values) are stored in the Function Table FLASH memory

(see Pocketstation File Header for details).

Before using FUNC 80h..FFh one must somehow ensure that the desired file is loaded (ie.

that the function table with the desired functions is mapped to flash memory; otherwise

the pocketstation would crash).

First Function Call (Pre-Data)

Incoming parameters on 1st Function Call:

Return Value on 1st Function Call:

That 64bits are:

dst is written in 8bit units

src is read in 16bit units (and then split to 8bit units)

Second Function Call (Post-Data)

Incoming parameters on 2nd Function Call:

 ... Send LEN1 Parameter Value(s), max 80h bytes (destroys Kernel when >80h)

 ... Get or Send LEN2 Data byte(s), max 80h bytes (clipped to max=80h)

 ;above LEN1 should be 00h..80h (the parameters are stored
 ;in a 80h-byte buffer in kernel RAM, so len LEN1=81h..FFh would
 ;destroy the kernel RAM that is located after that buffer)

 r0=flags (09h=Pre-Data to PSX, or 0Ah=Pre-Data from PSX)
 r1=pointer to parameter buffer (which contains LEN1 bytes) (in Kernel RAM)

 r0 = Pointer to 64bit memory location (or r0=00000000h=Failed)

 0-31 BUF2 address of data buffer (src/dst)
 32-63 LEN2 (00000000h..00000080h) (clipped to max 00000080h if bigger)

 r0=flags (11h=Post-Data to PSX, 12h=Post-Data from PSX; plus 04h if Bad-Data)
 r1=pointer to data buffer (which contains LEN2 bytes) (BUF2 address)

15.21 Pocketstation BU Custom Pocketstation Commands

- 684/1136 -

Return Value on 2nd Function Call:

Function flags (r0)

For each function, there is only one single function vector which is called for both To-

and From-PSX, and both Pre- and Post-Data, and also on errors. The function must

decipher the flags in r0 to figure out which of that operations it should handle:

There are only six possible flags combinations:

The kernel doesn't call FUNC 03h if the Error bit is set (ie. Post-Bad-Data needs to be

handled only by FUNC 80h..FFh, not by FUNC 03h.)

15.22 Pocketstation File Header/Icons

Pocketstation File Content

Pocketstation files consists of the following elements (in that order):

 There's no return value required on 2nd call (although the kernel
 functions seem to return the same stuff as on 1st call).

 0 To-PSX (when used by Command 5Bh)
 1 From-PSX (when used by Command 5Ch)
 2 Error occurred during Data transfer
 3 Pre-Data
 4 Post-Data
 5-31 Not used (zero)

 09h Pre-Data to PSX
 0Ah Pre-Data from PSX
 11h Post-Data to PSX
 12h Post-Data from PSX
 15h Post-Bad-Data to PSX
 16h Post-Bad-Data from PSX

 PSX Title Sector ;80h bytes
 PSX Colored Icon(s) ;(hdr[02h] AND 0Fh)*80h bytes
 Pocketstation Saved Snapshot ;800h bytes if hdr[52h]="MCX1", else 0 bytes
 Pocketstation Function Table ;(hdr[57h]*8+7Fh) AND NOT 7Fh bytes
 Pocketstation File Viewer Mono Icon ;hdr[50h]*80h bytes
 Pocketstation Executable Mono Icon List ;hdr[56h]*8 bytes
 Body (Pocketstation Executable Code/Data, PSX Game Position, Exec-Icons)

15.22 Pocketstation File Header/Icons

- 685/1136 -

The Title sector contains some information about the size of the above regions, but not

about their addresses (ie. to find a given region, one must compute the size of the

preceeding regions).

Special "P" Filename in Directory Sector

For pocketstation executables, the 7th byte of the filename must be a "P" (for other files

that location does usually contain a "-", assuming the file uses a standard filename, eg.

"BESLES-12345abcdefgh" for a Sony licensed european title).

Special Pocketstation Entries in the Title Sector at [50h..5Fh]

In normal PSX files, the region at 50h..5Fh is usually zerofilled. For more info on the

standard entries in the Title Sector (and for info on Directory Entries), see:

Memory Card Data Format

Snapshot Region (in "MCX1" Files only)

For a load-able snapshot the Snapshot ID must be 01h,00h,"SE", the Kernel uses

snapshots only once (after loading a snapshot, it forcefully changes the ID to 00h,

00h,"SE" in FLASH memory).

For MCX1 files, snapshots can be automatically loaded and saved via the SWI 09h,

DoExecute function (the snapshot handling seems to be bugged though; see SWI 09h for

details).

 50h 2 Number of File Viewer Mono Icon Frames (or 0000h=Use Exec-Icons)
 52h 4 Pocketstation Identifier ("MCX0"=Normal, "MCX1"=With Snapshot)
 56h 1 Number of entries in Executable Mono Icon List (01h..FFh)
 57h 1 Number of BU Command 5Bh/5Ch Get/Set Functions (00h..7Fh, usually 00h)
 58h 4 Reserved (zero)
 5Ch 4 Entrypoint in FLASH1 (ie. Fileoffset plus 02000000h) (bit0=THUMB)

 000h r1..r12 (ie. without r0)
 030h r13_usr (sp_usr)
 034h r14_usr (lr_usr)
 038h r15 (pc)
 03Ch psr_fc
 040h Snapshot ID (0xh,00h,"SE")
 044h unused (3Ch bytes)
 200h Copy of user RAM at 200h..7FFh

15.22 Pocketstation File Header/Icons

- 686/1136 -

Function Table (FUNC 80h..FFh)

The table can contain 00h..7Fh entries, for FUNC 80h..FFh. Each entry occupies 8 bytes:

If the number of table entries isn't a multiple of 10h, then the table should be zero-

padded to a multiple of 80h bytes (the following File Viewer Mono Icon data is located on

the next higher 80h-byte boundary after the Function Table).

For details see BU Commands 5Bh and 5Ch.

File Viewer Mono Icon

Animation Length (0001h..any number) (icon frames) is stored in hdr[50h], for the File

Viewer Icon, the Animation Delay is fixed (six 30Hz units per frame).

The File Viewer Icon is shown in the Directory Viewer (which is activated when holding

the Down-button pressed for some seconds in the GUI screen with the speaker and

memory card symbols, and which shows icons for all files, including regular PSX game

positions, whose colored icons are converted without any contrast optimizations to

unidentify-able dithered monochrome icons). If the animation length of the File Viewer

Icon is 0000h, then the Directory Viewer does instead display the first Executable Mono

Icon.

Each icon frame is 32x32 pixels with 1bit color depth (32 words, =128 bytes),

A normal icon occupies 80h bytes, animated icons have more than one frame and do

occupy N*80h bytes.

Executable Mono Icon List

The number of entries in the Executable Mono Icon List is specified in hdr[56h] (usually

01h). Each entry in the Icon List occupies 8 bytes:

The icon frame(s) can be anywhere on a word-aligned location in the file Body (as

specified in the above Address entry), the format of the frame(s) is the same as for File

 00h 4 LEN1 (00000000h..00000080h) (destroys Kernel RAM if bigger)
 04h 4 Function Address (bit0 can be set for THUMB code)

 1st word = top-most scanline, 31st word = bottom-most scanline
 bit0 = left-most pixel, bit31 = right-most pixel (0=white, 1=black)

 00h 2 Animation Length (0001h..any number) (icon frames)
 02h 2 Animation Delay (N 30Hz units per icon frame)
 04h 4 Address of icon frame(s) in Virtual FLASH (at 02000000h and up)

15.22 Pocketstation File Header/Icons

- 687/1136 -

Viewer Mono Icons (see there).

The Executable Icons are shown in the Executable File Selection Menu (which occurs when

pressing Left/Right buttons in the GUI). Pressing Fire button in that menu starts the

selected executable. If the Icon List has more than 1 entry, then pressing Up/Down

buttons moves to the previous/next entry (this just allows to view the corresponding

icons, but doesn't have any other purpose, namely, the current list index is NOT passed to

the game when starting it).

The Executable Mono Icon List is usually zero-padded to 80h-bytes size (although that

isn't actually required, the following file Body could start at any location).

Entrypoint

The whole file (including the header and icons) gets mapped to 02000000h and up. The

entrypoint can be anywhere in the file Body, and it gets called with a parameter value in

r0 (when started by the GUI, that parameter is always zero, but it may be nonzero when

the executable was started by a game, ie. the \<param> from SWI 08h,

PrepareExecute, or the \<param> from BU Command 59h).

Caution: Games (and GUI) are started with the ARM CPU running in Non-privileged User

Mode (however, there are several ways to hook IRQ/FIQ handlers, and from there one

can switch to Privileged System Mode).

Returning to the GUI

Games should always include a way to return to the GUI (eg. an option in the game over

screen, a key combination, a watchdog timer, and/or the docking signal) (conventionally,

games should prompt Exit/Continue when holding Fire pressed for 5 seconds), otherwise

it wouldn't be possible to start other games - except by pushing the Reset button (which

is no good idea since the bizarre BIOS reset handler does reset the RTC time for

whatever reason).

The kernel doesn't pass any return address to the entrypoint (neither in R14, nor on

stack). To return control to the GUI, use SWI functions

PrepareExecute(1,0,GetDirIndex()+30h), and then DoExecute(0).

15.23 Pocketstation File Images

Pocketstation files are normally stored in standard Memory Card images,

Memory Card Images

15.23 Pocketstation File Images

- 688/1136 -

Pocketstation specific files

Aside from that standard formats, there are two Pocketstation specific formats, the "SC"

and "SN" variants. Both contain only the raw file, without any Directory sectors, and

thus not including a "BESLESP12345"-style filename string. The absence of the filename

means that a PSX game couldn't (re-)open these files via filenames, so they are suitable

only for "standalone" pocketstation games.

Pocketstation .BIN Files ("SC" variant)

Contains the raw Pocketstation Executable (ie. starting with the "SC" bytes in the title

sector, followed by icons, etc.), the filesize should be padded to a 2000h-byte block

boundary.

Pocketstation .BIN Files ("SN" variant)

This is a strange incomplete .BIN file variant which starts with a 4-byte ID ("SN",00h,

00h), which is directly followed by executable code, without any title sector, and without

any icons.

The filesize is don't care (no padding to block, sector, word, or halfword boundaries

required).

 It seems as if the file (including the 4-byte ID) is intended to be
 mapped to address 02000000h, and that the entrypoint is fixed at
 02000004h (in ARM state).
 Since the File doesn't have a valid file header with "SC" and "MCXn" IDs,
 it won't be recognized by real hardware, the PSX BIOS would treat it as
 a corrupted/deleted file, the Pocketstation BIOS would treat it as a
 non-executable file.
 So, that fileformat is apparently working only on whatever emulators,
 apparently on the one developed by SN Systems.
 If one should want to use that files on real hardware, one could add
 a 2000h byte stub at the begin of the file; with valid headers, and
 with a small executable that remaps the "SN" stuff to 02000000h via
 the F_BANK_VAL registers.
 Ah, and the "SN" files seem to access RAM at 01000000h and up, unknown
 if RAM is mirrored to that location on real hardware, reportedly that
 region is unused... and doesn't contain RAM...?
 Some games use The Undefined Instruction for TTY Output.
 Most games do strange 8bit writes to LCD_MODE+0 and LCD_MODE+1
 The games usually don't allow to return to the GUI (except by Reset).

15.23 Pocketstation File Images

- 689/1136 -

15.24 Pocketstation XBOO Cable

This circuit allows to connect a pocketstation to PC parallel port, allowing to upload

executables to real hardware, and also allowing to download TTY debug messages

(particulary useful as the 32x32 pixel LCD screen is way too small to display any

detailed status info).

POC-XBOO Circuit

Use a standard parallel port cable (with 36pin centronics connector or 25pin DB

connector) and then build a small adaptor like this:

The circuit is same as for "Direct Pad Pro" (but using a memory card connector instead of

joypad connector, and needing +5V from PC power supply instead of using parallel port

D3..D7 as supply). Note: IRQ7 is optional (for faster/early timeout).

POC-XBOO Upload

The upload function is found in no$gba "Utility" menu. It does upload the executable and

autostart it via standard memory card/pocketstation commands (ie. it doesn't require

any special transmission software installed on the pocketstation side).

Notes: Upload is overwriting ALL files on the memory card, and does then autostart the

first file. Upload is done as "read and write only if different", this provides faster

transfers and higher lifetime.

POC-XBOO TTY Debug Messages

TTY output is conventionally done by executing the ARM CPU's Undefined Opcode with

an ASCII character in R0 register (for that purpose, the undef opcode handler should

simply point to a MOVS PC,LR opcode).

That kind of TTY output works in no$gba's pocketstation emulation. It can be also used

 Pin CNTR DB25 Pocketstation _______________________
 ACK 10 10 --------- 1 JOYDTA | | | |
 D0 2 2 --------- 2 JOYCMD | 9 7 6 | 5 4 3 | 2 1 | CARD
 GND 19-30 18-25 ------- 4 GND |_______|_______|_______|
 D1 3 3 --------- 6 /JOYSEL _______________________
 D2 4 4 --------- 7 JOYCLK | | | |
 PE 12 12 --------- 9 /JOYACK (/IRQ7) | 9 8 7 | 6 5 4 | 3 2 1 | PAD
 NC -------------------- 8 /JOYGUN (/IRQ10) ______|_______|______/
 NC -------------------- 3 7.5V (rumble.supply)
 SUPPLY.5V --|>|---|>|-- 5 3.5V (VCC) (eg. PC's +5V via two 1N4001 diodes)
 SUPPLY.0V ------------- 4 GND (not needed when same as GND on CNTR/DB25)

15.24 Pocketstation XBOO Cable

- 690/1136 -

via no$gba's POC-XBOO cable, but requires some small customization in the executable:

First of, the executable needs "TTY+" ID in some reserved bytes of the title sector

(telling the xboo uploader to stay in transmission mode and to keep checking for TTY

messages after the actual upload):

With that ID, and with the XBOO-hardware being used, the game will be started with with

"TTY+" in R0 (notifying it that the XBOO hardware is present, and that it needs to install

special transmission handlers):

 TitleSector[58h] = "TTY+"

 ;------------------
 .data?
 org 200h
 ...
 tty_bufsiz equ 128 ;max=128=fastest (can be smaller if you are short of RAM)
 func3_info: ;\ ;\
 func3_buf_base dd 0 ;fixed="func3_buf" ; ; func3_info+00h
 func3_buf_len dd 0 ;range=0..128 ;/ ; func3_info+04h
 func3_stack dd 0 ; func3_info+08h
 func3_buffer: defs tty_bufsiz ;/ func3_info+0Ch
 ptr_to_comflags dd 0
 ...
 .code
 ...
 ;------------------
 tty_wrchr: ;in: r0=char
 dd 0e6000010h ;=undef opcode ;-Write chr(r0) to TTY
 bx lr
 ;------------------
 init_tty: ;in: r0=param (from entrypoint)
 ldr r1,=2B595454h ;"TTY+" ;\check if xboo-cable present
 cmp r1,r0 ; (r0=incoming param from
 beq @@tty_by_xboo_cable ;/executable's entrypoint)
 ;- - -
 mov r1,0 ;\dummy und_handler
 ldr r2,=0e1b0f00eh ;=movs r15,r14 ; (just return from exception,
 str r2,[r1,04h] ;und_handler ;/for normal cable-less mode)
 b @@finish
 ;---
 @@tty_by_xboo_cable:
 swi 17h ;GetPtrToFunc3addr() ;\
 ldr r1,=(tty_func3_handler AND 0ffffh) ; init FUNC3 aka TTY handler
 strh r1,[r0] ;/
 ldr r1,=func3_info ;\
 mov r0,0 ;\ ; mark TTY as len=empty
 str r0,[r1,4] ;func3_buf_len ;/ ; and
 add r0,r1,0ch ;=func3_buffer ;\ ; init func3 base
 str r0,[r1,0] ;func3_buf_base ;/ ;/
 mov r1,0 ;\

15.24 Pocketstation XBOO Cable

- 691/1136 -

Usage: Call "init_tty" at the executable's entrypoint (with incoming R0 passed on). Call

"tty_wrchr" to output ASCII characters.

Note: The TTY messages are supported only in no$gba debug version (not no$gba

gaming version).

 ldr r2,=0e59ff018h ;=ldr r15,[pc,NN] ;
 str r2,[r1,04h] ;und_handler ; special xboo und_handler
 add r2,=tty_xboo_und_handler ;
 str r2,[r1,24h] ;und_vector ;/
 @@finish:
 swi 06h ;GetPtrToComFlags() ;\
 ldr r1,=ptr_to_comflags ; get ptr to ComFlags
 str r0,[r1] ;/
 bx lr
 ;------------------
 tty_xboo_und_handler: ;in: r0=char
 ldr r13,=func3_info ;aka sp_und ;-base address (in sp_und)
 str r12,[r13,8] ;func3_stack ;-push r12
 @@wait_if_buffer_full: ;\
 ldr r12,=ptr_to_comflags ; ;\exit if execute file request
 ldr r12,[r12] ;ptr to ComFlags ; ; ComFlg.Bit11 ("bu_cmd_59h"),
 ldr r12,[r12] ;read ComFlags ; ; ie. allow that flag to be
 tst r12,1 shl 11 ;test bit11 ; ; processed by main program,
 bne @@exit ; ;/without hanging here
 ldrb r12,[r13,4] ;func3_buf_len ; wait if buffer full
 cmp r12,tty_bufsiz ; (until drained by FIQ)
 beq @@wait_if_buffer_full ;/
 mov r12,1bh+0c0h ;mode=und, FIQ/IRQ=off ;\disable FIQ (no COMMUNICATION
 mov cpsr_ctl,r12 ;/interrupt during buffer write)
 ldrb r12,[r13,4] ;func3_buf_len ;\
 add r12,1 ;raise len ; write char to buffer
 strb r12,[r13,4] ;func3_buf_len ; and raise buffer length
 add r12,0ch-1 ;=func3_buffer+INDEX ;
 strb r0,[r13,r12] ;append char to buf ;/
 @@exit:
 ldr r12,[r13,8] ;func3_stack ;-pop r12
 movs r15,r14 ;return from exception (and restore old IRQ/FIQ state)
 ;------------------
 tty_func3_handler: ;in: r0=flags, r1=ptr
 tst r0,10h ;test if PRE/POST data (pre: Z, post: NZ)
 ;ldreq r1,[r1] ;read 32bit param (aka the four LEN1 bytes of FUNC3)
 ldr r0,=func3_info ;ptr to two 32bit values (FUNC3 return value)
 movne r1,0 ;\for POST data: mark buffer empty
 strne r1,[r0,4] ;func3_buf_len=0 ;/
 bx lr ;-for PRE data: return r0=func3_info

15.24 Pocketstation XBOO Cable

- 692/1136 -

16. Serial Interfaces (SIO)

The console has two serial interfaces, SIO0 (connected to the controller and memory

card ports) and SIO1 (connected to the serial port). SIO0 is hardwired to run in

synchronous mode, while SIO1 can only operate in asynchronous mode. Both units are

fairly similar, although not identical, and seem to be vaguely based on the Intel 8251A

USART chip.

1F801040h+N*10h - SIO#_TX_DATA (W)

Writing to this register starts a transfer (if, or as soon as, TXEN=1 and CTS=on and

SIO_STAT.2=Ready). Writing to this register while SIO_STAT.0=Busy causes the old value

to be overwritten.

The "TXEN=1" condition is a bit more complex: Writing to SIO_TX_DATA latches the

current TXEN value, and the transfer DOES start if the current TXEN value OR the latched

TXEN value is set (ie. if TXEN gets cleared after writing to SIO_TX_DATA, then the

transfer may STILL start if the old latched TXEN value was set; this appears for SIO

transfers in Wipeout 2097).

1F801040h+N*10h - SIO#_RX_DATA (R)

A data byte can be read when SIO_STAT.1=1. Some emulators behave incorrectly when

this register is read using a 16/32-bit memory access, so it should only be accessed as an

8-bit register.

1F801044h+N*10h - SIO#_STAT (R)

 0-7 Data to be sent
 8-31 Not used

 0-7 Received Data (1st RX FIFO entry) (oldest entry)
 8-15 Preview (2nd RX FIFO entry)
 16-23 Preview (3rd RX FIFO entry)
 24-31 Preview (4th RX FIFO entry) (5th..8th cannot be previewed)

 0 TX FIFO Not Full (1=Ready for new byte) (depends on CTS) (TX requires CTS)
 1 RX FIFO Not Empty (0=Empty, 1=Data available)
 2 TX Idle (1=Idle/Finished) (depends on TXEN and on CTS)
 3 RX Parity Error (0=No, 1=Error; Wrong Parity, when enabled) (sticky)
 4 SIO1 RX FIFO Overrun (0=No, 1=Error; received more than 8 bytes) (sticky)

16. Serial Interfaces (SIO)

- 693/1136 -

Bit 0 gets set after sending the start bit, bit 2 is set after sending all bits including the

stop bit if any.

On SIO0, DSR is wired to the /ACK pin on the controller and memory card ports; bit 7 is

thus set when /ACK is low (asserted) and cleared when it is high. Bits 4-6 and 8 are

always zero.

The number of bits actually used by the baud rate timer is probably affected by the reload

factor set in SIO_MODE.

1F801048h+N*10h - SIO#_MODE (R/W) (eg. 004Eh --> 8N1 with Factor=MUL16)

Bits 6-7 on SIO0 and bit 8 on SIO1 are always zero. On SIO0 the character length shall

be set to 8, the clock polarity should be set to high-when-idle and parity should be

disabled, as all controllers and memory cards expect these settings.

1F80104Ah+N*10h - SIO#_CTRL (R/W)

 5 SIO1 RX Bad Stop Bit (0=No, 1=Error; Bad Stop Bit) (when RXEN) (sticky)
 6 SIO1 RX Input Level (0=Normal, 1=Inverted) ;only AFTER receiving Stop Bit
 7 DSR Input Level (0=Off, 1=On) (remote DTR) ;DSR not required to be on
 8 SIO1 CTS Input Level (0=Off, 1=On) (remote RTS) ;CTS required for TX
 9 Interrupt Request (0=None, 1=IRQ) (See SIO_CTRL.Bit4,10-12) (sticky)
 10 Unknown (always zero)
 11-31 Baudrate Timer (15-21 bit timer, decrementing at 33MHz)

 0-1 Baudrate Reload Factor (1=MUL1, 2=MUL16, 3=MUL64) (or 0=MUL1 on SIO0, STOP on
SIO1)
 2-3 Character Length (0=5 bits, 1=6 bits, 2=7 bits, 3=8 bits)
 4 Parity Enable (0=No, 1=Enable)
 5 Parity Type (0=Even, 1=Odd) (seems to be vice-versa...?)
 6-7 SIO1 stop bit length (0=Reserved/1bit, 1=1bit, 2=1.5bits, 3=2bits)
 8 SIO0 clock polarity (CPOL) (0=High when idle, 1=Low when idle)
 9-15 Not used (always zero)

 0 TX Enable (TXEN) (0=Disable, 1=Enable)
 1 DTR Output Level (0=Off, 1=On)
 2 RX Enable (RXEN) (SIO1: 0=Disable, 1=Enable) ;Disable also clears RXFIFO
 (SIO0: 0=only receive when /CS low, 1=force receiving
single byte)
 3 SIO1 TX Output Level (0=Normal, 1=Inverted, during Inactivity & Stop bits)
 4 Acknowledge (0=No change, 1=Reset SIO_STAT.Bits 3,4,5,9) (W)
 5 SIO1 RTS Output Level (0=Off, 1=On)
 6 Reset (0=No change, 1=Reset most registers to zero) (W)
 7 SIO1 unknown? (read/write-able when FACTOR non-zero) (otherwise always
zero)
 8-9 RX Interrupt Mode (0..3 = IRQ when RX FIFO contains 1,2,4,8 bytes)
 10 TX Interrupt Enable (0=Disable, 1=Enable) ;when SIO_STAT.0-or-2 ;Ready
 11 RX Interrupt Enable (0=Disable, 1=Enable) ;when N bytes in RX FIFO

16. Serial Interfaces (SIO)

- 694/1136 -

On SIO0, DTR is wired to the /CS pin on the controller and memory card ports; bit 1 will

pull (assert) /CS low when set. Bit 13 is used to select which port's /CS shall be asserted

(all other signals are wired in parallel).

Bit 2 behaves differently on SIO0: when not set, incoming data will be ignored unless bit

1 is also set. When set, data will be received regardless of whether /CS is asserted,

however bit 2 will be automatically cleared after a byte is received.

Note that some emulators do not implement all SIO0 interrupts, as the kernel's controller

driver only ever uses the DSR (/ACK) interrupt.

1F80105Ch - SIO1_MISC (R/W)

This is an internal register, which usually shouldn't be accessed by software. Messing

with it has rather strange effects: After writing a value "X" to this register, reading

returns "X ROR 8" eventually "ANDed with 1F1Fh and ORed with C0C0h or

8080h" (depending on the character length in SIO_MODE). SIO0 does not have this

register.

1F80104Eh+N*10h - SIO#_BAUD (R/W) (eg. 00DCh --> 9600 bps; when Factor=MUL16)

The timer is decremented on every clock cycle and reloaded when writing to this register

and when it reaches zero. Upon reload, the 16-bit Reload value is multiplied by the

Baudrate Factor (see SIO_MODE.Bit0-1), divided by 2, and then copied to the 21-bit

Baudrate Timer (SIO_MODE.Bit11-31). The resulting transfer rate can be calculated as

follows:

According to the original nocash page, the way this register works is actually slightly

different for SIO0 vs. SIO1:

 12 DSR Interrupt Enable (0=Disable, 1=Enable) ;when SIO_STAT.7 ;DSR high or /ACK
low
 13 SIO0 port select (0=port 1, 1=port 2) (/CS pulled low when bit 1 set)
 14-15 Not used (always zero)

 0-15 Baudrate Reload value for decrementing Baudrate Timer

 SIO0: BitsPerSecond = 33868800 / MIN(((Reload*Factor) AND NOT 1),1)
 SIO1: BitsPerSecond = 33868800 / MIN(((Reload*Factor) AND NOT 1),Factor)

 SIO0_BAUD is multiplied by Factor, and does then elapse "2" times per bit.
 SIO1_BAUD is NOT multiplied, and, instead, elapses "2*Factor" times per bit.

16. Serial Interfaces (SIO)

- 695/1136 -

The standard baud rate for SIO0 devices, including both controllers and memory cards, is

~250 kHz, with SIO0_BAUD being set to 0088h (serial clock high for 44h cycles then low

for 44h cycles).

SIO_TX_DATA Notes

The hardware can hold (almost) 2 bytes in the TX direction (one being currently

transferred, and, once when the start bit was sent, another byte can be stored in

SIO_TX_DATA). When writing to SIO_TX_DATA, both SIO_STAT.0 and SIO_STAT.2

become zero. As soon as the transfer starts, SIO_STAT.0 becomes set (indicating that

one can write a new byte to SIO_TX_DATA; although the transmission is still busy). As

soon as the transfer of the most recently written byte ends, SIO_STAT.2 becomes set.

SIO_RX_DATA Notes

The hardware can hold 8 bytes in the RX direction (when receiving further byte(s) while

the RX FIFO is full, then the last FIFO entry will by overwritten by the new byte, and

SIO_STAT.4 gets set; the hardware does NOT automatically disable RTS when the FIFO

becomes full). The RX FIFO overrun flag is not accessible on SIO0.

Data can be read from SIO_RX_DATA when SIO_STAT.1 is set, that flag gets

automatically cleared after reading from SIO_RX_DATA (unless there are still further

bytes in the RX FIFO). Note: The hardware does always store incoming data in RX FIFO

(even when Parity or Stop bits are invalid).

Note: A 16bit read allows to read two FIFO entries at once; nethertheless, it removes

only ONE entry from the FIFO. On the contrary, a 32bit read DOES remove FOUR entries

(although, there's nothing that'd indicate if the FIFO did actually contain four entries).

Reading from Empty RX FIFO returns either the most recently received byte or zero (the

hardware stores incoming data in ALL unused FIFO entries; eg. if five entries are used,

then the data gets stored thrice, after reading 6 bytes, the FIFO empty flag gets set, but

nethertheless, the last byte can be read two more times, but doing further reads returns

00h).

Interrupt Acknowledge Notes

First reset I_STAT.8, then set SIO.CTRL.4 (when doing it vice-versa, the hardware may

miss a new IRQ which may occur immediately after setting SIO.CTRL.4) (and I_STAT.8 is

edge triggered, so that bit can be reset even while SIO_STAT.9 is still set).

When acknowledging via SIO_CTRL.4 with the enabled condition(s) in SIO_CTRL.10-12

still being true (eg. the RX FIFO is still not empty): the IRQ does trigger again (almost)

16. Serial Interfaces (SIO)

- 696/1136 -

immediately (it goes off only for a very short moment; barely enough to allow I_STAT.8

to sense a edge).

Note

For more details on how SIO0 is used to communicate with controllers and memory

cards, see:

Controller and Memory Card Overview

For serial port pinouts, PSone SIO1 upgrading, and for building RS232 adaptors, see:

Pinouts - SIO Pinouts

Aside from the internal SIO port, the PSX BIOS supports two additional external serial

ports, connected to the expansion port.

EXP2 Dual Serial Port (for TTY Debug Terminal)

SIO1 link cable games

The serial ports on two consoles can be connected with an SCPH-1040 Link Cable

(known as Taisen Cable, or "Fight Cable" in Japan) for multiplayer functionality on

games that support this method. This was used by a small number of games in the

console's lifecycle, but inconveniently required a second console and copy of the game.

Two-Console Link Cable Games (Incomplete List):

Andretti Racing
Armored Core (and Armored Core "Link Versus Demo" disc)
Armored Core Project Phantasma
Armored Core Master of Arena
Assault Rigs
Ayrton Senna Kart Duel
Blast Radius
Bogey Dead 6
Burning Road
Bushido Blade
Bushido Blade 2
C1 -Circuit-
CART World Series
Command & Conquer Red Alert
Command & Conquer Red Alert Retaliation
Cool Boarders 2
Dead in the Water
Descent
Descent Maximum
Destruction Derby
Duke Nukem Total Meltdown
Dodgem Arena
Doom

16. Serial Interfaces (SIO)

- 697/1136 -

The serial port is used (for 2-player link) by Wipeout 2097 (that game accidently

assumes BAUDs based on 64*1024*1025 Hz rather than on 600h*44100 Hz).

Ridge Racer Revolution is also said to support 2P link.

Keitai Eddy seems to allow to connect a mobile phone to the SIO port (the games CD

cover suggests so; this seems to be something different than the "normal" I-Mode

adaptor, which would connect to controller port, not to SIO port).

Dune 2000
Explosive Racing (X Racing in NTSC-J)
Final Doom
Formula 1
Formula 1 98
Grand Tour Racing '98 (Gekisou!! Grand Racing -Total Driving'- in NTSC-J, Total Drivin in
PAL)
Independence Day
Krazy Ivan
Leading Jockey Highbred
Metal Jacket
Mobile Suit Z-Gundam
Monaco Grand Prix Racing Simulation 2 (Monaco Grand Prix in NTSC-U/C)
Motor Toon Grand Prix (reportedly NTSC-U/C version only)
Motor Toon Grand Prix 2
Motor Toon Grand Prix USA Edition
The Need for Speed (Over Drivin' DX in NTSC-J)
PrePre Vol. 2
Pro Pinball Big Race USA
RacinGroovy
Real Robots Final Attack
Red Asphalt (Rock & Roll Racing 2 Red Asphalt in PAL)
Ridge Racer Revolution
R4 Ridge Racer Type 4
Robo Pit
Rogue Trip Vacation 2012
San Francisco Rush Extreme Racing (reportedly PAL version only)
Shutokou Battle R
Sidewinder
Sidewinder USA
Soukou Kihei Votoms Gaiden: Ao no Kishi Berserga Monogatari
Streak Hoverboard Racing
Test Drive 4
Test Drive Off-Road (reportedly NTSC-U/C only)
TOCA 2 Touring Car Challenge (TOCA 2 Touring Cars in PAL)
Trick'N Snowboarder (Tricky Sliders Freestyle Snowboard in NTSC-J)
Twisted Metal III
Wing Over
Wipeout
Wipeout 3 Special Edition
Wipeout XL (Wipeout 2097 in PAL)
Zero Pilot Ginyoku no Senshi

16. Serial Interfaces (SIO)

- 698/1136 -

17. Expansion Port (PIO)

Expansion Port can contain ROM, RAM, I/O Ports, etc. For ROM, the first 256 bytes

would contain the expansion ROM header.

For region 1, the CPU outputs a chip select signal (CPU Pin 98, /EXP).

For region 2, the CPU doesn't produce a chip select signal (the region is intended to

contain multiple I/O ports, which require an address decoder anyways, that address

decoder could treat any /RD or /WR with A13=Hi and A23=Hi and A22=Lo as access to

expansion region 2 (for /WR, A22 may be ignored; assuming that the BIOS is read-

only).

Size/Bus-Width

The BIOS initalizes Expansion Region 1 to 512Kbyte with 8bit bus, and Region 2 to 128

bytes with 8bit bus. However, the size and data bus-width of these regions can be

changed, see:

Memory Control

For Region 1, 32bit reads are supported even in 8bit mode (eg. 32bit opcode fetches are

automatically processed as four 8bit reads).

For Region 2, only 8bit access seems to be supported (except that probably 16bit mode

allows 16bit access), anyways, larger accesses seem to cause exceptions... not sure if

that can be disabled...?

Expansion 1 - EXP1 - Intended to contain ROM

EXP1 Expansion ROM Header

Expansion 2 - EXP2 - Intended to contain I/O Ports

EXP2 Dual Serial Port (for TTY Debug Terminal)

EXP2 DTL-H2000 I/O Ports

EXP2 Post Registers

EXP2 Nocash Emulation Expansion

17. Expansion Port (PIO)

- 699/1136 -

Expansion 3 - EXP3 - Intended to contain RAM

Not used by BIOS nor by any games. Seems to contain 1Mbyte RAM with 16bit databus

(ie. 512Kx16) in DTL-H2000.

Other Expansions

Aside from the above, the Expansion regions can be used for whatever purpose,

however, mind that the BIOS is reading from the ROM header region, and is writing to

the POST register (so 1F000000h-1F0000FFh and 1F802041h should be used only if the

hardware isn't disturbed by those accesses).

Most arcade boards have their custom I/O registers (and sometimes game ROMs)

mapped into the EXP1 and/or EXP2 regions.

Missing Expansion Port

The expansion port is installed only on older PSX boards, newer PSX boards and all

PSone boards don't have that port. However, the CPU should still output all expansion

signals, and there should be big soldering points on the board, so it'd be easy to

upgrade the console.

Latched Address Bus

Note that A0..A23 are latched outputs, so they can be used as general purpuse 24bit

outputs, provided that the system bus isn't used for other purposes (such like /BIOS, /

SPU, /CD accesses) (A0..A23 are not affected by Main RAM and GPU addressing, nor by

internal I/O ports like Timer and IRQ registers).

17.1 EXP1 Expansion ROM Header

Expansion 1 - ROM Header (accessed with 8bit databus setting)

 Address Size Content
 1F000000h 4 Post-Boot Entrypoint (eg. 1F000100h and up)
 1F000004h 2Ch Post-Boot ID ("Licensed by Sony Computer Entertainment Inc.")
 1F000030h 50h Post-Boot TTY Message (must contain at least one 00h byte)
 1F000080h 4 Pre-Boot Entrypoint (eg. 1F000100h and up)
 1F000084h 2Ch Pre-Boot ID ("Licensed by Sony Computer Entertainment Inc.")
 1F0000B0h 50h Not used (should be zero, but may contain code/data/io)
 1F000100h .. Code, Data, I/O Ports, etc.

17.1 EXP1 Expansion ROM Header

- 700/1136 -

The entrypoints are called if their corresonding ID strings are present, return address to

BIOS is passed in R31, so the expansion ROM may return control to BIOS, if that should

be desired.

Aside from verifying the IDs, the BIOS will also display the Post-Boot ID string (and the

following message string) via TTY (done right before calling the Post-Boot Entrypoint).

Pre-Boot Function

The Pre-Boot function is called almost immediately after Reset, with only some Memory

Control registers initialized, the BIOS function vectors at A0h, B0h, and C0h are NOT yet

initialized, so the Pre-Boot function can't use them.

Post-Boot Function

The Post-Boot function gets called while showing the "PS" logo, but before loading

the .EXE file. The BIOS function vectors at A0h, B0h, and C0h are already installed and

can be used by the Post-Boot Function.

Note that the Post-Boot Function is called ONLY when the "PS" logo is shown (ie. not if

the CDROM drive is empty, or if it contains an Audio CD).

Mid-Boot Hook

One common trick to hook the Kernel after BIOS initialization, but before CDROM

loading is to use the Pre-Boot handler to set a COP0 opcode fetch hardware breakpoint

at 80030000h (after returning from the Pre-Boot handler, the Kernel will initialize

important things like A0h/B0h/C0h tables, and will then break again when starting the

GUI code at 80030000h) (this trick is used by Action Replay v2.0 and up).

Note

Expansion ROMs are most commonly used in cheat devices,

Cheat Devices

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

SCN2681 Dual Asynchronous Receiver/Transmitter (DUART)

The PSX/PSone retail BIOS contains some TTY Debug Terminal code; using an external

SCN2681 chip which can be connected to the expansion port.

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 701/1136 -

Whilst supported by all PSX/PSone retail BIOSes on software side, there aren't any

known PSX consoles/devboards/expansions actually containing DUARTs on hardware

side.

1F802023h/Read - RHRA - DUART Rx Holding Register A (FIFO) (R)

1F80202Bh/Read - RHRB - DUART Rx Holding Register B (FIFO) (R)

1F802023h/Write - THRA - DUART Tx Holding Register A (W)

1F80202Bh/Write - THRB - DUART Tx Holding Register B (W)

The hardware can hold max 2 Tx characters per channel (1 in the THR register, and one

currently processed in the Tx Shift Register), and max 4 Rx characters (3 in the RHR

FIFO, plus one in the Rx Shift Register) (when receiving a 5th character, the "old newest"

value in the Rx Shift Register is lost, and the overrun flag is set).

1F802020h/FirstAccess - MR1A - DUART Mode Register 1.A (R/W)

1F802028h/FirstAccess - MR1B - DUART Mode Register 1.B (R/W)

Note: In block error mode, block error conditions must be cleared by using the error reset

command (command 4) or a receiver reset (command 2).

1F802020h/SecondAccess - MR2A - DUART Mode Register 2.A (R/W)

1F802028h/SecondAccess - MR2B - DUART Mode Register 2.B (R/W)

 7-0 Data (aka Character)

 7 RxRTS Control (0=No, 1=Yes)
 6 RxINT Select (0=RxRDY, 1=FFULL)
 5 Error Mode (0=Char, 1=Block)
 4-3 Parity Mode (0=With Parity, 1=Force Parity, 2=No Parity, 3=Multidrop)
 2 Parity Type (0=Even, 1=Odd)
 1-0 Bits per Character (0=5bit, 1=6bit, 2=7bit, 3=8bit)

 7-6 Channel Mode (0=Normal, 1=Auto-Echo, 2=Local loop, 3=Remote loop)
 5 TxRTS Control (0=No, 1=Yes) (when 1 --> OP0=RTSA / OP1=RTSB)
 4 CTS Enable (0=No, 1=Yes) (when 1 --> IP0=CTSA / IP1=CTSB)
 3-0 Tx Stop Bit Length (00h..0Fh = see below)

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 702/1136 -

Stop Bit Lengths:

Add 0.5 to values shown for 0..7 if channel is programmed for 5 bits/char.

1F802021h/Write - CSRA - DUART Clock Select Register A (W)

1F802029h/Write - CSRB - DUART Clock Select Register B (W)

The 2681 has some sets of predefined baud rates (set1/set2 selected via ACR.7),

additionally, in BRG Test Mode, set3/set4 are used instead of set1/set2), the baud rates

for selections 00h..0Dh are:

Selection 0Eh/0Fh are using an external clock source (derived from IP3,IP4,IP5,IP6 pins;

for TxA,RxA,TxB,RxB respectively).

1F802022h/Write - CRA - DUART Command Register A (W)

1F80202Ah/Write - CRB - DUART Command Register B (W)

The command values for CRA (or CRB) are:

 0=0.563 1=0.625 2=0.688 3=0.750 4=0.813 5=0.875 6=0.938 7=1.000
 8=1.563 9=1.625 A=1.688 B=1.750 C=1.813 D=1.875 E=1.938 F=2.000

 7-4 Rx Clock Select (0..0Ch=See Table, 0Dh=Timer, 0Eh=16xIP, 0Fh=1xIP)
 3-0 Tx Clock Select (0..0Ch=See Table, 0Dh=Timer, 0Eh=16xIP, 0Fh=1xIP)

 Rate 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch
 Set1 50 110 134.5 200 300 600 1200 1050 2400 4800 7200 9600 38400
 Set2 75 110 134.5 150 300 600 1200 2000 2400 4800 1800 9600 19200
 Set3 4800 880 1076 19200 28800 57600 115200 1050 57600 4800 57600 9600 38400
 Set4 7200 880 1076 14400 28800 57600 115200 2000 57600 4800 14400 9600 19200

 7 Not used (should be 0)
 6-4 Miscellaneous Commands (0..7 = see below)
 3 Disable Tx (0=No change, 1=Disable)
 2 Enable Tx (0=No change, 1=Enable) ;Don't use with Command 3 (Reset Rx)
 1 Disable Rx (0=No change, 1=Disable)
 0 Enable Rx (0=No change, 1=Enable) ;Don't use with Command 2 (Reset Tx)

 0 No command ;no effect
 1 Reset MR pointer ;force "FirstAccess" state for MR1A (or MR1B) access
 2 Reset receiver ;reset RxA (or RxB) registers, disable Rx, flush Fifo
 3 Reset transmitter ;reset TxA (or TxB) registers
 4 Reset Error Flags ;reset SRA.7-4 (or SRB.7-4) to zero

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 703/1136 -

Access to the upper four bits of the command register should be separated by 3 edges of

the X1 clock. A disabled transmitter cannot be loaded.

1F802025h/Read - ISR - DUART Interrupt Status Register (R)

1F802025h/Write - IMR - DUART Interrupt Mask Register (W)

1F802021h/Read - SRA - DUART Status Register A (R)

1F802029h/Read - SRB - DUART Status Register B (R)

Bit7-5 are appended to the corresponding data character in the receive FIFO. A read of

the status provides these bits (7:5) from the top of the FIFO together with bits (4:0).

These bits are cleared by a "reset error status" command. In character mode they are

discarded when the corresponding data character is read from the FIFO. In block error

mode, block error conditions must be cleared by using the error reset command

(command 4x) or a receiver reset.

1F802024h/Write - ACR - DUART Aux. Control Register (W)

 5 Reset Break-Change IRQ Flag ;reset ISR.2 (or ISR.6) to zero
 6 Start break ;after current char, pause Tx with TxDA=Low (or TxDB=Low)
 7 Stop break ;output one High bit, then continue Tx (ie. undo pause)

 7 Input Port Change (0=No, 1=Yes) (Ack via reading IPCR) ;see ACR.3-0
 6 Break Change B (0=No, 1=Yes) (Ack via CRB/Command5)
 5 RxRDYB/FFULLB (0=No, 1=Yes) (Ack via reading data) ;see MR1B.6
 4 THRB Empty (TxRDYB) (0=No, 1=Yes) (Ack via writing data) ;same as SRB.2
 3 Counter Ready (0=No, 1=Yes) (Ack via CT_STOP)
 2 Break Change A (0=No, 1=Yes) (Ack via CRA/Command5)
 1 RxRDYA/FFULLA (0=No, 1=Yes) (Ack via reading data) ;see MR1A.6
 0 THRA Empty (TxRDYA) (0=No, 1=Yes) (Ack via writing data) ;same as SRA.2

 7 Rx Received Break* (0=No, 1=Yes) ;received 00h without stop bit
 6 Rx Framing Error* (0=No, 1=Yes) ;received data without stop bit
 5 Rx Parity Error* (0=No, 1=Yes) ;received data with bad parity
 4 Rx Overrun Error (0=No, 1=Yes) ;Rx FIFO full + RxShiftReg full
 3 Tx Underrun (TxEMT) (0=No, 1=Yes) ;both TxShiftReg and THR empty
 2 Tx THR Empty (TxRDY) (0=No, 1=Yes) ;same as ISR.0 / ISR.4
 1 Rx FIFO Full (FFULL) (0=No, 1=Yes) ;set upon 3 or more characters
 0 Rx FIFO Not Empty (RxRDY) (0=No, 1=Yes) ;set upon 1 or more characters

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 704/1136 -

Counter/Timer Mode and Clock Source Settings:

In Counter Mode, the Counter Ready flag is set on any underflow, and the counter wraps

to FFFFh and keeps running (but may get stopped by software).

In Timer Mode, automatic reload occurs on any underflow, the counter flag (which can be

output to OP3) is toggled on any underflow, but the Counter Ready flag is set only on

each 2nd underflow (unlike as in Counter mode).

1F802024h/Read - IPCR - DUART Input Port Change Register (R)

Reading from this register automatically resets IPCR.7-4 and ISR.7.

1F80202Dh/Read - IP - DUART Input Port (R)

IP0-6 can be used as general purpose inputs, or for following special purposes:

 7 Select Baud Rate Generator (BRG) Set (0=Set1/Set3, 1=Set2/Set4)
 6-4 Counter/Timer Mode and Source (see below)
 3-0 IP3..IP0 Change Interrupt Enable Flags (0=Off, 1=On)

 Num Mode Clock Source
 0h Counter External (IP2)
 1h Counter TxCA - 1x clock of Channel A transmitter
 2h Counter TxCB - 1x clock of Channel B transmitter
 3h Counter Crystal or external clock (x1/CLK) divided by 16
 4h Timer External (IP2)
 5h Timer External (IP2) divided by 16
 6h Timer Crystal or external clock (x1/CLK)
 7h Timer Crystal or external clock (x1/CLK) divided by 16

 7-4 IP3..IP0 Change Occured Flags (0=No, 1=Yes) ;auto reset after read
 3-0 Current IP3-IP0 Input states (0=Low, 1=High) ;Same as IP.3-0

 7 Not used (always 1)
 6-0 Current IP6-IP0 Input states (0=Low, 1=High) ;LSBs = Same as IPCR.3-0

 IP6 External RxB Clock ;see CSRB.7-4
 IP5 External TxB Clock ;see CSRB.3-0
 IP4 External RxA Clock ;see CSRA.7-4
 IP3 External TxA Clock ;see CSRA.3-0
 IP2 External Timer Input ;see AUX.6-4
 IP1 Clear to Send B (CTSB) ;see MR2B.5
 IP0 Clear to Send A (CTSA) ;see MR2A.5

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 705/1136 -

Note: The 24pin chip doesn't have any inputs, the 28pin chip has only one input (IP2),

the 40pin/44pin chips have seven inputs (IP0-IP6).

1F80202Eh/Write - DUART Set Output Port Bits Command (Set means Out=LOW)

1F80202Fh/Write - DUART Reset Output Port Bits Command (Reset means Out=HIGH)

Note: The 24pin chip doesn't have any outputs, the 28pin chip has only two outputs

(OP0,OP1), the 40pin/44pin chips have eight outputs (OP0-OP7).

1F80202Dh/Write - OPCR - DUART Output Port Configuration Register (W)

Additionally, the OP0 and OP1 outputs are controlled via MR2A.5 and MR2B.5.

1F802022h/Read - - DUART Toggle Baud Rate Generator Test Mode (Read=Strobe)

1F80202Ah/Read - - DUART Toggle 1X/16X Test Mode (Read=Strobe)

BGR Test switches between Baud Rate Set1/Set2 and Set3/Set4.

1X/16X Test switches between whatever...?

1F80202Eh/Read - CT_START - DUART Start Counter Command (Read=Strobe)

1F80202Fh/Read - CT_STOP - DUART Stop Counter Command (Read=Strobe)

Start: Forces reload (copies CTLR/CTUR to CTL/CTU), and starts the timer.

Stop-in-Counter-Mode: Resets ISR.3, and stops the timer.

Stop-in-Timer-Mode: Resets ISR.3, but doesn't stop the timer.

 7-0 Change "OPR" OP7-OP0 Output states (0=No change, 1=Set/Reset)

 7 OP7 (0=OPR.7, 1=TxRDYB)
 6 OP6 (0=OPR.6, 1=TxRDYA)
 5 OP5 (0=OPR.5, 1=RxRDY/FFULLB)
 4 OP4 (0=OPR.4, 1=RxRDY/FFULLA)
 3-2 OP3 (0=OPR.3, 1=Clock/Timer Output, 2=TxCB(1x), 3=RxCB(1x))
 1-0 OP2 (0=OPR.2, 1=TxCA(16x), 2=TxCA(1x), 3=RxCA(1x))

 7-0 Not used (just issue a dummy-read to toggle the test mode on/off)

 7-0 Not used (just issue a dummy-read to strobe start/stop command)

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 706/1136 -

1F802026h/Read - CTU - DUART Counter/Timer Current Value, Upper/Bit15-8 (R)

1F802027h/Read - CTL - DUART Counter/Timer Current Value, Lower/Bit7-0 (R)

1F802026h/Write - CTUR - DUART Counter/Timer Reload Value, Upper/Bit15-8 (W)

1F802027h/Write - CTLR - DUART Counter/Timer Reload Value, Lower/Bit7-0 (W)

The CTLR/CTUR reload value is copied to CTL/CTU upon Start Counter Command. In

Timer mode (not in Counter mode), it is additionally copied automatically when the

timer undeflows.

1F80202Ch - N/A - DUART Reserved Register (neither R nor W)

Reserved.

Chip versions

The SCN2681 is manufactured with 24..44 pins, the differences are:

Unknown which of them is supposed to be used with the PSX?

Note: The Motorola 68681 should be the same as the Philips/Signetics 2681.

Notes

Unknown if the Interrupt signal is connected to the PSX... there seems to be no spare

IRQ for it, though it \<might> share an IRQ with whatever other hardware...?

The BIOS seems to use only one of the two channels; for the std_io functions:

BIOS TTY Console (std_io)

Aside from the external DUART, the PSX additionally contains an internal UART,

Serial Interfaces (SIO)

The DTL-H2000 devboard uses a non-serial "ATCONS" channel for TTY stuff,

EXP2 DTL-H2000 I/O Ports

 24pin basic cut-down version ;without IP0-1/OP0-1 = without CTS/RTS
 28pin additional IP2,OP0,OP1,X2 ;without IP0-1 = without CTS
 40pin additional IP0-IP6,OP0-OP7,X2 ;full version
 44pin same as 40pin with four NC pins ;full version (SMD)

17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)

- 707/1136 -

17.3 EXP2 DTL-H2000 I/O Ports

The DTL-H2000 contains extended 8Mbyte Main RAM (instead of normal 2Mbyte), plus

additional 1MByte RAM in Expansion Area at 1FA00000h, plus some I/O ports at

1F8020xxh:

1F802000h - DTL-H2000: EXP2: - ATCONS STAT (R)

1F802002h - DTL-H2000: EXP2: - ATCONS DATA (R and W)

TTY channel for message output (TX) and debug console keyboard input (RX). The DTL-

H2000 is using this "ATCONS" stuff instead of the DUART stuff used in retail console

BIOSes ("CONS" seems to refer to "Console", and "AT" might refer to PC/AT or whatever).

1F802004h - DTL-H2000: EXP2: - 16bit - ?

1F802030h - DTL-H2000: Secondary IRQ10 Controller (IRQ Flags)

This register does expand IRQ10 (Lightgun) to more than one IRQ source. The register

contains only Secondary IRQ Flags (there seem to be no Secondary IRQ Enable bits; at

least not for Lightguns).

 0 Unknown, used for something
 1 Unknown/unused
 2 Unknown, used for something
 3 TTY/Atcons TX Ready (0=Busy, 1=Ready)
 4 TTY/Atcons RX Available (0=None, 1=Yes)
 5-7 Unknown/unused

 0-7 TTY/Atcons RX/TX Data

 0-15 Data...?

 0 ... used for something
 1 Lightgun IRQ (write: 0=No change, 1=Acknowledge) (read: 0=None, 1=IRQ)
 2-3 Unknown/unused (write: 0=Normal)
 4 ... acknowledged at 1FA00B04h, otherwise unused
 5 ... TTY RX ?
 6-7 Unknown/unused (write: 0=Normal)
 8-31 Not used by DTL-H2000 BIOS (but Lightgun games write 0 to these bits)

17.3 EXP2 DTL-H2000 I/O Ports

- 708/1136 -

Retail games that support IRQ10-based "Konami" Lightguns are containing code for

detecting and accessing port 1F802030h. The detection works by examining a value in the

BIOS ROM like so:

Normal consoles don't include Port 1F802030h, and IRQ10 is wired directly to the

controller port, and the value at [BFC00104h] is always 00000003h. Accordingly, one

cannot upgrade the console just by plugging a Secondary IRQ10 controller to the

expansion port (instead, one would need to insert the controller between the CPU and

controller plug, and to install a BIOS with [BFC00104h]=00002000h).

The DTL-H2000 BIOS accesses 1F802030h with 8bit load/store opcodes, however, the

Lightgun games use 32bit load/store - which is theoretically overlapping port 1F802032h,

though maybe the memory system does ignore the upper bits.

1F802032h - DTL-H2000: EXP2: - maybe IRQ enable?

1F802040h - DTL-H2000: EXP2: 1-byte - DIP Switch?

This register selects the DTL-H2000 boot mode, for whatever reason it's called "DIP

Switch" register, although the DTL-H2000 boards don't seem to contain any such DIP

Switches (instead, it's probably configured via some I/O ports on PC side). Possible values

are:

 IF [BFC00104h]=00002000h then Port 1F802030h does exist (DTL-H2000)
 IF [BFC00104h]=00002500h then Port 1F802030h does NOT exist
 IF [BFC00104h]=00000003h then Port 1F802030h does NOT exist (default)
 IF [BFC00104h]= <other> then Port 1F802030h does NOT exist

 0 Used for something (CLEARED on some occassions)
 1-3 Unknown/unused
 4 Used for something (SET on some occassions)
 5-7 Unknown/unused

 0-7 DIP Value (00h..FFh, but should be usually 00h..02h)

 DIP=0 --> .. long delay before TTY? with "PSX>" prompt, throws CDROM cmds
 DIP=1 --> .. long delay before TTY? no "PSX>" prompt PSY-Q?
 DIP=2 --> .. instant TTY? with "PSX>" prompt
 DIP=3 --> Lockup
 DIP=04h..FFh --> Lockup with POST=04h..FFh

17.3 EXP2 DTL-H2000 I/O Ports

- 709/1136 -

1F802042h - DTL-H2000: EXP2: POST/LED (R/W)

EXP2 Post Registers

17.4 EXP2 Post Registers

1F802041h - POST - External 7-segment Display (W)

During boot, the BIOS writes incrementing values to this register, allowing to display the

current boot status on an external 7 segment display (much the same as Port 80h used in

PC BIOSes).

1F802042h - DTL-H2000: EXP2: POST/LED (R/W)

8bit wide, otherwise same as POST 1F802041h on retail consoles.

1F802070h - POST2 - Unknown? (W) - PS2

Might be a configuration port, or it's another POST register (which is used prior to

writing the normal POST bytes to 1FA00000h).

The first write to 1F802070h is 32bit, all further writes seem to be 8bit.

1FA00000h - POST3 - External 7-segment Display (W) - PS2

Similar to POST, but PS2 BIOS uses this address.

 0-3 Current Boot Status (00h..0Fh)
 4-7 Not used by BIOS (always set to 0)

 0-7 Post/LED value

17.4 EXP2 Post Registers

- 710/1136 -

17.5 EXP2 Nocash Emulation Expansion

1F802060h Emu-Expansion ID1 "E" (R)

1F802061h Emu-Expansion ID2 "X" (R)

1F802062h Emu-Expansion ID3 "P" (R)

1F802063h Emu-Expansion Version (01h) (R)

Contains ID and Version.

1F802064h Emu-Expansion Enable1 "O" (R/W)

1F802065h Emu-Expansion Enable2 "N" (R/W)

Activates the Halt and Turbo Registers (when set to "ON").

1F802066h Emu-Expansion Halt (R)

When enabled (see above), doing an 8bit read from this address stops the CPU

emulation unless/until an Interrupt occurs (when "CAUSE AND SR AND FF00h" becomes

nonzero). Can be used to reduce power consumption, and to make the emulation faster.

1F802067h Emu-Expansion Turbo Mode Flags (R/W)

When enabled (see above), writing to this register activates/deactivates "turbo" mode,

which is causing new data to arrive immediately after acknowledging the previous

interrupt.

17.6 EXP2 PCSX-Redux Emulation Expansion

PCSX-Redux contains some specific hardware registers for the purpose of testing and

debugging. They are located past the 1F802080h address, which means that accessing

 0 CDROM Turbo (0=Normal, 1=Turbo)
 1 Memory Card Turbo (0=Normal, 1=Turbo)
 2 Controller Turbo (0=Normal, 1=Turbo)
 3-7 Reserved (must be zero)

17.5 EXP2 Nocash Emulation Expansion

- 711/1136 -

them on the real hardware will cause an exception, unless the 1F80101Ch register has

been set to be at least twice its normal size.

1F802080h 4 Redux-Expansion ID "PCSX" (R)

Identification string. Use this to query that your binary is running under PCSX-Redux.

1F802080h 1 Redux-Expansion Console putchar (W)

Adds this character to the console output. This is an easier way to write to the console

than using the BIOS.

1F802081h 1 Redux-Expansion Debug break (W)

Causes a debug breakpoint to be triggered. PCSX-Redux will pause and the user will be

alerted of a software breakpoint.

1F802082h 1 Redux-Expansion Exit code (W)

Sets the exit code for the program. When in test mode, PCSX-Redux will exit with this

code.

1F802084h 4 Redux-Expansion Notification message pointer (W)

Displays a pop-up message to the user with the specified string.

See PCSX-Redux's documentation for more details and examples.

17.6 EXP2 PCSX-Redux Emulation Expansion

- 712/1136 -

https://psx-spx.consoledev.net/memorycontrol/#1f80101ch-expansion-2-delaysize-usually-00070777h-128-bytes-8bit-bus
https://pcsx-redux.consoledev.net/mips_api/

18. Memory Control

The Memory Control registers are initialized by the BIOS, and, normally software doesn't

need to change that settings. Some registers are useful for expansion hardware

(allowing to increase the memory size and bus width).

1F801000h - Expansion 1 Base Address (usually 1F000000h)

The behavior of this register is somewhat inconsistent. Normally, the base address is

forcefully aligned to the EXP1 region's size by masking off the bottommost N bits (where

N = number of address lines, as set in register 1F801008h). For instance, if the number

of EXP1 address lines is set to 8, setting this register to 1F000000h or 1F0000FFh has the

same effect.

When performing a PIO DMA transfer, however, all bits of this register are output on the

bus regardless of the currently set region size. The System 573 relies on this behavior as

it changes the base address to 1F480000h prior to reading data from the IDE CD-ROM

using DMA (and does not reset it to 1F000000h afterwards).

Note: presumably the masking lets the bus interface compute addresses quickly by

replacing masked off bits with the LSBs of the incoming address value from the CPU, thus

only requiring a few multiplexers instead of a full adder.

1F801004h - Expansion 2 Base Address (usually 1F802000h)

Same as 1F801000h, however trying to use ANY other value than 1F802000h seems to

disable the Expansion 2 region, rather than mapping it to the specified address (ie. Port

1F801004h doesn't seem to work).

For Expansion 3, the address seems to be fixed (1FA00000h).

 0-23 Base address (R/W)
 24-31 Fixed, always 1Fh (R)

18. Memory Control

- 713/1136 -

1F801008h - Expansion 1 Delay/Size (usually 0013243Fh) (512Kbytes, 8bit bus) (573: 24173F47h)

1F80100Ch - Expansion 3 Delay/Size (usually 00003022h) (1 byte)

1F801010h - BIOS ROM Delay/Size (usually 0013243Fh) (512Kbytes, 8bit bus)

1F801014h - SPU Delay/Size (200931E1h) (use 220931E1h for SPU-RAM reads)

1F801018h - CDROM Delay/Size (00020843h or 00020943h)

1F80101Ch - Expansion 2 Delay/Size (usually 00070777h) (128 bytes, 8bit bus)

When booting, all these registers are using the maximum cycle delays for both reads and

writes. Then, the BIOS will immediately select a faster read access delay, resulting in a

visible speed up after the first few instructions. The effects aren't immediate however. The

BIOS boots using the following instructions:

 0-3 Write Delay (00h..0Fh=01h..10h Cycles)
 4-7 Read Delay (00h..0Fh=01h..10h Cycles)
 8 Recovery Period (0=No, 1=Yes, uses COM0 timings)
 9 Hold Period (0=No, 1=Yes, uses COM1 timings)
 10 Floating Period (0=No, 1=Yes, uses COM2 timings)
 11 Pre-strobe Period (0=No, 1=Yes, uses COM3 timings)
 12 Data Bus-width (0=8bits, 1=16bits)
 13 Auto Increment (0=No, 1=Yes)
 14-15 Unknown (R/W)
 16-20 Number of address bits (memory window size = 1 << N bytes)
 21-23 Unknown (always zero)
 24-27 DMA timing override
 28 Address error flag. Write 1 to it to clear it.
 29 DMA timing select (0=use normal timings, 1=use bits 24-27)
 30 Wide DMA (0=use bit 12, 1=override to full 32 bits)
 31 Wait (1=wait on external device before being ready)

bfc00000 lui $t0, 0x0013
bfc00004 ori $t0, 0x243f
bfc00008 lui $at, 0x1f80
bfc0000c sw $t0, 0x1010($at)
bfc00010 nop
bfc00014 li $t0, 0x0b88
bfc00018 lui $at, 0x1f80
bfc0001c sw $t0, 0x1060($at)
bfc00020 nop

18. Memory Control

- 714/1136 -

When using a logic analyzer to monitor the boot sequence, the instruction at bfc00014 is

still read using the old timings since reset, and then the instruction at bfc00018 is finally

read using the sped up timings.

Reads and writes access times aren't symmetrical, and are each controlled with their

own values. By default, EXP1 will be set to 16 cycles when writing, which is the slowest

possible. If the programmer wants to write to a flash chip on EXP1, or communicate with

a computer, speeding up write access is recommended.

The fastest a port could go would be by setting the lowest 16 bits to zero, which will

result in 3 CPU cycles for a single byte access.

!CS always goes active at least one cycle before !WR or !RD go active. The various

timing changes are between all the events inside the data read/write waveform. The

whole formula for computing the total access time is fairly complex overall, and difficult

to properly describe.

The pre-strobe period will add delays between the moment the data bus is set, and the

moment !CS goes active.

The hold period will keep the data in the data bus for some more cycles after !WR goes

inactive, and before !CS goes inactive. The accessed device is supposed to sample the

data bus during this interval.

The floating period will keep the data bus floating for some more cycles after !RD goes

inactive, and before !CS goes inactive. The accessed device is supposed to stop driving

the data bus during this interval. The CPU will sample the data bus somewhere before

or exactly when !CS goes inactive.

The recovery period will add delays between two operations.

The data bus width will influence if the CPU does full 16 bits reads, or only 8 bits. When

doing 32 bits operations, the CPU will issue 2 16-bits operations, or 4 8-bits operations,

keeping !CS active the whole time, and strobing !WR or !RD accordingly. When doing

these sequences, the address bus will also increment automatically between each

operation, if the auto-increment bit is active.

This means it is possible to slightly shorten the read time of 4 bytes off the same

address by disabling auto-increment, and reading a full word. The CPU will then read 4

bytes off the same address, and place them all into each byte of the loaded register.

The DMA timing override portion will replace the access timing when doing DMA, only if

the DMA override flag is set.

•

•

•

•

18. Memory Control

- 715/1136 -

The Wide DMA flag will enable full 32 bits DMA operations on the bus, by reusing the low

16-bits address signals as the high 16-bits data. This means that if the CPU is doing

Wide DMA reads, the low 16-bits of the address bus will become inputs.

Trying to access addresses that exceed the selected size causes a bus exception.

Maximum size would be Expansion 1 = 17h (8MB), BIOS = 16h (4MB), Expansion 2 =

0Dh (8KB), Expansion 3 = 15h (2MB). Trying to select larger sizes would overlap the

internal I/O ports, and crash the PSX. The Size bits seem to be ignored for SPU/CDROM.

The SPU timings seem to be applied for both the 200h-byte SPU region at 1F801C00h

and for the 200h-byte unknown region at 1F801E00h.

1F801020h - COM_DELAY / COMMON_DELAY (00031125h or 0000132Ch or 00001325h)

This register contains clock cycle offsets that can be added to the Access Time values in

Port 1F801008h..1Ch. Works (somehow) like so:

The total access time is the sum of First Access, plus any Sequential Access(es), eg. for a

32bit access with 8bit bus: Total=1ST+SEQ+SEQ+SEQ.

If the access is done from code in (uncached) RAM, then 0..4 cycles are added to the

Total value (the exact number seems to vary depending on the used COMx values or so).

1F801060h - RAM_SIZE (R/W) (usually 00000B88h) (or 00000888h)

 0-3 COM0 - Recovery period cycles
 4-7 COM1 - Hold period cycles
 8-11 COM2 - Floating release cycles
 12-15 COM3 - Strobe active-going edge delay
 16-31 Unknown/unused (read: always 0000h)

 1ST=0, SEQ=0, MIN=0
 IF Use_COM0 THEN 1ST=1ST+COM0-1, SEQ=SEQ+COM0-1
 IF Use_COM2 THEN 1ST=1ST+COM2, SEQ=SEQ+COM2
 IF Use_COM3 THEN MIN=COM3
 IF 1ST<6 THEN 1ST=1ST+1 ;(somewhat like so)
 1ST=1ST+AccessTime+2, SEQ=SEQ+AccessTime+2
 IF 1ST<(MIN+6) THEN 1ST=(MIN+6)
 IF SEQ<(MIN+2) THEN SEQ=(MIN+2)

 0-2 Unknown (no effect)
 3 Crashes when zero (except PU-7 and EARLY-PU-8, which <do> set bit3=0)
 4-6 Unknown (no effect)
 7 Delay on simultaneous CODE+DATA fetch from RAM (0=None, 1=One Cycle)
 8 Unknown (no effect) (should be set for 8MB, cleared for 2MB)
 9 RAM chip size 1 (0=1MB or 2MB, 1=4MB or 8MB)
 10 Enable /RAS1 bank (0=disable/bus fault on access, 1=enable)

18. Memory Control

- 716/1136 -

Possible values for bits 9-11 are:

The BIOS writes different values depending on the console revision:

"Unmapped" means that the CPU generates an exception when accessing that area.

Note: Wipeout uses a BIOS function that changes RAM_SIZE to 00000888h (ie. with

corrected size of 2MB, and with the unknown Bit8 cleared). Gundam Battle Assault 2 does

actually use the "8MB" space (with stacktop in mirrored RAM at 807FFFxxh).

Clearing bit7 causes many games to hang during CDROM loading on both EARLY-PU-8 and

LATE-PU-8 (but works on PU-18 through PM-41).

FFFE0130h - BCC, BIU/Cache Configuration Register (R/W)

 11 RAM chip size 2 (0=1MB or 4MB, 1=2MB or 8MB)
 12-15 Unknown (no effect)
 16-31 Unknown (Garbage)

 000 = 1MB bank on /RAS0 + 15MB unmapped
 001 = 4MB bank on /RAS0 + 12MB unmapped
 010 = 1MB bank on /RAS0 + 1MB bank on /RAS1 (?) + 14MB unmapped
 011 = 4MB bank on /RAS0 + 4MB bank on /RAS1 (?) + 8MB unmapped
 100 = 2MB bank on /RAS0 + 14MB unmapped
 101 = 8MB bank on /RAS0 + 8MB unmapped
 110 = 2MB bank on /RAS0 + 2MB bank on /RAS1 (?) + 12MB unmapped
 111 = 8MB bank on /RAS0 + 8MB bank on /RAS1 (?)

PU-7, EARLY-PU-8:
 0B80h Single 2MB bank (four 512Kx8 chips) on /RAS0
 (incorrectly set as an 8MB bank, correct setting would be 0880h)
Later consoles:
 0B88h Single 2MB bank (one 512Kx32 chip) on /RAS0
 (incorrectly set as an 8MB bank, correct setting would be 0888h)
DTL-H2000, DTL-H2700, DTL-H2500:
 0B88h Single 8MB bank (four 2Mx8 chips) on /RAS0
 (correctly set as 8MB)
System 573 (700A01, 700B01 if ASIC revision bit = 1):
 0C80h Two 2MB banks (four 512Kx8 chips each) on /RAS0 and /RAS1 respectively
 (correctly set as 4MB)
System 573 (700B01 if ASIC revision bit = 0):
 4788h Two 4MB banks on /RAS0 and /RAS1 respectively
 (probably an incorrect setting for the two alternate 1Mx16 RAM
 footprints on revision D of the PCB, labeled "DR16M16")

 0 LOCK Enable cache lock mode (when COP0_SR.IsC=1)
 1 INV Enable cache invalidation mode (when COP0_SR.IsC=1)
 2 TAG Enable cache tag test mode (when COP0_SR.IsC=1, used to flush i-
cache)
 3 RAM Enable cache scratchpad mode (usually 1, broken - see note)

18. Memory Control

- 717/1136 -

Documented in chapter 14 of the datasheet for LSI's L64360, which specifically states it

"includes the LR33300 Family Control Registers described in the CW33300 manual".

Used primarily by the BIOS to flush the i-cache in combination with the COP0 status

register, like so:

At least one game (TOCA World Touring Cars, SLES-02572) flushes the cache using

custom code running from uncached RAM (KSEG1) instead of calling the BIOS function

described above. It follows a slightly different sequence:

 4-5 DBLKSZ Data cache refill size (usually 0, broken - see note)
 6 - Always 0 (R)
 7 DS Enable data cache (usually 1, disables scratchpad when
0)
 8-9 IBLKSZ Instruction cache refill size (0=2 words, 1=4 words/default,
2-3=invalid/crash)
 10 IS0 Always 0 (R) (supposedly "Enable instruction cache
set 0")
 11 IS1 Enable instruction cache
 12 INTP Supposedly "Interrupt polarity" (usually 0)
 13 RDPRI Supposedly "Enable read priority" (usually 1)
 14 NOPAD Supposedly "No wait state" (usually 1)
 15 BGNT Supposedly "Enable bus grant" (usually 1)
 16 LDSCH Supposedly "Enable load scheduling" (usually 1)
 17 NOSTR Supposedly "No streaming" (usually 0)
 18-31 - Reserved (R/W)

uint32_t sr = COP0_SR;

BCC = TAG | IS1;
COP0_SR = IsC;

for (int i = 0; i < 0x1000; i += 16) // Clear tags (one for each 4-word line)
*((volatile uint32_t *) i) = 0;

COP0_SR = 0;
BCC = IS1;
COP0_SR = IsC;

for (int i = 0; i < 0x1000; i += 4) // Clear cache lines
*((volatile uint32_t *) i) = 0;

for (int i = 0; i < 8; i++) // Wait by reading dummy words from uncached RAM?
*((volatile uint32_t *) 0xa0000000);

COP0_SR = 0;
BCC = RAM | DS | IBLKSZ_4 | IS1 | RDPRI | NOPAD | BGNT | LDSCH;
COP0_SR = sr;

uint32_t bcc = BCC, sr = COP0_SR;

COP0_SR = 0;

18. Memory Control

- 718/1136 -

A usable version of this code is available.

Bit 3 may be cleared to unmap the scratchpad from memory and use it as a data cache

instead, however doing so will result in erratic behavior due to it not being equipped with

tag memory; each cache line's "tag" seems to be hardcoded to its respective scratchpad

address instead. With bit 3 cleared, data in the scratchpad will be updated during CPU

loads but no cache hits will ever occur.

Bits 4-5 seem to have no effect whatsoever. The CPU will always fetch one word at a time

from RAM, rather than attempting to prefetch an entire line using a burst read (as it does

with the i-cache).

BCC = (BCC & ~(LOCK | INV | DS | IS0)) | TAG | IS1;
COP0_SR = IsC;

for (int i = 0; i < 0x1000; i += 16) // Clear tags (one for each 4-word line)
*((volatile uint32_t *) i) = 0;

COP0_SR = 0;
BCC = bcc;
COP0_SR = sr;

18. Memory Control

- 719/1136 -

https://github.com/pcsx-redux/nugget/blob/main/common/hardware/flushcache.s

19. Unpredictable Things

Normally, I/O ports should be accessed only at their corresponding size (ie. 16bit read/

write for 16bit ports), and of course, only existing memory and I/O addresses should be

used. When not recursing that rules, some more or less (un-)predictable things may

happen...

I/O Write Datasize

Whereas,

 Address Content W.8bit W.16bit W.32bit
 00000000h-00xFFFFFh Main RAM OK OK OK
 1F800000h-1F8003FFh Scratchpad OK OK OK
 1F801000h-1F801023h MEMCTRL (w32) (w32) OK
 1F80104xh JOY_xxx (w16) OK CROP
 1F80105xh SIO_xxx (w16) OK CROP
 1F801060h-1F801063h RAM_SIZE (w32) (w32) OK (with crash)
 1F801070h-1F801077h IRQCTRL (w32) (w32) OK
 1F8010x0h-1F8010x3h DMAx.ADDR (w32) (w32) OK
 1F8010x4h-1F8010x7h DMAx.LEN OK OK OK
 1F8010x8h-1F8010xFh DMAx.CTRL/MIRR (w32) (w32) OK
 1F8010F0h-1F8010F7h DMA.DPCR/DICR (w32) (w32) OK
 1F8010F8h-1F8010FFh DMA.unknown IGNORE IGNORE IGNORE
 1F801100h-1F80110Bh Timer 0 (w32) (w32) OK
 1F801110h-1F80111Bh Timer 1 (w32) (w32) OK
 1F801120h-1F80112Bh Timer 2 (w32) (w32) OK
 1F801800h-1F801803h CDROM OK ? ?
 1F801810h-1F801813h GPU.GP0 ? ? OK
 1F801814h-1F801817h GPU.GP1 ? ? OK
 1F801820h-1F801823h MDEC.CMD/DTA ? ? OK
 1F801824h-1F801827h MDEC.CTRL ? ? OK
 1F801C00h-1F801E7Fh SPU (i16) OK OK
 1F801E80h-1F801FFFh SPU.UNUSED IGNORE IGNORE IGNORE
 1F802020h-1F80202Fh DUART OK ? ?
 1F802041h POST OK ? ?
 FFFE0130h-FFFE0133h CACHE.CTRL (i32) (i32) OK

 OK works
 (w32) write full 32bits (left-shifted if address isn't word-aligned)
 (w16) write full 16bits (left-shifted if address isn't halfword-aligned)
 (i32) write full 32bits (ignored if address isn't word-aligned)
 (i16) write full 16bits (ignored if address isn't halfword-aligned)
 CROP write only lower 16bit (and leave upper 16bit unchanged)

19. Unpredictable Things

- 720/1136 -

It's somewhat "legit" to use 16bit writes on 16bit registers like RAM_SIZE, I_STAT,

I_MASK, and Timer 0-2.

Non-4-byte aligned 8bit/16bit writes to RAM_SIZE do crash (probably because the

"(w32)" effect is left-shifting the value, so lower 8bit become zero).

Results on unaligned I/O port writes (via SWL/SWR opcodes) are unknown.

I/O Read Datasize

In most cases, I/O ports can be read in 8bit, 16bit, or 32bit units, regardless of their

size, among others allowing to read two 16bit ports at once with a single 32bit read. If

there's only one 16bit port within a 32bit region, then 32bit reads often return garbage

in the unused 16bits. Also, 8bit or 16bit VRAM data reads via GPUREAD probably won't

work? Expansion 2 Region can be accessed only via 8bit reads, and 16bit/32bit reads

seem to cause exceptions (or rather: no such exception!) (except, probably 16bit reads

are allowed when the region is configured to 16bit databus width).

There are at least some special cases:

I/O Write Datasize

Performing a 8-bit or 16-bit write (sb / sh) will place the entirety of the GPR on the

bus, regardless of the write size. Therefore, the data is not masked. This has an effect

when performing a narrower write to a wider address, for example the DMA controller,

but not others such as the CD-ROM controller.

Emulators should therefore treat all access widths as having 32 bits of data, but

depending on the device perform masking/splitting (see Memory Control).

The CD audio visualizer (aka Soundscope) in the SCPH-7xxx series of consoles is an

example of where this behavior is required, as it issues halfword writes to the DMA

controller addresses.

Cache Problems

The functionality of the Cache is still widely unknown. Not sure if DMA transfers are

updating or invalidating cache. Cached Data within KSEG0 should be automatically also

cached at the corresponding mirrored address in KUSEG and vice versa. Mirrors within

KSEG1 (or within KUSEG) may be a different thing, eg. when using addresses spead

 FFFE0130h-FFFE0133h 8bit (+16bit?) read works ONLY from word-aligned address

19. Unpredictable Things

- 721/1136 -

across the first 8MB region to access the 2MB RAM. Same problems may occor for

Expansion and BIOS mirrors, although, not sure if that regions are cached.

Writebuffer Problems

The writebuffer seems to be disabled for the normal I/O area at 1F801000h, however, it

appears to be enabled for the Expansion I/O region at 1F802000h (after writing to

1F802041h, the BIOS issues 4 dummy writes to RAM, apparently (?) in order to flush

the writebuffer). The same might apply for Expansion Memory region at 1F000000h,

although usually that region would contain ROM, so it'd be don't care whether it is write-

buffered or not.

CPU Load/Store Problems

XXcpuREG ---> applies ONLY to LOAD (not to store)

Memory read/write opcodes take a 1-cycle delay until the data arrives at the

destination, ie. the next opcode should not use the destination register (or more

unlikely, the destination memory location) as source operand. Usually, when trying to do

so, the second opcode would receive the OLD value - however, if an exception occurs

between the two opcodes, then the read/write operation may finish, and the second

opcode would probably receive the NEW value.

CPU Register Problems - R1 (AT), R26 (K0), R29 (SP)

Exception handlers cannot preserve all registers, before returning, they must load the

return address into a general purpose register (conventionally R26 aka K0), so be

careful not to use that register, unless you are 100% sure that no interrupts and no

other exceptions can occur. Some exception handlers might also destroy R27 aka K1

(though execption handler in the PSX Kernel leaves that register unchanged).

Some assemblers (not a22i in nocash syntax mode) are internally using R1 aka AT as

scratch register for some pseudo opcodes, including for a "sw rx,imm32" pseudo opcode

(which is nearly impossible to separate from the normal "sw rx,imm16" opcode), be

careful not to use R1, unless you can trust your assembler not to destroy that register

behind your back.

The PSX Kernel uses "Full-Decrementing-Wasted-Stack", where "Wasted" means that

when calling a sub-function with N parameters, then the caller must pre-allocate N

works on stack, and the sub-function may freely use and destroy these words; at

[SP+0..N*4-1].

19. Unpredictable Things

- 722/1136 -

Locked Locations in Memory and I/O Area

Trying to access these locations generates an exception. For KSEG0 and KSEG1, locked

regions are same as for first 512MB of KUSEG.

Mirrors in I/O Area

Read/writeable mirrors of DMA Control registers at 1F801088h+N*10h.

Garbage Locations in I/O Area

 00800000h ;-when Main RAM configured to end at 7FFFFFh
 1F080000h 780000h ;-when Expansion 1 configured to end at 7FFFFh
 1F800400h C00h ;-region after Scratchpad
 1F801024h 1Ch ;\
 1F801064h 0Ch ;
 1F801078h 08h ;
 1F801140h 6C0h ; gaps in I/O region
 1F801804h 0Ch ;
 1F801818h 08h ;
 1F801828h 3D8h ;/
 1F802080h 3FDF80h ;-when Expansion 2 configured to end at 7Fh
 1FC80000h 60380000h ;-when BIOS ROM configured to end at 7FFFFh
 C0000000h 1FFE0000h ;\
 FFFE0020h E0h ; gaps in KSEG2 (cache control region)
 FFFE0140h 1FEC0h ;/

 1F80108Ch+N*10h - D#_CHCR Mirrors - (N=0..6, for DMA channel 0..6)

 1F801062h (2 bytes) ;\
 1F801072h (2 bytes) ; unused addresses in Memory and Interrupt Control area
 1F801076h (2 bytes) ;/
 1F801102h (2 bytes) ;\
 1F801106h (2 bytes) ; unused addresses in Timer 0 area
 1F80110Ah (6 bytes) ;/
 1F801112h (2 bytes) ;\
 1F801116h (2 bytes) ; unused addresses in Timer 1 area
 1F80111Ah (6 bytes) ;/
 1F801122h (2 bytes) ;\
 1F801126h (2 bytes) ; unused addresses in Timer 2 area and next some bytes
 1F80112Ah (22 bytes) ;/
 1F801820h (4 bytes) ;-read MDEC Data-Out port (if there is no data)
 FFFE0000h (32 bytes) ;\
 FFFE0100h (48 bytes) ; unused addresses in Cache control area
 FFFE0132h (2 bytes) ; (including write-only upper 16bit of Port FFFE0130h)
 FFFE0134h (12 bytes) ;/

19. Unpredictable Things

- 723/1136 -

Unlike all other unused I/O addresses, these addresses are unlocked (ie. they do not

trigger exceptions on access), however they do not seem to contain anything useful. The

BIOS never seems to use them. Writing any values to them seems to have no effect. And

reading acts somewhat unstable:

Usually returns zeros in most cases. Except that, the first byte on a 10h-byte boundary

often returns the lower 8bit of the memory address (eg. [FFFE0010h]=10h). And, when

[FFFE0130h].Bit11=0, then reading from these registers does return the 32bit opcode

that is to be executed next (or at some locations, the opcode thereafter).

PSX as Abbreviation for Playstation 1

In gaming and programming scene, "PSX" is most commonly used as abbreviation for

the original Playstation series (occasionally including PSone). Sony has never officially

used that abbreviation, however, the Playstation BIOS contains the ASCII strings "PSX"

and "PS-X" here and there. The letters "PS" are widely believed to stand for PlayStation,

and the meaning of the "X" is totally unknown (although, actually it may stand for

POSIX.1, see below).

PSX as Abbreviation for POSIX.1

According to JMI Software Systems, "PSX" is a trademark of themselves, and stands for

"single-user, single-group, subset of POSIX.1" (POSIX stands for something commonly

used by HLL programmers under UNIX or so). That "PSX" kernel from JMI is available for

various processors, including MIPS processors, and like the playstation, it does include

functions like "atoi", and does support TTY access via Signetics 2681 DUART chips. The

DTL-H2000 does also have POSIX-style "PSX>" prompt. So, altogether, it's quite possible

that Sony has licensed the kernel from JMI.

PSX as Abbreviation for an Extended Playstation 2

As everybody agrees, PSX should be used only as abbreviation for Playstation 1, and

nobody should never ever use it for the Playstation 2. Well, nobody, except Sony...

despite of the common use as abbreviation for Playstation 1 (and despite of the JMI

trademark)... in 2003, Sony has have released a "Playstation 2 with built-in HDD/DVD

Videorecorder" and called that thing "PSX" for the best of confusion.

19. Unpredictable Things

- 724/1136 -

20. CPU Specifications

CPU

CPU Registers

CPU Opcode Encoding

CPU Load/Store Opcodes

CPU ALU Opcodes

CPU Jump Opcodes

CPU Coprocessor Opcodes

CPU Pseudo Opcodes

System Control Coprocessor (COP0)

COP0 - Register Summary

COP0 - Exception Handling

COP0 - Misc

COP0 - Debug Registers

20.1 CPU Registers

All registers are 32bit wide.

 Name Alias Common Usage
 R0 zero Constant (always 0)
 R1 at Assembler temporary (destroyed by some assembler
pseudoinstructions!)
 R2-R3 v0-v1 Subroutine return values, may be changed by subroutines
 R4-R7 a0-a3 Subroutine arguments, may be changed by subroutines
 R8-R15 t0-t7 Temporaries, may be changed by subroutines
 R16-R23 s0-s7 Static variables, must be saved by subs
 R24-R25 t8-t9 Temporaries, may be changed by subroutines
 R26-R27 k0-k1 Reserved for kernel (destroyed by some IRQ handlers!)
 R28 gp Global pointer (rarely used)
 R29 sp Stack pointer
 R30 fp(s8) Frame Pointer, or 9th Static variable, must be saved
 R31 ra Return address (used so by JAL,BLTZAL,BGEZAL opcodes)
 - pc Program counter
 - hi,lo Multiply/divide results, may be changed by subroutines

20. CPU Specifications

- 725/1136 -

R0 is always zero.

R31 can be used as general purpose register, however, some opcodes are using it to store

the return address: JAL, BLTZAL, BGEZAL. (Note: JALR can optionally store the return

address in R31, or in R1..R30. Exceptions store the return address in cop0r14 - EPC).

R29 (SP) - Full Decrementing Wasted Stack Pointer

The CPU doesn't explicitly have stack-related registers or opcodes, however,

conventionally, R29 is used as stack pointer (SP). The stack can be accessed with

normal load/store opcodes, which do not automatically increase/decrease SP, so the SP

register must be manually modified to (de-)allocate data.

The PSX BIOS is using "Full Decrementing Wasted Stack".

Decrementing means that SP gets decremented when allocating data (that's common for

most CPUs) - Full means that SP points to the first ALLOCATED word on the stack, so

the allocated memory is at SP+0 and above, free memory at SP-1 and below, Wasted

means that when calling a sub-function with N parameters, then the caller must pre-

allocate N works on stack, and the sub-function may freely use and destroy these

words; at [SP+0..N*4-1].

For example, "push ra,r16,r17" would be implemented as:

where the allocated 20h bytes have the following purpose:

20.2 CPU Opcode Encoding

Primary opcode field (Bit 26..31)

 sub sp,20h
 mov [sp+14h],ra
 mov [sp+18h],r16
 mov [sp+1Ch],r17

 [sp+00h..0Fh] wasted stack (may, or may not, be used by sub-functions)
 [sp+10h..13h] 8-byte alignment padding (not used)
 [sp+14h..1Fh] pushed registers

 00h=SPECIAL 08h=ADDI 10h=COP0 18h=N/A 20h=LB 28h=SB 30h=LWC0 38h=SWC0
 01h=BcondZ 09h=ADDIU 11h=COP1 19h=N/A 21h=LH 29h=SH 31h=LWC1 39h=SWC1
 02h=J 0Ah=SLTI 12h=COP2 1Ah=N/A 22h=LWL 2Ah=SWL 32h=LWC2 3Ah=SWC2
 03h=JAL 0Bh=SLTIU 13h=COP3 1Bh=N/A 23h=LW 2Bh=SW 33h=LWC3 3Bh=SWC3
 04h=BEQ 0Ch=ANDI 14h=N/A 1Ch=N/A 24h=LBU 2Ch=N/A 34h=N/A 3Ch=N/A
 05h=BNE 0Dh=ORI 15h=N/A 1Dh=N/A 25h=LHU 2Dh=N/A 35h=N/A 3Dh=N/A

20.2 CPU Opcode Encoding

- 726/1136 -

Secondary opcode field (Bit 0..5) (when Primary opcode = 00h)

Opcode/Parameter Encoding

Coprocessor Opcode/Parameter Encoding

 06h=BLEZ 0Eh=XORI 16h=N/A 1Eh=N/A 26h=LWR 2Eh=SWR 36h=N/A 3Eh=N/A
 07h=BGTZ 0Fh=LUI 17h=N/A 1Fh=N/A 27h=N/A 2Fh=N/A 37h=N/A 3Fh=N/A

 00h=SLL 08h=JR 10h=MFHI 18h=MULT 20h=ADD 28h=N/A 30h=N/A 38h=N/A
 01h=N/A 09h=JALR 11h=MTHI 19h=MULTU 21h=ADDU 29h=N/A 31h=N/A 39h=N/A
 02h=SRL 0Ah=N/A 12h=MFLO 1Ah=DIV 22h=SUB 2Ah=SLT 32h=N/A 3Ah=N/A
 03h=SRA 0Bh=N/A 13h=MTLO 1Bh=DIVU 23h=SUBU 2Bh=SLTU 33h=N/A 3Bh=N/A
 04h=SLLV 0Ch=SYSCALL 14h=N/A 1Ch=N/A 24h=AND 2Ch=N/A 34h=N/A 3Ch=N/A
 05h=N/A 0Dh=BREAK 15h=N/A 1Dh=N/A 25h=OR 2Dh=N/A 35h=N/A 3Dh=N/A
 06h=SRLV 0Eh=N/A 16h=N/A 1Eh=N/A 26h=XOR 2Eh=N/A 36h=N/A 3Eh=N/A
 07h=SRAV 0Fh=N/A 17h=N/A 1Fh=N/A 27h=NOR 2Fh=N/A 37h=N/A 3Fh=N/A

 31..26 |25..21|20..16|15..11|10..6 | 5..0 |
 6bit | 5bit | 5bit | 5bit | 5bit | 6bit |
 -------+------+------+------+------+--------+------------
 000000 | N/A | rt | rd | imm5 | 0000xx | shift-imm
 000000 | rs | rt | rd | N/A | 0001xx | shift-reg
 000000 | rs | N/A | N/A | N/A | 001000 | jr
 000000 | rs | N/A | rd | N/A | 001001 | jalr
 000000 | <-----comment20bit------> | 00110x | sys/brk
 000000 | N/A | N/A | rd | N/A | 0100x0 | mfhi/mflo
 000000 | rs | N/A | N/A | N/A | 0100x1 | mthi/mtlo
 000000 | rs | rt | N/A | N/A | 0110xx | mul/div
 000000 | rs | rt | rd | N/A | 10xxxx | alu-reg
 000001 | rs | 00000| <--immediate16bit--> | bltz
 000001 | rs | 00001| <--immediate16bit--> | bgez
 000001 | rs | 10000| <--immediate16bit--> | bltzal
 000001 | rs | 10001| <--immediate16bit--> | bgezal
 00001x | <---------immediate26bit---------> | j/jal
 00010x | rs | rt | <--immediate16bit--> | beq/bne
 00011x | rs | N/A | <--immediate16bit--> | blez/bgtz
 001xxx | rs | rt | <--immediate16bit--> | alu-imm
 001111 | N/A | rt | <--immediate16bit--> | lui-imm
 100xxx | rs | rt | <--immediate16bit--> | load rt,[rs+imm]
 101xxx | rs | rt | <--immediate16bit--> | store rt,[rs+imm]
 x1xxxx | <------coprocessor specific------> | coprocessor (see below)

 31..26 |25..21|20..16|15..11|10..6 | 5..0 |
 6bit | 5bit | 5bit | 5bit | 5bit | 6bit |
 -------+------+------+------+------+--------+------------
 0100nn |0|0000| rt | rd | N/A | 000000 | MFCn rt,rd_dat ;rt = dat
 0100nn |0|0010| rt | rd | N/A | 000000 | CFCn rt,rd_cnt ;rt = cnt
 0100nn |0|0100| rt | rd | N/A | 000000 | MTCn rt,rd_dat ;dat = rt

20.2 CPU Opcode Encoding

- 727/1136 -

Illegal Opcodes

All opcodes that are marked as "N/A" in the Primary and Secondary opcode tables are

causing a Reserved Instruction Exception (excode=0Ah).

The unused operand bits (eg. Bit21-25 for LUI opcode) should be usually zero, but do

not necessarily trigger exceptions if set to nonzero values.

20.3 CPU Load/Store Opcodes

Load instructions

Load instructions can read from the data cache (if the data is not in the cache, or if the

memory region is uncached, then the CPU gets halted until it has read the data)

(however, the PSX doesn't have a data cache).

Load and store instructions can generate address error exceptions if the memory address

is not properly aligned (To a halfword boundary for lh/lhu/sh or a word boundary for lw/

sw. lwl/lwr/swl/swr can't access misaligned address as they force align the memory

address). Additionally, accessing certain invalid memory locations will cause a bus error

exception. If an exception occurs during a load instruction, the rt register is left

untouched.

 0100nn |0|0110| rt | rd | N/A | 000000 | CTCn rt,rd_cnt ;cnt = rt
 0100nn |0|1000|00000 | <--immediate16bit--> | BCnF target ;jump if false
 0100nn |0|1000|00001 | <--immediate16bit--> | BCnT target ;jump if true
 0100nn |1| <--------immediate25bit--------> | COPn imm25
 010000 |1|0000| N/A | N/A | N/A | 000001 | COP0 01h ;=TLBR, unused on PS1
 010000 |1|0000| N/A | N/A | N/A | 000010 | COP0 02h ;=TLBWI, unused on PS1
 010000 |1|0000| N/A | N/A | N/A | 000110 | COP0 06h ;=TLBWR, unused on PS1
 010000 |1|0000| N/A | N/A | N/A | 001000 | COP0 08h ;=TLBP, unused on PS1
 010000 |1|0000| N/A | N/A | N/A | 010000 | COP0 10h ;=RFE
 1100nn | rs | rt | <--immediate16bit--> | LWCn rt_dat,[rs+imm]
 1110nn | rs | rt | <--immediate16bit--> | SWCn rt_dat,[rs+imm]

 lb rt,imm(rs) rt=[imm+rs] ;byte sign-extended
 lbu rt,imm(rs) rt=[imm+rs] ;byte zero-extended
 lh rt,imm(rs) rt=[imm+rs] ;halfword sign-extended
 lhu rt,imm(rs) rt=[imm+rs] ;halfword zero-extended
 lw rt,imm(rs) rt=[imm+rs] ;word

20.3 CPU Load/Store Opcodes

- 728/1136 -

Caution - Load Delay

The loaded data is NOT available to the next opcode, ie. the target register isn't updated

until the next opcode has completed. So, if the next opcode tries to read from the load

destination register, then it would (usually) receive the OLD value of that register

(unless an IRQ occurs between the load and next opcode, in that case the load would

complete during IRQ handling, and so, the next opcode would receive the NEW value).

MFC2/CFC2 also have a 1-instruction delay until the target register is loaded with its

new value (more info in the GTE section).

Store instructions

Store operations are passed to the write-queue, so they can execute within a single clock

cycle (unless the write-queue was full, in that case the CPU gets halted until there's room

in the queue). For more information on the write-queue, visit this page.

Caution - 8/16-bit writes to certain IO registers

During an 8-bit or 16-bit store, all 32 bits of the GPR are placed on the bus. As such,

when writing to certain 32-bit IO registers with an 8 or 16-bit store, it will behave like a

32-bit store, using the register's full value. The soundscope on some shells is known to

rely on this, as it uses sh to write to certain DMA registers. If this is not properly

emulated, the soundscope will hang, waiting for an interrupt that will never be fired.

Load/Store Alignment

Halfword addresses must be aligned by 2, word addresses must be aligned by 4, trying

to access mis-aligned addresses will cause an exception. There's no alignment restriction

for bytes.

Unaligned Load/Store

 sb rt,imm(rs) [imm+rs]=(rt AND FFh) ;store 8bit
 sh rt,imm(rs) [imm+rs]=(rt AND FFFFh) ;store 16bit
 sw rt,imm(rs) [imm+rs]=rt ;store 32bit

 lwr rt,imm(rs) load right bits of rt from memory (usually imm+0)
 lwl rt,imm(rs) load left bits of rt from memory (usually imm+3)
 swr rt,imm(rs) store right bits of rt to memory (usually imm+0)
 swl rt,imm(rs) store left bits of rt to memory (usually imm+3)

20.3 CPU Load/Store Opcodes

- 729/1136 -

https://psx-spx.consoledev.net/memorymap/#write-queue

There's no delay required between lwl and lwr, so you can use them directly following

eachother, eg. to load a word anywhere in memory without regard to alignment:

Unaligned Load/Store (Details)

LWR/SWR transfers the right (=lower) bits of Rt, up-to 32bit memory boundary:

LWL/SWL transfers the left (=upper) bits of Rt, down-to 32bit memory boundary:

The CPU has four separate byte-access signals, so, within a 32bit location, it can transfer

all fragments of Rt at once (including for odd 24bit amounts). The transferred data is not

zero- or sign-expanded, eg. when transferring 8bit data, the other 24bit of Rt and [mem]

will remain intact.

Note: The aligned variant can also misused for blocking memory access on aligned

addresses (in that case, if the address is known to be aligned, only one of the opcodes

are needed, either LWL or LWR).... Uhhhhhhhm, OR is that NOT allowed... more

PROBABLY that doesn't work?

20.4 CPU ALU Opcodes

arithmetic instructions

 lwl r2,$0003(t0) ;\no delay required between these
 lwr r2,$0000(t0) ;/(although both access r2)
 nop ;-requires load delay HERE (before reading from r2)
 and r2,r2,0ffffh ;-access r2 (eg. reducing it to unaligned 16bit data)

 lwr/swr [N*4+0] transfer whole 32bit of Rt to/from [N*4+0..3]
 lwr/swr [N*4+1] transfer lower 24bit of Rt to/from [N*4+1..3]
 lwr/swr [N*4+2] transfer lower 16bit of Rt to/from [N*4+2..3]
 lwr/swr [N*4+3] transfer lower 8bit of Rt to/from [N*4+3]

 lwl/swl [N*4+0] transfer upper 8bit of Rt to/from [N*4+0]
 lwl/swl [N*4+1] transfer upper 16bit of Rt to/from [N*4+0..1]
 lwl/swl [N*4+2] transfer upper 24bit of Rt to/from [N*4+0..2]
 lwl/swl [N*4+3] transfer whole 32bit of Rt to/from [N*4+0..3]

 add rd,rs,rt rd=rs+rt (with overflow trap)
 addu rd,rs,rt rd=rs+rt
 sub rd,rs,rt rd=rs-rt (with overflow trap)
 subu rd,rs,rt rd=rs-rt

20.4 CPU ALU Opcodes

- 730/1136 -

The opcodes "with overflow trap" do trigger an exception (and leave rd unchanged) in

case of overflows.

comparison instructions

logical instructions

shifting instructions

Unlike many other opcodes, shifts use 'rt' as second (not third) operand.

The hardware does NOT generate exceptions on SHL overflows.

Multiply/divide

 addi rt,rs,imm rt=rs+(-8000h..+7FFFh) (with ov.trap)
 addiu rt,rs,imm rt=rs+(-8000h..+7FFFh)

 slt rd,rs,rt if rs<rt (signed comparison) then rd=1 else rd=0
 sltu rd,rs,rt if rs<rt (unsigned comparison) then rd=1 else rd=0
 slti rt,rs,imm if rs<(sign-extended immediate in range [-8000h..+7FFFh], signed
comparison) then rt=1 else rt=0
 sltiu rt,rs,imm if rs<(sign-extended immediate in range [0..7FFFh] U
[FFFF8000h..FFFFFFFFh], unsigned comparison) then rt=1 else rt=0

 and rd,rs,rt rd = rs AND rt
 or rd,rs,rt rd = rs OR rt
 xor rd,rs,rt rd = rs XOR rt
 nor rd,rs,rt rd = FFFFFFFFh XOR (rs OR rt)
 andi rt,rs,imm rt = rs AND (0000h..FFFFh)
 ori rt,rs,imm rt = rs OR (0000h..FFFFh)
 xori rt,rs,imm rt = rs XOR (0000h..FFFFh)

 sllv rd,rt,rs rd = rt SHL (rs AND 1Fh)
 srlv rd,rt,rs rd = rt SHR (rs AND 1Fh)
 srav rd,rt,rs rd = rt SAR (rs AND 1Fh)
 sll rd,rt,imm rd = rt SHL (00h..1Fh)
 srl rd,rt,imm rd = rt SHR (00h..1Fh)
 sra rd,rt,imm rd = rt SAR (00h..1Fh)
 lui rt,imm rt = (0000h..FFFFh) SHL 16

 mult rs,rt hi:lo = rs*rt (signed)
 multu rs,rt hi:lo = rs*rt (unsigned)
 div rs,rt lo = rs/rt, hi=rs mod rt (signed)
 divu rs,rt lo = rs/rt, hi=rs mod rt (unsigned)
 mfhi rd rd=hi ;move from hi
 mflo rd rd=lo ;move from lo

20.4 CPU ALU Opcodes

- 731/1136 -

The mul/div opcodes are starting the multiply/divide operation, starting takes only a

single clock cycle, however, trying to read the result from the hi/lo registers while the

mul/div operation is busy will halt the CPU until the mul/div has completed. For multiply,

the execution time depends on rs (ie. "small*large" can be much faster than

"large*small").

For example, when executing "multu 123h,12345678h" and "mflo r1", one can insert up

to six (cached) ALU opcodes, or read one value from PSX Main RAM (which has 6 cycle

access time) between the "multu" and "mflo" opcodes without additional slowdown.

The hardware does NOT generate exceptions on divide overflows, instead, divide errors

are returning the following values:

For divu, the result is more or less correct (as close to infinite as possible). For div, the

results are total garbage (about furthest away from the desired result as possible).

Note: After accessing the lo/hi registers, there seems to be a strange rule that one should

not touch the lo/hi registers in the next 2 cycles or so... not yet understood if/when/how

that rule applies...?

 mthi rs hi=rs ;move to hi
 mtlo rs lo=rs ;move to lo

 __multu_execution_time___
 Fast (6 cycles) rs = 00000000h..000007FFh
 Med (9 cycles) rs = 00000800h..000FFFFFh
 Slow (13 cycles) rs = 00100000h..FFFFFFFFh
 __mult_execution_time___
 Fast (6 cycles) rs = 00000000h..000007FFh, or rs = FFFFF800h..FFFFFFFFh
 Med (9 cycles) rs = 00000800h..000FFFFFh, or rs = FFF00000h..FFFFF801h
 Slow (13 cycles) rs = 00100000h..7FFFFFFFh, or rs = 80000000h..FFF00001h
 __divu/div_execution_time__
 Fixed (36 cycles) no matter of rs and rt values

 Opcode Rs Rt Hi/Remainder Lo/Result
 divu 0..FFFFFFFFh 0 --> Rs FFFFFFFFh
 div 0..+7FFFFFFFh 0 --> Rs -1
 div -80000000h..-1 0 --> Rs +1
 div -80000000h -1 --> 0 -80000000h

20.4 CPU ALU Opcodes

- 732/1136 -

20.5 CPU Jump Opcodes

jumps and branches

Note that the instruction following the branch will always be executed.

jr/jalr can be used to jump to an unaligned address, in which case an address error

(AdEL) exception will be raised on the next instruction fetch.

Additionally, bltzal/bgezal will always place the return address in $ra, whether or not the

branch is taken. Additionally, if rs is $ra, then the value used for the comparison is

$ra's value before linking.

JALR cautions

Caution: The JALR source code syntax varies (IDT79R3041 specs say "jalr rs,rd", but

MIPS32 specs say "jalr rd,rs"). Moreover, JALR may not use the same register for both

operands (eg. "jalr r31,r31") (doing so would destroy the target address; which is

normally no problem, but it can be a problem if an IRQ occurs between the JALR opcode

and the following branch delay opcode; in that case BD gets set, and EPC points "back"

to the JALR opcode, so JALR is executed twice, with destroyed target address in second

execution).

exception opcodes

Unlike for jump/branch opcodes, exception opcodes are immediately executed (ie.

without executing the following opcode).

 j dest pc=(pc and F0000000h)+(imm26bit*4)
 jal dest pc=(pc and F0000000h)+(imm26bit*4),ra=$+8
 jr rs pc=rs
 jalr (rd,)rs(,rd) pc=rs, rd=$+8 ;see caution
 beq rs,rt,dest if rs=rt then pc=$+4+(-8000h..+7FFFh)*4
 bne rs,rt,dest if rs<>rt then pc=$+4+(-8000h..+7FFFh)*4
 bltz rs,dest if rs<0 then pc=$+4+(-8000h..+7FFFh)*4
 bgez rs,dest if rs>=0 then pc=$+4+(-8000h..+7FFFh)*4
 bgtz rs,dest if rs>0 then pc=$+4+(-8000h..+7FFFh)*4
 blez rs,dest if rs<=0 then pc=$+4+(-8000h..+7FFFh)*4
 bltzal rs,dest if rs<0 then pc=$+4+(..)*4; ra=$+8;
 bgezal rs,dest if rs>=0 then pc=$+4+(..)*4; ra=$+8;

 syscall imm20 generates a system call exception
 break imm20 generates a breakpoint exception

20.5 CPU Jump Opcodes

- 733/1136 -

The 20bit immediate doesn't affect the CPU (however, the exception handler may

interprete it by software; by examing the opcode bits at [epc-4]).

20.6 CPU Coprocessor Opcodes

Coprocessor Instructions (COP0..COP3)

Unknown if any tlb-opcodes (tlbr,tlbwi,tlbwr,tlbp) are implemented in the psx hardware?

Caution - Load Delay

When reading from a coprocessor register, the next opcode cannot use the destination

register as operand (much the same as the Load Delays that occur when reading from

memory; see there for details).

Reportedly, the Load Delay applies for the next TWO opcodes after coprocessor reads,

but, that seems to be nonsense (the PSX does finish both COP0 and COP2 reads after

ONE opcode).

Caution - Store Delay

In some cases, a similar delay occurs when writing to a coprocessor register. COP0 is

more or less free of store delays (eg. one can read from a cop0 register immediately

after writing to it), the only known exception is the cop2 enable bit in cop0r12.bit30

(setting that cop0 bit acts delayed, and cop2 isn't actually enabled until after 2 clock

cycles or so).

Writing to cop2 registers has a delay of 2..3 clock cycles. In most cases, that is probably

(?) only 2 cycles, but special cases like writing to IRGB (which does additionally affect

IR1,IR2,IR3) take 3 cycles until the result arrives in all registers).

Note that Store Delays are counted in numbers of clock cycles (not in numbers of

 mfc# rt,rd ;rt = cop#datRd ;data regs
 cfc# rt,rd ;rt = cop#cntRd ;control regs
 mtc# rt,rd ;cop#datRd = rt ;data regs
 ctc# rt,rd ;cop#cntRd = rt ;control regs
 cop# imm25 ;exec cop# command 0..1FFFFFFh
 lwc# rt,imm(rs) ;cop#dat_rt = [rs+imm] ;word
 swc# rt,imm(rs) ;[rs+imm] = cop#dat_rt ;word
 bc#f dest ;if cop#flg=false then pc=$+disp
 bc#t dest ;if cop#flg=true then pc=$+disp
 rfe ;return from exception (COP0)
 tlb<xx> ;virtual memory related (COP0), unused in the PS1

20.6 CPU Coprocessor Opcodes

- 734/1136 -

opcodes). For 3 cycle delay, one must usually insert 3 cached opcodes (or one uncached

opcode).

20.7 CPU Pseudo Opcodes

Pseudo instructions (native/spasm)

Pseudo instructions (nocash/a22i, not present on most other assemblers)

 nop ;alias for sll r0,r0,0
 move rd,rs ;alias for addu rd,rs,r0
 la rx,imm32 ;load address (alias for lui rx / addiu rx)
 li rx,imm32 ;load immediate (alias for lui rx / ori rx)
 li rx,imm16 ;load immediate (alias for ori, range 0..FFFFh)
 li rx,-imm15 ;load immediate (alias for addiu, range -1..-8000h)
 li rx,imm16*10000h ;load immediate (alias for lui)
 lw rx,imm32 ;load from address (lui rx / lw rx,rx)
 sw rx,imm32 ;store to address (lui r1 / sw rx,r1) (destroys r1!)
 lb,lh,lwl,lwr,lbu,lhu;as above pseudo lw
 sb,sh,swl,swr ;as above pseudo sw (ie. also destroys r1!)
 alu rx,op ;alias for alu rx,rx,op
 alu(u) rx,rx,imm ;alias for alui(u) rx,rx,imm
 jalr rx ;alias for jalr (RA,)rx(,RA)
 subi(u) rt,rs,imm ;alias for addi(u) rt,rs,-imm
 beqz rx,dest ;alias for beq rx,r0,dest
 bnez rx,dest ;alias for bne rx,r0,dest
 b dest ;alias for beq r0,r0,dest (jump relative/spasm)
 bra dest ;alias for bgez r0, r0, dest
 bal dest ;alias for bgezal r0, r0, dest

 mov rx,NNNN0000h ;alias for lui rx,NNNNh
 mov rx,0000NNNNh ;alias for or rx,r0,NNNNh ;max +FFFFh
 mov rx,-imm15 ;alias for add rx,r0,-NNNNh ;min -8000h
 mov rx,ry ;alias for or rx,ry,0 (or "addiu")
 jrel dest ;alias for blez R0,dest ;relative jump
 crel dest ;alias for callns R0,dest ;relative call
 jz rx,dest ;alias for je rx,R0,dest
 jnz rx,dest ;alias for jne rx,R0,dest
 call rx ;alias for call rx,ret=RA
 ret ;alias for jmp ra
 subt rt,rs,imm ;alias for addt rt,rs,-imm
 sub rt,rs,imm ;alias for add rt,rs,-imm
 alu rx,op ;alias for alu rx,rx,op
 neg(t) rx,ry ;alias for sub(t) rx,R0,ry
 not rx,ry ;alias for nor rx,R0,ry
 neg(t)/not rx ;alias for neg(t)/not rx,rx
 setz rx,ry ;alias for setb rx,ry,1 (set if zero)

20.7 CPU Pseudo Opcodes

- 735/1136 -

Below are pseudo instructions combined of two 32bit opcodes...

Below are pseudo instructions combined of two or more 32bit opcodes...

Directives (nocash)

Directives (native)

 setnz rx,ry ;alias for setb rx,R0,ry (set if nonzero)
 syscall/break ;alias for syscall/break 000000h

 movp rx,imm32 ;alias for lui rx,imm16 -plus- or rx,rx,imm16)
 mov(bhs)p rx,[imm32] ;load from address (lui rx,imm16 / mov rx,[rx+imm16])
 movu [rs+imm] ;alias for lwr/swr [rs+imm] plus lwl/swl [rs+imm+3]
 reti ;alias for jmp k0 plus rfe

 push rlist ;alias for sub sp,n*4 -- mov [sp+(1..n)*4],r1..rn
 pop rlist ;alias for mov r1..rn,[sp+(1..n)*4] -- add sp,n*4
 pop pc,rlist ;alias for pop ra,rlist -- jmp ra

 .mips ;select MIPS instruction set (alternately .hc05 for MC68HC05)
 .bios ;create a .ROM file (instead of .EXE)
 .auto_nop ;append NOPs to jumps ;unless next opcode starts with a +
 org imm ;assume following code to be originated at address "imm"
 db n(,n(..))) ;define 8bit data values(s) or quoted ASCII strings
 dw n(,n(..))) ;define 16bit data values(s) (not 32bit data!)
 dd n(,n(..))) ;define 32bit data values(s)
 .align imm
 0 ;alias for immediate 0 and register R0 (whichever fits)

 org imm ;self-explaining (but, default=$80010000 for spasm!)
 align imm ;self-explaining (probably zeropadded?)
 db n(,n(..))) ;define 8bit data values(s) or quoted ASCII strings
 dh n(,n(..))) ;define 16bit data values(s)
 dw n(,n(..))) ;define 32bit data values(s) (not 16bit data!)
 dcb len,value ;fill <len> bytes by <value> (different as DCB on ARM CPUs)
 xyz ;define label "xyz" at current address (without colon)
 xyz equ n ;assign value n to xyz
 xyz = n ;probably same/sililar as "equ"
 ;xyz ;comments invoked with semicolon (spasm)
 incbin file.bin ;import binary file
 include file.asm ;import asm file
 zero ;alias for r0
 >imm32 ;alias for (i-(i AND 8000h))/10000h, and/or i/10000h ?
 <imm32 ;alias for (i AND 0FFFFh), used for SW(+/-) and ORI(+)?
 end ;N/A ;no "end" or ".end" directive needed/used by spasm
 r1 aka at ;N/A ;some assemblers may (optionally) reject to use r1/at

20.7 CPU Pseudo Opcodes

- 736/1136 -

Syntax for unknown assembler (for pad.s)

It uses "0x" for HEX values (but doesn't use "$" for registers).

It uses "#" instead of ";" for comments.

It uses ":" for labels (fortunately).

The assembler has at least one directive: ".byte" (equivalent to "db" on other

assemblers).

I've no clue which assembler is used for that syntax... could that be the Psy-Q

assembler?

20.8 COP0 - Register Summary

COP0 Register Summary

Number Mnemonic Name R/W

cop0r0-r2 N/A

cop0r3 BPC Breakpoint Program Counter R/W

cop0r4 N/A

cop0r5 BDA Breakpoint Data Address R/W

cop0r6 TAR Target Address R

cop0r7 DCIC Debug and Cache Invalidate Control R/W

cop0r8 BadA Bad Address R

cop0r9 BDAM Breakpoint Data Address Mask R/W

cop0r10 N/A

cop0r11 BPCM Breakpoint Program Counter Mask R/W

cop0r12 SR Status Register R/W

cop0r13 CAUSE Cause of the last exception R

cop0r14 EPC Exception Program Counter R

cop0r15 PRID Processor Revision Identifier R

cop0r16-r31 Garbage

cop0r32-r63 N/A Control regs

20.8 COP0 - Register Summary

- 737/1136 -

20.9 COP0 - Exception Handling

cop0r13 - CAUSE - (Read-only, except, Bit8-9 are R/W)

Describes the most recently recognised exception.

ExcCode values:

cop0r12 - SR - System status register (R/W)

Bits Mnemonic Description

0-1 Not used (zero)

2-6 ExcCode Describes what kind of exception occured (see below)

7 Not used (zero)

8-9 Sw Software Interrupts. Write to these bits to manually cause an exception. Clear them before returning from the exception handler.

10-15 IP Interrupt pending field. As long as any of the bits are set they will cause an interrupt if the corresponding bit is set in IM.

16-27 Not used (zero)

28-29 CE Contains the coprocessor number if the exception occurred because of a coprocessor instuction for a coprocessor which wasn't enabled in SR.

30 BT When BD is set, BT determines whether the branch is taken. The Target Address Register holds the return address.

31 BD Is set when EPC points to the branch instuction instead of the instruction in the branch delay slot, where the exception occurred.

Value Mnemonic Description

00h INT External Interrupt

01h MOD TLB modification (none such in PSX)

02h TLBL TLB load (none such in PSX)

03h TLBS TLB store (none such in PSX)

04h AdEL Address error, Data load or Instruction fetch

05h AdES Address error, Data store. The address errors occur when attempting to read outside of KUseg in user mode and when the address is misaligned. (See also: Bad Address register)

06h IBE Bus error on Instruction fetch

07h DBE Bus error on Data load/store

08h Sys Generated unconditionally by syscall instruction

09h Bp Breakpoint - break instruction

0Ah RI Reserved instruction

0Bh CpU Coprocessor unusable

0Ch Ovf Arithmetic overflow

0Dh-1Fh Not used

20.9 COP0 - Exception Handling

- 738/1136 -

cop0r14 - EPC - Return Address from Trap (R)

This register points to the address at which an exception occured, unless BD in CAUSE is

set, in which case EPC is set to the address of the exception - 4.

Interrupts should always return to EPC+0, no matter of the BD flag. That way, if BD=1,

the branch gets executed again, that's required because EPC stores only the current

program counter, but not additionally the branch destination address.

Other exceptions may require to handle BD. In simple cases, when BD=0, the exception

handler may return to EPC+0 (retry execution of the opcode), or to EPC+4 (skip the

 0 IEc Current Interrupt Enable (0=Disable, 1=Enable) ;rfe pops IUp here
 1 KUc Current Kernel/User Mode (0=Kernel, 1=User) ;rfe pops KUp here
 2 IEp Previous Interrupt Enable ;rfe pops IUo here
 3 KUp Previous Kernel/User Mode ;rfe pops KUo here
 4 IEo Old Interrupt Enable ;left unchanged by rfe
 5 KUo Old Kernel/User Mode ;left unchanged by rfe
 6-7 - Not used (zero)
 8-15 Im 8 bit interrupt mask fields. When set the corresponding
 interrupts are allowed to cause an exception.
 16 Isc Isolate Cache (0=No, 1=Isolate)
 When isolated, all load and store operations are targetted
 to the Data cache, and never the main memory.
 (Used by PSX Kernel, in combination with Port FFFE0130h)
 17 Swc Swapped cache mode (0=Normal, 1=Swapped)
 Instruction cache will act as Data cache and vice versa.
 Use only with Isc to access & invalidate Instr. cache entries.
 (Not used by PSX Kernel)
 18 PZ When set cache parity bits are written as 0.
 19 CM Shows the result of the last load operation with the D-cache
 isolated. It gets set if the cache really contained data
 for the addressed memory location.
 20 PE Cache parity error (Does not cause exception)
 21 TS TLB shutdown. Gets set if a programm address simultaneously
 matches 2 TLB entries.
 (initial value on reset allows to detect extended CPU version?)
 22 BEV Boot exception vectors in RAM/ROM (0=RAM/KSEG0, 1=ROM/KSEG1)
 23-24 - Not used (zero)
 25 RE Reverse endianness (0=Normal endianness, 1=Reverse endianness)
 Reverses the byte order in which data is stored in
 memory. (lo-hi -> hi-lo)
 (Affects only user mode, not kernel mode) (?)
 (The bit doesn't exist in PSX ?)
 26-27 - Not used (zero)
 28 CU0 COP0 Enable (0=Enable only in Kernel Mode, 1=Kernel and User Mode)
 29 CU1 COP1 Enable (0=Disable, 1=Enable) (none in PSX)
 30 CU2 COP2 Enable (0=Disable, 1=Enable) (GTE in PSX)
 31 CU3 COP3 Enable (0=Disable, 1=Enable) (none in PSX)

 0-31 Return Address from Exception

20.9 COP0 - Exception Handling

- 739/1136 -

opcode that caused the exception). Note that jumps to faulty memory locations are

executed without exception, but will trigger address errors and bus errors at the target

location, ie. EPC (and BadAddr, in case of address errors) point to the faulty address, not

to the opcode that has jumped to that address).

Interrupts vs GTE Commands

If an interrupt occurs "on" a GTE command (cop2cmd), then the GTE command is

executed, but nethertheless, the return address in EPC points to the GTE command. So,

if the exeception handler would return to EPC as usually, then the GTE command would

be executed twice. In best case, this would be a waste of clock cycles, in worst case it

may lead to faulty result (if the results from the 1st execution are re-used as incoming

parameters in the 2nd execution). To fix the problem, the exception handler must do:

Note: The above exception handling is working only in newer PSX BIOSes, but in very old

PSX BIOSes, it is only incompletely implemented (see "BIOS Patches" chapter for

common workarounds; or write your own exception handler without using the BIOS).

Of course, the above exeption handling won't work in branch delays (where BD gets set to

indicate that EPC was modified) (best workaround is not to use GTE commands in branch

delays).

Several games are known to rely on this, notably including the Crash Bandicoot trilogy,

Jinx and Spyro the Dragon, all of which will render broken geometry if running on an

emulator which doesn't emulate this, or if the installed interrupt service routine doesn't

account for it.

cop0cmd=10h - RFE opcode - Prepare Return from Exception

The RFE opcode moves some bits in cop0r12 (SR): bit2-3 are copied to bit0-1, and

bit4-5 are copied to bit2-3, all other bits (including bit4-5) are left unchanged.

The RFE opcode does NOT automatically jump to EPC. Instead, the exception handler

must copy EPC into a register (usually R26 aka K0), and then jump to that address.

Because of branch delays, that would look like so:

 if (cause AND 7Ch)=00h ;if excode=interrupt
 if ([epc] AND FE000000h)=4A000000h ;and opcode=cop2cmd
 epc=epc+4 ;then skip that opcode

 mov k0,epc ;get return address
 push k0 ;save epc in memory (if you expect nested exceptions)
 ... ;whatever (ie. process CAUSE)
 pop k0 ;restore from memory (if you expect nested exceptions)

20.9 COP0 - Exception Handling

- 740/1136 -

If you expect exceptions to be nested deeply, also push/pop SR. Note that there's no way

to leave all registers intact (ie. above code destroys K0).

cop0r8 - BadVaddr - Bad Virtual Address (R)

Contains the address whose reference caused an exception. Set on any MMU type of

exceptions, on references outside of kuseg (in User mode) and on any misaligned

reference. BadVaddr is updated ONLY by Address errors (Excode 04h and 05h), all other

exceptions (including bus errors) leave BadVaddr unchanged.

Exception Vectors (depending on BEV bit in SR register)

Note: Changing vectors at 800000xxh (kseg0) seems to be automatically reflected to the

instruction cache without needing to flush cache (at least it worked SOMETIMES in my

test proggy... but NOT always? ...anyways, it'd be highly recommended to flush cache

when changing any opcodes), whilst changing mirrors at 000000xxh (kuseg) seems to

require to flush cache.

The PSX uses only the BEV=0 vectors (aside from the reset vector, the PSX BIOS ROM

doesn't contain any of the BEV=1 vectors).

Exception Priority

 jmp k0 ;jump to K0 (after executing the next opcode)
 +rfe ;move SR bit4/5 --> bit2/3 --> bit0/1

 Exception BEV=0 BEV=1
 Reset BFC00000h BFC00000h (Reset)
 UTLB Miss 80000000h BFC00100h (Virtual memory, none such in PSX)
 COP0 Break 80000040h BFC00140h (Debug Break)
 General 80000080h BFC00180h (General Interrupts & Exceptions)

 Reset At any time (highest) ;-reset
 AdEL Memory (Load instruction) ;\
 AdES Memory (Store instruction) ; memory (data load/store)
 DBE Memory (Load or store) ;/
 MOD ALU (Data TLB) ;\
 TLBL ALU (DTLB Miss) ; none such
 TLBS ALU (DTLB Miss) ;/
 Ovf ALU ;-overflow
 Int ALU ;-interrupt
 Sys RD (Instruction Decode) ;\
 Bp RD (Instruction Decode) ;
 RI RD (Instruction Decode) ;
 CpU RD (Instruction Decode) ;/
 TLBL I-Fetch (ITLB Miss) ;-none such

20.9 COP0 - Exception Handling

- 741/1136 -

20.10 COP0 - Misc

cop0r15 - PRID - Processor Revision Identifier (R)

For a Playstation with CXD8606CQ CPU, the PRID value is 00000002h.

Unknown if/which other Playstation CPU versions have other values...?

cop0r6 - TAR - Target Address (R)

When an exception occurs in the delay slot of a jump or branch (cop0r13.31=1), and the

branch is to be taken (or it's an unconditional jump) (cop0r13.30=1), this register is

updated to contain the destination address of the jump or branch.

cop0r0..r2, cop0r4, cop0r10, cop0r32..r63 - N/A

Registers 0,1,2,4,10 control virtual memory on some MIPS processors (but there's none

such in the PSX), and Registers 32..63 (aka "control registers") aren't used in any MIPS

processors. Trying to read any of these registers causes a Reserved Instruction

Exception (excode=0Ah).

cop0cmd=01h,02h,06h,08h - TLBR,TLBWI,TLBWR,TLBP

The PSX supports only one cop0cmd (cop0cmd=10h aka RFE). Trying to execute the

TLBxx opcodes causes a Reserved Instruction Exception (excode=0Ah).

jf/jt cop0flg,dest - conditional cop0 jumps

mov [mem],cop0reg / mov cop0reg,[mem] - coprocessor cop0 load/store

Not supported by the CPU. Trying to execute these opcodes causes a Coprocessor

Unusable Exception (excode=0Bh, ie. unlike above, not 0Ah).

 AdEL IVA (Instruction Virtual Address) ;\memory (opcode fetch)
 IBE RD (end of I-Fetch, lowest) ;/

 0-7 Revision
 8-15 Implementation
 16-31 Not used

 0-31 Return Address

20.10 COP0 - Misc

- 742/1136 -

cop0r16-r31 - Garbage

Trying to read these registers returns garbage (but does not trigger an exception). When

reading one of the garbage registers shortly after reading a valid cop0 register, the

garbage value is usually the same as that of the valid register. When doing the read

later on, the return value is usually 00000020h, or when reading much later it returns

00000040h, or even 00000100h. No idea what is causing that effect...?

Note: The garbage registers can be accessed (without causing an exception) even in

"User mode with cop0 disabled" (SR.Bit1=1 and SR.Bit28=0); accessing any other

existing cop0 registers (or executing the rfe opcode) in that state is causing Coprocessor

Unusable Exceptions (excode=0Bh).

20.11 COP0 - Debug Registers

"Normal" R30xx CPUs like IDT's R3041 and R3051 don't have similar debug registers,

however they are described in LSI's "L64360" datasheet, chapter 14, and in their

LR33300/LR33310 datasheet, chapter 4.

20.11 COP0 - Debug Registers

- 743/1136 -

cop0r7 - DCIC - Debug and Cache Invalidate Control (R/W)

When a breakpoint address match occurs the PSX jumps to 80000040h (i.e. unlike

normal exceptions, not to 80000080h). The Excode value in the CAUSE register is set to

09h (same as BREAK opcode), and EPC contains the return address, as usual. One of

the first things to be done in the exception handler is to disable breakpoints (e.g. if

"trace" break is enabled, then it must be disabled BEFORE jumping from 80000040h to

the actual exception handler).

cop0r7.bit12-13 - Jump Redirection Note

If one or both of these bits are nonzero, then the PSX seems to check for the following

opcode sequence,

Bit Mnemonic Name Description R/W

0 DB Debug Automatically set upon Any break R/W

1 PC Program Counter Automatically set upon BPC Program Counter break R/W

2 DA Data Address Automatically set upon BDA Data Address break R/W

3 R Read Reference Automatically set upon BDA Data Read break R/W

4 W Write Reference Automatically set upon BDA Data Write break R/W

5 T Trace Automatically set upon Trace break R/W

6-11 Not used Always zero R

12-13 Jump Redirection 0=Disable, 1..3=Enable (see note) R/W

14-15 Unknown? R/W

16-22 Not used Always zero R

23 DE Debug Enable 0=Disabled, 1=Enable bits 24-31 R/W

24 PCE Program Counter Breakpoint Enable 0=Disabled, 1=Enabled (see BPC, BPCM) R/W

25 DAE Data Address Breakpoint Enable 0=Disabled, 1=Enabled (see BDA, BDAM) R/W

26 DR Data Read Enable 0=No, 1=Break/when Bit25=1 R/W

27 DW Data Write Enable 0=No, 1=Break/when Bit25=1 R/W

28 TE Trace Enable 0=No, 1=Break on branch/jump/call/etc. R/W

29 KD Kernel Debug Enable 0=Disabled, 1=Break in kernel mode R/W

30 UD User Debug Enable 0=Disabled, 1=Break in user mode R/W

31 TR Trap Enable 0=Only set status bits, 1=Jump to debug vector R/W

 mov rx,[mem] ;load rx from memory
 ... ;one or more opcodes that do not change rx
 jmp/call rx ;jump or call to rx

20.11 COP0 - Debug Registers

- 744/1136 -

if it does sense that sequence, then it sets PC=[00000000h], but does not store any

useful information in any cop0 registers, namely it does not store the return address in

EPC, so it's impossible to determine which opcode has caused the exception. For the jump

target address, there are 31 registers, so one could only guess which of them contains

the target value; for "POP PC" code it'd be usually R31, but for "JMP [vector]" code it may

be any register. So far the feature seems to be more or less unusable...?

cop0r5 - BDA - Breakpoint Data Address (R/W)

cop0r9 - BDAM - Breakpoint Data Address Mask (R/W)

Break condition is "((addr XOR BDA) AND BDAM)=0".

cop0r3 - BPC - Breakpoint Program Counter (R/W)

cop0r11 - BPCM - Breakpoint Program Counter Mask (R/W)

Break condition is "((PC XOR BPC) AND BPCM)=0".

Note (BREAK Opcode)

Additionally, the BREAK opcode can be used to create further breakpoints by patching

the executable code. The BREAK opcode uses the same Excode value (09h) in CAUSE

register. However, the BREAK opcode jumps to the normal exception handler at

80000080h (not 80000040h).

Note (LibCrypt)

The debug registers are mis-used by "Legacy of Kain: Soul Reaver" (and maybe also

other games) for storing libcrypt copy-protection related values (ie. just as a "hidden"

location for storing data, not for actual debugging purposes).

CDROM Protection - LibCrypt

Note (Cheat Devices/Expansion ROMs)

The Expansion ROM header supports only Pre-Boot and Post-Boot vectors, but no Mid-

Boot vector. Cheat Devices are often using COP0 breaks for Mid-Boot Hooks, either with

BPC=BFC06xxxh (break address in ROM, used in older cheat firmwares), or with

BPC=80030000h (break address in RAM aka relocated GUI entrypoint, used in later

20.11 COP0 - Debug Registers

- 745/1136 -

cheat firmwares). Moreover, aside from the Mid-Boot Hook, the Xplorer cheat device is

also supporting a special cheat code that uses the COP0 break feature.

20.11 COP0 - Debug Registers

- 746/1136 -

21. Kernel (BIOS)

BIOS Overview

BIOS Memory Map

BIOS Function Summary

BIOS File Functions

BIOS File Execute and Flush Cache

BIOS CDROM Functions

BIOS Memory Card Functions

BIOS Interrupt/Exception Handling

BIOS Event Functions

BIOS Event Summary

BIOS Thread Functions

BIOS Timer Functions

BIOS Joypad Functions

BIOS GPU Functions

BIOS Memory Allocation

BIOS Memory Fill/Copy/Compare (SLOW)

BIOS String Functions

BIOS Number/String/Character Conversion

BIOS Misc Functions

BIOS Internal Boot Functions

BIOS More Internal Functions

BIOS PC File Server

BIOS TTY Console (std_io)

BIOS Character Sets

BIOS Control Blocks

BIOS Versions

BIOS Patches

21. Kernel (BIOS)

- 747/1136 -

21.1 BIOS Overview

BIOS CDROM Boot

The main purpose of the BIOS is to boot games from CDROM, unfortunately, before

doing that, it displays the Sony intro. It's also doing some copy protection and region

checks, and refuses to boot unlicensed games, or illegal copies, or games for other

regions.

BIOS Bootmenu

The bootmenu shows up when starting the Playstation without CDROM inserted. The

menu allows to play Audio CDs, and to erase or copy game positions on Memory Cards.

BIOS Functions

The BIOS contains a number of more or less useful, and probably more or less inefficient

functions that can be used by software.

No idea if it's easy to take full control of the CPU, ie. to do all hardware access and

interrupt handling by software, without using the BIOS at all?

Eventually the BIOS functions for accessing the CDROM drive are important, not sure

how complicated/compatible it'd be to access the CDROM drive directly via I/O ports...

among others, there might be different drives used in different versions of the

Playstation, which aren't fully compatible with each other?

BIOS Memory

The BIOS occupies 512Kbyte ROM with 8bit address bus (so the BIOS ROM is rather

slow, for faster execution, portions of it are relocated to the first 64K of RAM). For some

very strange reason, the original PSX BIOS executes all ROM functions in uncached

ROM, which is incredible slow (nocash BIOS uses cached ROM, which does work without

problems).

The first 64Kbyte of the 2Mbyte Main RAM are reserved for the BIOS (containing

exception handlers, jump tables, other data, and relocated code). That reserved region

does unfortunately include the "valuable" first 32Kbytes (valuable because that memory

could be accessed directly via [R0+immediate], without needing to use R1..R31 as base

register).

21.1 BIOS Overview

- 748/1136 -

21.2 BIOS Memory Map

BIOS ROM Map (512Kbytes)

BIOS ROM Header/Footer

BIOS RAM Map (1st 64Kbytes of RAM) (fixed addresses mainly in 1st 500h bytes)

User Memory (not used by Kernel)

 BFC00000h Kernel Part 1 (code/data executed in uncached ROM)
 BFC10000h Kernel Part 2 (code/data relocated to cached RAM)
 BFC18000h Intro/Bootmenu (code/data decompressed and relocated to RAM)
 BFC64000h Character Sets

 BFC00100h Kernel BCD date (YYYYMMDDh)
 BFC00104h Console Type (see Port 1F802030h, Secondary IRQ10 Controller)
 BFC00108h Kernel Maker/Version Strings (separated by one or more 00h bytes)
 BFC7FF32h GUI Version/Copyright Strings (if any) (separated by one 00h byte)

 00000000h 10h Garbage Area (see notes below)
 00000010h 30h Unused/reserved
 00000040h 20h COP0 debug-break vector (not used by Kernel) (in KSEG0)
 00000060h 4 RAM Size (in megabytes) (2 or 8)
 00000064h 4 Unknown (set to 00000000h)
 00000068h 4 Unknown (set to 000000FFh)
 0000006Ch 14h Unused/reserved
 00000080h 10h Exception vector (actually in KSEG0, ie. at 80000080h)
 00000090h 10h Unused/reserved
 000000A0h 10h A(nnh) Function Vector
 000000B0h 10h B(nnh) Function Vector
 000000C0h 10h C(nnh) Function Vector
 000000D0h 30h Unused/reserved
 00000100h 58h Table of Tables (BIOS Control Blocks) (see below)
 00000158h 28h Unused/reserved
 00000180h 80h Command line argument from SYSTEM.CNF; BOOT = fname argument
 00000200h 300h A(nnh) Jump Table
 00000500h ... Kernel Code/Data (relocated from ROM)
 0000Cxxxh ... Unused/reserved
 0000DF80h 80h Used for BIOS Patches (ie. used by games, not used by BIOS)
 0000DFFCh 4 Response value from Intro/Bootmenu
 0000E000h 2000h Kernel Memory; ExCBs, EvCBs, and TCBs allocated via B(00h)

 00010000h ... Begin of User RAM (Exefile, Data, Heap, Stack, etc.)
 001FFF00h ... Default Stacktop (usually in KSEG0)
 1F800000h 400h Scratchpad (Data-Cache mis-used as Fast RAM)

21.2 BIOS Memory Map

- 749/1136 -

Table of Tables (see BIOS Control Blocks for details)

Each table entry consists of two 32bit values; containing the base address, and total size

(in bytes) of the corresponding control blocks.

File handles (fd=00h..0Fh) can be simply converted as fcb=[140h]+fd*2Ch.

Event handles (event=F10000xxh) as evcb=[120h]+(event AND FFFFh)*1Ch.

Garbage Area at Address 00000000h

The first some bytes of memory address 00000000h aren't actually used by the Kernel,

except for storing some garbage at that locations. However, this garbage is actually

important for bugged games like R-Types and Fade to Black (ie. games that do read

from address 00000000h due to using uninitialized pointers).

Initially, the garbage area is containing a copy of the 16-byte exception handler at

address 80h, but the first 4-bytes are typically smashed (set to 00000003h from some

useless dummy writes in some useless CDROM delays). Ie. the 16-bytes should have

these values:

For R-Types, the halfword at [0] must non-zero (else the game will do a DMA to address

0, and thereby destroy kernel memory). Fade to Black does several garbage reads from

[0..9], a wrong byte value at [5] can cause the game to crash with an invalid memory

access exception upon memory card access.

 00000100h ExCB Exception Chain Entrypoints (addr=var, size=4*08h)
 00000108h PCB Process Control Block (addr=var, size=1*04h)
 00000110h TCB Thread Control Blocks (addr=var, size=N*C0h)
 00000118h - Unused/reserved
 00000120h EvCB Event Control Blocks (addr=var, size=N*1Ch)
 00000128h - Unused/reserved
 00000130h - Unused/reserved
 00000138h - Unused/reserved
 00000140h FCB File Control Blocks (addr=fixed, size=10h*2Ch)
 00000148h - Unused/reserved
 00000150h DCB Device Control Blocks (addr=fixed, size=0Ah*50h)

 [00000000h]=3C1A0000h ;<-- but overwritten by 00000003h after soon
 [00000004h]=275A0C80h ;<-- or 275A0C50h (in older BIOS)
 [00000008h]=03400008h
 [0000000Ch]=00000000h

21.2 BIOS Memory Map

- 750/1136 -

21.3 BIOS Function Summary

Parameters, Registers, Stack

Argument(s) are passed in R4,R5,R6,R7,[SP+10h],[SP+14h],etc.

Caution: When calling a sub-function with N parameters, the caller MUST always allocate

N words on the stack, and, although the first four parameters are passed in registers

rather than on stack, the sub-function is allowed to use/destroy these words at

[SP+0..N*4-1].

BIOS Functions (and custom callback functions) are allowed to destroy registers R1-R15,

R24-R25, R31 (RA), and HI/LO. Registers R16-R23, R29 (SP), and R30 (FP) must be left

unchanged (if the function uses that registers, then it must push/pop them). R26 (K0) is

reserved for exception handler and should be usually not used by other functions. R27

(K1) and R28 (GP) are left more or less unused by the BIOS, so one can more or less

freely use them for whatever purpose.

The return value (if any) is stored in R2 register.

A-Functions (Call 00A0h with function number in R9 Register)

 A(00h) or B(32h) open(filename,accessmode)
 A(01h) or B(33h) lseek(fd,offset,seektype)
 A(02h) or B(34h) read(fd,dst,length)
 A(03h) or B(35h) write(fd,src,length)
 A(04h) or B(36h) close(fd)
 A(05h) or B(37h) ioctl(fd,cmd,arg)
 A(06h) or B(38h) exit(exitcode)
 A(07h) or B(39h) isatty(fd)
 A(08h) or B(3Ah) getc(fd)
 A(09h) or B(3Bh) putc(char,fd)
 A(0Ah) todigit(char)
 A(0Bh) atof(src) ;Does NOT work - uses (ABSENT) cop1 !!!
 A(0Ch) strtoul(src,src_end,base)
 A(0Dh) strtol(src,src_end,base)
 A(0Eh) abs(val)
 A(0Fh) labs(val)
 A(10h) atoi(src)
 A(11h) atol(src)
 A(12h) atob(src,num_dst)
 A(13h) setjmp(buf)
 A(14h) longjmp(buf,param)
 A(15h) strcat(dst,src)
 A(16h) strncat(dst,src,maxlen)
 A(17h) strcmp(str1,str2)
 A(18h) strncmp(str1,str2,maxlen)
 A(19h) strcpy(dst,src)
 A(1Ah) strncpy(dst,src,maxlen)

21.3 BIOS Function Summary

- 751/1136 -

 A(1Bh) strlen(src)
 A(1Ch) index(src,char)
 A(1Dh) rindex(src,char)
 A(1Eh) strchr(src,char) ;exactly the same as "index"
 A(1Fh) strrchr(src,char) ;exactly the same as "rindex"
 A(20h) strpbrk(src,list)
 A(21h) strspn(src,list)
 A(22h) strcspn(src,list)
 A(23h) strtok(src,list) ;use strtok(0,list) in further calls
 A(24h) strstr(str,substr) ;Bugged
 A(25h) toupper(char)
 A(26h) tolower(char)
 A(27h) bcopy(src,dst,len)
 A(28h) bzero(dst,len)
 A(29h) bcmp(ptr1,ptr2,len) ;Bugged
 A(2Ah) memcpy(dst,src,len)
 A(2Bh) memset(dst,fillbyte,len)
 A(2Ch) memmove(dst,src,len) ;Bugged
 A(2Dh) memcmp(src1,src2,len) ;Bugged
 A(2Eh) memchr(src,scanbyte,len)
 A(2Fh) rand()
 A(30h) srand(seed)
 A(31h) qsort(base,nel,width,callback)
 A(32h) strtod(src,src_end) ;Does NOT work - uses (ABSENT) cop1 !!!
 A(33h) malloc(size)
 A(34h) free(buf)
 A(35h) lsearch(key,base,nel,width,callback)
 A(36h) bsearch(key,base,nel,width,callback)
 A(37h) calloc(sizx,sizy) ;SLOW!
 A(38h) realloc(old_buf,new_siz) ;SLOW!
 A(39h) InitHeap(addr,size)
 A(3Ah) _exit(exitcode)
 A(3Bh) or B(3Ch) getchar()
 A(3Ch) or B(3Dh) putchar(char)
 A(3Dh) or B(3Eh) gets(dst)
 A(3Eh) or B(3Fh) puts(src)
 A(3Fh) printf(txt,param1,param2,etc.)
 A(40h) SystemErrorUnresolvedException()
 A(41h) LoadTest(filename,headerbuf)
 A(42h) Load(filename,headerbuf)
 A(43h) Exec(headerbuf,param1,param2)
 A(44h) FlushCache()
 A(45h) init_a0_b0_c0_vectors
 A(46h) GPU_dw(Xdst,Ydst,Xsiz,Ysiz,src)
 A(47h) gpu_send_dma(Xdst,Ydst,Xsiz,Ysiz,src)
 A(48h) SendGP1Command(gp1cmd)
 A(49h) GPU_cw(gp0cmd) ;send GP0 command word
 A(4Ah) GPU_cwp(src,num) ;send GP0 command word and parameter words
 A(4Bh) send_gpu_linked_list(src)
 A(4Ch) gpu_abort_dma()
 A(4Dh) GetGPUStatus()
 A(4Eh) gpu_sync()
 A(4Fh) SystemError
 A(50h) SystemError

21.3 BIOS Function Summary

- 752/1136 -

 A(51h) LoadExec(filename,stackbase,stackoffset)
 A(52h) GetSysSp
 A(53h) SystemError ;PS2: set_ioabort_handler(src)
 A(54h) or A(71h) _96_init()
 A(55h) or A(70h) _bu_init()
 A(56h) or A(72h) _96_remove() ;does NOT work due to SysDeqIntRP bug
 A(57h) return 0
 A(58h) return 0
 A(59h) return 0
 A(5Ah) return 0
 A(5Bh) dev_tty_init() ;PS2: SystemError
 A(5Ch) dev_tty_open(fcb,and unused:"path\name",accessmode) ;PS2: SystemError
 A(5Dh) dev_tty_in_out(fcb,cmd) ;PS2: SystemError
 A(5Eh) dev_tty_ioctl(fcb,cmd,arg) ;PS2: SystemError
 A(5Fh) dev_cd_open(fcb,"path\name",accessmode)
 A(60h) dev_cd_read(fcb,dst,len)
 A(61h) dev_cd_close(fcb)
 A(62h) dev_cd_firstfile(fcb,"path\name",direntry)
 A(63h) dev_cd_nextfile(fcb,direntry)
 A(64h) dev_cd_chdir(fcb,"path")
 A(65h) dev_card_open(fcb,"path\name",accessmode)
 A(66h) dev_card_read(fcb,dst,len)
 A(67h) dev_card_write(fcb,src,len)
 A(68h) dev_card_close(fcb)
 A(69h) dev_card_firstfile(fcb,"path\name",direntry)
 A(6Ah) dev_card_nextfile(fcb,direntry)
 A(6Bh) dev_card_erase(fcb,"path\name")
 A(6Ch) dev_card_undelete(fcb,"path\name")
 A(6Dh) dev_card_format(fcb)
 A(6Eh) dev_card_rename(fcb1,"path\name1",fcb2,"path\name2")
 A(6Fh) ? ;card ;[r4+18h]=00000000h ;card_clear_error(fcb) or so
 A(70h) or A(55h) _bu_init()
 A(71h) or A(54h) _96_init()
 A(72h) or A(56h) _96_remove() ;does NOT work due to SysDeqIntRP bug
 A(73h) return 0
 A(74h) return 0
 A(75h) return 0
 A(76h) return 0
 A(77h) return 0
 A(78h) CdAsyncSeekL(src)
 A(79h) return 0 ;DTL-H: Unknown?
 A(7Ah) return 0 ;DTL-H: Unknown?
 A(7Bh) return 0 ;DTL-H: Unknown?
 A(7Ch) CdAsyncGetStatus(dst)
 A(7Dh) return 0 ;DTL-H: Unknown?
 A(7Eh) CdAsyncReadSector(count,dst,mode)
 A(7Fh) return 0 ;DTL-H: Unknown?
 A(80h) return 0 ;DTL-H: Unknown?
 A(81h) CdAsyncSetMode(mode)
 A(82h) return 0 ;DTL-H: Unknown?
 A(83h) return 0 ;DTL-H: Unknown?
 A(84h) return 0 ;DTL-H: Unknown?
 A(85h) return 0 ;DTL-H: Unknown?, or reportedly, CdStop (?)
 A(86h) return 0 ;DTL-H: Unknown?

21.3 BIOS Function Summary

- 753/1136 -

Below functions A(A0h..B4h) not supported on pre-retail DTL-H2000 devboard:

 A(87h) return 0 ;DTL-H: Unknown?
 A(88h) return 0 ;DTL-H: Unknown?
 A(89h) return 0 ;DTL-H: Unknown?
 A(8Ah) return 0 ;DTL-H: Unknown?
 A(8Bh) return 0 ;DTL-H: Unknown?
 A(8Ch) return 0 ;DTL-H: Unknown?
 A(8Dh) return 0 ;DTL-H: Unknown?
 A(8Eh) return 0 ;DTL-H: Unknown?
 A(8Fh) return 0 ;DTL-H: Unknown?
 A(90h) CdromIoIrqFunc1()
 A(91h) CdromDmaIrqFunc1()
 A(92h) CdromIoIrqFunc2()
 A(93h) CdromDmaIrqFunc2()
 A(94h) CdromGetInt5errCode(dst1,dst2)
 A(95h) CdInitSubFunc()
 A(96h) AddCDROMDevice()
 A(97h) AddMemCardDevice() ;DTL-H: SystemError
 A(98h) AddDuartTtyDevice() ;DTL-H: AddAdconsTtyDevice ;PS2: SystemError
 A(99h) add_nullcon_driver()
 A(9Ah) SystemError ;DTL-H: AddMessageWindowDevice
 A(9Bh) SystemError ;DTL-H: AddCdromSimDevice
 A(9Ch) SetConf(num_EvCB,num_TCB,stacktop)
 A(9Dh) GetConf(num_EvCB_dst,num_TCB_dst,stacktop_dst)
 A(9Eh) SetCdromIrqAutoAbort(type,flag)
 A(9Fh) SetMem(megabytes)

 A(A0h) _boot()
 A(A1h) SystemError(type,errorcode)
 A(A2h) EnqueueCdIntr() ;with prio=0 (fixed)
 A(A3h) DequeueCdIntr() ;does NOT work due to SysDeqIntRP bug
 A(A4h) CdGetLbn(filename) ;get 1st sector number (or garbage when not found)
 A(A5h) CdReadSector(count,sector,buffer)
 A(A6h) CdGetStatus()
 A(A7h) bufs_cb_0()
 A(A8h) bufs_cb_1()
 A(A9h) bufs_cb_2()
 A(AAh) bufs_cb_3()
 A(ABh) _card_info(port)
 A(ACh) _card_load(port)
 A(ADh) _card_auto(flag)
 A(AEh) bufs_cb_4()
 A(AFh) card_write_test(port) ;CEX-1000: jump_to_00000000h
 A(B0h) return 0 ;CEX-1000: jump_to_00000000h
 A(B1h) return 0 ;CEX-1000: jump_to_00000000h
 A(B2h) ioabort_raw(param) ;CEX-1000: jump_to_00000000h
 A(B3h) return 0 ;CEX-1000: jump_to_00000000h
 A(B4h) GetSystemInfo(index) ;CEX-1000: jump_to_00000000h
 A(B5h..BFh) N/A ;jump_to_00000000h

21.3 BIOS Function Summary

- 754/1136 -

B-Functions (Call 00B0h with function number in R9 Register)

 B(00h) alloc_kernel_memory(size)
 B(01h) free_kernel_memory(buf)
 B(02h) init_timer(t,reload,flags)
 B(03h) get_timer(t)
 B(04h) enable_timer_irq(t)
 B(05h) disable_timer_irq(t)
 B(06h) restart_timer(t)
 B(07h) DeliverEvent(class, spec)
 B(08h) OpenEvent(class,spec,mode,func)
 B(09h) CloseEvent(event)
 B(0Ah) WaitEvent(event)
 B(0Bh) TestEvent(event)
 B(0Ch) EnableEvent(event)
 B(0Dh) DisableEvent(event)
 B(0Eh) OpenTh(reg_PC,reg_SP_FP,reg_GP)
 B(0Fh) CloseTh(handle)
 B(10h) ChangeTh(handle)
 B(11h) jump_to_00000000h
 B(12h) InitPAD2(buf1,siz1,buf2,siz2)
 B(13h) StartPAD2()
 B(14h) StopPAD2()
 B(15h) PAD_init2(type,button_dest,unused,unused)
 B(16h) PAD_dr()
 B(17h) ReturnFromException()
 B(18h) ResetEntryInt()
 B(19h) HookEntryInt(addr)
 B(1Ah) SystemError ;PS2: return 0
 B(1Bh) SystemError ;PS2: return 0
 B(1Ch) SystemError ;PS2: return 0
 B(1Dh) SystemError ;PS2: return 0
 B(1Eh) SystemError ;PS2: return 0
 B(1Fh) SystemError ;PS2: return 0
 B(20h) UnDeliverEvent(class,spec)
 B(21h) SystemError ;PS2: return 0
 B(22h) SystemError ;PS2: return 0
 B(23h) SystemError ;PS2: return 0
 B(24h) jump_to_00000000h
 B(25h) jump_to_00000000h
 B(26h) jump_to_00000000h
 B(27h) jump_to_00000000h
 B(28h) jump_to_00000000h
 B(29h) jump_to_00000000h
 B(2Ah) SystemError ;PS2: return 0
 B(2Bh) SystemError ;PS2: return 0
 B(2Ch) jump_to_00000000h
 B(2Dh) jump_to_00000000h
 B(2Eh) jump_to_00000000h
 B(2Fh) jump_to_00000000h
 B(30h) jump_to_00000000h
 B(31h) jump_to_00000000h
 B(32h) or A(00h) open(filename,accessmode)

21.3 BIOS Function Summary

- 755/1136 -

Below functions B(4Ah..5Dh) not supported on pre-retail DTL-H2000 devboard:

C-Functions (Call 00C0h with function number in R9 Register)

 B(33h) or A(01h) lseek(fd,offset,seektype)
 B(34h) or A(02h) read(fd,dst,length)
 B(35h) or A(03h) write(fd,src,length)
 B(36h) or A(04h) close(fd)
 B(37h) or A(05h) ioctl(fd,cmd,arg)
 B(38h) or A(06h) exit(exitcode)
 B(39h) or A(07h) isatty(fd)
 B(3Ah) or A(08h) getc(fd)
 B(3Bh) or A(09h) putc(char,fd)
 B(3Ch) or A(3Bh) getchar()
 B(3Dh) or A(3Ch) putchar(char)
 B(3Eh) or A(3Dh) gets(dst)
 B(3Fh) or A(3Eh) puts(src)
 B(40h) cd(name)
 B(41h) format(devicename)
 B(42h) firstfile2(filename,direntry)
 B(43h) nextfile(direntry)
 B(44h) rename(old_filename,new_filename)
 B(45h) erase(filename)
 B(46h) undelete(filename)
 B(47h) AddDrv(device_info) ;subfunction for AddXxxDevice functions
 B(48h) DelDrv(device_name_lowercase)
 B(49h) PrintInstalledDevices()

 B(4Ah) InitCARD2(pad_enable) ;uses/destroys k0/k1 !!!
 B(4Bh) StartCARD2()
 B(4Ch) StopCARD2()
 B(4Dh) _card_info_subfunc(port) ;subfunction for "_card_info"
 B(4Eh) _card_write(port,sector,src)
 B(4Fh) _card_read(port,sector,dst)
 B(50h) _new_card()
 B(51h) Krom2RawAdd(shiftjis_code)
 B(52h) SystemError ;PS2: return 0
 B(53h) Krom2Offset(shiftjis_code)
 B(54h) _get_errno()
 B(55h) _get_error(fd)
 B(56h) GetC0Table
 B(57h) GetB0Table
 B(58h) _card_chan()
 B(59h) testdevice(devicename)
 B(5Ah) SystemError ;PS2: return 0
 B(5Bh) ChangeClearPAD(int)
 B(5Ch) _card_status(slot)
 B(5Dh) _card_wait(slot)
 B(5Eh..FFh) N/A ;jump_to_00000000h ;CEX-1000: B(5Eh..F6h) only
 B(100h....) N/A ;garbage ;CEX-1000: B(F7h.....) and up

21.3 BIOS Function Summary

- 756/1136 -

SYS-Functions (Syscall opcode with function number in R4 aka A0 Register)

The 20bit immediate in the "syscall imm" opcode is unused (should be zero).

BREAK-Functions (Break opcode with function number in opcode's immediate)

BRK opcodes may be used within devkits, however, the standard BIOS simply calls

DeliverEvent(F0000010h,1000h) and SystemError_A_40h upon any BRK opcodes (as

well as on any other unresolved exceptions).

 C(00h) EnqueueTimerAndVblankIrqs(priority) ;used with prio=1
 C(01h) EnqueueSyscallHandler(priority) ;used with prio=0
 C(02h) SysEnqIntRP(priority,struc) ;bugged, use with care
 C(03h) SysDeqIntRP(priority,struc) ;bugged, use with care
 C(04h) get_free_EvCB_slot()
 C(05h) get_free_TCB_slot()
 C(06h) ExceptionHandler()
 C(07h) InstallExceptionHandlers() ;destroys/uses k0/k1
 C(08h) SysInitMemory(addr,size)
 C(09h) SysInitKernelVariables()
 C(0Ah) ChangeClearRCnt(t,flag)
 C(0Bh) SystemError ;PS2: return 0
 C(0Ch) InitDefInt(priority) ;used with prio=3
 C(0Dh) SetIrqAutoAck(irq,flag)
 C(0Eh) return 0 ;DTL-H2000: dev_sio_init
 C(0Fh) return 0 ;DTL-H2000: dev_sio_open
 C(10h) return 0 ;DTL-H2000: dev_sio_in_out
 C(11h) return 0 ;DTL-H2000: dev_sio_ioctl
 C(12h) InstallDevices(ttyflag)
 C(13h) FlushStdInOutPut()
 C(14h) return 0 ;DTL-H2000: SystemError
 C(15h) _cdevinput(circ,char)
 C(16h) _cdevscan()
 C(17h) _circgetc(circ) ;uses r5 as garbage txt for _ioabort
 C(18h) _circputc(char,circ)
 C(19h) _ioabort(txt1,txt2)
 C(1Ah) set_card_find_mode(mode) ;0=normal, 1=find deleted files
 C(1Bh) KernelRedirect(ttyflag) ;PS2: ttyflag=1 causes SystemError
 C(1Ch) AdjustA0Table()
 C(1Dh) get_card_find_mode()
 C(1Eh..7Fh) N/A ;jump_to_00000000h
 C(80h.....) N/A ;mirrors to B(00h.....)

 SYS(00h) NoFunction()
 SYS(01h) EnterCriticalSection()
 SYS(02h) ExitCriticalSection()
 SYS(03h) ChangeThreadSubFunction(addr) ;syscall with r4=03h, r5=addr
 SYS(04h..FFFFFFFFh) calls DeliverEvent(F0000010h,4000h)

21.3 BIOS Function Summary

- 757/1136 -

Below breaks are used in DTL-H2000 BIOS:

The break functions have argument(s) in A1,A2,A3 (ie. unlike normal BIOS functions not

in A0,A1,A2), and TWO return values (in R2, and R3). These functions require a

commercial/homebrew devkit... consisting of a Data Cable (for accessing the PC's

harddisk)... and an Expansion ROM (for handling the BREAK opcodes)... or so?

21.4 BIOS File Functions

A(00h) or B(32h) - open(filename, accessmode) - Opens a file for IO

Opens a file on the target device for io. Accessmode is set like this:

The PSX can have a maximum of 16 files open at any time, of which, 2 handles are

always reserved for std_io, so only 14 handles are available for actual files. Some

functions (cd, testdevice, erase, undelete, format, firstfile2, rename) are temporarily

allocating 1 filehandle (rename tries to use 2 filehandles, but, it does accidently use only

1 handle, too). So, for example, erase would fail if more than 13 file handles are opened

by the game.

 BRK(1C00h) Division by zero (commonly checked/invoked by software)
 BRK(1800h) Division overflow (-80000000h/-1, sometimes checked by software)

 BRK(1h) Whatever lockup or so?
 BRK(101h) PCInit() Inits the fileserver.
 BRK(102h) PCCreat(filename, fileattributes)
 BRK(103h) PCOpen(filename, accessmode)
 BRK(104h) PCClose(filehandle)
 BRK(105h) PCRead(filehandle, length, memory_destination_address)
 BRK(106h) PCWrite(filehandle, length, memory_source_address)
 BRK(107h) PClSeek(filehandle, file_offset, seekmode)
 BRK(3C400h) User has typed "break" command in debug console

 out: V0 File handle (00h..0Fh), or -1 if error.

 bit0 1=Read ;\These bits aren't actually used by the BIOS, however, at
 bit1 1=Write ;/least 1 should be set; won't work when all 32bits are zero
 bit2 1=Exit without waiting for incoming data (when TTY buffer empty)
 bit9 0=Open Existing File, 1=Create New file (memory card only)
 bit15 1=Asynchronous mode (memory card only; don't wait for completion)
 bit16-31 Number of memory card blocks for a new file on the memory card

21.4 BIOS File Functions

- 758/1136 -

A(01h) or B(33h) - lseek(fd, offset, seektype) - Move the file pointer

Moves the file pointer the number of bytes in A1, relative to the location specified by A2.

Movement from the eof is incorrect. Also, movement beyond the end of the file is not

checked.

A(02h) or B(34h) - read(fd, dst, length) - Read data from an open file

Reads the number of bytes from the specified open file. If length is not specified an error

is returned. Read per $0080 bytes from memory card (bu:) and per $0800 from cdrom

(cdrom:).

A(03h) or B(35h) - write(fd, src, length) - Write data to an open file

Writes the number of bytes to the specified open file. Write to the memory card per

$0080 bytes. Writing to the cdrom returns 0.

A(04h) or B(36h) - close(fd) - Close an open file

Returns r2=fd (or r2=-1 if failed).

A(08h) or B(3Ah) - getc(fd) - read one byte from file

Internally redirects to "read(fd,tempbuf,1)". For some strange reason, the returned

character is sign-expanded; so, a return value of FFFFFFFFh could mean either character

FFh, or error.

A(09h) or B(3Bh) - putc(char,fd) - write one byte to file

Observe that "fd" is the 2nd paramter (not the 1st paramter as usually).

 seektype 0 = from start of file (with positive offset)
 1 = from current file pointer (with positive/negative offset)
 2 = Bugs. Should be from end of file.

 out: V0 Number of bytes actually read, -1 if failed.

 out: V0 Number of bytes written.

 out: R2=character (sign-expanded) or FFFFFFFFh=error

21.4 BIOS File Functions

- 759/1136 -

Internally redirects to "write(fd,tempbuf,1)".

B(40h) - cd(name) - Change the current directory on target device

Changes the current directory on the specified device, which should be

"cdrom:" (memory cards don't support directories). The PSX supports only a current

directory, but NOT a current device (ie. after cd, the directory name may be ommited

from filenames, but the device name must be still included in all filenames).

Returns 1=okay, or 0=failed.

The function doesn't verify if the directory exists. Caution: For cdrom, the function does

always load the path table from the disk (even if it was already stored in RAM, so cd is

causing useless SLOW read/seek delays).

B(42h) - firstfile2(filename,direntry) - Find first file to match the name

Returns r2=direntry (or r2=0 if no matching files).

Searches for the first file to match the specified filename; the filename may contain "?"

and "*" wildcards. "*" means to ignore ALL following characters; accordingly one cannot

specify any further characters after the "*" (eg. "DATA*" would work, but "*.DAT" won't

work). "?" is meant to ignore a single character cell. Note: The "?" wildcards (but not

"*") can be used also in all other file functions; causing the function to use the first

matching name (eg. erase "????" would erase the first matching file, not all matching

files).

Start the name with the device you want to address. (ie. pcdrv:) Different drives can be

accessed as normally by their drive names (a:, c:, huh?) if path is omitted after the

device, the current directory will be used.

A direntry structure looks like this:

 out: R2=Number of bytes actually written, -1 if failed

 in: A0 Pointer to new directory path (eg. "cdrom:\path")

 00h 14h Filename, terminated with 00h
 14h 4 File attribute (always 0 for cdrom) (50h=norm or A0h=del for card)
 18h 4 File size
 1Ch 4 Pointer to next direntry? (not used?)
 20h 4 First Sector Number
 24h 4 Reserved (not used)

21.4 BIOS File Functions

- 760/1136 -

BUG: If "?" matches the ending 00h byte of a name, then any further characters in the

search expression are ignored (eg. "FILE?.DAT" would match to "FILE2.DAT", but

accidently also to "FILE").

BUG: For CDROM, the BIOS includes some code that is intended to realize disk changes

during firstfile2/nextfile operations, however, that code is so bugged that it does rather

ensure that the BIOS does NOT realize new disks being inserted during firstfile2/nextfile.

BUG: firstfile2/nextfile is internally using a FCB. On the first call to firstfile2, the BIOS is

searching a free FCB, and does apply that as "search fcb", but it doesn't mark that FCB as

allocated, so other file functions may accidently use the same FCB. Moreover, the BIOS

does memorize that "search fcb", and, even when starting a new search via another call

to firstfile2, it keeps using that FCB for search (without checking if the FCB is still free). A

possible workaround is not to have any files opened during firstfile2/nextfile operations.

B(43h) - nextfile(direntry) - Searches for the next file to match the name

Returns r2=direntry (or r2=0 if no more matching files).

Uses the settings of a previous firstfile2/nextfile command.

B(44h) - rename(old_filename, new_filename)

Returns 1=okay, or 0=failed.

B(45h) - erase(filename) - Delete a file on target device

Returns 1=okay, or 0=failed.

B(46h) - undelete(filename)

Returns 1=okay, or 0=failed.

B(41h) - format(devicename)

Erases all files on the device (ie. for formatting memory cards).

Returns 1=okay, or 0=failed.

B(54h) - _get_errno()

Indicates the reason of the most recent file function error (open, lseek, read, write,

close, _get_error, ioctl, cd, testdevice, erase, undelete, format, rename). Use

_get_errno() ONLY if an error has occured (the error code isn't reset to zero by functions

21.4 BIOS File Functions

- 761/1136 -

that are passing okay). firstfile2/nextfile do NOT affect _get_errno(). See below list of

File Error Numbers for more info.

B(55h) - _get_error(fd)

Basically same as B(54h), but allowing to specify a file handle for which error

information is to be received; accordingly it doesn't work for functions that do use

'hidden' internal file handles (eg. erase, or unsuccessful open). Returns FCB[18h], or

FFFFFFFFh if the handle is invalid/unused.

A(05h) or B(37h) - ioctl(fd,cmd,arg)

Used only for TTY.

A(07h) or B(39h) - isatty(fd)

Returns bit1 of the file's DCB flags. That bit is set only for Duart/TTY, and is cleared for

Dummy/TTY, Memory Card, and CDROM.

B(59h) - testdevice(devicename)

Whatever. Checks the devicename, and if it's accepted, calls a device specific function.

For the existing devices (cdrom,bu,tty) that specific function simply returns without

doing anything. Maybe other devices (like printers or modems) would do something

more interesting.

File Error Numbers for B(54h) and B(55h)

 00h okay (though many successful functions leave old error code unchanged)
 02h file not found
 06h bad device port number (tty2 and up)
 09h invalid or unused file handle
 10h general error (physical I/O error, unformatted, disk changed for old fcb)
 11h file already exists error (create/undelete/rename)
 12h tried to rename a file from one device to another device
 13h unknown device name
 16h sector alignment error, or fpos>=filesize, unknown seektype or ioctl cmd
 18h not enough free file handles
 1Ch not enough free memory card blocks
 FFFFFFFFh invalid or unused file handle passed to B(55h) function

21.4 BIOS File Functions

- 762/1136 -

21.5 BIOS File Execute and Flush Cache

A(41h) - LoadTest(filename, headerbuf)

Loads the 800h-byte exe file header to an internal sector buffer, and does then copy

bytes [10h..4Bh] of that header to headerbuf[00h..3Bh].

A(42h) - Load(filename, headerbuf)

Same as LoadTest (see there for details), but additionally loads the body of the

executable (using the size and destination address in the file header), and does call

FlushCache. The exe can be then started via Exec (this isn't done automatically by

LoadTest). Unlike "LoadExec", the "LoadTest/Exec" combination allows to return the new

exe file to return to the old exe file (instead of restarting the boot executable).

BUG: Uses the unstable FlushCache function (see there for details).

A(43h) - Exec(headerbuf, param1, param2)

Can be used to start a previously loaded executable. The function saves

R16,R28,R30,SP,RA in the reserved region of headerbuf (rather than on stack), more or

less slowly zerofills the memfill region specified in headerbuf, reads the stack base and

offset values and sets SP and FP to base+offset (or leaves them unchanged if base=0),

reads the GP value from headerbuf and sets GP to that value. Then calls the

excecutables entrypoint, with param1 and param2 passed in r4,r5.

If the executable (should) return, then R16,R28,R30,SP,RA are restored from headerbuf,

and the function returns with r2=1.

A(51h) - LoadExec(filename, stackbase, stackoffset)

This is a rather bizarre function. In short, it does load and execute the specified file, and

thereafter, it (tries to) reload and restart to boot executable.

Part1: Takes a copy of the filename, with some adjustments: Everything up to the first

":" or 00h byte is copied as is (ie. the device name, if it does exist, or otherwise the

whole path\filename.ext;ver), the remaining characters are copied and converted to

uppercase (ie. the path\filename.ext;ver part, or none if the device name didn't exist),

finally, checks if a ";" exists (ie. the version suffix), if there's none, then it appends ";1"

as default version. CAUTION: The BIOS allocates ONLY 28 bytes on stack for the copy of

the filename, that region is followed by 4 unused bytes, so the maximum length would

be 32 bytes (31 characters plus EOL) (eg. "device:\pathname\filename.ext;1",00h).

21.5 BIOS File Execute and Flush Cache

- 763/1136 -

Part2: Enables IRQs via ExitCriticalSection, memorizes the stack base/offset values from

the previously loaded executable (which should have been the boot executable, unless

LoadExec should have been used in nested fashion), does then use LoadTest to load the

desired file, replaces the stack base/offset values in its headerbuf by the LoadExec

parameter values, and does then execute it via Exec(headerbuf,1,0).

Part3: If the exefile returns, or if it couldn't be loaded, then the boot file is

(unsuccessfully) attempted to be reloaded: Enables IRQs via ExitCriticalSection, loads

the boot file via LoadTest, replaces the stack base/offset values in its headerbuf by the

values memorized in Part2 (which \<should> be the boot executable's values from

SYSTEM.CNF, unless the nesting stuff occurred), and does then execute the boot file via

Exec(headerbuf,1,0).

Part4: If the boot file returns, or if it couldn't be loaded, then the function looks up in a

"JMP $" endless loop (normally, returning from the boot exe causes SystemError("B",

38Ch), however, after using LoadExec, this functionality is replaced by the "JMP $"

lockup.

BUG: Uses the unstable FlushCache function (see there for details).

BUG: Part3 accidently treats the first 4 characters of the exename as memory address

(causing an invalid memory address exception on address 6F726463h, for

"cdrom:filename.exe").

A(9Ch) - SetConf(num_EvCB, num_TCB, stacktop)

Changes the number of EvCBs and TCBs, and the stacktop. These values are usually

initialized from the settings in the SYSTEM.CNF file, so using this function usually

shouldn't ever be required.

The function deallocates all old ExCBs, EvCBs, TCBs (so all Exception handlers, Events,

and Threads (except the current one) are lost, and all other memory that may have

been allocated via alloc_kernel_memory(size) is deallocated, too. It does then allocate

the new control blocks, and enqueue the default handlers. Despite of the changed

stacktop, the current stack pointer is kept intact, and the function returns to the caller.

A(9Dh) - GetConf(num_EvCB_dst, num_TCB_dst, stacktop_dst)

Returns the number of EvCBs, TCBs, and the initial stacktop. There's no return value in

the R2 register, instead, the three 32bit return values are stored at the specified "dst"

addresses.

21.5 BIOS File Execute and Flush Cache

- 764/1136 -

A(44h) - FlushCache()

Flushes the Code Cache, so opcodes are ensured to be loaded from RAM. This is

required when loading program code via DMA (ie. from CDROM) (the cache controller

apparently doesn't realize changes to RAM that are caused by DMA). The LoadTest and

LoadExec functions are automatically calling FlushCache (so FlushCache is required only

when loading program code via "read" or via "CdReadSector").

FlushCache may be also required when relocating or modifying program code by

software (the cache controller doesn't seem to realize modifications to memory mirrors,

eg. patching the exception handler at 80000080h seems to be work without FlushCache,

but patching the same bytes at 00000080h doesn't).

Note: The PSX doesn't have a Data Cache (or actually, it has, but it's misused as Fast

RAM, mapped to a fixed memory region, and which isn't accessable by DMA), so

FlushCache isn't required for regions that contain data.

BUG: The FlushCache function contains a handful of opcodes that do use the k0 register

without having IRQs disabled at that time, if an IRQ occurs during those opcodes, then

the k0 value gets destroyed by the exception handler, causing FlushCache to get trapped

in an endless loop.

One workaround would be to disable all IRQs before calling FlushCache, however, the

BIOS does internally call the function without IRQs disabled, that applies to:

for load_file/load_exec, IRQ2 (cdrom) and IRQ3 (dma) need to be enabled, so the

"disable all IRQs" workaround cannot be used for that functions, however, one can/should

disable as many IRQs as possible, ie. everything except IRQ2/IRQ3, and all DMA

interrupts except DMA3 (cdrom).

Executable Memory Allocation

LoadTest and LoadExec are simply loading the file to the address specified in the exe file

header. There's absolutely no verification whether that memory is (or isn't) allocated via

malloc, or if it is used by the boot executable, or by the kernel, or if it does contain RAM

at all.

When using the "malloc" function combined with loading exe files, it may be

 load_file A(42h)
 load_exec A(51h)
 add_device B(47h) (and all "add_xxx_device" functions)
 init_card B(4Ah)
 and by intro/boot code

21.5 BIOS File Execute and Flush Cache

- 765/1136 -

recommended not to pass all memory to InitHeap (ie. to keep a memory region being

reserved for loading executables).

Note

For more info about EXE files and their headers, see

CDROM File Formats

21.6 BIOS CDROM Functions

General File Functions

CDROMs are basically accessed via normal file functions, with device name

"cdrom:" (which is an abbreviation for "cdrom0:", anyways, the port number is ignored).

BIOS File Functions

BIOS File Execute and Flush Cache

Before starting the boot executable, the BIOS automatically calls _96_init(), so the

game doesn't need to do any initializations before using CDROM file functions.

Absent CD-Audio Support

The Kernel doesn't include any functions for playing Audio tracks. Also, there's no BIOS

function for setting the XA-ADPCM file/channel filter values. So CD Audio can be used

only by directly programming the CDROM I/O ports.

Asynchronous CDROM Access

The normal File functions are always using synchroneous access for CDROM (ie. the

functions do wait until all data is transferred) (unlike as for memory cards,

accessmode.bit15 cannot be used to activate asynchronous cdrom access).

However, one can read files in asynchrouneous fashion via CdGetLbn, CdAsyncSeekL,

and CdAsyncReadSector. CDROM files are non-fragmented, so they can be read simply

from incrementing sector numbers.

A(A4h) - CdGetLbn(filename)

Returns the first sector number used by the file, or -1 in case of error.

BUG: The function accidently returns -1 for the first file in the directory (the first file

should be a dummy entry for the current or parent directory or so, so that bug isn't

21.6 BIOS CDROM Functions

- 766/1136 -

much of a problem), if the file is not found, then the function accidently returns garbage

(rather than -1).

A(A5h) - CdReadSector(count,sector,buffer)

Reads \<count> sectors, starting at \<sector>, and writes data to \<buffer>. The read

is done in mode=80h (double speed, 800h-bytes per sector). The function waits until all

sectors are transferred, and does then return the number of sectors (ie. count), or -1 in

case of error.

A(A6h) - CdGetStatus()

Retrieves the cdrom status via CdAsyncGetStatus(dst) (see there for details; especially

for cautions on door-open flag). The function waits until the event indicates completion,

and does then return the status byte (or -1 in case of error).

A(78h) - CdAsyncSeekL(src)

Issues Setloc and SeekL commands. The parameter (src) is a pointer to a 3-byte sector

number (MM,SS,FF) (in BCD format).

The function returns 0=failed, or 1=okay. Completion is indicated by events

(class=F0000003h, and spec=20h, or 8000h).

A(7Ch) - CdAsyncGetStatus(dst)

Issues a GetStat command. The parameter (dst) is a pointer to a 1-byte location that

receives the status response byte.

The function returns 0=failed, or 1=okay. Completion is indicated by events

(class=F0000003h, and spec=20h, or 8000h).

Caution: The command acknowledges the door-open flag, but doesn't automatically

reload the path table (which is required if a new disk is inserted); if the door-open flag

was set, one should call a function that does forcefully load the path table (like cd).

A(7Eh) - CdAsyncReadSector(count,dst,mode)

Issues SetMode and ReadN (when mode.bit8=0), or ReadS (when mode.bit8=1)

commands. count is the number of sectors to be read, dst is the destination address in

RAM, mode.bit0-7 are passed as parameter to the SetMode command, mode.bit8 is the

ReadN/ReadS flag (as described above). The sector size (for DMA) depends on the mode

value: 918h-bytes (bit4=1, bit5=X), 924h-bytes (bit4=0, bit5=1), or 800h-bytes

21.6 BIOS CDROM Functions

- 767/1136 -

(bit4,5=0).

Before CdAsyncReadSector, the sector number should be set via CdAsyncSeekL(src).

The function returns 0=failed, or 1=okay. Completion is indicated by events

(class=F0000003h, and spec=20h, 80h, or 8000h).

A(81h) - CdAsyncSetMode(mode)

Similar to CdAsyncReadSector (see there for details), but issues only the SetMode

command, without any following ReadN/ReadS command.

A(94h) - CdromGetInt5errCode(dst1,dst2)

Returns the first two response bytes from the most recent INT5 error: [dst1]=status,

[dst2]=errorcode. The BIOS doesn't reset these values in case of successful completion,

so the values are quite useless.

A(54h) or A(71h) - _96_init()

A(56h) or A(72h) - _96_remove() ;does NOT work due to SysDeqIntRP bug

A(90h) - CdromIoIrqFunc1()

A(91h) - CdromDmaIrqFunc1()

A(92h) - CdromIoIrqFunc2()

A(93h) - CdromDmaIrqFunc2()

A(95h) - CdInitSubFunc() ;subfunction for _96_init()

A(9Eh) - SetCdromIrqAutoAbort(type,flag)

A(A2h) - EnqueueCdIntr() ;with prio=0 (fixed)

A(A3h) - DequeueCdIntr() ;does NOT work due to SysDeqIntRP bug

Internally used CDROM functions for initialization and IRQ handling.

21.6 BIOS CDROM Functions

- 768/1136 -

21.7 BIOS Memory Card Functions

General File Functions

Memory Cards aka Backup Units (bu) are basically accessed via normal file functions,

with device names "bu00:" (Slot 1) and "bu10:" (Slot 2),

BIOS File Functions

Before using the file functions for memory cards, first call InitCARD2(pad_enable), then

StartCARD2(), and then _bu_init().

File Header, Filesize, and Sector Alignment

The first 100h..200h bytes (2..4 sectors) of the file must contain the title and icon

bitmap(s). For details, see:

Memory Card Data Format

The filesize must be a multiple of 2000h bytes (one block), the maximum size would be

1E000h bytes (when using all 15 blocks on the memory card). The filesize must be

specified when creating the file (ie. accessmode bit9=1, and bit16-31=number of

blocks). Once when the file is created, the BIOS does NOT allow to change the filesize

(unless by deleting and re-creating the file).

When reading/writing files, the amount of data must be a multiple of 80h bytes (one

sector), and the file position must be aligned to a 80h-byte boundary, too. There's no

restriction on fragmented files (ie. one may cross 2000h-byte block boundaries within

the file).

Poor Memcard Performance

PSX memory card accesses are typically super-slow. That, not so much because the

hardware would be slow, but rather because of improper inefficent code at the BIOS

side. The original BIOS tries to synchronize memory card accesses with joypad accesses

simply by accessing only one sector per frame (although it could access circa two

sectors). To the worst, the BIOS accesses Slot 1 only on each second frame, and Slot 2

only each other frame (although in 99% of all cases only one slot is accessed at once, so

the access time drops to 0.5 sectors per frame).

Moreover, the memory card id, directory, and broken sector list do occupy 26 sectors

(although the whole information would fit into 4 or 5 sectors) (a workaround would be to

read only the first some bytes, and to skip the additional unused bytes - though that'd

also mean to skip the checksums which are unfortunately stored at the end of the

sector).

21.7 BIOS Memory Card Functions

- 769/1136 -

And, anytime when opening a file (in synchronous mode), the BIOS does additionally

read sector 0 (which is totally useless, and gets especially slow when opening a bunch of

files; eg. when extracting the title/icon from all available files on the card).

Asynchronous Access

The BIOS supports synchronous and asynchronous memory card access. Synchronous

means that the BIOS function doesn't return until the access has completed (which

means, due to the poor performance, that the function spends about 75% of the time on

inactivity) (except in nocash PSX bios, which has better performance), whilst

asynchronous access means that the BIOS function returns immediately after invoking

the access (which does then continue on interrupt level, and does return an event when

finished).

The file "read" and "write" functions act asynchronous when accessmode bit15 is set

when opening the file. Additionally, the A(ACh) _card_load(port) function can be used to

tell the BIOS to load the directory entries and broken sector list to its internal RAM

buffers (eg. during the games title screen, so the BIOS doesn't need to load that data

once when the game enters its memory card menu). All other functions like erase or

format always act synchronous. The open/findfirst/findnext functions do normally

complete immediately without accessing the card at all (unless the directory wasn't yet

read; in that case the directory is loading in synchronous fashion).

Unfortunately, the asynchronous response doesn't rely on a single callback event, but

rather on a bunch of different events which must be all allocated and tested by the

game (and of which, one event is delivered on completion) (which one depends on

whether function completed okay, or if an error occurred).

Multitap Support (and Multitap Problems)

The BIOS does have some partial support for accessing more than two memory cards

(via Multitap adaptors). Device/port names "bu01:", "bu02:", "bu03:" allow to access

extra memory carts in slot1 (and "bu11:", "bu12:", "bu13:" in slot2). Namely, those

names will send values 82h, 83h, 84h to the memory card slot (instead of the normal

81h value).

However, the BIOS directory_buffer and broken_sector_list do support only two memory

cards (one in slot1 and one in slot2). So, trying to access more memory cards may

cause great data corruption (though there might be a way to get the BIOS to reload

those buffers before accessing a different memory card).

Aside from that problem, the BIOS functions are very-very-very slow even when

21.7 BIOS Memory Card Functions

- 770/1136 -

accessing only two memory cards. Trying to use the BIOS to access up to eight memory

cards would be very-extremly-very slow, which would be more annoying than useful.

B(4Ah) - InitCARD2(pad_enable) ;uses/destroys k0/k1 !!!

B(4Bh) - StartCARD2()

B(4Ch) - StopCARD2()

A(55h) or A(70h) - _bu_init()

A(ABh) - _card_info(port)

B(4Dh) - _card_info_subfunc(port) ;subfunction for "_card_info"

Can be used to check if the most recent call to _card_write has completed okay. Issues

an incomplete dummy read command (similar to B(4Fh) - _card_read). The read

command is aborted once when receiving the status byte from the memory card (the

actual data transfer is skipped).

A(AFh) - card_write_test(port) ;not supported by old CEX-1000 version

Resets the card changed flag. For some strange reason, this flag isn't automatically reset

after reading the flag, instead, the flag is reset upon sector writes. To do that, this

function issues a dummy write to sector 3Fh.

B(50h) - _new_card()

Normally any memory card read/write functions fail if the BIOS senses the card change

flag to be set. Calling this function tells the BIOS to ignore the card change flag on the

next read/write operation (the function is internally used when loading the "MC" ID from

sector 0, and when calling the card_write_test function to acknowledge the card change

flag).

 --- Below are some lower level memory card functions ---

21.7 BIOS Memory Card Functions

- 771/1136 -

B(4Eh) - _card_write(port,sector,src)

B(4Fh) - _card_read(port,sector,dst)

Invokes asynchronous reading/writing of a single sector. The function returns 1=okay, or

0=failed (on invalid sector numbers). The actual I/O is done on IRQ level, completion of

the I/O command transmission can be checked, among others, via get/

wait_card_status(slot) functions (with slot=port/10h).

In case of the write function, completion of the \<transmission> does NOT mean that

the actual \<writing> has completed, instead, write errors are indicated upon

completion of the \<next sector> read/write transmission (or, if there are no further

sectors to be accessed; one can use _card_info to verify completion of the last written

sector).

The sector number should be in range of 0..3FFh, for some strange reason, probably a

BUG, the function also accepts sector 400h. The specified sector number is directly

accessed (it is NOT parsed through the broken sector replacement list).

B(5Ch) - _card_status(slot)

B(5Dh) - _card_wait(slot)

Returns the status of the most recent I/O command, possible values are:

_card_status returns immediately, _card_wait waits until a non-busy state occurs.

 01h=ready
 02h=busy/read
 04h=busy/write
 08h=busy/info
 11h=failed/timeout (eg. when no cartridge inserted)
 21h=failed/general error

21.7 BIOS Memory Card Functions

- 772/1136 -

A(A7h) - bufs_cb_0()

A(A8h) - bufs_cb_1()

A(A9h) - bufs_cb_2()

A(AAh) - bufs_cb_3()

A(AEh) - bufs_cb_4()

These five callback functions are internally used by the BIOS, notifying other BIOS

functions about (un-)successful completion of memory card I/O commands.

B(58h) - _card_chan()

This is a subfunction for the five bufs_cb__xxx functions (indicating whether the callback

occured for a slot1 or slot2 access).

A(ACh) - _card_load(port)

Invokes asynchronous reading of the memory card directory. The function isn't too

useful because the BIOS tends to read the directory automatically in various places in

synchronous mode, so there isn't too much chance to replace the automatic

synchronous reading by asynchronous reading.

A(ADh) - _card_auto(flag)

Can be used to enable/disable auto format (0=off, 1=on). The _bu_init function

initializes auto format as disabled. If auto format is enabled, then the BIOS does

automatically format memory cards if it has failed to read the "MC" ID bytes on sector 0.

Although potentially useful, activating this feature is rather destructive (for example,

read errors on sector 0 might occur accidently due to improperly inserted cards with

dirty contacts, so it'd be better to prompt the user whether or not to format the card,

rather than doing that automatically).

21.7 BIOS Memory Card Functions

- 773/1136 -

C(1Ah) - set_card_find_mode(mode)

C(1Dh) - get_card_find_mode()

Allows to get/set the card find mode (0=normal, 1=find deleted files), the mode setting

affects only the firstfile2/nextfile functions. All other file functions are used fixed mode

settings (always mode=0 for open, rename, erase, and mode=1 for undelete).

21.8 BIOS Interrupt/Exception Handling

The Playstation's Kernel uses an uncredible inefficient and unstable exception handler;

which may have been believed to be very powerful and flexible.

Inefficiency

For a maximum of slowness, it does always save and restore all CPU registers (including

such that aren't used in the exception handler). It does then go through a list of

installed interrupt handlers - and executes ALL of them. For example, a Timer0 IRQ is

first passed to the Cdrom and Vblank handlers (which must reject it, no thanks), before

it does eventually reach the Timer0 handler.

Unstable IRQ Handling

A fundamental mistake in the exception handler is that it doesn't memorize the incoming

IRQ flags. So the various interrupt handlers must check Port 1F801070h one after each

other. That means, if a high priority handler has rejected IRQ processing (because the

desired IRQ flag wasn't set at that time), then a lower priority handler may process it

(assuming that the IRQ flag got set in the meantime), and, in worst case it may even

acknowledge it (so the high priority handler does never receive it).

To avoid such problems, there should be only ONE handler installed for each IRQ source.

However, that isn't always possible because the Kernel automatically installs some

predefined handlers. Most noteworthy, the totally bugged DefaultInterruptHandlers is

always installed (and cannot be removed), so it does randomly trigger Events.

Fortunately, it does not acknowledge the IRQs (unless SetIrqAutoAck was used to enable

that fatal behaviour).

21.8 BIOS Interrupt/Exception Handling

- 774/1136 -

B(18h) - ResetEntryInt()

Applies the default "Exit" structure (which consists of a pointer to ReturnFromException,

and the Kernel's exception stacktop (minus 4, for whatever reason), and zeroes for the

R16..R23,R28,R30 registers. Returns the address of that structure.

See HookEntryInt for details.

B(19h) - HookEntryInt(addr)

addr points to a structure (with same format as for the setjmp function):

The hook function is executed only if the ExceptionHandler has been fully executed (after

processing an IRQ, many interrupt handlers are calling ReturnFromException to abort

further exception handling, and thus do skip the hook function). Once when the hook

function has finished, it should execute ReturnFromException. The hook function is called

with r2=1 (that is important if the hook address was recorded with setjmp, where it

"returns" to the setjmp caller, with r2 as "return value").

Priority Chains

The Kernel's exception handler has four priority chains, each may contain one or more

Interrupt or Exception handlers. The default handlers are:

The exception handler calls all handlers, starting with the first element in the priority 0

chain (ie. usually CdromDmaIrq). The separate handlers must check if they want to

process the IRQ (eg. CdromDmaIrq would process only CDROM DMA IRQs, but not joypad

IRQs or so). If it has processed and acknowledged the IRQ, then the handler may execute

ReturnFromException, which causes the handlers of lower priority to be skipped (if there

are still other unacknowledge IRQs pending, then the hardware will re-enter the exception

handler as soon as the RFE opcode in ReturnFromException does re-enable interrupts).

 00h 4 r31/ra,pc ;usually ptr to ReturnFromException function
 04h 4 r28/sp ;usually exception stacktop, minus 4, for whatever reason
 08h 4 r30/fp ;usually 0
 0Ch 4x8 r16..r23 ;usually 0
 2Ch 4 r28/gp ;usually 0

 Prio Chain Content
 0 CdromDmaIrq, CdromIoIrq, SyscallException
 1 CardSpecificIrq, VblankIrq, Timer2Irq, Timer1Irq, Timer0Irq
 2 PadCardIrq
 3 DefInt

21.8 BIOS Interrupt/Exception Handling

- 775/1136 -

C(02h) - SysEnqIntRP(priority,struc) ;bugged, use with care

Inserts a new element in the specified priority chain. The new element is inserted at the

begin of the chain, so (within that priority chain) the new element has highest priority.

BUG: SysDeqIntRP can remove only the first element in the chain (see there for details),

so adding new chain elements may cause OTHER functions to be unable to remove their

chain elements. The BIOS seems to be occassionally adding/removing the

"CardSpecificIrq" and "PadCardIrq" (with priority 1 and 2), so using that priorities may

cause the BIOS to be unable to remove that IRQ handlers. Using priority 0 and 3 should

work (as long as the software takes care to remove only the newest elements) (but there

should be no conflicts with the BIOS which does never remove priority 0 and 3 elements)

(leaving apart that DequeueCdIntr and _96_remove try to remove priority 0 elements,

but that functions won't work anyways; due to the same bug).

C(03h) - SysDeqIntRP(priority,struc) ;bugged, use with care

Removes the specified element from the specified priority chain.

BUG: The function tries to search the whole chain (and to remove the element if it finds

it). However, it does only check the first element properly, and, thereafter it reads a

garbage value from an uninitialized stack location, and acts more or less unpredictable.

So, it can remove only the first element in the chain, ie. it should be called only if you

are SURE that there's no newer element in the chain, and only if you are SURE that the

element IS in the chain.

SYS(01h) - EnterCriticalSection() ;syscall with r4=01h

Disables interrupts by clearing SR (cop0r12) Bit 2 and 10 (of which, Bit2 gets copied to

Bit0 once when returning from the syscall exception). Returns 1 if both bits were set,

returns 0 if one or both of the bits were already zero.

SYS(02h) - ExitCriticalSection() ;syscall with r4=02h

Enables interrupts by set SR (cop0r12) Bit 2 and 10 (of which, Bit2 gets copied to Bit0

once when returning from the syscall exception). There's no return value (all registers

except SR and K0 are unchanged).

 00h 4 pointer to next element (0=none) ;this pointer is inserted by BIOS
 04h 4 pointer to SECOND function (0=none) ;executed if func1 returns r2<>0
 08h 4 pointer to FIRST function (0=none) ;executed first
 0Ch 4 Not used (usually zero)

21.8 BIOS Interrupt/Exception Handling

- 776/1136 -

C(0Dh) - SetIrqAutoAck(irq,flag)

Specifies if the DefaultInterruptHandler shall automatically acknowledge IRQs. The "irq"

paramter is the number of the interrupt, ie. 00h..0Ah = IRQ0..IRQ10. The "flag" value

should be 0 to disable AutoAck, or non-zero to enable AutoAck. By default, AutoAck is

disabled for all IRQs.

Mind that the DefaultInterruptHandler is totally bugged. Especially the AutoAck feature

doesn't work very well: It may cause higher priority handlers to miss their IRQ, and it

may even cause the DefaultInterruptHandler to miss its own IRQs.

C(06h) - ExceptionHandler()

The C(06h) vector points to the exception handler, ie. to the function that is invoked

from the 4 opcodes at address 80000080h, that opcodes jump directly to the exception

handler, so patching the C(06h) vector has no effect.

Reading the C(06h) entry can be used to let a custom 80000080h handler pass control

back to the default handler (that, by a "direct" jump, not by the usual "MOV R9,06h /

CALL 0C0h" method, which would destroy main programs R9 register).

Also, reading C(06h) may be useful for patching the exception handler (which contains a

bunch of NOP opcodes, which seem to be intended to insert additional opcodes, such like

debugger exception handling) (Note: some of that NOPs are reserved for Memory Card

IRQ handling).

BUG: Early BIOS versions did try to examine a copy of cop0r13 in r2 register, but did

forgot cop0r13 to r2 (so they examined garbage), this was fixed in newer BIOS versions,

additionally, most commercial games still include patches for compatibility with the old

BIOS.

B(17h) - ReturnFromException()

Restores the CPU registers (R1-R31,HI,LO,SR,PC) (except R26/K0) from the current

TCB. This function is usually executed automatically at the end of the ExceptionHandler,

however, functions in the exception chain may call ReturnFromException to return

immediately, without processing chain elements of lower priority.

21.8 BIOS Interrupt/Exception Handling

- 777/1136 -

C(00h) - EnqueueTimerAndVblankIrqs(priority) ;used with prio=1

C(01h) - EnqueueSyscallHandler(priority) ;used with prio=0

C(0Ch) - InitDefInt(priority) ;used with prio=3

Internally used to add some default IRQ and Exception handlers.

No Nested Exceptions

The Kernel doesn't support nested exceptions, that would require a decreasing exception

stack, however, the kernel saves the incoming CPU registers in the current TCB, and an

exception stack with fixed start address for internal push/pop during exception handling.

So, nesting would overwrite these values. Do not enable IRQs, and don't trap other

exceptions (like break or syscall opcodes, or memory or overlow errors) during

exception handling.

Note: The execption stack has a fixed size of 1000h bytes (and is located somewhere in

the first 64Kbytes of memory).

21.9 BIOS Event Functions

B(08h) - OpenEvent(class, spec, mode, func)

Adds an event structure to the event table.

Opens an event, should be called within a critical section. The return value is used to

identify the event to the other event functions. A list of event classes, specs and modes is

at the end of this section. Initially, the event is disabled.

Note: The desired max number of events can be specified in the SYSTEM.CNF boot file

(the default is "EVENT = 10" (which is a HEX number, ie. 16 decimal; of which 5 events

are internally used by the BIOS for CDROM functions, so, of the 16 events, only 11 events

are available to the game). A bigger amount of events will slowdown the DeliverEvent

function (which always scans all EvCBs, even if all events are disabled).

 class,spec - triggers if BOTH values match
 mode - (1000h=execute function/stay busy, 2000h=no func/mark ready)
 func - Address of callback function (0=None) (used only when mode=1000h)
 out: R2 = Event descriptor (F1000000h and up), or FFFFFFFFh if failed

21.9 BIOS Event Functions

- 778/1136 -

B(09h) - CloseEvent(event) - releases event from the event table

Always returns 1 (even if the event handle is unused or invalid).

B(0Ch) - EnableEvent(event) - Turns on event handling for specified event

Always returns 1 (even if the event handle is unused or invalid).

B(0Dh) - DisableEvent(event) - Turns off event handling for specified event

Always returns 1 (even if the event handle is unused or invalid).

B(0Ah) - WaitEvent(event)

Returns 0 if the event is disabled. Otherwise hangs in a loop until the event becomes

ready, and returns 1 once when it is ready (and automatically switches the event back to

busy status). Callback events (mode=1000h) do never set the ready flag (and thus

WaitEvent would hang forever).

The main program simply hangs during the wait, so when using multiple threads, it may

be more recommended to create an own waitloop that checks TestEvent, and to call

ChangeTh when the event is busy.

BUG: The return value is unstable (sometimes accidently returns 0=disabled if the event

status changes from not-ready to ready shortly after the function call).

B(0Bh) - TestEvent(event)

Returns 0 if the event is busy or disabled. Otherwise, when it is ready, returns 1 (and

automatically switches the event back to busy status). Callback events (mode=1000h)

do never set the ready flag.

B(07h) - DeliverEvent(class, spec)

This function is usually called by the kernel, it triggers all events that are enabled/busy,

and that have the specified class and spec values. Depending on the mode, either the

callback function is called (mode=1000h), or the event is marked as enabled/ready

(mode=2000h).

21.9 BIOS Event Functions

- 779/1136 -

B(20h) - UnDeliverEvent(class, spec)

This function is usually called by the kernel, undelivers all events that are enabled/

ready, and that have mode=2000h, and that have the specified class and spec values.

Undeliver means that the events are marked as enabled/busy.

C(04h) - get_free_EvCB_slot()

A subfunction for OpenEvent.

Event Classes

File Events:

Hardware Events:

Event Events:

Root Counter Events (Timers and Vblank):

User Events:

 0000000xh memory card (for file handle fd=x)

 F0000001h IRQ0 VBLANK
 F0000002h IRQ1 GPU
 F0000003h IRQ2 CDROM Decoder
 F0000004h IRQ3 DMA controller
 F0000005h IRQ4 RTC0 (timer0)
 F0000006h IRQ5/IRQ6 RTC1 (timer1 or timer2)
 F0000007h N/A Not used (this should be timer2)
 F0000008h IRQ7 Controller (joypad/memcard)
 F0000009h IRQ9 SPU
 F000000Ah IRQ10 PIO ;uh, does the PIO have an IRQ signal? (IRQ10 is joypad)
 F000000Bh IRQ8 SIO
 F0000010h Exception ;CPU crashed (BRK,BadSyscall,Overflow,MemoryError, etc.)
 F0000011h memory card (lower level BIOS functions)
 F0000012h memory card (not used by BIOS; maybe used by Sony's devkit?)
 F0000013h memory card (not used by BIOS; maybe used by Sony's devkit?)

 F1xxxxxxh event (not used by BIOS; maybe used by Sony's devkit?)

 F2000000h Root counter 0 (Dotclock) (hardware timer)
 F2000001h Root counter 1 (horizontal retrace?) (hardware timer)
 F2000002h Root counter 2 (one-eighth of system clock) (hardware timer)
 F2000003h Root counter 3 (vertical retrace?) (this is a software timer)

21.9 BIOS Event Functions

- 780/1136 -

BIOS Events (including such that have nothing to do with BIOS):

Thread Events:

Event Specs

Event modes

21.10 BIOS Event Summary

Below is a list of all events (class,spec values) that are delivered and/or undelivered by

the BIOS in one way or another. The BIOS does internally open five events for cdrom

(class=F0000003h with spec=10h,20h,40h,80h,8000h). The various other class/spec's

 F3xxxxxxh user (not used by BIOS; maybe used by games and/or Sony's devkit?)

 F4000001h memory card (higher level BIOS functions)
 F4000002h libmath (not used by BIOS; maybe used by Sony's devkit?)

 FFxxxxxxh thread (not used by BIOS; maybe used by Sony's devkit?)

 0001h counter becomes zero
 0002h interrupted
 0004h end of i/o
 0008h file was closed
 0010h command acknowledged
 0020h command completed
 0040h data ready
 0080h data end
 0100h time out
 0200h unknown command
 0400h end of read buffer
 0800h end of write buffer
 1000h general interrupt
 2000h new device
 4000h system call instruction ;SYS(04h..FFFFFFFFh)
 8000h error happened
 8001h previous write error happened
 0301h domain error in libmath
 0302h range error in libmath

 1000h Execute callback function, and stay busy (do NOT mark event as ready)
 2000h Do NOT execute callback function, and mark event as ready

21.10 BIOS Event Summary

- 781/1136 -

are only delivered by the BIOS (but not received by the BIOS) (ie. a game may open/

enable memory card events to receive notifications from the BIOS).

CDROM Events

Memory Card - Higher Level File/Device Events

Memory Card - Lower Level Hardware I/O Events

Timer/Vblank Events

Default IRQ Handler Events (very unstable, don't use)

 F0000003h,10h cdrom DMA finished (all sectors finished)
 F0000003h,20h cdrom ?
 F0000003h,40h cdrom dead feature (delivered only by unused functions)
 F0000003h,80h cdrom INT4 (reached end of disk)
 F0000003h,100h n/a ? ;undelivered, but not opened, nor delivered
 F0000003h,200h ;undelivered, but not opened
 F0000003h,8000h

 0000000xh,4 card file handle (x=fd) done okay
 F4000001h,4 card done okay (len=0)
 F4000001h,100h card err busy ;A(A9h)
 F4000001h,2000h card err eject ;A(AAh) or unformatted (bad "MC" id)
 F4000001h,8000h card err write ;A(A8h) or A(AEh) or general error

 F0000011h,4 finished okay
 F0000011h,100h err busy
 F0000011h,200h n/a ?
 F0000011h,2000h err
 F0000011h,8000h err
 F0000011h,8001h err (this one is NOT undelivered!)

 F2000000h,2 Timer0 (IRQ4)
 F2000001h,2 Timer1 (IRQ5)
 F2000002h,2 Timer2 (IRQ6)
 F2000003h,2 Vblank (IRQ0) (unstable since IRQ0 is also used for joypad)

 F0000001h,1000h ;IRQ0 (VBLANK)
 F0000002h,1000h ;IRQ1 (GPU)
 F0000003h,1000h ;IRQ2 (CDROM)
 F0000004h,1000h ;IRQ3 (DMA)
 F0000005h,1000h ;IRQ4 (TMR0)
 F0000006h,1000h ;IRQ5 (TMR1)

21.10 BIOS Event Summary

- 782/1136 -

Unresolved Exception Events

21.11 BIOS Thread Functions

B(0Eh) - OpenTh(reg_PC,reg_SP_FP,reg_GP)

Searches a free TCB, marks it as used, and stores the inital program counter (PC),

global pointer (GP aka R28), stack pointer (SP aka R29), and frame pointer (FP aka R30)

(using the same value for SP and FP). All other registers are left uninitialized (eg. may

contain values from an older closed thread, that includes the SR register, see note).

The return value is the new thread handle (in range FF000000h..FF000003h, assuming

that 4 TCBs are allocated) or FFFFFFFFh if there's no free TCB. The function returns to

the old current thread, use "ChangeTh" to switch to the new thread.

Note: The desired max number of TCBs can be specified in the SYSTEM.CNF boot file

(the default is "TCB = 4", one initially used for the boot executable, plus 3 free threads).

BUG - Unitialized SR Register

OpenTh does NOT initialize the SR register (cop0r12) of the new thread. Upon powerup,

the bootcode zerofills the TCB memory (so, the SR of new threads will be initially zero;

ie. Kernel Mode, IRQ's disabled, and COP2 disabled). However, when closing/reopening

threads, the SR register will have the value of the old closed thread (so it may get

started with IRQs enabled, and, in worst case, if the old thread should have switched to

User Mode, even without access to KSEG0, KSEG1 memory).

Or, ACTUALLY, the memory is NOT zerofilled on powerup... so SR is total random?

B(0Fh) - CloseTh(handle)

Marks the TCB for the specified thread as unused. The function can be used for any

threads, including for the current thread.

Closing the current thread doesn't terminate the current thread, so it may cause

 F0000006h,1000h ;IRQ6 (TMR2) (accidently uses same event as TMR1)
 F0000008h,1000h ;IRQ7 (joypad/memcard)
 F0000009h,1000h ;IRQ9 (SPU)
 F000000Ah,1000h ;IRQ10 (Joypad and PIO)
 F000000Bh,1000h ;IRQ8 (SIO)

 F0000010h,1000h unknown exception ;neither IRQ nor SYSCALL
 F0000010h,4000h unknown syscall ;syscall(04h..FFFFFFFFh)

21.11 BIOS Thread Functions

- 783/1136 -

problems once when opening a new thread, however, it should be stable to execute the

sequence "DisableInterrupts, CloseCurrentThread, ChangeOtherThread".

The return value is always 1 (even if the handle was already closed).

B(10h) - ChangeTh(handle)

Pauses the current thread, and activates the selected new thread (or crashes if the

specified handle was unused or invalid).

The return value is always 1 (stored in the R2 entry of the TCB of the old thread, so the

return value will be received once when changing back to the old thread).

Note: The BIOS doesn't automatically switch from one thread to another. So, all other

threads remain paused until the current thread uses ChangeTh to pass control to

another thread.

Each thread is having it's own CPU registers (R1..R31,HI,LO,SR,PC), the registers are

stored in the TCB of the old thread, and restored when switching back to that thread.

Mind that other registers (I/O Ports or GTE registers aren't stored automatically, so,

when needed, they need to be pushed/popped by software before/after ChangeTh).

C(05h) - get_free_TCB_slot()

Subfunction for OpenTh, returns the number of the first free TCB (usually in range 0..3)

or FFFFFFFFh if there's no free TCB.

SYS(03h) ChangeThreadSubFunction(addr) ;syscall with r4=03h, r5=addr

Subfunction for ChangeTh, R5 contains the address of the new TCB, just like all

exceptions, the syscall exception is saving the CPU registers in the current TCB, but does

then apply the new TCB as current TCB, and so, it does then enter the new thread when

returning from the exception.

21.12 BIOS Timer Functions

Timers (aka Root Counters)

The three hardware timers aren't internally used by any BIOS functions, so they can be

freely used by the game, either via below functions, or via direct I/O access.

21.12 BIOS Timer Functions

- 784/1136 -

Vblank

Some of the below functions are allowing to use Vblank IRQs as a fourth "timer".

However, Vblank IRQs are internally used by the BIOS for handling joypad and memory

card accesses. One could theoretically use two separate Vblank IRQ handlers, one for

joypad, and one as "timer", but the BIOS is much too unstable for such "shared" IRQ

handling (it may occassionally miss one of the two handlers).

So, although Vblank IRQs are most important for games, the PSX BIOS doesn't actually

allow to use them for purposes other than joypad access. A possible workaround is to

examine the status byte in one of the joypad buffers (ie. the

InitPAD2(buf1,22h,buf2,22h) buffers). Eg. a wait_for_vblank function could look like so:

set buf1[0]=55h, then wait until buf1[0]=00h or buf1[0]=FFh.

B(02h) - init_timer(t,reload,flags)

When t=0..2, resets the old timer mode by setting [1F801104h+t*16]=0000h, applies

the reload value by [1F801108h+t*16]=reload, computes the new mode:

and applies it by setting [1F801104h+t*16]=mode, and returns 1. Does nothing and

returns zero for t>2.

B(03h) - get_timer(t)

Reads the current timer value: Returns halfword[1F801100h+t*16] for t=0..2. Does

nothing and returns zero for t>2.

B(04h) - enable_timer_irq(t)

B(05h) - disable_timer_irq(t)

Enables/disables timer or vblank interrupt enable bits in [1F801074h], bit4,5,6 for

t=0,1,2, or bit0 for t=3, or random/garbage bits for t>3. The enable function returns 1

for t=0..2, and 0 for t=3. The disable function returns always 1.

 if flags.bit4=0 then mode=0048h else mode=0049h
 if flags.bit0=0 then mode=mode OR 100h
 if flags.bit12=1 then mode=mode OR 10h

21.12 BIOS Timer Functions

- 785/1136 -

B(06h) - restart_timer(t)

Sets the current timer value to zero: Sets [1F801100h+t*16]=0000h and returns 1 for

t=0..2. Does nothing and returns zero for t>2.

C(0Ah) - ChangeClearRCnt(t,flag) ;root counter (aka timer)

Selects what the kernel's timer/vblank IRQ handlers shall do after they have processed

an IRQ (t=0..2: timer 0..2, or t=3: vblank) (flag=0: do nothing; or flag=1:

automatically acknowledge the IRQ and immediately return from exception). The

function returns the old (previous) flag value.

21.13 BIOS Joypad Functions

Pad Input

Joypads should be initialized via InitPAD2(buf1,22h,buf2,22h), and StartPAD2(). The

main program can read the pad data from the buf1/buf2 addresses (including Status,

ID1, button states, and any kind of analogue inputs). For more info on ID1, Buttons and

analogue inputs, see

Controllers and Memory Cards

Note: The BIOS doesn't include any functions for sending custom data to the pads (such

like for controlling rumble motors).

B(12h) - InitPAD2(buf1, siz1, buf2, siz2)

Memorizes the desired buf1/buf2 addresses, zerofills the buffers by using the siz1/siz2

buffer size values (which should be 22h bytes each). And does some initialization on the

PadCardIrq element (but doesn't enqueue it, that must be done by a following call to

StartPAD2), and does set the "pad_enable_flag", that flag can be also set/cleared via

InitCARD2(pad_enable), where it selects if the Pads are kept handled together with

Memory Cards. buf1/buf2 are having the following format:

Note: InitPAD2 does initially zerofill the buffers, so, until the first IRQ is processed, the

initial status is 00h=okay, with buttons=0000h (all buttons pressed), to fix that situation,

change the two status bytes to FFh after calling InitPAD2 (or alternately, reject ID1=00h).

 00h Status (00h=okay, FFh=timeout/wrong ID2)
 01h ID1 (eg. 41h=digital_pad, 73h=analogue_pad, 12h=mouse, etc.)
 02h..21h Data (max 16 halfwords, depending on lower 4bit of ID1)

21.13 BIOS Joypad Functions

- 786/1136 -

Once when the PadCardIrq is enqueued via StartPAD2, and while "pad_enable_flag" is

set, the data for (both) Pad1 and Pad2 is read on Vblank interrupts, and stored in the

buffers, the IRQ handler stores up to 22h bytes in the buffer (regardless of the siz1/siz2

values) (eg. a Multitap adaptor uses all 22h bytes).

B(13h) - StartPAD2()

Should be used after InitPAD2. Enqueues the PadCardIrq handler, and does additionally

initialize some flags.

B(14h) - StopPAD2()

Dequeues the PadCardIrq handler. Note that this handler is also used for memory cards,

so it'll "stop" cards, too.

B(15h) - PAD_init2(type, button_dest, unused, unused)

This is an extremely bizarre and restrictive function - don't use! The function fails unless

type is 20000000h or 20000001h (the type value has no other function). The function

uses "buf1/buf2" addresses that are located somewhere "hidden" within the BIOS

variables region, the only way to read from that internal buffers is to use the ugly

"PAD_dr()" function. For some strange reason it FFh-fills buf1/buf2, and does then call

InitPAD2(buf1,22h,buf2,22) (which does immediately 00h-fill the previously FFh-filled

buffers), and does then call StartPAD2().

Finally, it does memorize the "button_dest" address (see PAD_dr() for details on that

value). The two unused parameters have no function, however, they are internally

written back to the stack locations reserved for parameter 2 and 3, ie. at [SP+08h] and

[SP+0Ch] on the caller's stack, so the function MUST be called with all four parameters

allocated on stack. Return value is 2 (or 0 if type was disliked).

B(16h) - PAD_dr()

This is a very ugly function, using the internal "buf1/buf2" values from "PAD_init2" and

the "button_dest" value that was passed to that function.

If "button_dest" is non-zero, then this function is automatically called by the PadCardIrq

handler, and stores it's return value at [button_dest] (where it may be read by the main

program). If "button_dest" is zero, then it isn't called automatically, and it \<can> be

called manually (with return value in R2), however, it does additionally write the return

value to [button_dest], ie. to [00000000h] in this case, destroying that memory

location.

21.13 BIOS Joypad Functions

- 787/1136 -

The return value itself is useless garbage: The lower 16bit contain the pad1 buttons, the

upper 16bit the pad2 buttons, of which, both values have reversed byte-order (ie. the

first button byte in upper 8bit). The function works only with controller IDs 41h (digital

joypad) and 23h (nonstandard device). For ID=23h, the halfword is ORed with 07C7h,

and bit6,7 are then cleared if the analogue inputs are greater than 10h. For ID=41h the

data is left intact. Any other ID values, or disconnected joypads, cause the halfword to

be set to FFFFh (same as when no buttons are pressed), that includes newer analogue

pads (unless they are switched to "digital" mode).

21.14 BIOS GPU Functions

A(48h) - SendGP1Command(gp1cmd)

Writes [1F801814h]=gp1cmd. There's no return value (r2 is left unchanged).

A(49h) - GPU_cw(gp0cmd) ;send GP0 command word

Calls gpu_sync(), and does then write [1F801810h]=gp0cmd. Returns the return value

from the gpu_sync() call.

A(4Ah) - GPU_cwp(src,num) ;send GP0 command word and parameter words

Calls gpu_sync(), and does then copy "num" words from [src and up] to [1F801810h],

src should usually point to a command word, followed by num-1 parameter words.

Transfer is done by software (without DMA). Always returns 0.

A(4Bh) - send_gpu_linked_list(src)

Transfer an OT via DMA. Calls gpu_sync(), and does then write [1F801814h]=4000002h,

[1F8010F4h]=0, [1F8010F0h]=[1F8010F0h] OR 800h, [1F8010A0h]=src,

[1F8010A4h]=0, [1F8010A8h]=1000401h. The function does additionally output a

bunch of TTY status messages via printf. The function doesn't wait until the DMA is

completed. There's no return value.

A(4Ch) - gpu_abort_dma()

Writes [1F8010A8h]=401h, [1F801814h]=4000000h, [1F801814h]=2000000h,

[1F801814h]=1000000h. Ie. stops GPU DMA, and issues GP1(4), GP1(2), GP1(1).

Returns 1F801814h, ie. the I/O address.

21.14 BIOS GPU Functions

- 788/1136 -

A(4Dh) - GetGPUStatus()

Reads [1F801814h] and returns that value.

A(46h) - GPU_dw(Xdst,Ydst,Xsiz,Ysiz,src)

Waits until GPUSTAT.Bit26 is set (unlike gpu_sync, which waits for Bit28), and does then

[1F801810h]=A0000000h, [1F801810h]=YdstXdst, [1F801810h]=YsizXsiz, and finally

transfers "N" words from [src and up] to [1F801810h], where "N" is "Xsiz*Ysiz/2". The

data is transferred by software (without DMA) (by code executed in the uncached BIOS

region with high waitstates, so the data transfer is very SLOW).

Caution: If "Xsiz*Ysiz" is odd, then the last halfword is NOT transferred, so the GPU

stays waiting for the last data value.

Returns [SP+04h]=Ydst, [SP+08h]=Xsiz, [SP+0Ch]=Ysiz, [SP+10h]=src+N*4, and

R2=src=N*4.

A(47h) - gpu_send_dma(Xdst,Ydst,Xsiz,Ysiz,src)

Calls gpu_sync(), writes [1F801810h]=A0000000h, [1F801814h]=4000002h,

[1F8010F0h]=[1F8010F0h] OR 800h, [1F8010A0h]=src, [1F8010A4h]=N*10000h+10h

(where N="Xsiz*Ysiz/32"), [1F8010A8h]=1000201h.

Caution: If "Xsiz*Ysiz" is not a multiple of 32, then the last halfword(s) are NOT

transferred, so the GPU stays waiting for that values.

Returns R2=1F801810h, and [SP+04h]=Ydst, [SP+08h]=Xsiz, [SP+0Ch]=Ysiz.

A(4Eh) - gpu_sync()

If DMA is off (when GPUSTAT.Bit29-30 are zero): Waits until GPUSTAT.Bit28=1 (or until

timeout).

If DMA is on: Waits until D2_CHCR.Bit24=0 (or until timeout), and does then wait until

GPUSTAT.Bit28=1 (without timeout, ie. may hang forever), and does then turn off DMA

via GP1(04h).

Returns 0 (or -1 in case of timeout, however, the timeout values are very big, so it may

take a LOT of seconds before it returns).

21.14 BIOS GPU Functions

- 789/1136 -

21.15 BIOS Memory Allocation

A(33h) - malloc(size)

Allocates size bytes on the heap, and returns the memory handle (aka the address of

the allocated memory block). The address of the block is guaranteed to by aligned to 4-

byte memory boundaries. Size is rounded up to a multiple of 4 bytes. The address may

be in KUSEG, KSEG0, or KSEG1, depending on the address passed to InitHeap.

Caution: The BIOS (tries to) initialize the heap size to 0 bytes (actually it accidently

overwrites that initial setting by garbage during relocation), so any call to malloc will

fail, unless InitHeap has been used to initialize the address/size of the heap.

A(34h) - free(buf)

Deallocates the memory block. There's no return value, and no error checking. The

function simply sets [buf-4]=[buf-4] OR 00000001h, so if buf is an invalid handle it may

destroy memory at [buf-4], or trigger a memory exception (for example, when buf=0).

A(37h) - calloc(sizx, sizy) ;SLOW!

Allocates xsiz*ysiz bytes by calling malloc(xsiz*ysiz), and, unlike malloc, it does

additionally zerofill the memory via SLOW "bzero" function. Returns the address of the

memory block (or zero if failed).

A(38h) - realloc(old_buf, new_size) ;SLOW!

If "old_buf" is zero, executes malloc(new_size), and returns r2=new_buf (or 0=failed).

Else, if "new_size" is zero, executes free(old_buf), and returns r2=garbage. Else,

executes malloc(new_size), bcopy(old_buf,new_buf,new_size), and free(old_buf), and

returns r2=new_buf (or 0=failed).

Caution: The bcopy function is SLOW, and realloc does accidently copy "new_size" bytes

from old_buf, so, if the old_size was smaller than new_size then it'll copy whatever

garbage data - in worst case, if it exceeds the top of the 2MB RAM region, it may crash

with a locked memory exception, although that'd happen only if SetMem(2) was used to

restrict RAM to 2MBs.

A(39h) - InitHeap(addr, size)

Initializes the address and size of the heap - the BIOS does not automatically do this,

so, before using the heap, InitHeap must be called by software. Usually, the heap would

21.15 BIOS Memory Allocation

- 790/1136 -

be memory region between the end of the boot executable, and the bottom of the

executable's stack. InitHeap can be also used to deallocate all memory handles (eg.

when a new exe file has been loaded, it may use it to deallocate all old memory).

The heap is used only by malloc/realloc/calloc/free, and by the "qsort" function.

B(00h) - alloc_kernel_memory(size)

B(01h) - free_kernel_memory(buf)

Same as malloc/free, but, instead of the heap, manages the 8kbyte control block

memory at A000E000h..A000FFFFh. This region is used by the kernel to allocate ExCBs

(4x08h bytes), EvCBs (N*1Ch bytes), TCBs (N*0C0h bytes), and the process control

block (1x04h bytes). Unlike the heap, the BIOS does automatically initialize this memory

region via SysInitMemory(addr,size), and does autimatically allocate the above data

(where the number of EvCBs and TCBs is as specified in the SYSTEM.CNF file). Note:

FCBs and DCBs are located elsewhere, at fixed locations in the kernel variables area.

Scratchpad Note

The kernel doesn't include any allocation functions for the scratchpad (nor do any kernel

functions use that memory area), so the executable can freely use the "fast" memory at

1F800000h..1F8003FFh.

A(9Fh) - SetMem(megabytes)

Changes the effective RAM size (2 or 8 megabytes) by manipulating port 1F801060h,

and additionally stores the size in megabytes in RAM at [00000060h].

Note: The BIOS bootcode accidently sets the RAM value to 2MB (which is the correct

physical memory size), but initializes the I/O port to 8MB (which mirrors the physical

2MB within that 8MB region), so the initial values don't match up with each other.

Caution: Applying the correct size of 2MB may cause the "realloc" function to crash (that

function may accidently access memory above 2MB).

21.16 BIOS Memory Fill/Copy/Compare (SLOW)

Like most A(NNh) functions, below functions are executed in uncached BIOS ROM, the

ROM has very high waitstates, and the 32bit opcodes are squeezed through an 8bit bus.

Moreover, below functions are restricted to process the data byte-by-byte. So, they are

very-very-very slow, don't even think about using them.

21.16 BIOS Memory Fill/Copy/Compare (SLOW)

- 791/1136 -

Of course, that applies also for most other BIOS functions. But it's becoming most

obvious for these small functions; memcpy takes circa 160 cycles per byte (reasonable

would be less than 4 cycles), and bzero takes circa 105 cycles per byte (reasonable

would be less than 1 cycles).

A(2Ah) - memcpy(dst, src, len)

Copies len bytes from [src..src+len-1] to [dst..dst+len-1]. Refuses to copy any data

when dst=00000000h or when len>7FFFFFFFh. The return value is always the incoming

"dst" value.

A(2Bh) - memset(dst, fillbyte, len)

Fills len bytes at [dst..dst+len-1] with the fillbyte value. Refuses to fill memory when

dst=00000000h or when len>7FFFFFFFh. The return value is the incoming "dst" value

(or zero, when len=0 or len>7FFFFFFFh).

A(2Ch) - memmove(dst, src, len) - bugged

Same as memcpy, but (attempts) to support overlapping src/dst regions, by using a

backwards transfer when src\<dst (and, for some reason, only when dst>=src+len).

BUG: The backwards variant accidently transfers len+1 bytes from [src+len..src] down

to [dst+len..dst].

A(2Dh) - memcmp(src1, src2, len) - bugged

Compares len bytes at [src1..src1+len-1] with [src2..src2+len-1], and (attempts) to

return the difference between the first mismatching bytes, ie. [src1+N]-[src2+N], or 0 if

there are no mismatches. Refuses to compare data when src1 or src2 is 00000000h, and

returns 0 in that case.

BUG: Accidently returns the difference between the bytes AFTER the first mismatching

bytes, ie. [src1+N+1]-[src2+N+1].

That means that a return value of 0 can mean absolutely anything: That the memory

blocks are identical, or that a mismatch has been found (but that the NEXT byte after

the mismatch does match), or that the function has failed (due to src1 or src2 being

00000000h).

21.16 BIOS Memory Fill/Copy/Compare (SLOW)

- 792/1136 -

A(2Eh) - memchr(src, scanbyte, len)

Scans [src..src+len-1] for the first occurence of scanbyte. Refuses to scan any data

when src=00000000h or when len>7FFFFFFFh. Returns the address of that first

occurence, or 0 if the scanbyte wasn't found.

A(27h) - bcopy(src, dst, len)

Same as "memcpy", but with "src" and "dst" exchanged. That is, the first parameter is

"src", the refuse occurs when "src" is 00000000h, and, returns the incoming "src" value

(whilst "memcpy" uses "dst" in that places).

A(28h) - bzero(dst, len)

Same as memset, but uses 00h as fixed fillbyte value.

A(29h) - bcmp(ptr1, ptr2, len) - bugged

Same as "memcmp", with exactly the same bugs.

21.17 BIOS String Functions

A(15h) - strcat(dst, src)

Appends src to the end of dst. Searches the ending 00h byte in dst, and copies src to

that address, up to including the ending 00h byte in src. Returns the incoming dst value.

Refuses to do anything if src or dst is 00000000h (and returns 0 in that case).

A(16h) - strncat(dst, src, maxlen)

Same as "strcat", but clipped to "MaxSrc=(min(0,maxlen)+1)" characters, ie. the total

length is max "length(dst)+min(0,maxlen)+1". If src is longer or equal to "MaxSrc",

then only the first "MaxSrc" chars are copied (with the last byte being replaced by 00h).

If src is shorter, then everything up to the ending 00h byte gets copied, but without

additional padding (unlike as in "strncpy").

A(17h) - strcmp(str1, str2)

Compares the strings up to including ending 00h byte. Returns 0 if they are identical, or

otherwise [str1+N]-[str2+N], where N is the location of the first mismatch, the two

21.17 BIOS String Functions

- 793/1136 -

bytes are sign-expanded to 32bits before doing the subtraction. The function rejects

str1/str2 values of 00000000h (and returns 0=both are zero, -1=only str1 is zero, and

+1=only str2 is zero).

A(18h) - strncmp(str1, str2, maxlen)

Same as "strcmp" but stops after comparing "maxlen" characters (and returns 0 if they

did match). If the strings are shorter, then comparision stops at the ending 00h byte

(exactly as for strcmp).

A(19h) - strcpy(dst, src)

Copies data from src to dst, up to including the ending 00h byte. Refuses to copy

anything if src or dst is 00000000h. Returns the incoming dst address (or 0 if copy was

refused).

A(1Ah) - strncpy(dst, src, maxlen)

Same as "strcpy", but clipped to "maxlen" characters. If src is longer or equal to

maxlen, then only the first "maxlen" chars are copied (but without appending an ending

00h byte to dst). If src is shorter, then the remaining bytes in dst are padded with 00h

bytes.

A(1Bh) - strlen(src)

Returns the length of the string up to excluding the ending 00h byte (or 0 when src is

00000000h).

A(1Ch) - index(src, char)

A(1Dh) - rindex(src, char)

A(1Eh) - strchr(src, char) ;exactly the same as "index"

A(1Fh) - strrchr(src, char) ;exactly the same as "rindex"

Scans for the first (index) or last (rindex) occurence of char in the string. Returns the

memory address of that occurence (or 0 if there's no occurence, or if src is 00000000h).

Char may be 00h (returns the end address of the string). Note that, despite of the

21.17 BIOS String Functions

- 794/1136 -

function names, the return value is always a memory address, NOT an index value

relative to src.

A(20h) - strpbrk(src, list)

Scans for the first occurence of a character that is contained in the list. The list contains

whatever desired characters, terminated by 00h.

Returns the address of that occurence, or 0 if there was none. BUG: If there was no

occurence, it returns 0 only if src[0]=00h, and otherwise returns the incoming "src"

value (which is the SAME return value as when a occurence did occur on 1st character).

A(21h) - strspn(src, list)

A(22h) - strcspn(src, list)

Scans for the first occurence of a character that is (strspn), or that isn't (strcspn)

contained in the list. The list contains whatever desired characters, terminated by 00h.

Returns the index (relative to src) of that occurence. If there was no occurence, then it

returns the length of src. That silly return values do not actually indicate if an occurence

has been found or not (unless one checks for [src+index]=00h or so).

"The strcspn() function shall compute the length (in bytes) of the maximum initial

segment of the string pointed to by s1 which consists entirely of bytes not from the

string pointed to by s2."

"The strspn() function shall compute the length (in bytes) of the maximum initial

segment of the string pointed to by s1 which consists entirely of bytes from the string

pointed to by s2."

Hmmmm, that'd be vice-versa?

A(23h) - strtok(src, list) ;first call

A(23h) - strtok(0, list) ;further call(s)

Used to split a string into fragments, list contains a list of characters that are to be

treated as separators, terminated by 00h.

The first call copies the incoming string to a buffer in the BIOS variables area (the buffer

size is 100h bytes, so the string should be max 255 bytes long, plus the ending 00h

byte, otherwise the function destroys other BIOS variables), it does then search the first

21.17 BIOS String Functions

- 795/1136 -

fragment, starting at the begin of the buffer. Further calls (with src=00000000h) are

searching further fragments, starting at the buffer address from the previous call. The

internal buffer is used only for strtok, so its contents (and the returned string

fragments) remain intact until a new first call to strtok takes place.

The separate fragments are processed by searching the first separator, starting at the

current buffer address, the separator is then replaced by a 00h byte, and the old buffer

address is returned to the caller. Moreover, the function tries to skip all continously

following separators, until reaching a non-separator, and does memorize that address for

the next call (due to that skipping further calls won't return empty fragments, the first

call may do so though). That skipping seems to be bugged, if list contains two or more

different characters, then additional separators aren't skipped.

Once when there are no more fragments, then 00000000h is returned.

A(24h) - strstr(str, substr) - buggy

Scans for the first occurence of substr in the string. Returns the memory address of that

occurence (or 0 if it was unable to find an occurence).

BUG: After rejecting incomplete matches, the function doesn't fallback to the old str

address plus 1, but does rather continue at the current str address. Eg. it doesn't find

substr="aab" in str="aaab" (in that example, it does merely realize that "aab"\<>"aaa"

and then that "aab"\<>"b").

21.18 BIOS Number/String/Character Conversion

A(0Eh) - abs(val)

A(0Fh) - labs(val) ;exactly same as "abs"

Returns the absolute value (if val\<0 then R2=-val, else R2=val).

A(0Ah) - todigit(char)

Takes the incoming character, ANDed with FFh, and returns 0..9 for characters "0..9"

and 10..35 for "A..Z" or "a..z", or 0098967Fh (9,999,999 decimal) for any other 7bit

characters, or garbage for characters 80h..FFh.

 ",,TEXT,,,END" with list="," returns "", "TEXT", "END"
 ",,TEXT,,,END" with list=",." returns "", "", "TEXT", "", "", "END"

21.18 BIOS Number/String/Character Conversion

- 796/1136 -

A(25h) - toupper(char)

A(26h) - tolower(char)

Returns the incoming character, ANDed with FFh, with letters "A..Z" converted to

uppercase/lowercase format accordingly. Works only for char 00h..7Fh (some characters

in range 80h..FFh are left unchanged, others are randomly "adjusted" by adding/

subtracting 20h, and by sign-expanding the result to 32bits).

A(0Dh) - strtol(src, src_end, base)

Converts a string to a number. The function skips any leading "blank" characters (that

are, 09h..0Dh, and 20h) (ie. TAB, CR, LF, SPC, and some others) (some characters in

range 80h..FFh are accidently treated as "blank", too).

The incoming base value should be in range 2..11, although the function does also

accept the buggy values in range of 12..36 (for values other than 2..36 it defaults to

decimal/base10). The used numeric digits are "0..9" and "A..Z" (or less when base is

smaller than 36).

The string may have a negative sign prefix "-" (negates the result) (a "+" is NOT

recognized; and will be treated as the end of the string). Additionally, the string may

contain prefixes "0b" (binary/base2), "0x" (hex/base16), or "o" (octal/base8) (only "o",

not "0o"), allowing to override the incoming "base" value.

BUG: Incoming base values greater than 11 don't work due to the prefix feature (eg.

base=16 with string "0b11" will be treated as 11 binary, and base=36 with string "o55"

will be treated as 55 octal) (the only workaround would be to add/remove leading "0"

characters, ie. "b11" or "00b11" or "0o55" would work okay).

Finally, the function initializes result=0, and does then process the digits as

"result=result*base+digit" (without any overflow checks) unless/until it reaches an

unknown digit (or when digit>=base) (ie. the string may end with 00h, or with any

other unexpected characters).

The function accepts both uppercase and lowercase characters (both as prefixes, and as

numeric digits). The function returns R2=result, and [src_end]=end_address (ie. usually

the address of the ending 00h byte; or of any other unexpected end-byte). If src points

to 00000000h, then the function returns r2=0, and leaves [src_end] unchanged.

A(0Ch) - strtoul(src, src_end, base)

Same as "strtol" except that it doesn't recognize the "-" sign prefix (ie. works only for

unsigned numbers).

21.18 BIOS Number/String/Character Conversion

- 797/1136 -

A(10h) - atoi(src)

A(11h) - atol(src) ;exactly same as "atoi" (but slightly slower)

Same as "strtol", except that it doesn't return the string end address in [src_end], and

except that it defaults to base=10, but still supports prefixes, allowing to use

base2,8,16. CAUTION: For some super bizarre reason, this function treats "0" (a leading

ZERO digit) as OCTAL prefix (unlike strtol, which uses the "o" letter as octal prefix) (the

"0x" and "0b" prefixes are working as usually).

A(12h) - atob(src, num_dst)

Calls "strtol(str,src_end,10)", and does then exchange the two return values (ie. sets

R2=[src_end], and [num_dst]=value_32bit).

A(0Bh) - atof(src) ;USES (ABSENT) COP1 FPU !!!

A(32h) - strtod(src, src_end) ;USES (ABSENT) COP1 FPU !!!

These functions are intended to convert strings to floating point numbers, however, the

functions are accidently compiled for MIPS processors with COP1 floating point unit

(which is not installed in the PSX, nor does the BIOS support a COP1 software

emulation), so calling these functions will produce a coprocessor exception, causing the

PSX to lockup via A(40h) SystemErrorUnresolvedException.

Note

On other systems (eg. 8bit computers), "abs/atoi" (integer) and "labs/atol" (long) may

act differently. However, on the Playstation, both use signed 32bit values.

21.19 BIOS Misc Functions

A(2Fh) - rand()

Advances the random generator as "x=x*41C64E6Dh+3039h" (aka plus 12345

decimal), and returns a 15bit random value "R2=(x/10000h) AND 7FFFh".

A(30h) - srand(seed)

Changes the current 32bit value of the random generator.

21.19 BIOS Misc Functions

- 798/1136 -

A(B4h) - GetSystemInfo(index) ;not supported by old CEX-1000 version

Returns a word, halfword, or string, depending on the selected index value:

Note: The Date/Version are referring to the Kernel (in the first half of the BIOS). The

Intro and Bootmenu (in the second half of the BIOS) may have a different version, there's

no function to retrieve info on that portion, however, a version string for it can be usually

found at BFC7FF32h (eg. "System ROM Version 4.5 05/25/00 E",0) (in many bios

versions, the last letter of that string indicates the region, but not in all versions) (the old

SCPH1000 does not include that version string at all).

B(56h) - GetC0Table()

B(57h) - GetB0Table()

Retrieves the address of the jump lists for B(NNh) and C(NNh) functions, allowing to

patch entries in that lists (however, the BIOS does often jump directly to the function

addresses, rather than indirectly via the list, so patching may have little effect in such

cases). Note: There's no function to retrieve the address of the A(NNh) jump list,

however, that list is usually/always at 00000200h.

A(31h) - qsort(base, nel, width, callback)

Sorts an array, using a super-slow implementation of the "quick sort" algorithm. base is

the address of the array, nel is the number of elements in the array, width is the size in

bytes of each element, callback is a function that receives pointers to two elements

which need to be compared; callback should return return zero if the elements are

identical, or a positive/negative number to indicate which element is bigger.

The qsort function rearranges the contents of the array, ie. depending on the callback

result, it may swap the contents of the two elements, for some bizarre reason it doesn't

swap them directly, but rather stores one of the elements temporarily on the heap (that

 00h Get Kernel BCD Date (eg. 19951204h) (YYYYMMDDh)
 01h Get Kernel Flags or so (usually/always 000000003h)
 02h Get Kernel Version String (eg. "CEX-3000/1001/1002 by K.S.",0)
 03h Get whatever halfword (usually 0) ;PS2: returns cop0r15
 04h Get whatever halfword (usually 0)
 05h Get RAM Size in kilobytes (usually 2048) ;=[00000060h] SHL 10
 06h..0Eh Get whatever halfwords (usually 0,400h,0,200h,0,0,1,1,1)
 0Fh N/A (returns zero) ;PS2: returns 0000h (effectively = same as zero)
 10h..FFFFFFFFh Not used (returns zero)

21.19 BIOS Misc Functions

- 799/1136 -

means, qsort works only if the heap was initialized with InitHeap, and only if "width"

bytes are free). There's no return value.

A(35h) - lsearch(key, base, nel, width, callback)

A(36h) - bsearch(key, base, nel, width, callback)

Searches an element in an array (key is the pointer to the searched element, the other

parameters are same as for "qsort"). "lsearch" performs a slow linear search in an

unsorted array, by simply comparing one array element after each other. "bsearch"

assumes that the array contains sorted elements (eg. via qsort), which is allowing to

skip some elements, and to jump back and forth in the array, until it has found the

desired element (or the location where it'd be, if it'd be in the array). Both functions

return the address of the element (or 0 if it wasn't found).

C(19h) - _ioabort(txt1,txt2)

Displays the two strings on the TTY (in some cases the BIOS does accidently pass

garbage instead of the 2nd string though). And does then execute _ioabort_raw(1), see

there for more details.

A(B2h) - _ioabort_raw(param) ;not supported by old CEX-1000 version

Executes "longjmp(ioabortbuffer,param)". Internally used to recover from failed I/O

operations, param should be nonzero to notify the setjmp caller that the abort has

occurred.

A(13h) - setjmp(buf)

This is a somewhat incomplete implementation of posix's setjmp, by storing the ABI-

saved CPU registers in the specified buffer (30h bytes):

That type of buffer can be used with "_ioabort", "longjmp", and also

"HookEntryInt(addr)".

The "setjmp" function returns 0 when called directly. However, it may return again - to

 00h 4 r31 (ra) (aka caller's pc)
 04h 4 r29 (sp)
 08h 4 r30 (fp)
 0Ch 4x8 r16..r23
 2Ch 4 r28 (gp)

21.19 BIOS Misc Functions

- 800/1136 -

the same return address, and the same stack pointer - with another return value (which

should be usually non-zero, to indicate that the state has been restored (eg. _ioabort

passes 1 as return value).

Also noteworthy from what a compliant setjmp implementation should be doing is the

absence of saving the state of cop0 and cop2, thus making this slightly unsuitable for a

typical coroutine system implementation.

A(14h) - longjmp(buf, param)

Restores the R16-R23,GP,SP,FP,RA registers from a previously recorded jmp_buf buffer,

and "returns" to that new RA address (rather than to the caller of the longjmp function).

The "param" value is passed as "return value" to the code at RA, ie. usually to the caller

of the original setjmp call. Noteworthy difference from a conformant longjmp

implementation is that the "param" value won't be clamped to 1 if you pass 0 to it. So

since setjmp returns 0 on the first call, the caller of longjmp must take care that

"param" is non-zero, so the callsite of setjmp can make the difference between the first

call and a rollback. See setjmp for further details.

A(53h) - set_ioabort_handler(src) ;PS2 only ;PSX: SystemError

Normally the _ioabort handler is changed only internally during booting, with this new

function, games can install their own _ioabort handler. src is pointer to a 30h-byte

"savestate" structure, which will be copied to the actual _ioabort structure.

A(06h) or B(38h) - exit(exitcode)

Terminates the program and returns control to the BIOS; which does then lockup itself

via A(3Ah) _exit.

A(A0h) - _boot()

Performs a warmboot (resets the kernel and reboots from CDROM). Unlike the normal

coldboot procedure, it doesn't display the "\<S>" and "PS" intro screens (and doesn't

verify the "PS" logo in the ISO System Area), and, doesn't enter the bootmenu (even if

the disk drive is empty, or if it contains an Audio disk). And, it doesn't reload the

SYSTEM.CNF file, so the function works only if the same disk is still inserted (or another

disk with identical SYSTEM.CNF, such like Disk 2 of the same game).

21.19 BIOS Misc Functions

- 801/1136 -

A(B5h..BFh) B(11h,24h..29h,2Ch..31h,5Eh..FFh) C(1Eh..7Fh) - N/A - Jump 0

These functions jump to address 00000000h. For whatever reason, that address does

usually contain a copy of the exception handler (ie. same as at address 80000080h).

However, since there's no return address stored in EPC register, the functions will likely

crash when returning from the exception handler.

A(57h..5Ah,73h..77h,79h..7Bh,7Dh,7Fh..80h,82h..8Fh,B0h..B1h,B3h), and

C(0Eh..11h,14h) - N/A - Returns 0

No function. Simply returns with r2=00000000h.

Reportedly, A(85h) is CdStop, but that seems to be nonsense?

SYS(00h) - NoFunction()

No function. Simply returns without changing any registers or memory locations (except

that, of course, the exception handler destroys k0).

SYS(04h..FFFFFFFFh) - calls DeliverEvent(F0000010h,4000h)

These are syscalls with invalid function number in R4. For whatever reason that is

handled by issuing DeliverEvent(F0000010h,4000h). Thereafter, the syscall returns to

the main program (ie. it doesn't cause a SystemError).

A(3Ah) - _exit(exitcode)

A(40h) - SystemErrorUnresolvedException()

A(A1h) - SystemError(type,errorcode) ;type "B"=Boot,"D"=Disk

These are used "SystemError" functions. The functions are repeatedly jumping to

themselves, causing the system to hang. Possibly useful for debugging software which

may hook that functions.

A(4Fh,50h,52h,53h,9Ah,9Bh) B(1Ah..1Fh,21h..23h,2Ah,2Bh,52h,5Ah) C(0Bh) - N/A

These are additional "SystemError" functions, but they are never used. The functions are

repeatedly jumping to themselves, causing the system to hang.

21.19 BIOS Misc Functions

- 802/1136 -

BRK(1C00h) - Division by zero (commonly checked/invoked by software)

BRK(1800h) - Division overflow (-80000000h/-1, sometimes checked by software)

The CPU does not generate any exceptions upon divide overflows, because of that, the

Kernel code and many games are commonly checking if the divider is zero (by

software), and, if so, execute a BRK 1C00h opcode. The default BIOS exception handler

doesn't handle BRK exceptions, and does simply redirect them to

SystemErrorUnresolvedException().

21.20 BIOS Internal Boot Functions

A(45h) - init_a0_b0_c0_vectors

Copies the three default four-opcode handlers for the A(NNh),B(NNh),C(NNh) functions

to A00000A0h..A00000CFh.

C(07h) - InstallExceptionHandlers() ;destroys/uses k0/k1

Copies the default four-opcode exception handler to the exception vector at

80000080h..8000008Fh, and, for whatever reason, also copies the same opcodes to

80000000h..8000000Fh.

C(08h) - SysInitMemory(addr,size)

Initializes the address (A000E000h) and size (2000h) of the allocate-able Kernel Memory

region, and, seems to deallocate any memory handles which may have been allocated

via B(00h).

C(09h) - SysInitKernelVariables()

Zerofills all Kernel variables; which are usually at [00007460h..0000891Fh].

Note: During the boot process, the BIOS accidently overwrites the first opcode of this

function (by the last word of the A0h table), so, thereafter, this function won't work

anymore (nor would it be of any use).

21.20 BIOS Internal Boot Functions

- 803/1136 -

C(12h) - InstallDevices(ttyflag)

Initializes the size and address of the File and Device Control Blocks (FCBs and DCBs).

Adds the TTY device by calling "KernelRedirect(ttyflag)", and the CDROM and Memory

Card devices by calling "AddCDROMDevice()" and "AddMemCardDevice()".

C(1Ch) - AdjustA0Table()

Copies the B(32h..3Bh) and B(3Ch..3Fh) function addresses to A(00h..09h) and A(3Bh..

3Eh). Apparently Sony's compiler/linker can't insert the addresses in the A0h table

directly at compilation time, so this function is used to insert them during execution of

the boot code.

21.21 BIOS More Internal Functions

Below are mainly internally used device related subfunctions.

Internal Device Stuff

 A(5Bh) dev_tty_init() ;PS2: SystemError
 A(5Ch) dev_tty_open(fcb,and unused:"path\name",accessmode) ;PS2: SystemError
 A(5Dh) dev_tty_in_out(fcb,cmd) ;PS2: SystemError
 A(5Eh) dev_tty_ioctl(fcb,cmd,arg) ;PS2: SystemError
 A(5Fh) dev_cd_open(fcb,"path\name",accessmode)
 A(60h) dev_cd_read(fcb,dst,len)
 A(61h) dev_cd_close(fcb)
 A(62h) dev_cd_firstfile(fcb,"path\name",direntry)
 A(63h) dev_cd_nextfile(fcb,direntry)
 A(64h) dev_cd_chdir(fcb,"path")
 A(65h) dev_card_open(fcb,"path\name",accessmode)
 A(66h) dev_card_read(fcb,dst,len)
 A(67h) dev_card_write(fcb,src,len)
 A(68h) dev_card_close(fcb)
 A(69h) dev_card_firstfile(fcb,"path\name",direntry)
 A(6Ah) dev_card_nextfile(fcb,direntry)
 A(6Bh) dev_card_erase(fcb,"path\name")
 A(6Ch) dev_card_undelete(fcb,"path\name")
 A(6Dh) dev_card_format(fcb)
 A(6Eh) dev_card_rename(fcb1,"path\name1",fcb2,"path\name2")
 A(6Fh) ? ;card ;[r4+18h]=00000000h ;card_clear_error(fcb) or so
 A(96h) AddCDROMDevice()
 A(97h) AddMemCardDevice()
 A(98h) AddDuartTtyDevice() ;PS2: SystemError
 A(99h) add_nullcon_driver()
 B(47h) AddDrv(device_info) ;subfunction for AddXxxDevice functions
 B(48h) DelDrv(device_name_lowercase)
 B(5Bh) ChangeClearPAD(int) ;pad AND card (ie. used also for Card)

21.21 BIOS More Internal Functions

- 804/1136 -

Device Names

Device Names are case-sensitive (usually lowercase, eg. "bu" for memory cards). In

filenames, the device name may be followed by a hexadecimal 32bit non-case-sensitive

port number (eg. "bu00:" for selecting the first memory card slot). Accordingly, the

device name should not end with a hexdigit (eg. "usb:" would be treated as device "us"

with port number 0Bh).

Standard device names are "cdrom:", "bu00:", "bu10:", "tty00:". Other, nonstandard

devices are:

21.22 BIOS PC File Server

DTL-H2000

Below BRK's are internally used in DTL-H2000 BIOS for two devices: "mwin:" (Message

Window) and "sim:" (CDROM Sim).

Caetla Blurb

Caetla (a firmware replacement for Cheat Devices) supports "pcdrv:" device, the SN

systems (=what?) device extension to access files on the drive of the pc. This fileserver

can be accessed by using the kernel functions, with the "pcdrv:" device name prefix to

the filenames or using the SN system calls.

The following SN system calls for the fileserver are provided. Accessed by setting the

registers and using the break command with the specified field.

The break functions have argument(s) in A1,A2,A3 (ie. unlike normal BIOS functions not

in A0,A1,A2), and TWO return values (in V0, and V1).

BRK(101h) - PCInit() - Inits the fileserver

No parameters.

 C(15h) _cdevinput(circ,char)
 C(16h) _cdevscan()
 C(17h) _circgetc(circ) ;uses r5 as garbage txt for _ioabort
 C(18h) _circputc(char,circ)

 Castlevania is trying to access an unknown device named "sim:".
 Caetla (a firmware replacement for Cheat Devices) supports "pcdrv:" device.

21.22 BIOS PC File Server

- 805/1136 -

BRK(102h) - PCCreat(filename, fileattributes) - Creates a new file on PC

Attributes Bits (standard MSDOS-style):

BRK(103h) - PCOpen(filename, accessmode) - Opens a file on the PC

BRK(104h) - PCClose(filehandle) - Closes a file on the PC

BRK(105h) - PCRead(filehandle, length, memory_destination_address)

Note: PCRead does not stop at EOF, so if you set more bytes to read than the filelength,

the fileserver will pad with zero bytes. If you are not sure of the filelength obtain the

filelength by PClSeek (A2=0, A3=2, V1 will return the length of the file, don't forget to

reset the file pointer to the start before calling PCread!)

BRK(106h) - PCWrite(filehandle, length, memory_source_address)

 out: V0 0 = success, -1 = failure
 V1 file handle or error code if V0 is negative

 bit0 Read only file (R)
 bit1 Hidden file (H)
 bit2 System file (S)
 bit3 Not used (zero)
 bit4 Directory (D)
 bit5 Archive file (A)
 bit6-31 Not used (zero)

 out: V0 0 = success, -1 = failure
 V1 file handle or error code if V0 is negative

 out: V0 0 = success, -1 = failure
 V1 0 = success, error code if V0 is negative

 out: V0 0 = success, -1 = failure
 V1 number of read bytes or error code if V0 is negative.

 out: V0 0 = success, -1 = failure
 V1 number of written bytes or error code if V0 is negative.

21.22 BIOS PC File Server

- 806/1136 -

BRK(107h) - PClSeek(filehandle, file_offset, seekmode) - Change Filepos

seekmode may be from 0=Begin of file, 1=Current fpos, or 2=End of file.

21.23 BIOS TTY Console (std_io)

A(3Fh) - Printf(txt,param1,param2,etc.) - Print string to console

Prints the specified string to the TTY console. Printf does internally use "putchar" to

output the separate characters (and expands char 09h and 0Ah accordingly).

The string can contain C-style escape codes (prefixed by "%" each):

Additionally, following prefixes (inserted between "%" and escape code):

The force32bit codes (D,U,O,p,l) are kinda useless since the PSX defaults to 32bit

parameters anyways. The force16bit code (h) may be useful as "%hn" (writeback 16bit

value), otherwise it's rather useless, unless signed 16bit parameters have garbage in

upper 16bit, for unsigned 16bit parameters it doesn't work at all (accidently sign-expands

 out: V0 0 = success, -1 = failure
 V1 file pointer

 in: A0 Pointer to 0 terminated string
 A1,A2,A3,[SP+10h..] Argument(s)

 c display ASCII character
 s display ASCII string
 i,d,D display signed Decimal number (d/i=default32bit, D=force32bit)
 u,U display unsigned Decimal number (u=default32bit, U=force32bit)
 o,O display unsigned Octal number (o=default32bit, O=force32bit)
 p,x,X display unsigned Hex number (p=lower/force32bit, x=lower, X=upper)
 n write 32bit/16bit string length to [parameter] (default32bit)

 + or SPC show leading plus or space character in positive signed numbers
 NNN fixed width (for padding or so) (first digit must be 1..9) (not 0)
 .NNN fixed width (for clipping or so)
 * variable width (using one of the parameters) (negative=ending_spc)
 .* variable width
 - force ending space padding (in case of width being specified)
 # show leading "0x" or "0X" (hex), or ensure 1 leading zero (octal)
 0 show leading zero's
 L unknown/no effect?
 h,l force 16bit (h=halfword), or 32bit (l=long/word)

21.23 BIOS TTY Console (std_io)

- 807/1136 -

16bit to 32bit, and then displays that signed 32bit value as giant unsigned value). Printf

supports only octal, decimal, and hex (but not binary).

A(3Eh) or B(3Fh) - puts(src) - Write string to TTY

Like "printf", but doesn't resolve any "%" operands. Empty strings are handled in a

special way: If R4 points to a 00h character then nothing is output (as one would expect

it), but, if R4 is 00000000h then "\<NULL>" is output (only that six letters; without

appending any CR or LF).

A(3Dh) or B(3Eh) - gets(dst) - Read string from TTY (keyboard input)

Internally uses "getchar" to receive the separate characters (which are thus masked by

7Fh). The received characters are stored in the buffer, and are additionally sent back as

echo to the TTY via std_out_putc.

The following characters are handled in a special way: 09h (TAB) is replaced by a single

SPC. 08h or 7FH (BS or DEL) are removing the last character from the buffer (unless it is

empty) and send 08h,20h,08h (BS,SPC,BS) to the TTY. 0Dh or 0Ah (CR or LF) do

terminate the input (append 00h to the buffer, send 0Ah to the TTY, which is expanded to

0Dh,0Ah by the std_out_putc function, and do then return from the gets function).

The sequence 16h,NNh forces NNh to be stored in the buffer (even if NNh is a special

character like 00h..1Fh or 7Fh). If the buffer is full (circa max 125 chars, plus one extra

byte for the ending 00h), or if an unknown control code in range of 00h..1Fh is received

without the 16h prefix, then 07h (BELL) is sent to the TTY.

A(3Bh) or B(3Ch) - getchar() - Read character from TTY

Reads one character from the TTY console, by internally redirecting to "read(0,tempbuf,

1)". The returned character is ANDed by 7Fh (so, to read a fully intact 8bit character,

"read(0,tempbuf,1)" must be used instead of this function).

A(3Ch) or B(3Dh) - putchar(char) - Write character to TTY

Writes the character to the TTY console, by internally redirecting to "write(1,tempbuf,

1)". Char 09h (TAB) is expanded to one or more SPC characters, until reaching the next

tabulation boundary (every 8 characters). Char 0Ah (LF) is expanded to 0Dh,0Ah

 in: R4=address of string (terminated by 00h)

 in: r4=dst (pointer to a 128-byte buffer) - out: r2=dst (same is incoming r4)

21.23 BIOS TTY Console (std_io)

- 808/1136 -

(CR,LF). Other special characters (which should be handled at the remote terminal side)

are 08h (BS, backspace, move cursor one position to the left), and 07h (BELL, produce a

short beep sound).

C(13h) - FlushStdInOutPut()

Closes and re-opens the std_in (fd=0) and std_out (fd=1) file handles.

C(1Bh) - KernelRedirect(ttyflag) ;PS2: ttyflag=1 causes SystemError

Removes, re-mounts, and flushes the TTY device, the parameter selects whether to

mount the real DUART-TTY device (r4=1), or a Dummy-TTY device (r4=0), the latter one

sends any std_out to nowhere. Values other than r4=0 or r4=1 do remove the device,

but do not re-mount it (which might result in problems).

Caution: Trying to use r4=1 on a PSX that does not has the DUART hardware installed

causes the BIOS to hang (so one should first detect the DUART hardware, eg. by writing

two different bytes to Port 1F802020h.1st/2nd access, and the read and verify that two

bytes).

Activating std_io

The std_io functions can be enabled via C(1Bh) KernelRedirect(ttyflag), the BIOS is

unable to detect the presence of the TTY hardware, by default the BIOS bootcode

disables std_io by setting the initial KernelRedirect value at [A000B9B0h] to zero, this is

hardcoded shortly after the POST(E) output:

assuming that R28=A0010FF0h, the last 3 opcodes of above code can be replaced by:

with that patch, the BIOS bootcode (and many games) are sending debug messages to

the debug terminal, via expansion port, see:

EXP2 Dual Serial Port (for TTY Debug Terminal)

 call output_post_r4 ;\output POST(E)
 +mov r4,0Eh ;/
 mov r1,0A0010000h ;\set [0A000B9B0h]=0 ;TTY=dummy/off
 call reset_cont_d_3 ; and call reset_cont_d_3
 +mov [r1-4650h],0 ;/

 mov r1,1h ;\set [0A000B9B0h]=1 ;TTY=duart/on
 call reset_cont_d_3 ; and call reset_cont_d_3
 +mov [r28-4650h-0ff0h],r1 ;/

21.23 BIOS TTY Console (std_io)

- 809/1136 -

Note: The nocash BIOS automatically detects the DUART hardware, and activates TTY if it

is present.

B(49h) - PrintInstalledDevices()

Uses printf to display the long and short names from the DCB of the currently installed

devices. Doesn't do anything else. There's no return value.

Note

Several BIOS functions are internally using printf to output status information, timeout,

and error messages, etc. So, trying to close the TTY file handles (fd=0 and fd=1) would

cause such functions to work unstable.

21.24 BIOS Character Sets

B(51h) - Krom2RawAdd(shiftjis_code)

r4 should be 8140h..84BEh (charset 2), or 889Fh..9872h (charset 3).

B(53h) - Krom2Offset(shiftjis_code)

This is a subfunction for B(51h) Krom2RawAdd(shiftjis_code).

Character Sets in ROM (112Kbytes)

The character sets are located at BFC64000h and up, intermixed with some other stuff:

 In: r4 = 16bit Shift-JIS character code
 Out: r2 = address in BIOS ROM of the desired character (or -1 = error)

 In: r4 = 16bit Shift-JIS character code
 Out: r2 = offset within charset (without charset base address)

 BFC64000h Charset 1 (16x15 pix, letters with accent marks) (NOT in JAPAN)
 BFC65CB6h Garbage (four-and-a-half reverb tables, ioports, printf strings)
 BFC66000h Charset 2 (16x15 pix, various alphabets, english, greek, etc.)
 BFC69D68h Charset 3 (16x15 pix, japanese or chinese symbols or so)
 BFC7F8DEh Charset 4 (8x15 pix, mainly ASCII letters)
 BFC7FE6Fh Charset 5 (8x15 pix, additional punctuation marks) (NOT in PS2)
 BFC7FF32h Version (Version and Copyright strings) (NOT in SCPH1000)

21.24 BIOS Character Sets

- 810/1136 -

Charset 1 (and Garbage) is NOT included in japanese BIOSes (in the SCPH1000 version

that region contains uncompressed program code, in newer japanese BIOSes that regions

are zerofilled)

Charset 1 symbols are as defined in JIS-X-0212 char(2661h..2B77h), and EUC-JP

char(8FA6E1h..8FABF7h).

Version (and Copyright) string is NOT included in SCPH1000 version (that BIOS includes

further japanese 8x15 pix chars in that region).

For charset 2 and 3 it may be recommended to use the B(51h)

Krom2RawAdd(shiftjis_code) to obtain the character addresses. Not sure if that BIOS

function (or another BIOS function) allows to retrieve charset 1, 4, 5, and 6 addresses?

Charset 4 is halfwidth, single-byte Shift JIS codes 21h through 7Eh. This matches ASCII

except code 5Ch which is the halfwidth yen sign (¥) and 7Eh which is overline (‾).

Charset 5 contains overhead/combining tilde, backslash (\), broken bar (¦), Shift JIS

codes A1h through A5h and B0h, DEh, and DFh, left double quotation mark (“), left single

quotation mark (‘), and tilde (~).

Charset 6 is Shift JIS codes 82A5h through 82ACh, but in halfwidth, and the last one is

cut off.

21.25 BIOS Control Blocks

Exception Control Blocks (ExCB) (4 blocks of 8 bytes each)

Event Control Blocks (EvCB) (usually 16 blocks of 1Ch bytes each)

Thread Control Blocks (TCB) (usually 4 blocks of 0C0h bytes each)

 BFC7FF8Ch Charset 6 (8x15 pix, seven-and-a-half japanese chars) (NOT in PS2)
 BFC80000h End (End of 512kBYTE BIOS ROM)

 00h 4 ptr to first element of exception chain
 04h 4 not used (zero)

 00h 4 class (events are triggered when class and spec match)
 04h 4 status (0=free,1000h=disabled,2000h=enabled/busy,4000h=enabled/ready)
 08h 4 spec (events are triggered when class and spec match)
 0Ch 4 mode (1000h=execute function/stay busy, 2000h=no func/mark ready)
 10h 4 ptr to function to be executed when ready (or 0=none)
 14h 8 not used (uninitialized)

21.25 BIOS Control Blocks

- 811/1136 -

Process Control Block (1 block of 4 bytes)

The PSX supports only one process, and thus only one Process Control Block.

File Control Blocks (FCB) (16 blocks of 2Ch bytes each)

Device Control Blocks (DCB) (10 blocks of 50h bytes each)

 00h 4 status (1000h=Free TCB, 4000h=Used TCB)
 04h 4 not used (set to 1000h by OpenTh) (not for boot executable?)
 08h 80h r0..r31 (entries for r0/zero and r26/k0 are unused)
 88h 4 cop0r14/epc (aka r26/k0 and pc when returning from exception)
 8Ch 8 hi,lo (the mul/div registers)
 94h 4 cop0r12/sr (stored/restored by exception, NOT init by OpenTh)
 98h 4 cop0r13/cause (stored when entering exception, NOT restored on exit)
 9Ch 24h not used (uninitialized)

 00h 4 ptr to TCB of current thread

 00h 4 status (0=Free FCB) (nonzero=accessmode)
 04h 4 cdrom: disk_id (checksum across path table of the corresponding disk),
 memory card: port number (00h=slot1, 10h=slot2)
 08h 4 transfer address (for dev_in_out function)
 0Ch 4 transfer length (for dev_in_out function)
 10h 4 current file position
 14h 4 device flags (copy of DCB[04h])
 18h 4 error ;used by B(55h) - _get_error(fd)
 1Ch 4 Pointer to DCB for the file
 20h 4 filesize
 24h 4 logical block number (start of file) (for cdrom: at least)
 28h 4 file control block number (simply 0..15 for FCB number 0..15)

 00h 4 ptr to lower-case short name ("cdrom", "bu", "tty") (or 0=Free DCB)
 04h 4 device flags (cdrom=14h, bu=14h, tty/dummy=1, tty/duart=3)
 08h 4 sector size (cdrom=800h, bu=80h, tty=1)
 0Ch 4 ptr to upper-case long name ("CD-ROM", "MEMORY CARD", "CONSOLE")
 10h 4 ptr to init() (TTY only)
 14h 4 ptr to open(fcb,"path\name",accessmode)
 18h 4 ptr to in_out(fcb,cmd) (TTY only)
 1Ch 4 ptr to close(fcb)
 20h 4 ptr to ioctl(fcb,cmd,arg) (TTY only)
 24h 4 ptr to read(fcb,dst,len)
 28h 4 ptr to write(fcb,src,len)
 2Ch 4 ptr to erase(fcb,"path\name")
 30h 4 ptr to undelete(fcb,"path\name")
 34h 4 ptr to firstfile2(fcb,"path\name",direntry)
 38h 4 ptr to nextfile(fcb,direntry)
 3Ch 4 ptr to format(fcb)

21.25 BIOS Control Blocks

- 812/1136 -

21.26 BIOS Versions

Kernel Versions

For the actual kernel, there seem to be only a few different versions. Most PSX/PSone's

are containing the version from 1995 (which is kept 1:1 the same in all consoles;

without any PAL/NTSC related customizations).

The date and version string can be retrieved via GetSystemInfo(index).

The "CEX-7000/-7001" version was only "temporarily" used (when the kernel/gui grew

too large they changed the ROM size from 512K to 1024K; but did then figure out that

they could use a self-decompressing GUI to squeeze everything into 512K; but they did

accidentally still use the 1024K setting) (newer consoles fixed that and switched back to

the old version from 1995) (aside from the different date/version string, the only changed

thing is the opcode at BFC00000h, which initializes port 1F801010h to BIOS ROM size of

1MB, instead of 512KB; no idea if that BIOS does actually contain additional data?).

The "CEX-3000 KT-3" version is already almost same as "CEX-3000/1001/1002", aside

from version/date, the only differences are at offset BFC00014h..1Fh, and BFC003E0h

(both related to Port 1F801060h).

Bootmenu/Intro Versions

This portion was updated more often. It's customized for PAL/NTSC displays, japanese/

english language, and (maybe?) region/licence string checks. The SCPH1000 uses

uncompressed Bootmenu/Intro code with "\<S>" intro, but without "PS" intro (or, "PS"

is shown only on region matches?), newer versions are using selfdecompressing code,

with both intro screens. The GUI in older PSX models looks like a drawing program for

 40h 4 ptr to cd(fcb,"path") (CDROM only)
 44h 4 ptr to rename(fcb1,"path\name1",fcb2,"path\name2")
 48h 4 ptr to remove()
 4Ch 4 ptr to testdevice(fcb,"path\name")

 28-Jul-1994 "DTL-H2000" ;v0.x (pre-retail devboard)
 22-Sep-1994 "CEX-1000 KT-3 by S.O." ;v1.0 through v2.0
 no-new-date "CEX-3000 KT-3 by K.S." ;v2.1 only (old Port 1F801060h)
 27-Jul-1995 "Konami OS by T.H." ;Twinkle System
 01-Sep-1995 "Konami OS by T.H." ;Konami GV, GQ, System 573
 04-Dec-1995 "CEX-3000/1001/1002 by K.S." ;v2.2 through v4.5 (except v4.0)
 29-May-1997 "CEX-7000/-7001 by K.S. " ;v4.0 only (new Port 1F801010h)
 17-Jan-2000 "PS compatible mode by M.T." ;v5.0 (Playstation 2)

21.26 BIOS Versions

- 813/1136 -

children, the GUI in newer PSX models and in PSone's looks more like a modernized

bathroom furniture, unknown how the PS2 GUI looks like?

Games are communicating only with the Kernel, so the differences in the Bootmenu/

Intro part should have little or effect on compatibility (although some I/O ports might be

initialized differently, and although some games might (accidently) read different

(garbage) values from the ROM).

The System ROM Version string can be found at BFC7FF32h (except in v1.0).

v2.2j/a/e use exactly the same GUI as v2.1 (only the kernel was changed). v2.2d is

almost same as v2.2j (but with some GUI patches or so).

v4.1 and v4.5 use exactly the same GUI code for "A" and "E" regions (the only

difference is the last byte of the version string; which does specify whether the GUI shall

use PAL or NTSC).

v5.0 is playstation 2 bios (4MB) with more or less backwards compatible kernel.

 Ver CRC32 Used in System ROM Version Kernel
 0.xj 18D0F7D8 DTL-H2000 (no version string) dtlh2000
 1.0j 3B601FC8 SCPH-1000 and DTL-H1000 (no version string) cex1000
 1.1j 3539DEF6 SCPH-3000 and DTL-H1000H "1.1 01/22/95" ""
 2.0a 55847D8C DTL-H1001 "2.0 05/07/95 A" ""
 2.0e 9BB87C4B SCPH-1002 and DTL-H1002 "2.0 05/10/95 E" ""
 2.1j BC190209 SCPH-3500 "2.1 07/17/95 J" cex3000
 2.1a AFF00F2F SCPH-1001 and DTL-H1101 "2.1 07/17/95 A" ""
 2.1e 86C30531 SCPH-1002 and DTL-H1102 "2.1 07/17/95 E" ""
 2.2j 24FC7E17 SCPH-5000 and DTL-H1200 "2.2 12/04/95 J" cex3000/100x
 2.2a 37157331 SCPH-1001 and DTL-H1201/3001 "2.2 12/04/95 A" ""
 2.2e 1E26792F SCPH-1002 and DTL-H1202/3002 "2.2 12/04/95 E" ""
 2.2v 446EC5B2 SCPH-5903 (VCD, 1Mbyte) "2.2 12/04/95 J" ""
 2.2d DECB22F5 DTL-H1100 "2.2 03/06/96 D" ""
 3.0j FF3EEB8C SCPH-5500 "3.0 09/09/96 J" ""
 3.0a 8D8CB7E4 SCPH-5501/7003 "3.0 11/18/96 A" ""
 3.0e D786F0B9 SCPH-5502/5552 "3.0 01/06/97 E" ""
 4.0j EC541CD0 SCPH-7000/9000 "4.0 08/18/97 J" cex7000
 4.1w B7C43DAD SCPH-7000W ...XXX...
 4.1a 502224B6 SCPH-7001/7501/7503/9001 "4.1 12/16/97 A" cex3000/100x
 4.1e 318178BF SCPH-7002/7502/9002 "4.1 12/16/97 E" ""
 4.3j F2AF798B SCPH-100 (PSone) "4.3 03/11/00 J" ""
 4.4a 6A0E22A0 SCPH-101 (PSone) "4.4 03/24/00 ..XXX..
 4.4e 0BAD7EA9 SCPH-102 (PSone) "4.4 03/24/00 E" ""
 4.5a 171BDCEC SCPH-101 (PSone) "4.5 05/25/00 A" ""
 4.5e 76B880E5 SCPH-102 (PSone) "4.5 05/25/00 E" ""
 5.0t B7EF81A9 SCPH10000 (Playstation 2) "5.0 01/17/00 T" PS compatible

21.26 BIOS Versions

- 814/1136 -

Character Set Versions

The 16x15 pixel charsets at BFC66000h and BFC69D68h are included in all BIOSes,

however, the 16x15 portion for letters with accent marks at BFC64000h is included only

in non-japanese BIOSes, and in some newer japanese BIOSes (not included in v4.0j, but

they are included in v4.3j).

The 8x15 pixel charset with characters 21h..7Fh is included in all BIOSes. In the

SCPH1000, this region is followed by additional 8x15 punctuation marks at char 80h and

up, however, this region is missing in PS2 BIOS. Moreover, some BIOSes include an

incomplete 8x15 japanese character set (which ends abruptly at BF7FFFFFh), in newer

BIOSes, some of theses chars are replaced by the version string at BFC7FF32h, and, the

remaining 8x15 japanese chars were removed in the PS2 BIOS version.

21.27 BIOS Patches

The original PSX Kernel mainly consists of messy and unstable compiler generated code,

and, to the worst, the \<same> author seems to have attempted to use assembler code

in some places. In result, most commercial games are causing a greater mess by

inserting patches in the kernel code...

Which has been a nasty surprise when making the nocash PSX bios; which obviously

wasn't compatible with these patches. The only solutions would have been to insert

hundreds of NOPs to make my bios \<exactly> as bloated as the original bios (which I

really didn't want to do), or to create anti-patch-patches.

Patches and Anti-Patch-Patches

As shown below, all known patches are invoked by a B(56h) or B(57h) function call. In

the nocash PSX bios, these two functions are examining the following opcodes, if the

opcodes are a known patch, then the BIOS reproduces the desired behaviour, and does

then continue normal execution after those opcodes. If the opcodes are unknown, then

the BIOS simply locks up; and shows an error message with the address of that opcodes

in the TTY window; info about any such unknown opcodes would be welcome!

Compatibility

If you want to (or need to) use patches, please use byte-identical opcodes as

commercial games do (as shown below; only the "xxxx" address digits are don't care),

so the nocash PSX bios (or other homebrewn BIOSes) can detect and reproduce them.

21.27 BIOS Patches

- 815/1136 -

Or alternately, don't use the BIOS, and access I/O ports directly, which is much better

and faster anyways.

patch_missing_cop0r13_in_exception_handler:

In newer Kernel version, the exception handler reads cop0r13/cause to r2, examines the

Excode value in r2, and if the exception was caused by an interrupt, and if the next

opcode (at EPC) is a GTE/COP2 command, then it does increment EPC by 4. The GTE

commands are executed even if an interrupt occurs simultaneously, so, without

adjusting EPC, the command would be executed twice. With some commands that'd just

waste some clock cycles, with other commands it may cause data to be written twice to

the GTE FIFOs, or may re-use the result from the 1st command execution as input to

the 2nd execution.

The old "CEX-1000 KT-3" Kernel version did examine r2, but it "forgot" to previously

load cop0r13 to r2, so it did randomly examine a garbage value. The patch inserts the

missing opcode, used in elo2 at 80033740h, and in Pandemonium II at 8007F3FCh:

Alternately, same as above, but using k0/k1 instead of r10/r9, used in Ridge Racer at

80047B14h:

 240A00B0 mov r10,0B0h ;\ 00000000 nop
 0140F809 call r10 ; 00000000 nop
 24090056 +mov r9,56h ;/ 241A0100 mov k0,100h
 3C0Axxxx mov r10,xxxx0000h ;\ 8F5A0008 mov k0,[k0+8h]
 3C09xxxx mov r9,xxxx0000h ; 00000000 nop
 8C420018 mov r2,[r2+06h*4] ;=C(06h) ; 8F5A0000 mov k0,[k0]
 254Axxxx add r10,xxxxh ;=@@new_data ; 00000000 nop
 2529xxxx add r9,xxxxh ;=@@new_data_end ;/ 235A0008 addt k0,8h
 @@copy_lop: ;\ AF410004 mov [k0+4h],r1
 8D430000 mov r3,[r10] ; AF420008 mov [k0+8h],r2
 254A0004 add r10,4h ; AF43000C mov [k0+0Ch],r3
 24420004 add r2,4h ; AF5F007C mov [k0+7Ch],ra
 1549FFFC jne r10,r9,@@copy_lop ; 40026800 mov r2,cop0r13
 AC43FFFC +mov [r2-4h],r3 ;/ 00000000 nop

 240A00B0 mov r10,0B0h ;\ 00000000 nop
 0140F809 call r10 ; 00000000 nop
 24090056 +mov r9,56h ;/ 241A0100 mov k0,100h
 3C1Axxxx mov k0,xxxx0000h ;\ 8F5A0008 mov k0,[k0+8h]
 3C1Bxxxx mov k1,xxxx0000h ; 00000000 nop
 8C420018 mov r2,[r2+06h*4] ;=C(06h) ; 8F5A0000 mov k0,[k0]
 275Axxxx add k0,xxxxh ;=@@new_data ; 00000000 nop
 277Bxxxx add k1,xxxxh ;=@@new_data_end ;/ 235A0008 addt k0,8h
 @@copy_lop: ;\ AF410004 mov [k0+4h],r1
 8F430000 mov r3,[k0] ; AF420008 mov [k0+8h],r2
 275A0004 add k0,4h ; AF43000C mov [k0+0Ch],r3

21.27 BIOS Patches

- 816/1136 -

Alternately, slightly different code used in metal_gear_solid at 80095CC0h, and in alone1

at 800A3ECCh:

Alternately, a bugged/nonfunctional homebrew variant (used by Hitmen's "minimum"

demo):

 24420004 add r2,4h ; AF5F007C mov [k0+7Ch],ra
 175BFFFC jne k0,k1,@@copy_lop ; 40026800 mov r2,cop0r13
 AC43FFFC +mov [r2-4h],r3 ;/ 00000000 nop

 24090056 mov r9,56h ;\
 240A00B0 mov r10,0B0h ; B(56h) GetC0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 8C420018 mov r2,[r2+06h*4] ;=00000C80h = exception_handler = C(06h)
 00000000 nop
 24420028 add r2,28h
 00407821 mov r15,r2
 3C0Axxxx lui r10,xxxxh ;\@@ori_data ;\
 254Axxxx add r10,xxxxh ;/ ;
 3C09xxxx lui r9,xxxxh ;\@@ori_data_end ; @@ori_data:
 2529xxxx add r9,xxxxh ;/ ; AF410004 mov [k0+4h],r1
 @@verify_lop: ; AF420008 mov [k0+8h],r2
 8D430000 mov r3,[r10] ; AF43000C mov [k0+0Ch],r3
 8C4B0000 mov r11,[r2] ; AF5F007C mov [k0+7Ch],ra
 254A0004 add r10,4h ; 40037000 mov r3,cop0r14
 146B000E jne r3,r11,@@verify_mismatch ; 00000000 nop
 24420004 +add r2,4h ;
 1549FFFA jne r10,r9,@@verify_lop ;
 00000000 +nop ;/
 01E01021 mov r2,r15
 3C0Axxxx lui r10,xxxxh ;\@@new_data ;\
 254Axxxx add r10,xxxxh ;/ ;
 3C09xxxx lui r9,xxxxh ;\@@new_data_end ; @@new_data:
 2529xxxx add r9,xxxxh ;/ ; AF410004 mov [k0+4h],r1
 @@copy_lop: ; AF420008 mov [k0+8h],r2
 8D430000 mov r3,[r10] ; 40026800 mov r2,cop0r13
 00000000 nop ; AF43000C mov [k0+0Ch],r3
 AC430000 mov [r2],r3 ; 40037000 mov r3,cop0r14
 254A0004 add r10,4h ; AF5F007C mov [k0+7Ch],ra
 1549FFFB jne r10,r9,@@copy_lop ;
 24420004 +add r2,4h ;/
 @@verify_mismatch:

 ;BUG1: 8bit "movb r6" should be 32bit "mov r6"
 ;BUG2: @@copy_lop should transfer 6 words (not 7 words)
 ;BUG3: and, asides, the minimum demo works only with PAL BIOS (not NTSC)
 0xxxxxxx call xxxxxxxxh ;\B(56h) GetC0Table
 00000000 +nop ;/(mov r8,0B0h, jmp r8, +mov r9,56h)
 3C04xxxx mov r4,xxxx0000h ;\@@ori_data
 2484xxxx add r4,xxxxh ;/
 90460018 movb r6,[r2+06h*4] ;BUG1 ;exception_handler = C(06h)

21.27 BIOS Patches

- 817/1136 -

early_card_irq_patch:

Because of a hardware glitch the card IRQ cannot be acknowledged while the external

IRQ signal is still LOW, making it neccessary to insert a delay that waits until the signal

gets HIGH before acknowledging the IRQ.

The original BIOS is so inefficient that it takes hundreds of clock cycles between the

interrupt request and the IRQ acknowledge, so, normally, it doesn't require an additional

delay.

However, the central mistake in the IRQ handler is that it doesn't memorize which IRQ

has originally triggered the interrupt. For example, it may get triggered by a timer IRQ,

but a newer card IRQ may occur during IRQ handling, in that case, the card IRQ may

get processed and acknowledged without the required delay.

Used in Metal Gear Solid at 8009AA5Ch, and in alone1 at 800AE2F8h:

 24870018 add r7,r4,18h ;@@ori_end ;\
 24C50028 add r5,r6,28h ;C(06h)+28h ;
 00A03021 mov r6,r5 ; @@ori_data:
 @@verify_lop: ; 80086520 AF410004 mov [k0+4h],r1
 8CA30000 mov r3,[r5] ; 80086524 AF420008 mov [k0+8h],r2
 8C820000 mov r2,[r4] ; 80086528 AF43000C mov [k0+0Ch],r3
 00000000 nop ; 8008652C AF5F007C mov [k0+7Ch],ra
 1462000C jne r3,r2,@@verify_mismatch ; 80086530 40037000 mov r3,cop0r14
 24840004 +add r4,4h ; 80086534 00000000 nop
 1487FFFA jne r4,r7,@@verify_lop ; @@ori_end:
 24A50004 +add r5,4h ;/
 00C02821 mov r5,r6 ;\ @@new_data:
 3C04xxxx mov r4,xxxx0000h ;\@@new_data; 80086538 AF410004 mov [k0+4h],r1
 2484xxxx add r4,xxxxh ;/ ; 8008653C AF420008 mov [k0+8h],r2
 2483001C add r3,r4,1Ch ;@@bugged_end ; 80086540 40026800 mov r2,cop0r13
 @@copy_lop: ; 80086544 AF43000C mov [k0+0Ch],r3
 8C820000 mov r2,[r4] ; 80086548 40037000 mov r3,cop0r14
 24840004 add r4,4h ; 8008654C AF5F007C mov [k0+7Ch],ra
 ACA20000 mov [r5],r2 ; @@new_end:
 1483FFFC jne r4,r3,@@copy_lop ; 80086550 00000000 nop ;BUG2
 24A50004 +add r5,4h ;/ @@bugged_end:
 @@verify_mismatch:

 24090056 mov r9,56h ;\ ; @@new_data:
 240A00B0 mov r10,0B0h ; B(56h) GetC0Table ;3C02A001 lui r2,0A001h
 0140F809 call r10 ; ;2442DFAC sub r2,2054h
 00000000 +nop ;/ ;00400008 jmp r2 ;=@@new_cont_d
 8C420018 mov r2,[r2+06h*4] ;\get C(06h) ;00000000 +nop ;=A000DFACh
 00000000 nop ;/ ;00000000 nop
 8C430070 mov r3,[r2+70h] ;\ ; @@new_data_end:
 00000000 nop ; get ; @@new_cont_d:
 3069FFFF and r9,r3,0FFFFh ; early_card ;8C621074 mov r2,[r3+1074h]
 00094C00 shl r9,10h ; irq_handler ;00000000 nop
 8C430074 mov r3,[r2+74h] ; ;30420080 and r2,80h ;I_STAT.7

21.27 BIOS Patches

- 818/1136 -

Alternately, elo2 uses slightly different code at 8003961Ch:

Note: The above @@wait_lop's should be more preferably done with timeouts (else they

may hang endless if a Sony Mouse is newly connected; the mouse does have /ACK stuck

LOW on power-up).

 00000000 nop ; ;1040000B jz r2,@@ret
 306AFFFF and r10,r3,0FFFFh ;/ ;00000000 +nop
 012A1821 add r3,r9,r10 ; @@wait_lop:
 24620028 add r2,r3,28h ;=early+28h ;8C621044 mov r2,[r3+1044h]
 3C0Axxxx lui r10,xxxxh ;\@@new_data ;00000000 nop
 254Axxxx sub r10,xxxxh ;/ ;30420080 and r2,80h ;JOY_STAT.7
 3C09xxxx lui r9,xxxxh ;\@@new_data_end ;1440FFFC jnz r2,@@wait_lop
 2529xxxx sub r9,xxxxh ;/ ;00000000 +nop
 @@copy_lop: ;3C020001 lui r2,0001h
 8D430000 mov r3,[r10] ;8C42DFFC mov r2,[r2-2004h]
 00000000 nop ;00000000 nop
 AC430000 mov [r2],r3 ;00400008 jmp r2 ;=[0000DFFCh]
 254A0004 add r10,4h ;00000000 +nop
 1549FFFB jne r10,r9,@@copy_lop ; @@ret:
 24420004 +add r2,4h ;03E00008 ret
 3C010001 lui r1,0001h ;\[DFFCh]=r2 ;00000000 +nop
 0xxxxxxx call xxxxxxxxh ; and call ... ;
 AC22DFFC +mov [r1-2004h],r2 ;/ ;

 240A00B0 mov r10,0B0h ;\ ; @@new_data:
 0140F809 call r10 ; B(56h) GetC0Table ;3C02xxxx lui r2,8xxxh
 24090056 +mov r9,56h ;/ ;2442xxxx sub r2,xxxxh
 8C420018 mov r2,[r2+06h*4] ;\get C(06h) ;00400008 jmp r2 ;=@@new_cont_d
 00000000 nop ;/ ;00000000 +nop ;=8xxxxxxxh
 8C430070 mov r3,[r2+70h] ;\ ;00000000 nop
 00000000 nop ; get ; @@new_data_end:
 3069FFFF and r9,r3,0FFFFh ; early_card ; @@new_cont_d:
 8C430074 mov r3,[r2+74h] ; irq_handler ;8C621074 mov r2,[r3+1074h]
 00094C00 shl r9,10h ; ;00000000 nop
 306AFFFF and r10,r3,0FFFFh ; ;30420080 and r2,80h ;I_STAT.7
 012A1821 add r3,r9,r10 ;/ ;1040000B jz r2,@@ret
 3C0Axxxx mov r10,xxxx0000h ;00000000 +nop
 3C09xxxx mov r9,xxxx0000h ; @@wait_lop:
 24620028 add r2,r3,28h ;=early+28h ;8C621044 mov r2,[r3+1044h]
 254Axxxx sub r10,xxxxh ;=@@new_data ;00000000 nop
 2529xxxx sub r9,xxxxh ;=@@new_data_end ;30420080 and r2,80h ;JOY_STAT.7
 @@copy_lop: ;1440FFFC jnz r2,@@wait_lop
 8D430000 mov r3,[r10] ;00000000 +nop
 254A0004 add r10,4h ;3C02xxxx lui r2,8xxxh
 24420004 add r2,4h ;8C42xxxx mov r2,[r2-xxxxh]
 1549FFFC jne r10,r9,@@copy_lop ;00000000 nop
 AC43FFFC +mov [r2-4h],r3 ;00400008 jmp r2 ;=[8xxxxxxxh]
 3C018xxx mov r1,8xxx0000h ;\[...]=r2, ;00000000 +nop
 0xxxxxxx call xxxxxxxxh ; and call ... ; @@ret:
 AC22xxxx +mov [r1+xxxxh],r2 ;/ ;03E00008 ret
 ... ;00000000 +nop

21.27 BIOS Patches

- 819/1136 -

patch_uninstall_early_card_irq_handler:

Used to uninstall the "early_card_irq_vector" (the BIOS installs that vector from inside

of B(4Ah) InitCARD2(pad_enable), and, without patches, the BIOS doesn't allow to

uninstall it thereafter).

Used in Breath of Fire III (SLES-01304) at 8017E790, and also in Ace Combat 2

(SLUS-00404) at 801D23F4:

Alternately, more inefficient, used in Blaster Master-Blasting Again (SLUS-01031) at

80063FF4h, and Raiden DX at 80029694h:

Note: the above code is same as "patch_install_lightgun_irq_handler", except that it

writes to r2+70h, instead of r2+80h.

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(56h) GetC0Table
 24090056 +mov r9,56h ;/
 3C0Axxxx mov r10,xxxx0000h
 3C09xxxx mov r9,xxxx0000h
 8C420018 mov r2,[r2+06h*4] ;=00000C80h = exception_handler = C(06h)
 254Axxxx add r10,xxxxh ;@@new_data
 2529xxxx add r9,xxxxh ;@@new_data_end
 @@copy_lop: ;\ @@new_data:
 8D430000 mov r3,[r10] ; 00000000 nop
 254A0004 add r10,4h ; 00000000 nop
 24420004 add r2,4h ; 00000000 nop
 1549FFFC jne r10,r9,@@copy_lop ; @@new_data_end:
 AC43006C +mov [r2+70h-4],r3 ;/

 24090056 mov r9,56h ;\
 240A00B0 mov r10,0B0h ; B(56h) GetC0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 8C420018 mov r2,[r2+06h*4] ;=00000C80h = exception_handler = C(06h)
 3C0Axxxx mov r10,xxxx0000h ;\@@new_data
 254Axxxx add r10,xxxxh ;/
 3C09xxxx mov r9,xxxx0000h ;\@@new_data_end
 2529xxxx add r9,xxxxh ;/
 @@copy_lop: ;\
 8D430000 mov r3,[r10] ; @@new_data:
 00000000 nop ; 00000000 nop
 AC430070 mov [r2+70h],r3 ; 00000000 nop
 254A0004 add r10,4h ;src ; 00000000 nop
 1549FFFB jne r10,r9,@@copy_lop ; @@new_data_end:
 24420004 +add r2,4h ;dst ;/

21.27 BIOS Patches

- 820/1136 -

patch_card_specific_delay:

Same purpose as the "early_card_irq_patch" (but for the command/status bytes rather

than for the data bytes). The patch looks buggy since it inserts the delay AFTER the

acknowledge, but it DOES work (the BIOS accidently acknowledges the IRQ twice; and

the delay occurs PRIOR to 2nd acknowledge).

Used in Metal Gear Solid at 8009AAF0h, and in Legacy of Kain at 801A56D8h, and in

alone1 at 800AE38Ch:

Alternately, slightly different code used in elo2 at800396D4h, and in Resident Evil 2 at

800910E4h:

 24090057 mov r9,57h ;\ ; @@new_data:
 240A00B0 mov r10,0B0h ; B(57h) GetB0Table ; 3C08A001 lui r8,0A001h
 0140F809 call r10 ;/ ; 2508DF80 sub r8,2080h
 00000000 +nop ; 0100F809 call r8 ;=A000DF80h
 8C42016C mov r2,[r2+5Bh*4] ;B(5Bh) ; 00000000 +nop
 00000000 nop ; 00000000 nop
 8C4309C8 mov r3,[r2+9C8h] ;blah ; @@new_data_end:
 3C0Axxxx lui r10,xxxxh ;\@@new_data ; 946F000A movh r15,[r3+0Ah]
 254Axxxx sub r10,xxxxh ;/ ; 3C080000 mov r8,0h
 3C09xxxx lui r9,xxxxh ;\@@new_data_end ; 01E2C025 or r24,r15,r2
 2529xxxx sub r9,xxxxh ;/ ; 37190012 or r25,r24,12h
 @@copy_lop: ; A479000A movh [r3+0Ah],r25
 8D480000 mov r8,[r10] ; 24080028 mov r8,28h
 00000000 nop ; @@wait_lop:
 AC4809C8 mov [r2+9C8h],r8 ;B(5Bh)+9C8h.. ; 2508FFFF sub r8,1h
 254A0004 add r10,4h ; 1500FFFE jnz r8,@@wait_lop
 1549FFFB jne r10,r9,@@copy_lop ; 00000000 +nop
 24420004 +add r2,4h ; 03E00008 ret ;above delay is
 ... ; 00000000 +nop ;in UNCACHED RAM

 240A00B0 mov r10,0B0h ;\ ; @@swap_begin:
 0140F809 call r10 ; B(57h) GetB0Table ; 3C088xxx lui r8,8xxxh
 24090057 +mov r9,57h ;/ ; 2508xxxx sub r8,xxxxh
 8C42016C mov r2,[r2+5Bh*4] ;B(5Bh) ; 0100F809 call r8 ;=8xxxxxxxh
 3C0Axxxx mov r10,xxxx0000h ; 00000000 +nop
 3C09xxxx mov r9,xxxx0000h ; 00000000 nop
 8C4309C8 mov r3,[r2+9C8h] ;blah ; @@swap_end:
 254Axxxx sub r10,xxxxh ;=@@swap_begin ; ;- - -
 2529xxxx sub r9,xxxxh ;=@@swap_end ; 00000000 nop
 @@swap_lop: ; 240800C8 mov r8,0C8h
 8C4309C8 mov r3,[r2+9C8h] ;B(5Bh)+9C8h.. ; @@wait_lop:
 8D480000 mov r8,[r10] ; 2508FFFF sub r8,1h
 254A0004 add r10,4h ; 1500FFFE jnz r8,@@wait_lop
 AD43FFFC mov [r10-4h],r3 ; 00000000 +nop
 24420004 add r2,4h ; 03E00008 ret ;above delay is
 1549FFFA jne r10,r9,@@swap_lop ; 00000000 +nop ;in CACHED RAM
 AC4809C4 +mov [r2+9C4h],r8 ;

21.27 BIOS Patches

- 821/1136 -

patch_card_info_step4:

The "card_info" function sends an incomplete read command to the card; in order to

receive status information. After receiving the last byte, the function does accidently

send a further byte to the card, so the card responds by another byte (and another

IRQ7), which is not processed nor acknowledged by the BIOS. This patch kills the

opcode that sends the extra byte.

Used in alone1 at 800AE214h:

patch_pad_error_handling_and_get_pad_enable_functions:

If a transmission error occurs (or if there's no controller connected), then the Pad

handler handler does usually issue a strange chip select signal to the OTHER controller

slot, and does then execute the bizarre_pad_delay function. The patch below overwrites

that behaviour by NOPs. Purpose of the original (and patched) behaviour is unknown.

Used by Perfect Assassin at 800519D4h:

 24090057 mov r9,57h ;\
 240A00B0 mov r10,0B0h ; B(57h) GetB0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 240A0009 mov r10,9h ;=blah
 8C42016C mov r2,[r2+5Bh*4] ;=B(5Bh)
 00000000 nop
 20431988 addt r3,r2,1988h ;=B(5Bh)+1988h ;\store a NOP,
 0xxxxxxx call xxxxxxxxh ; and call ...
 AC600000 +mov [r3],0 ;=nop ;/

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(57h) GetB0Table
 24090057 +mov r9,57h ;/
 8C42016C mov r2,[r2+5Bh*4] ;=B(5Bh)
 3C01xxxx mov r1,xxxx0000h
 20430884 addt r3,r2,884h ;B(5Bh)+884h
 AC23xxxx mov [r1+xxxxh],r3 ;<--- SetPadEnableFlag()
 3C01xxxx mov r1,xxxx0000h
 20430894 addt r3,r2,894h ;B(5Bh)+894h
 2409000B mov r9,0Bh ;len
 AC23xxxx mov [r1+xxxxh],r3 ;<--- ClearPadEnableFlag()
 @@fill_lop: ;\
 2529FFFF sub r9,1h ;
 AC400594 mov [r2+594h],0 ;B(5Bh)+594h.. ; erase error handling
 1520FFFD jnz r9,@@fill_lop ;
 24420004 +add r2,4h ;/

21.27 BIOS Patches

- 822/1136 -

Alternately, same as above, but with inefficient nops, used by Sporting Clays at

8001B4B4h:

Alternately, same as above, but without getting PadEnable functions, used in

Pandemonium II (at 80083C94h and at 8010B77Ch):

patch_optional_pad_output:

The normal BIOS functions are only allowing to READ from the controllers, but not to

SEND data to them (which would be required to control Rumble motors, and to auto-

activate Analog mode without needing the user to press the Analog button). Internally,

the BIOS does include some code for sending data to the controller, but it doesn't offer a

function vector for setting up the data source address, and, even if that would be

supported, it clips the data bytes to 00h or 01h. The patch below retrieves the required

SetPadOutput function address (in which only the src1/src2 addresses are relevant, the

blah1/blah2 values aren't used), and suppresses clipping (ie. allows to send any bytes in

range 00h..FFh).

 24090057 mov r9,57h ;\
 240A00B0 mov r10,0B0h ; B(57h) GetB0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 8C42016C mov r2,[r2+5Bh*4]
 2409000B mov r9,0Bh ;len
 20430884 addt r3,r2,884h
 3C01xxxx mov r1,xxxx0000h
 AC23xxxx mov [r1+xxxxh],r3 ;<--- SetPadEnableFlag()
 20430894 addt r3,r2,894h
 3C01xxxx mov r1,xxxx0000h
 AC23xxxx mov [r1+xxxxh],r3 ;<--- ClearPadEnableFlag()
 @@fill_lop: ;\
 AC400594 mov [r2+594h],0 ;
 24420004 add r2,4h ; erase error handling
 2529FFFF sub r9,1h ;
 1520FFFC jnz r9,@@fill_lop ;
 00000000 +nop ;/

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(57h) GetB0Table
 24090057 +mov r9,57h ;/
 8C42016C mov r2,[r2+5Bh*4] ;=B(5Bh)
 2409000B mov r9,0Bh ;len ;\
 @@fill_lop: ;
 2529FFFF sub r9,1h ; erase error handling
 AC400594 mov [r2+594h],0 ;B(5Bh)+594h.. ;
 1520FFFD jnz r9,@@fill_lop ;
 24420004 +add r2,4h ;/

21.27 BIOS Patches

- 823/1136 -

Used in Resident Evil 2 at 80091914h:

Alternately, more inefficient (with NOPs), used in Lemmings at 80036618h:

patch_no_pad_card_auto_ack:

This patch suppresses automatic IRQ0 (vblank) acknowleding in the Pad/Card IRQ

handler, that, even if auto-ack is enabled. Obviously, one could as well disable auto-ack

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(57h) GetB0Table
 24090057 +mov r9,57h ;/
 8C42016C mov r2,[r2+5Bh*4] ;B(5Bh)
 3C0Axxxx mov r10,xxxx0000h
 3C09xxxx mov r9,xxxx0000h
 3C01xxxx mov r1,xxxx0000h
 204307A0 addt r3,r2,7A0h ;B(5Bh)+7A0h
 254Axxxx add r10,xxxxh ;=@@new_data
 2529xxxx add r9,xxxxh ;=@@new_data_end
 AC23xxxx mov [r1-xxxxh],r3 ;<--- SetPadOutput(src1,blah1,src2,blah2)
 @@double_copy_lop: ;\
 8D430000 mov r3,[r10] ; @@new_data:
 254A0004 add r10,4h ; 00551024 and r2,r21
 AC4303D8 mov [r2+3D8h],r3 ;<--- here ; 00000000 nop
 24420004 add r2,4h ; 00000000 nop
 1549FFFB jne r10,r9,@@double_copy_lop ; 00000000 nop
 AC4304DC +mov [r2+4DCh],r3 ;<--- here ;/ @@new_data_end:

 24090057 mov r9,57h ;\
 240A00B0 mov r10,0B0h ; B(57h) GetB0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 3C0Axxxx mov r10,xxxx0000h
 254Axxxx add r10,xxxxh ;=@@new_data
 3C09xxxx movp r9,xxxx0000h
 2529xxxx add r9,xxxxh ;=@@new_data_end
 8C42016C mov r2,[r2+5Bh*4] ;B(5Bh)
 00000000 nop
 204307A0 addt r3,r2,7A0h ;B(5Bh)+7A0h
 3C01xxxx mov r1,xxxx0000h
 AC23xxxx mov [r1+xxxxh],r3 ;<--- SetPadOutput(src1,blah1,src2,blah2)
 @@double_copy_lop: ;\
 8D430000 mov r3,[r10] ; @@new_data:
 00000000 nop ; 00551024 and r2,r21
 AC4303D8 mov [r2+3D8h],r3 ; 00000000 nop
 AC4304E0 mov [r2+4E0h],r3 ; 00000000 nop
 24420004 add r2,4h ; 00000000 nop
 254A0004 add r10,4h ; @@new_data_end:
 1549FFF9 jne r10,r9,@@double_copy_lop ;
 00000000 +nop ;/

21.27 BIOS Patches

- 824/1136 -

via B(5Bh) ChangeClearPAD(int), so this patch is total nonsense. Used in Resident Evil 2

at 800919ACh:

Alternately, same as above, but more inefficient, used in Sporting Clays at 8001B53Ch:

Either way, no matter if using the patch or if using ChangeClearPAD(int), having auto-ack

disabled allows to install a custom vblank IRQ0 handler, which is probably desired for

most games, however, mind that the PSX BIOS doesn't actually support the same IRQ to

be processed by two different IRQ handlers, eg. the custom handler may acknowledge the

IRQ even when the Pad/Card handler didn't process it, so pad input may become bumpy.

patch_install_lightgun_irq_handler:

Used in Sporting Clays at 80027D68h (when Konami Lightgun connected):

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(57h) GetB0Table
 24090057 +mov r9,57h ;/
 8C42016C mov r2,[r2+5Bh*4] ;=B(5Bh)
 240A0009 mov r10,9h ;len ;\
 2043062C addt r3,r2,62Ch ;=B(5Bh)+62Ch ;
 @@fill_lop: ;
 254AFFFF sub r10,1h ;
 AC600000 mov [r3],0 ;
 1540FFFD jnz r10,@@fill_lop ;
 24630004 +add r3,4h ;/

 24090057 mov r9,57h ;\
 240A00B0 mov r10,0B0h ; B(57h) GetB0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 240A0009 mov r10,9h ;len
 8C42016C mov r2,[r2+5Bh*4]
 00000000 nop
 2043062C addt r3,r2,62Ch
 @@fill_lop: ;\
 AC600000 mov [r3],0 ;
 24630004 add r3,4h ;
 254AFFFF sub r10,1h ;
 1540FFFC jnz r10,@@fill_lop ;
 00000000 +nop ;/

 240A00B0 mov r10,0B0h ;\
 0140F809 call r10 ; B(56h) GetC0Table
 24090056 +mov r9,56h ;/
 3C0Axxxx mov r10,xxxx0000h ;src
 3C09xxxx mov r9,xxxx0000h ;src.end
 8C420018 mov r2,[r2+06h*4] ;C(06h)

21.27 BIOS Patches

- 825/1136 -

Alternately, same as above, but more inefficient, used in DQM (Dragon Quest Monsters

1&2) at 80089390h (install) and 800893F8h (uninstall):

Some lightgun games (eg. Project Horned Owl) do (additionally to above stuff) hook the

exception vector at 00000080h, the hook copies the horizontal coordinate (timer0) to a

variable in RAM, thus getting the timer0 value "closest" to the actual IRQ execution.

Doing that may eliminate some unpredictable timing offsets that could be caused by

cache hits/misses during later IRQ handling (and may also eliminate a rather irrelevant 1-

cycle inaccuracy depending on whether EPC was pointing to a GTE opcode, and also

eliminates constant cycle offsets depending on whether early_card_irq_handler was

installed and enabled, and might eliminate timing differences for different BIOS versions).

set_conf_without_realloc:

Used in Spec Ops Airborne Commando at 80070AE8h, and also in the homebrew game

Roll Boss Rush at 80010B68h and 8001B85Ch. Purpose is unknown (maybe to override

improperly defined .EXE headers).

 254Axxxx add r10,xxxxh ;src
 2529xxxx add r9,xxxxh ;src.end (=src+10h)
 @@copy_lop: ;\ ; @@src:
 8D430000 mov r3,[r10] ; ;3C02xxxx mov r2,xxxx0000h
 254A0004 add r10,4h ; ;2442xxxx add r2,xxxxh
 24420004 add r2,4h ; ;0040F809 call r2 ;lightgun_proc
 1549FFFC jne r10,r9,@@copy_lop ; ;00000000 +nop
 AC43007C +mov [r2+80h-4],r3 ;/ @@src_end:

 24090056 mov r9,56h ;\
 240A00B0 mov r10,0B0h ; B(56h) GetC0Table
 0140F809 call r10 ;
 00000000 +nop ;/
 8C420018 mov r2,[r2+06h*4] ;=00000C80h = exception_handler = C(06h)
 3C0Axxxx mov r10,xxxx0000h ;\@@new_data (3xNOP)
 254Axxxx add r10,-xxxxh ;/
 3C09xxxx mov r9,xxxx0000h ;\@@new_data_end
 2529xxxx add r9,-xxxxh ;/
 @@copy_lop: ;\
 8D430000 mov r3,[r10] ; @@new_data: ;for (un-)install...
 00000000 nop ; 00000000 nop / 3C02xxxx mov r2,xxxx0000h
 AC430080 mov [r2+80h],r3 ; 00000000 nop / 2442xxxx add r2,-xxxxh
 254A0004 add r10,4h ; 00000000 nop / 0040F809 call r2 ;proc
 1549FFFB jne r10,r9,@@copy_lop ; @@new_data_end:
 24420004 +add r2,4h ;/

 8C030474 mov r3,[200h+(9Dh*4)] ;\get ptr to A(9Dh) GetConf (done so,
 00000000 nop ;/as there's no "GetA0Table" funtion)
 94620000 movh r2,[r3+0h] ;lui msw ;\

21.27 BIOS Patches

- 826/1136 -

Cheat Devices

CAETLA detects the PSX BIOS version by checksumming BFC06000h..BFC07FFFh and

does then use some hardcoded BIOS addresses based on that checksum. The reason for

doing that is probably that the Pre-Boot Expansion ROM vector is called with the normal

A0h/B0h/C0h vectors being still uninitialized.

Problems are that the hardcoded addresses won't work with all BIOSes (eg. not with the

no$psx bios clone, probably also not with the newer PS2 BIOS), moreover, the

checksumming can fail with patched original BIOSes (eg. no$psx allows to enable TTY

debug messages and to skip the BIOS intro).

The Cheat Firmwares are probably also hooking the Vblank handler, and maybe also

some other functions.

ACTION REPLAY (at least later versions like 2.81) uses the Pre-Boot handler to set a

COP0 hardware breakpoint at 80030000h and does then resume normal BIOS booting

(which will then initialize important things like A0h/B0h/C0h tables, and will then break

when starting the GUI code at 80030000h).

XPLORER searches opcode 24040385h at BFC06000h and up, and does then place a

COP0 opcode fetch breakpoint at the opcode address+10h (note: this is within a branch

delay slot, which makes COP0 emulation twice as complicated). XPLORER does also

require space in unused BIOS RAM addresses (eg. Xplorer v3.20: addr 7880h at

1F002280h, addr 017Fh at 1F006A58h).

Note

Most games include two or three patches. The only game that I've seen so far that does

NOT use any patches is Wipeout 2097.

 84630004 movhs r3,[r3+4h] ;lw lsw+8 ; extract ptr to "boot_cnf_values"
 00021400 shl r2,10h ;msw*10000h ; (from first 2 opcodes of GetConf)
 2442FFF8 sub r2,8h ;undo +8 ;
 00431021 add r2,r3 ;lsw ;/
 AC450000 mov [r2+0h],r5 ;num_TCB ;\set num_EvCB,num_TCB,stacktop
 AC440004 mov [r2+4h],r4 ;num_EvCB ; (unlike A(9Ch) SetConf, without
 03E00008 ret ; actually reallocting anything)
 AC460008 +mov [r2+8h],r6 ;stacktop ;/

21.27 BIOS Patches

- 827/1136 -

22. Arcade Cabinets

The following arcade PCBs are known to be based on PlayStation hardware:

The following systems are based on a Sony CPU daughterboard mounted on top of a

custom manufacturer-specific main board:

Manufacturer Board CPU clock GPU RAM VRAM Additional CPUs Audio Storage

Konami GV 33 MHz v0 2 MB 1 MB SPU, CD-DA SCSI CD-ROM, optional flash module (PWB402610)

Konami GQ 33 MHz v1 4 MB 2 MB 68000, TMS57002 2x Konami 054539 PCM (no SPU) SCSI hard drive

Konami System 573 33 MHz v2 4 MB 2 MB H8/3644 SPU, CD-DA, optional Micronas MAS3507D MP3 (GX894-

PWB(B)A)

Internal flash, optional ATAPI CD-ROM, PCMCIA flash cards

Konami Twinkle System 33 MHz v2 4 MB 2 MB Optional 68000 (TWINKLE/

SPU), DVD player

SPU, optional Ricoh RF5C400 PCM (TWINKLE/SPU) SCSI CD-ROM, IDE hard drive (TWINKLE/SPU), unused floppy

Namco System 10 50 MHz v2 16 MB 2 MB SPU, optional Sanyo LC82310 MP3 (MEM(P3) PCB) Game-specific mask ROM/flash module, optional ATAPI CD-ROM

Sony COH-100 33 MHz v1 4 MB 2 MB Provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below, has unpopulated SPU) Provided by manufacturer PCB (see below)

Sony COH-110 33 MHz v2 4 MB 2 MB Provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below, no SPU) Provided by manufacturer PCB (see below)

Sony COH-700 50 MHz v2b 4 MB 2 MB Provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below, no SPU) Provided by manufacturer PCB (see below)

Sony COH-716 50 MHz v2 16 MB 2 MB Provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below, no SPU) Provided by manufacturer PCB (see below)

Sony ZN-1 33 MHz v2 4-8 MB 1-2 MB Provided by manufacturer PCB (see below) SPU, extra hardware provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below)

Sony ZN-2 50 MHz v2 or v2b 4-16 MB 2 MB Provided by manufacturer PCB (see below) SPU, extra hardware provided by manufacturer PCB (see below) Provided by manufacturer PCB (see below)

Manufacturer Main board CPU board Additional CPUs Audio Storage

Namco System 11 COH-100 or COH-110 Namco C76 (custom H8) Namco C352 PCM Game-specific mask ROM module

Namco System 12 COH-700 or COH-716 H8/3002, optional SH-2 (CDXA

PCB)

Namco C352 PCM, XA-ADPCM decoded by SH-2 (CDXA

PCB)

Game-specific mask ROM/flash module, optional ATAPI CD-ROM

22. Arcade Cabinets

- 828/1136 -

The following systems are based on a Sony ZN-1 or ZN-2 motherboard with a

manufacturer-specific daughterboard mounted on top:

Currently only documentation for the System 573 exists. More information about other

arcade boards could be obtained from MAME source code.

22.1 CPU

Most boards use the same CPUs as retail consoles and development units but extend

main RAM to up to 16 MB, with 4 MB being the most common configuration. The System

10, COH-716 and ZN-2 run the CPU at 50 MHz instead of 33 and feature a different chip

revision from any known stock console, presumably rated for the higher clock speed but

otherwise functionally identical.

22.2 GPU

Most systems have a regular 208-pin v2 GPU but expand VRAM from 1 to 2 MB,

arranged as a 1024x1024 buffer rather than 1024x512. The Konami GQ and COH-100

instead use the v1 "prototype" GPU, which employs a different command format. As the

Manufacturer Main board Daughterboard Additional CPUs Audio Storage

Acclaim ZN-1 PCB-100102 Optional ADSP-2181 (PCB-100095) PCM from ADSP-2181 (PCB-100095) Mask ROMs, EPROMs

Atari ZN-1 Primal Rage 2 (PSXTRA) EPROMs, IDE hard drive

Atlus ZN-1 Heaven's Gate (ATHG-01) 68000 Yamaha YMZ280B PCM/ADPCM Mask ROMs, EPROMs

Capcom ZN-1 or ZN-2 95681-2 Z80 Capcom Q-Sound PCM/ADPCM Mask ROMs, EPROMs

Capcom ZN-2 97695-1 Z80 Capcom Q-Sound PCM/ADPCM Mask ROMs, EPROMs

Eighting/Raizing ZN-1 RA9701 SUB 68000 Yamaha YMF271-F FM/PCM Mask ROMs, EPROMs

Eighting/Raizing, Tecmo ZN-1 PS9805 68000 Yamaha YMF271-F FM/PCM Mask ROMs, EPROMs, flash

Eighting/Raizing ZN-1 Bust-A-Move 2 (MTR990601-

(A))

H8/3644 PCM streamed by H8/3644 Mask ROMs, flash, IDE hard drive or ATAPI CD-ROM

Taito ZN-1 FX-1 (SROM PCB-A) Z80 Yamaha YM2610 FM/ADPCM Mask ROMs, EPROMs

Taito ZN-1 FX-1 (ZROM PCB) MN1020012A, TMS57002 Zoom ZSG-2 PCM Mask ROMs, EPROMs

Taito ZN-1 or ZN-2 G-NET (FC PCB) MN1020012A, TMS57002 Optional Zoom ZSG-2 PCM Secure PCMCIA or CF-like flash card

Tecmo ZN-1 TPS System (TPS1-7) Optional Z80 Optional Yamaha YMZ280B PCM/ADPCM Mask ROMs, EPROMs

Video System ZN-1 VS34 Mask ROMs

22.1 CPU

- 829/1136 -

System 11 could come fitted with either a COH-100 or COH-110, some System 11

games support both formats.

As with CPUs, some ZN-2 variants and the COH-700 use a later arcade-only revision

("v2b") of the v2 GPU. This change may also be related to the clock speed increase,

however not all systems running at 50 MHz seem to use the newer GPU.

22.3 Audio

Almost all boards extend the SPU's functionality with additional hardware, usually

consisting of a custom PCM mixer and in some cases a separate CPU driving it. The extra

circuitry is typically in charge of playing music (fulfilling the same role as CD-DA and XA-

ADPCM on retail consoles), with the SPU still handling playback of all other audio.

The Konami GQ and all systems based on Sony's CPU daughterboards omit the SPU

altogether and rely entirely on custom sound hardware. The Twinkle System has the SPU

populated but all games that require its dedicated audio board will leave it unused.

22.4 Controls

Most systems are designed to be connected to a cabinet through a JAMMA board edge

connector, which carries power, a video output, player controls and coin/service button

inputs. These inputs are typically accessed via custom memory-mapped I/O ports. As

control schemes may vary greatly from game to game, many systems also provide

means to connect additional inputs or expansion boards.

Some boards feature a JVS port (a standardized serial bus protocol used to connect

controls and peripherals to modern arcade systems), allowing standard JVS I/O boards

to be used if supported by games.

22.5 Storage

With the exception of Konami, all manufacturers adopted solid state game storage

(mask ROMs, EPROMs and/or flash memory). The wiring and layout of the ROMs varies

across boards; on some systems the BIOS, game binary and its assets are part of the

same ROM region, while others split them into separate areas. Boards with custom

22.3 Audio

- 830/1136 -

sound hardware usually store samples and other audio data in dedicated ROMs accessed

directly by the hardware in question.

Konami systems store game executables and assets on standard SCSI/IDE hard drives

or CD-ROMs. The System 573 can also boot from its built-in flash or a PCMCIA flash

card, using the CD-ROM drive only to install new games, however the vast majority of

573 games are too large to fit entirely in the flash and still rely on reading files from the

disc after installation. The Twinkle System is particularly unusual as it has a CD-ROM

drive accessed by the main CPU, a separate hard drive used by the audio board and an

external DVD player unit for background videos.

The System 12, System 10 and the ZN-1 with the Bust-A-Move 2 ROM board are the

only currently known non-Konami PCBs with CD-ROM support. The former requires an

expansion module that provides an IDE interface and XA-ADPCM decoding through an

integrated SH-2 CPU, while the latter two can be connected directly to a drive. In all

cases the CD-ROM is only used for audio streaming and the boards are not otherwise

capable of booting directly from it without a ROM board installed.

22.5 Storage

- 831/1136 -

22.6 Security

The implementation of anti-piracy measures varies for each manufacturer.

Namco's System 11 and 12 employ a CPLD or ASIC ("KEYCUS" chip) on each ROM

module as a game-specific security coprocessor the CPU communicates with. In the

case of the System 12, the KEYCUS chip seems to double as a lockout device and

restrict access to the ROMs until the game issues an unlocking sequence.

Namco System 10 games also use a KEYCUS CPLD but wire it between the CPU and

ROMs, allowing it to perform on-the-fly unscrambling of their encrypted contents in

addition to the lockout functionality.

Similarly, most Taito G-NET games are stored on non-standard PCMCIA flash cards that

require unlock sequences specific to each game prior to being accessed.

Sony's ZN-1 and ZN-2 are fitted by each manufacturer with a custom BIOS ROM and

security/decryption ASIC, which the game-specific ROM daughterboard then relies on.

This makes it harder to convert ZN-1 or ZN-2 games by simply swapping out the

daughterboard.

CD-ROMs for Konami boards were typically shipped alongside a security dongle or

cartridge that must be plugged in to boot the game. Some games write the system's

serial number to the dongle during installation, preventing installation of the same

game on more than one cabinet. The System 573's optional MP3 decoder board

additionally features an FPGA used to decrypt MP3 files on the disc during playback.

•

•

•

•

•

22.6 Security

- 832/1136 -

22.7 Games

Some of the most notable arcade titles to use the boards listed here include:

Beatmania IIDX up to 8th Style (Twinkle System)

Dance Dance Revolution up to EXTREME (System 573)

DrumMania up to 10thMIX (System 573)

GuitarFreaks up to 11thMIX (System 573)

Point Blank 2 (System 11 or System 12)

Point Blank 3 (System 10)

Soul Calibur (System 12)

Soul Edge (System 11)

Street Fighter EX (Capcom ZN-1)

Street Fighter EX2 (Capcom ZN-2)

Taiko no Tatsujin up to 6 (System 10)

Tekken and Tekken 2 (System 11)

Tekken 3 (System 12)

Tetris: The Grand Master (Capcom ZN-2)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

22.7 Games

- 833/1136 -

23. Konami System 573

The System 573 is a PlayStation-based system used in a number of Konami arcade

games from the late 90s and early 2000s, most notably Dance Dance Revolution and

other titles from the Bemani series of rhythm games.

Differences vs. PS1

Register map

JVS interface

I/O boards

Security cartridges

External modules

BIOS

Bootleg mod boards

Game-specific information

Notes

Pinouts

Credits, sources and links

•

•

•

•

•

•

•

•

•

•

•

•

23. Konami System 573

- 834/1136 -

This document is currently work-in-progress. Here is an incomplete list of things the

authors believe need more research:

The BIOS and games are notoriously picky about ATAPI drives due to Konami's libraries

not always respecting timings and polling registers in the way suggested by the

specifications. Such issues shall be documented more in detail.

The GE765-PWB(B)A and PWB0000073070 I/O boards have been fully and partially

reverse engineered respectively, but documentation for them is missing.

The GN845-PWB(B) DDR stage PCB's communication protocol is largely unknown.

More tests need to be done on real hardware and its CPLD shall be dumped if possible.

The protocol used by the 573 to communicate with the PWB0000100991 network PCB

has been reversed, however very little about the PCB's own hardware and software

stack is otherwise known.

Some revisions of the main board have two resistor footprints next to the Konami

ASIC, one labeled FJ and the other SH . Only one of them is populated; it presumably

sets or clears a bit in one of the ASIC input ports. Given the labels it may be related to

the manufacturer of the onboard flash memory (Fujitsu or Sharp), however even

boards fitted with Sharp chips come with the FJ resistor populated. Moreover, all

known games identify the chips by probing their JEDEC ID.

23.1 Differences vs. PS1

23.1.1 Main changes

Main RAM is 4 MB instead of 2 MB and VRAM is 2 MB instead of 1 MB. SPU RAM is

still 512 KB.

The CD-ROM drive is completely different. While the PS1's drive is fully integrated

into the motherboard and uses a custom protocol, the 573 employs a standard ATAPI

drive. It can thus boot from burned CD-Rs or even CD-RWs just fine (as long as the

drive itself is capable of reading them in the first place), with no modifications needed

to the stock hardware. There is no provision for playing XA-ADPCM, however CD-DA

playback through the drive's own audio output (fed into the 573 motherboard via a 4-

pin audio cable) is supported and used by some games.

The SIO0 bus for controllers and memory cards is unused. It is broken out to a

connector, however no known I/O board uses it. Some games supported PS1

•

•

•

•

•

•

•

•

23.1 Differences vs. PS1

- 835/1136 -

controllers and memory cards through an adapter connected over JVS (see the

external modules section).

The "parallel I/O" expansion port is replaced by 2 PCMCIA slots. These slots

are wired in parallel and mapped at the same address as the internal flash through

bank switching. They are fairly limited though as they only support 16-bit bus accesses

(i.e. /CE1 and /CE2 are tied together, even though the CPU actually exposes them as

separate signals!), have no DMA and don't expose the PCMCIA I/O and configuration

space (/IORD and /IOWR are not connected at all). This makes them incompatible

with CF cards and most PCMCIA devices.

23.1.2 Additional hardware

Audio and video outputs: unlike the PS1, which outputs composite, S-video and

RGB, the 573 only outputs RGB with C-sync through the JAMMA connector and a DB15

port compliant with the JVS specification (same pinout as VGA but not directly

compatible, as VGA normally runs at higher resolutions and uses separate H/V sync

pins). A built-in 15 watt stereo speaker amplifier is also provided for cabinets that lack

their own sound system.

JAMMA interface and built-in I/O ports: the 573 provides multiple digital and

analog ports for interfacing with arcade cabinet controls. Depending on the I/O board

the system came with, these signals might be broken out through connectors on the

system's case.

Internal 16 MB flash memory: the 573's BIOS is capable of booting either from the

CD drive or from an array of flash memory chips soldered to the motherboard, which

are also memory mapped. Most Konami games are designed to run from flash: when

attempting to run them from CD without also having them installed, the executable on

the disc will erase the flash and install the game before starting. Most games still

require the CD, in some cases a different one, to be kept in the drive after installation

as they use it for music playback or to stream additional data.

PCMCIA memory card: some games shipped with additional flash memory in the

form of one or more 16 or 32 MB PCMCIA cards. Note that these are "linear" memory

mapped flash cards without any built-in controller, not CF or ATA-compatible cards. See

the BIOS section for more details on why CF cards are not supported.

RTC and battery-backed 8 KB RAM: used by games to store settings, save data and

installation info (possibly including serial numbers). Unfortunately the RTC chip is one

•

•

•

•

•

•

23.1.2 Additional hardware

- 836/1136 -

of those all-in-one things with a battery sealed inside, soldered directly to the

motherboard.

JVS host: allows connection of multiple daisy chained peripherals using the

standardized JVS protocol, based on a serial (RS-485) bus. The JVS port on the 573

was only ever "officially" used for the PS1 memory card reader module, however some

games seem to support JVS I/O boards and input devices in addition to the built-in

JAMMA connector.

Security cartridge: optionally installed on the 573's side, contains a password

protected EEPROM that holds factory pre-programmed data as well as keys generated

during game installation, plus in some case a 64-bit serial number ROM. Security

cartridges were bundled with most game discs as a way to prevent copying, as the

discs themselves had no other protection of any kind. The CPU's serial port (SIO1) is

also wired to the security cartridge slot.

23.2 Register map

All standard PS1 registers, with the exception of the CD-ROM drive's, are present and

accessible. System 573-specific hardware is mapped into the EXP1 region at

0x1f000000 . IRQ10 and DMA5, normally reserved for the expansion bus (and

lightguns) on a regular PS1, are used to access the ATAPI drive, while IRQ2 and DMA3

go unused.

NOTE: EXP1 must be configured prior to accessing any of these registers. The

configuration value written by Konami's code to the EXP1 delay/size register at

0x1f801008 is 0x24173f47 . Afterwards, all bus writes shall be 16 or 32 bits wide. The

behavior of 8-bit writes is undefined, but 8-bit reads work as intended.

•

•

Address range Description

0x1f000000-0x1f3fffff Bank switched, can be mapped to flash or PCMCIA slots

0x1f400000-0x1f40000f Konami ASIC registers

0x1f480000-0x1f48000f IDE register bank 0

0x1f4c0000-0x1f4c000f IDE register bank 1

0x1f620000-0x1f623fff RTC registers and battery-backed RAM

0x1f640000-0x1f6400ff I/O board registers

0x1f500000-0x1f6a0001 Other registers

23.2 Register map

- 837/1136 -

23.2.1 Konami ASIC registers

Registers in the 0x1f400000-0x1f40000f region are handled by the Konami 056879 I/

O ASIC, consisting of a single 8-bit output port and at least six 16-bit input ports. The

same chip was used in other Konami arcade boards of the time.

0x1f400000 (ASIC register 0): ADC / Coin counters / Audio control

The ADC chip is an ADC0834 from TI, which uses a proprietary SPI-like protocol. Its four

inputs are wired to the ANALOG connector on the 573 motherboard. Refer to the

ADC083x datasheet for details on how to bitbang the protocol.

Mechanical coin counters are incremented by games whenever a coin is inserted by

setting bit 3 or 4 for a fraction of a second and then clearing them. Bit 5 controls

whether the onboard audio amp is enabled but does not affect the RCA line level

outputs, which are always enabled. Setting bit 5 has no effect immediately as the

amplifier takes about a second to turn on.

Bit 6 is used by games to mute audio from the CD-ROM drive or digital I/O board.

However, testing on real hardware seems to suggest it is actually some sort of

attenuation control, as the audio is still audible (albeit at a very low volume) when the

bit is cleared. Note that some games, such as GuitarFreaks, break the CD/MP3 output to

separate jacks on the front I/O panel rather than routing it through the motherboard,

making bit 6 meaningless.

Bit 8 resets the JVS MCU. Since the reset pin is active-low, resetting is done by writing

0, waiting at least 10 H8 clock cycles (the BIOS waits 2 hblanks) and writing 1 again.

Bits RW Description

0 W Data input to ADC (DI)

1 W Chip select to ADC (/CS)

2 W Data clock to ADC (CLK)

3 W Coin counter 1 (1 = energize counter coil)

4 W Coin counter 2 (1 = energize counter coil)

5 W Built-in audio amplifier enable (0 = muted)

6 W External audio input enable (0 = muted)

7 W SPU DAC output enable (0 = muted)

8 W JVS MCU reset output (0 = pull reset low)

9-15 Unused

23.2.1 Konami ASIC registers

- 838/1136 -

Resetting the MCU will clear JVSDRDY but not JVSIRDY . As the 056879 ASIC's output

register is only 8 bits wide, bit 8 is actually handled by a discrete flip-flop on the

motherboard.

Unknown what reading from this port does.

0x1f400004 (ASIC register 2): DIP switches / JVS status / Security cartridge

The MCU status code can be one of the following values:

The MCU error code can be one of the following values:

Once an error is reported, the MCU will enter an endless loop and become unresponsive.

In order to clear the error the MCU must be reset using bit 8 in register 0x1f400000 .

The highest 8 bits read from this register are the current state of the security cartridge's

I0-I7 pins. See the security cartridge section for an explanation of what each bit is

wired to. Unknown whether reading from this register will clear the IRDY flag, if

previously set by the cartridge.

Bits RW Description

0-3 R DIP switch 1-4 status (0 = on, 1 = off)

4-5 R Current JVS MCU status code

6-7 R Current JVS MCU error code

8-15 R I0-I7 from security cartridge

Code Description

0 Waiting for the 573 to read or write the first word of a packet

1 Busy (sending a packet or waiting for a response)

2 Waiting for the 573 to finish reading or writing a packet

3 Unused

Code Description

0 Unused

1 Packet written by the 573 has an invalid checksum

2 Packet written by the 573 does not start with a 0xe0 sync byte

3 No error

23.2.1 Konami ASIC registers

- 839/1136 -

Bit 3 (DIP switch 4) is used by the BIOS to determine whether to boot from flash. If set,

the BIOS will attempt to search for a valid executable on the internal flash and both

PCMCIA cards prior to falling back to the CD-ROM.

0x1f400006 (ASIC register 3): Misc. inputs

See the security cartridge section for more details about IRDY and DRDY . In order for

bit 2 to be valid, IO0 should be set as an input by clearing the respective bit in register

0x1f500000 .

Bits RW Description

0 R Data output from ADC (DO)

1 R SAR status from ADC (SARS)

2 R From IO0 on security cartridge

3 R Sense input from JVS port

4 R JVSIRDY status from JVS MCU

5 R JVSDRDY status from JVS MCU

6 R IRDY status from security cartridge

7 R DRDY status from security cartridge

8 R Coin switch input 1 (0 = coin being inserted)

9 R Coin switch input 2 (0 = coin being inserted)

10 R PCMCIA card 1 insertion (0 = card present)

11 R PCMCIA card 2 insertion (0 = card present)

12 R Service button (JAMMA pin R, 0 = pressed)

13-15 Unused?

23.2.1 Konami ASIC registers

- 840/1136 -

0x1f400008 (ASIC register 4): JAMMA controls

As buttons are active-low (wired between JAMMA pins and ground), all bits are 0 when a

button is pressed and 1 otherwise. The BIOS and games often read from this register

and discard the result as a way of (inefficiently) flush the CPU's write queue.

0x1f40000a (ASIC register 5): Data from JVS MCU

This register is only valid when the JVSIRDY flag is set. After reading, a dummy write to

0x1f520000 shall be issued to clear JVSIRDY . If the MCU has more data available, it

will update the register and set the flag again.

Bits RW Description

0 R Player 2 joystick left (JAMMA pin X)

1 R Player 2 joystick right (JAMMA pin Y)

2 R Player 2 joystick up (JAMMA pin V)

3 R Player 2 joystick down (JAMMA pin W)

4 R Player 2 button 1 (JAMMA pin Z)

5 R Player 2 button 2 (JAMMA pin a)

6 R Player 2 button 3 (JAMMA pin b)

7 R Player 2 start button (JAMMA pin U)

8 R Player 1 joystick left (JAMMA pin 20)

9 R Player 1 joystick right (JAMMA pin 21)

10 R Player 1 joystick up (JAMMA pin 18)

11 R Player 1 joystick down (JAMMA pin 19)

12 R Player 1 button 1 (JAMMA pin 22)

13 R Player 1 button 2 (JAMMA pin 23)

14 R Player 1 button 3 (JAMMA pin 24)

15 R Player 1 start button (JAMMA pin 17)

Bits RW Description

0-15 R Current data word from MCU

23.2.1 Konami ASIC registers

- 841/1136 -

0x1f40000c (ASIC register 6): JAMMA controls / External inputs

As buttons are active-low (wired between JAMMA pins and ground), all bits are 0 when a

button is pressed and 1 otherwise.

The signals for buttons 4 and 5 are wired in parallel to both JAMMA and the EXT-IN

connector, while button 6 can only be connected through EXT-IN and is usually unused.

0x1f40000e (ASIC register 7): JAMMA controls / External inputs

As buttons are active-low (wired between JAMMA pins and ground), all bits are 0 when a

button is pressed and 1 otherwise.

The signals for buttons 4 and 5 are wired in parallel to both JAMMA and the EXT-IN

connector, while button 6 can only be connected through EXT-IN and is usually unused.

Bit 10 is probed by the 700B01 BIOS kernel to determine how to configure the main

RAM controller. If cleared, the configuration register at 0x1f801060 is set to 0x4788 ,

otherwise it is set to 0x0c80 . This check was introduced alongside revision D of the

main board, which features alternate footprints for two 2 MB chips in place of eight 512

KB ones.

Bits RW Description

0-7 Unused?

8 R Player 1 button 4 (JAMMA pin 25)

9 R Player 1 button 5 (JAMMA pin 26)

10 R Test button (built-in and JAMMA pin 15)

11 R Player 1 button 6

12-15 Unused?

Bits RW Description

0-7 Unused?

8 R Player 2 button 4 (JAMMA pin c)

9 R Player 2 button 5 (JAMMA pin d)

10 Main RAM layout type (0 = new, 1 = old)

11 R Player 2 button 6

12-15 Unused?

23.2.1 Konami ASIC registers

- 842/1136 -

23.2.2 IDE registers

The IDE interface consists of a 16-bit parallel data bus with a 3-bit address bus and two

bank select pins (/CS0 and /CS1), giving a total of sixteen 16-bit registers of which

only nine are typically used. On the 573 the two IDE banks are mapped to two separate

memory regions at 0x1f480000 and 0x1f4c0000 respectively. The IDE interrupt pin is

routed into IRQ10 through the CPLD, while all other signals on the 40-pin connector

(DMA handshaking lines, status pins, etc.) go unused.

Most 573 games, with the exception of those that run entirely from the internal flash or

PCMCIA cards, expect an ATAPI CD-ROM drive to be always connected and configured as

the primary (master) drive. Connecting an additional ATA hard drive, CF card, IDE-to-

SATA bridge or other device configured as secondary will not interfere with the BIOS or

games, thus homebrew games and apps can leverage such a drive to store data

separately from the currently installed game.

Note that IDE and ATAPI give slightly different meanings to each register. Refer to the

ATA and ATAPI specifications for more details.

0x1f480000 (IDE bank 0, address 0): Data

Data transfers can also be performed through DMA. See below for details.

Bits RW Description

0-15 RW Current packet or data word

23.2.2 IDE registers

- 843/1136 -

0x1f480002 (IDE bank 0, address 1): Error / Features

When read:

When written:

0x1f480004 (IDE bank 0, address 2): Sector count

In ATA 48-bit LBA mode, bits 8-15 of the number of sectors to transfer must be written

to this register first, followed by bits 0-7.

Bits RW Description (ATA) RW Description (ATAPI)

0 Reserved R Illegal length flag (ILI)

1 R No media flag (NM) R End of media flag (EOM)

2 R Command aborted flag (ABRT) R Command aborted flag (ABRT)

3 R Media change request flag (MCR) Reserved

4 R Address not found flag (IDNF) R SCSI sense key bit 0

5 R Media changed flag (MC) R SCSI sense key bit 1

6 R Uncorrectable error flag (UNC) R SCSI sense key bit 2

7 R DMA CRC error flag (ICRC) R SCSI sense key bit 3

8-15 Unused Unused

Bits RW Description (ATA) RW Description (ATAPI)

0 W Command-specific feature index or flags W Use overlapped mode for next command (OVL)

1 W Command-specific feature index or flags W Transfer data for next command using DMA (DMA)

2-7 W Command-specific feature index or flags W Reserved (should be 0)

8-15 Unused Unused

Bits RW Description (ATA) RW Description (ATAPI)

0 W Transfer sector count bit 0 R Pending transfer type (C/

D , 0 = data, 1 = command)

1 W Transfer sector count bit 1 R Pending transfer direction (I/

O , 0 = to device, 1 = to host)

2 W Transfer sector count bit 2 R Pending transfer bus release flag (REL)

3-7 W Transfer sector count bits 3-7 RW Current command tag

8-15 Unused Unused

23.2.2 IDE registers

- 844/1136 -

In ATA CHS or 28-bit LBA mode, setting this register to 0 will cause 256 sectors to be

transferred.

0x1f480006 (IDE bank 0, address 3): Sector number

In ATA 48-bit LBA mode, bits 24-31 of the target LBA must be written to this register

first, followed by bits 0-7.

0x1f480008 (IDE bank 0, address 4): Cylinder number low

In ATA 48-bit LBA mode, bits 32-39 of the target LBA must be written to this register

first, followed by bits 8-15.

When reset, ATAPI drives will set this register to 0x14 .

0x1f48000a (IDE bank 0, address 5): Cylinder number high

In ATA 48-bit LBA mode, bits 40-47 of the target LBA must be written to this register

first, followed by bits 16-23.

When reset, ATAPI drives will set this register to 0xeb .

Bits RW Description (ATA) RW Description (ATAPI)

0-7 W CHS sector index or LBA bits 0-7 Unused

8-15 Unused Unused

Bits RW Description (ATA) RW Description (ATAPI)

0-7 RW CHS cylinder index bits 0-7 or LBA bits 8-15 RW Transfer chunk size bits 0-7

8-15 Unused Unused

Bits RW Description (ATA) RW Description (ATAPI)

0-7 RW CHS cylinder index bits 8-15 or LBA bits 16-23 RW Transfer chunk size bits 8-15

8-15 Unused Unused

23.2.2 IDE registers

- 845/1136 -

0x1f48000c (IDE bank 0, address 6): Head number / Drive select

Bits 0-3 are not used in ATA 48-bit LBA mode.

0x1f48000e (IDE bank 0, address 7): Status / Command

When read:

When written:

In order to issue a command, the features, sector, cylinder and head registers must be

set up appropriately before writing the command ID to this register. Refer to the ATA

specification for a list of available commands and their parameters.

Bits RW Description (ATA) RW Description (ATAPI)

0-3 W CHS head index or 28-bit LBA bits 24-27 Reserved (should be 0)

4 RW Drive select (0 = primary, 1 = secondary) RW Drive select (0 = primary, 1 = secondary)

5 Reserved (should be 1?) Reserved (should be 1?)

6 W Sector addressing mode (0 = CHS, 1 = LBA) Reserved (should be 0)

7 Reserved (should be 1?) Reserved (should be 1?)

8-15 Unused Unused

Bits RW Description (ATA) RW Description (ATAPI)

0 R Error flag (ERR) R Check condition flag (CHK)

1 Reserved Reserved

2 Reserved Reserved

3 R Data request flag (DRQ) R Data request flag (DRQ)

4 R Drive write error flag (DWE) R Overlapped service flag (SERV)

5 R Drive fault flag (DF) R Drive fault flag (DF)

6 R Drive ready flag (DRDY) R Drive ready flag (DRDY)

7 R Drive busy flag (BSY) R Drive busy flag (BSY)

8-15 Unused Unused

Bits RW Description

0-7 W Command index

8-15 Unused

23.2.2 IDE registers

- 846/1136 -

DRDY is set by the drive when it is ready to execute an ATA command. Note that ATAPI

drives will not set DRDY initially, while still accepting ATAPI commands, in order to

prevent misdetection as a hard drive. Before sending any command, a polling loop shall

be used to wait until BSY is cleared.

DRQ is set when the drive is waiting for data to be read or written. Depending on the

drive and command, an interrupt may also be fired when DRQ goes high after a

command is issued. ERR / CHK is set if the last command executed resulted in an error;

in that case the error register will contain more information about the cause of the error.

Reading from this register will acknowledge any pending drive interrupt and deassert

IRQ10. Note that, as with all PS1 interrupts, IRQ10 must additionally be acknowledged

at the interrupt controller side in order for it to fire again.

0x1f4c000c (IDE bank 1, address 6): Alternate status

Read-only mirror of the status register at 0x1f48000e that returns the same flags, but

does not acknowledge any pending IRQ when read.

IDE DMA and quirks

DMA channel 5, normally reserved for the expansion port on a PS1, can be used to

transfer data to/from the IDE bus... with some caveats. The "correct" way to connect an

IDE drive to the PS1's DMA controller would to be to wire up DMARQ and /DMACK from

the drive directly to the respective pins on the CPU, allowing the DMA controller to

synchronize transfers to the drive's internal buffer in chunked mode.

However, Konami being Konami, they did not do this on the 573. IDE drives will instead

interpret DMA reads or writes as a burst of regular ("PIO", as defined in the ATA

specification) CPU-issued reads or writes. As such, the drive shall be configured for PIO

data transfers rather than DMA using the "set features" ATA command, and bits 9-10 in

the DMA5_CHCR register shall be cleared to put the channel in manual synchronization

mode. The DRQ bit in the status register must also be polled manually prior to starting a

transfer, to ensure the drive is ready for it.

23.2.2 IDE registers

- 847/1136 -

23.2.3 RTC registers

The RTC is an ST M48T58. This chip behaves like an 8 KB 8-bit static RAM, wired to the

lower 8 bits of the 16-bit data bus. It must thus be accessed by performing 16-bit bus

accesses and ignoring/masking out the upper 8 bits (as with IDE control registers).

The first 8184 bytes are mapped to the 0x1f620000-0x1f623fef region and are simply

battery-backed SRAM, which will retain its contents across power cycles as long as the

RTC's battery is not dead. The last 8 bytes are used as clock and control registers.

The values of the clock registers are buffered: they are stored in intermediate registers

rather than being read from or written to the clock counters directly. Bits 6 and 7 in the

control register at 0x1f623ff0 are used to control transfers between the registers and

clock counters. All clock values are returned in BCD format.

0x1f623ff0 (M48T58 register 0x1ff8): Calibration / Control

The values of all buffered clock registers are updated automatically. Setting bit 6 will

disable this behavior while keeping the counters running, allowing for the registers to be

read reliably without the RTC updating them at the same time. The bit shall be cleared

after reading the registers.

Setting bit 7 will also halt buffered register updates, so that they can be overwritten

manually with new values. Clearing it afterwards will result in the registers' values being

copied back to the clock counters.

Bits RW Buffered Description

0-4 RW Unknown Calibration offset (0-31), adjusts oscillator frequency

5 RW Unknown Sign bit for calibration offset (1 = positive)

6 W No Read mutex (1 = prevent buffered register updates)

7 W No Write mutex and trigger

8-15 Unused

23.2.3 RTC registers

- 848/1136 -

0x1f623ff2 (M48T58 register 0x1ff9): Seconds / Stop

0x1f623ff4 (M48T58 register 0x1ffa): Minute

0x1f623ff6 (M48T58 register 0x1ffb): Hour

Hours are always returned in 24-hour format, as there is no way to switch to 12-hour

format.

0x1f623ff8 (M48T58 register 0x1ffc): Day of week / Century

Bits RW Buffered Description

0-3 RW Yes Second units (0-9)

4-6 RW Yes Second tens (0-5)

7 RW Unknown Stop flag (0 = clock paused, 1 = clock running)

8-15 Unused

Bits RW Buffered Description

0-3 RW Yes Minute units (0-9)

4-6 RW Yes Minute tens (0-5)

7 Reserved (must be 0)

8-15 Unused

Bits RW Buffered Description

0-3 RW Yes Hour units (0-9, or 0-3 if tens = 2)

4-5 RW Yes Hour tens (0-2)

6-7 Reserved (must be 0)

8-15 Unused

Bits RW Buffered Description

0-2 RW Yes Day of week (1-7)

3 Reserved (must be 0)

4 RW Yes Century flag

5 RW Unknown Century flag toggling enable (1 = enabled)

6 RW Unknown Enable 512 Hz clock signal output on pin 1

7 Reserved (must be 0)

8-15 Unused

23.2.3 RTC registers

- 849/1136 -

The day of week register is a free-running counter incremented alongside the day

counter. There is no logic for calculating the day of the week, so it must be updated

manually when setting the time. Konami games use 1 as Sunday, 2 as Monday and so

on.

Bit 4 is a single-bit "counter" that gets toggled each time the year counter overflows. It

can be frozen by clearing bit 5. Konami games do not use the century flag, as they

interpret any year counter value in 70-99 range as 1970-1999 and all other values as a

year after 2000.

0x1f623ffa (M48T58 register 0x1ffd): Day of month / Battery state

Bit 6 is updated when the system is power cycled, if bit 7 has previously been set.

0x1f623ffc (M48T58 register 0x1ffe): Month

0x1f623ffe (M48T58 register 0x1fff): Year

The year counter covers a full century, going from 00 to 99. On each overflow the

century flag in the day of week register is toggled.

Bits RW Buffered Description

0-3 RW Yes Day of month units (range depends on tens and month)

4-5 RW Yes Day of month tens (range depends on month)

6 R No Low battery flag (1 = battery voltage is below 2.5V)

7 RW Unknown Battery monitoring enable (1 = enabled)

8-15 Unused

Bits RW Buffered Description

0-3 RW Yes Month units (1-9, or 0-2 if tens = 1)

4 RW Yes Month tens (0-1)

5-7 Reserved (must be 0)

8-15 Unused

Bits RW Buffered Description

0-3 RW Yes Year units (0-9)

4-7 RW Yes Year tens (0-9)

8-15 Unused

23.2.3 RTC registers

- 850/1136 -

23.2.4 Other registers

These registers are implemented almost entirely using 74-series logic and the XC9536

CPLD on the main board.

0x1f500000 : Bank switch / Security cartridge

Bit 6 controls whether IO0 on the security cartridge is an input or an output. If set,

IO0 will output the same logic level as D0 , otherwise the pin will be floating. Bits 0-5

are used to switch the device mapped to the 4 MB 0x1f000000-0x1f3fffff region:

0x1f520000 : JVSIRDY clear

This register is a dummy write-only port that clears the JVSIRDY flag when any value is

written to it. The flag is set by the JVS MCU whenever a new data word is available for

reading from 0x1f40000a .

Bits RW Description

0-5 W Bank number (0-47, see below)

6 W IO0 direction on security cartridge (0 = input/high-z)

7 Unknown (goes into CPLD)

8-15 Unused

Bank Mapped to

0 Internal flash 1 (chips 31M , 27M)

1 Internal flash 2 (chips 31L , 27L)

2 Internal flash 3 (chips 31J , 27J)

3 Internal flash 4 (chips 31H , 27H)

4-15 Unused

16-31 PCMCIA card slot 1

32-47 PCMCIA card slot 2

48-63 Unused

Bits RW Description

0-15 Unused

23.2.4 Other registers

- 851/1136 -

0x1f560000 : IDE reset control

Since the IDE reset pin is active-low, a reset is performed by writing 0 to this register,

then waiting a few milliseconds and writing 1 again. Note that the IDE specification also

defines a way to "soft-reset" devices (e.g. to abort execution of a command) using the

SRST bit in the device control register.

0x1f5c0000 : Watchdog clear

This register is a dummy write-only port that clears the watchdog timer embedded in

the Konami 058232 power-on reset and coin counter driver chip when any value is

written to it. The BIOS and games write to this port roughly once per frame.

If the watchdog is not cleared at least every 350-400 ms, it will pull the system's reset

line low for about 50 ms in order to force a reboot. The watchdog can be disabled

without affecting power-on reset by placing a jumper on S86 (see the pinouts section).

0x1f600000 : External outputs

The lower 8 bits written to this register are latched on pins OUT0-OUT7 of the external

output connector (see the pinouts section). This connector is used by some games to

control cabinet lights without using an I/O board.

0x1f680000 : Data to JVS MCU

Bits RW Description

0 W Reset pin output (0 = pull reset low)

1-15 Unused

Bits RW Description

0-15 Unused

Bits RW Description

0-7 W To OUT0-OUT7 on EXT-OUT connector

8-15 Unused

Bits RW Description

0-15 W Data word to MCU

23.2.4 Other registers

- 852/1136 -

In order to prevent overruns, this register shall only be accessed when JVSDRDY is

cleared. Writing to it will set JVSDRDY .

0x1f6a0000 : Security cartridge outputs

The lower 8 bits written to this register are latched on pins D0-D7 of the cartridge slot.

See the security cartridge section for an explanation of what each pin is wired to. Bit 0

additionally controls the IO0 pin when configured as an output through the bank switch

register. Writing to this register will set the DRDY flag, which can then be cleared by the

cartridge.

23.3 JVS interface

The System 573 is equipped with a JVS host interface, allowing for connection of I/O

modules, controllers and other devices that implement the JVS protocol commonly used

in arcade cabinets.

JVS uses a single RS-485 bus running at 115200 bits per second, shared by all devices.

The standard JVS connector is a single USB-A port, with the data lines used as the

RS-485 differential pair and the VBUS pin as a sensing line (see the JVS specification for

details). JVS devices typically have a full size USB-B port for connection to the host, plus

optionally another USB-A port for daisy chaining additional devices. The RS-485 bus

needs to be terminated; some boards will automatically insert a termination resistor

when connected as the last node in a daisy chain.

Bits RW Description

0-7 W To D0-D7 on security cartridge

8-15 Unused

23.3 JVS interface

- 853/1136 -

23.3.1 Packet format

A JVS packet can be up to 258 bytes long and is made up of the following fields:

NOTE: when a JVS packet is sent over the RS-485 bus, any 0xd0 or 0xe0 byte other

than the synchronization byte must be escaped as 0xd0 0xcf or 0xd0 0xdf

respectively, in order to allow downstream devices to reliably determine the end of a

packet. On the 573, the JVS MCU handles escaping outbound packets and unescaping

inbound packets automatically. The escaping process does not update the length field to

reflect the escaped length of the packet.

Refer to the JVS specification for details on the contents of standard and vendor-specific

payloads.

23.3.2 MCU communication protocol

The system's JVS interface is managed by a dedicated H8/3644 microcontroller,

interfaced through two 16-bit latches and handshaking lines (in a similar way to the 8-

bit ports on the security cartridge slot). The MCU's firmware is stored in OTP ROM and

consists of a simple loop that buffers the data written by the 573, sends it, waits for a

response to be received and lets the 573 read it.

Byte Description

0 Synchronization byte, must be 0xe0

1 Destination address

2 Length (number of payload bytes including checksum)

3- Payload

Checksum (sum of address, length and payload bytes modulo 256)

23.3.1 Packet format

- 854/1136 -

In order to perform a JVS transaction the 573 must:

Reset the MCU through register 0x1f400000 , clear JVSIRDY by writing to 0x1f520000

then wait for the status and error codes in register 0x1f400004 to be set to 0 and 3

respectively.

Write the packet two bytes at a time to 0x1f680000 , waiting for JVSDRDY to go low

before each write. Words are little endian, so for instance the first word of a packet with

destination address 0x01 would be 0x01e0 . If the total length of the packet is odd, the

last byte shall still be written as a word (with the upper byte zeroed out).

Wait for the status code to become 1. At this point the MCU will send the packet and wait

for a response from a device on the bus.

Wait for the status code to become 0, signalling a valid response has been received and

can be read out. A timeout should be implemented here, as the MCU will wait for a

response indefinitely even if no device is present.

Read the packet, again two bytes at a time, from 0x1f40000a , waiting for JVSIRDY to

go high before each read and clearing it by writing to 0x1f520000 after each read. The

status code will be set to 2 after the first word is read and back to 0 once no more data is

available to read.

The MCU does not allow for non-JVS packets to be sent as it validates the sync byte,

checksum and uses the length field to determine packet length. Responses cannot be

received without sending a packet first either. The MCU will also insert a 200 µs

minimum delay between the last byte of a received packet and the first byte of the next

packet.

23.4 I/O boards

The System 573 was designed to be expanded with game-specific hardware using I/O

expansion boards mounted on top of the main board, and/or custom security cartridges.

1.

2.

3.

4.

5.

23.4 I/O boards

- 855/1136 -

I/O boards have access to the 16-bit system bus and are accessible through the

0x1f640000-0x1f6400ff region.

Analog I/O board (GX700-PWB(F))

Digital I/O board (GX894-PWB(B)A)

Alternate analog I/O board (GX700-PWB(K))

Fishing controller I/O board (GE765-PWB(B)A)

DDR Karaoke Mix I/O board (GX921-PWB(B))

GunMania I/O board (PWB0000073070)

Hypothetical debugging board

23.4.1 Analog I/O board (GX700-PWB(F))

Used in early Bemani games such as DDR 1stMIX and 2ndMIX, as well as some non-

Bemani games. The name is misleading as the board does not deal with any analog

signals whatsoever; the name was given retroactively to distinguish it from the digital I/

O board. It provides up to 28 optoisolated open-drain outputs typically used to control

cabinet lights, split across 4 banks:

Bank A (CN33): 8 outputs (A0-A7)

Bank B (CN34): 8 outputs (B0-B7)

Bank C (CN35): 8 outputs (C0-C7)

Bank D (CN36): 4 outputs (D0-D3)

Some games shipped with partially populated analog I/O boards, thus not all banks may

be available. See the game-specific information section for details on how lights are

wired up on each cabinet type.

•

•

•

•

•

•

•

•

•

•

•

23.4.1 Analog I/O board (GX700-PWB(F))

- 856/1136 -

0x1f640080 : Bank A

0x1f640088 : Bank B

Bits RW Description

0 W Output A1 (0 = grounded, 1 = high-z)

1 W Output A3 (0 = grounded, 1 = high-z)

2 W Output A5 (0 = grounded, 1 = high-z)

3 W Output A7 (0 = grounded, 1 = high-z)

4 W Output A6 (0 = grounded, 1 = high-z)

5 W Output A4 (0 = grounded, 1 = high-z)

6 W Output A2 (0 = grounded, 1 = high-z)

7 W Output A0 (0 = grounded, 1 = high-z)

8-15 Unused

Bits RW Description

0 W Output B1 (0 = grounded, 1 = high-z)

1 W Output B3 (0 = grounded, 1 = high-z)

2 W Output B5 (0 = grounded, 1 = high-z)

3 W Output B7 (0 = grounded, 1 = high-z)

4 W Output B6 (0 = grounded, 1 = high-z)

5 W Output B4 (0 = grounded, 1 = high-z)

6 W Output B2 (0 = grounded, 1 = high-z)

7 W Output B0 (0 = grounded, 1 = high-z)

8-15 Unused

23.4.1 Analog I/O board (GX700-PWB(F))

- 857/1136 -

0x1f640090 : Bank C

0x1f640098 : Bank D

23.4.2 Digital I/O board (GX894-PWB(B)A)

Used by later Bemani games, such as DDR from Solo onwards. This board features the

same 28 isolated open-drain outputs as the analog I/O board, plus a Xilinx XCS40XL

Spartan-XL FPGA and a Micronas MAS3507D audio decoder ASIC used to play encrypted

MP3 files. The FPGA has 24 MB of dedicated DRAM into which the files are preloaded on

startup, then decrypted on the fly and fed to the decoder. The board also features 128

KB of SRAM used as a cache, RS-232 and ARCnet transceivers for communication with

other hardware and a DS2401 serial number chip, used to prevent usage of the same

security cartridge on more than one 573.

The vast majority of the registers provided by this board (including some but not all light

outputs) are handled by its FPGA, which requires a configuration bitstream to be

uploaded to it in order to work. Registers in the 0x1f6400f0-0x1f6400ff region are

Bits RW Description

0 W Output C1 (0 = grounded, 1 = high-z)

1 W Output C3 (0 = grounded, 1 = high-z)

2 W Output C5 (0 = grounded, 1 = high-z)

3 W Output C7 (0 = grounded, 1 = high-z)

4 W Output C6 (0 = grounded, 1 = high-z)

5 W Output C4 (0 = grounded, 1 = high-z)

6 W Output C2 (0 = grounded, 1 = high-z)

7 W Output C0 (0 = grounded, 1 = high-z)

8-15 Unused

Bits RW Description

0 W Output D3 (0 = grounded, 1 = high-z)

1 W Output D2 (0 = grounded, 1 = high-z)

2 W Output D1 (0 = grounded, 1 = high-z)

3 W Output D0 (0 = grounded, 1 = high-z)

4-15 Unused

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 858/1136 -

handled by a CPLD and are functional even if no bitstream is loaded. There are several

known versions of Konami's bitstream:

The DDR and Mambo bitstreams all implement the same registers (listed below) and

seem to only differ in the MP3 decryption algorithm, while the unused Martial Beat

bitstreams seem to behave in a completely different way.

Homebrew software may also load custom bitstreams developed using the Xilinx ISE 4.2

toolchain (the last version to support Spartan-XL parts). The following custom

bitstreams are known to exist so far:

0x1f640080 (FPGA, all bitstreams): Magic number

This register is checked by some versions of Konami's digital I/O board driver to make

sure the bitstream was properly loaded.

SHA-1 (41337 bytes, LSB first) First used by

32d455a25eb26fe4e4b577cb0f0e3bebd0f82959 Dance Dance Revolution Solo Bass Mix

a53b8906de95c34b6e3f053bd7488c888bc904b6 Dance Dance Revolution 3rdMIX

5d27c84e812f71401f940621f79c5c6114192895 GuitarFreaks 2ndMIX

450b12627b7eacd3ea3f8b0b7a16589a13010c41 Mambo a Go-Go

53d0c1e3f6ae042d7d45ce889b79a12f1be5eabd Martial Beat e-Amusement

d1d0f123bbb9d5abfefbd556c366f9ded0779e41 Martial Beat (leftover file 1, unused)

f354619fe1a80cabe0b774784181b3bfeff0a3e9 Martial Beat (leftover file 2, unused)

SHA-1 (41337 bytes, LSB first) First used by

9d5acaae61f03f4d71831ebdb013af6189802ed2 573in1 1.0.0

e9212e9ff24fa876158f510e3c17649a110f60a4 573in1 (development branch)

Bits RW Description

0-15 R Magic number (0x1234 for Konami bitstreams, 0x573f for 573in1 bitstreams)

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 859/1136 -

0x1f640082 (FPGA, 573in1 bitstream): Configuration

Custom register only implemented by the 573in1 bitstream, in order to allow for

emulation of quirks present in different versions of Konami's bitstreams as well as

control some additional features.

Bits 9-11 tune the behavior of the DAC sample counter registers (0x1f6400ca ,

0x1f6400cc and 0x1f6400cf). Setting all of them will make the registers replicate the

behavior of those provided by the DDR 3rdMIX bitstream onwards, while clearing them

will bring them closer to the earlier DDR Solo Bass Mix bitstream's behavior.

Bits 12, 13 and 15 control the MP3 decryption algorithm. All of them shall be set to

decrypt MP3 files from DDR 3rdMIX onwards (scrambled with key1 , key2 and key3)

or cleared to play DDR Solo Bass Mix files (scrambled with key1 only). Bit 14 controls

which byte of each 16-bit word in DRAM is fed to the MAS3507D first and should be

cleared for encrypted MP3 playback.

The 573in1 bitstream's descrambler can be configured to play unencrypted data by

performing the following steps:

clear bits 12, 13 and 15;

set bit 14 (encrypted MP3s are byte swapped as part of the scrambling process but an

unencrypted file will have to be swapped during playback);

clear key1 by writing zero to register 0x1f6400a8 , which will render the decryption

step a no-op.

Bits RW Description

0-7 R Bitstream version (currently 0x02)

8 RW MP3 looping enable (1 = continue playing from start address when end address is reached)

9 RW Automatically clear DAC sample counter registers when starting MP3 playback (1 = clear)

10 RW Automatically clear register 0x1f6400cc when DAC sample counter delta is read (1 = clear)

11 RW Automatically disable sample counter if cleared while MP3 playback is stopped (1 = disable)

12 RW Primary MP3 descrambler key (0 = key1 , 1 = scrambled XOR of key1 and key2)

13 RW Secondary MP3 descrambler key (0 = none, 1 = scrambled counter initialized from key3)

14 RW MP3 data feeder endianness (0 = read bits 15-8 then 7-0, 1 = read bits 7-0 then 15-8)

15 RW Swap bits 14 and 15 of key1 when mutating it (1 = swap)

•

•

•

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 860/1136 -

0x1f640090 (FPGA, all bitstreams): Network board address

0x1f640092 (FPGA, all bitstreams): Unknown (network related)

0x1f6400a0 (FPGA, all bitstreams): MP3 data start address high

0x1f6400a2 (FPGA, all bitstreams): MP3 data start address low

0x1f6400a4 (FPGA, all bitstreams): MP3 data end address high

0x1f6400a6 (FPGA, all bitstreams): MP3 data end address low

0x1f6400a8 (FPGA, all bitstreams): MP3 frame counter / Descrambler key 1

When read:

When written:

The frame counter is only active when bit 15 in register 0x1f6400ae is set. Note that

the MAS3507D also has an internal frame counter readable through I2C, independent of

this register.

0x1f6400aa (FPGA, all bitstreams): MP3 playback status

When read:

Bits RW Description

0-15 R Current MP3 frame count (number of MAS3507D PI4 rising edges)

Bits RW Description

0-15 W Initial key1 value

Bits RW Description

0-11 Unused

12 R MAS3507D MP3 data request flag (PI19)

13 R MAS3507D MP3 error flag (PI8)

14 R MAS3507D MP3 frame sync flag (PI4)

15 R MAS3507D master clock ready flag (WRDY)

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 861/1136 -

When written:

During normal operation the reset input should be high and the PIO chip select low.

Setting the chip select high will result in the MAS3507D tristating PI19 , PI8 and PI4 .

0x1f6400ac (FPGA, all bitstreams): MAS3507D I2C

Due to the MAS3507D relying heavily on I2C clock stretching (pulling SCL low to

request the host to wait), both SDA and SCL are bidirectional open-drain signals.

0x1f6400ae (FPGA, all bitstreams): MP3 data feeder control

Data is only fed to the MAS3507D when both bits 13 and 14 are set. Bit 12 is a read-

only copy of bit 14 and remains set if playback is stopped by clearing bit 13 only.

Bit 15 controls whether to increment register 0x1f6400a8 each time a rising edge is

detected on the MAS3507D's PI4 (frame sync) pin. The counter is automatically reset

to zero when this bit is cleared.

Bits RW Description

0-11 Unused

12 W MAS3507D chip reset (/POR , 0 = pull low)

13 W MAS3507D PIO chip select (/PCS , 0 = pull low)

14-15 Unused

Bits RW Description

0-11 Unused

12 RW MAS3507D SDA (write 0 = pull low)

13 RW MAS3507D SCL (write 0 = pull low)

14-15 RW Unused

Bits RW Description

0-11 Unused

12 R Current playback status (0 = paused, 1 = playing)

13 W Playback enable (0 = disabled/ignore bit 14, 1 = enabled)

14 W Playback control (0 = pause, 1 = play)

15 W MP3 frame counter enable (0 = disabled/reset, 1 = enabled)

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 862/1136 -

0x1f6400b0 (FPGA, all bitstreams): DRAM write address high

0x1f6400b2 (FPGA, all bitstreams): DRAM write address low

0x1f6400b4 (FPGA, all bitstreams): DRAM data

NOTE: on some bitstream versions, all registers in the 0x1f6400b0-0x1f6400bf region

seem to mirror this register when read (possibly due to incomplete address decoding),

however only a read from 0x1f6400b4 will increment the current read pointer and kick

off prefetching of the next word.

0x1f6400b6 (FPGA, all bitstreams): DRAM read address high

0x1f6400b8 (FPGA, all bitstreams): DRAM read address low

0x1f6400ba (FPGA, all bitstreams): Unknown

0x1f6400c0 (FPGA, all bitstreams): Network data

0x1f6400c2 (FPGA, all bitstreams): Network TX FIFO length

0x1f6400c4 (FPGA, all bitstreams): Network RX FIFO length

0x1f6400c6 (FPGA, all bitstreams): Unknown

Seems to return 0x7654 on startup.

0x1f6400c8 (FPGA, all bitstreams): Unknown (network related)

Seems to also return 0x7654 on startup.

Bits RW Description

0-15 RW Current data word

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 863/1136 -

0x1f6400ca (FPGA, all bitstreams except Solo): DAC sample counter high

0x1f6400cc (FPGA, all bitstreams): DAC sample counter low

0x1f6400ce (FPGA, all bitstreams): DAC sample counter delta

0x1f6400e0 (FPGA, all bitstreams): Bank A

0x1f6400e2 (FPGA, all bitstreams): Bank A

0x1f6400e4 (FPGA, all bitstreams): Bank B

Bits RW Description

0-11 Unused

12 W Output A4 (0 = grounded, 1 = high-z)

13 W Output A5 (0 = grounded, 1 = high-z)

14 W Output A6 (0 = grounded, 1 = high-z)

15 W Output A7 (0 = grounded, 1 = high-z)

Bits RW Description

0-11 Unused

12 W Output A0 (0 = grounded, 1 = high-z)

13 W Output A1 (0 = grounded, 1 = high-z)

14 W Output A2 (0 = grounded, 1 = high-z)

15 W Output A3 (0 = grounded, 1 = high-z)

Bits RW Description

0-11 Unused

12 W Output B4 (0 = grounded, 1 = high-z)

13 W Output B5 (0 = grounded, 1 = high-z)

14 W Output B6 (0 = grounded, 1 = high-z)

15 W Output B7 (0 = grounded, 1 = high-z)

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 864/1136 -

0x1f6400e6 (FPGA, all bitstreams): Bank D

0x1f6400e8 (FPGA, all bitstreams): Internal logic reset

Konami's code writes 0xf000 , followed by 0x0000 , a delay and 0xf000 again, to this

register after uploading the bitstream.

0x1f6400ea (FPGA, all bitstreams): Descrambler key 2

0x1f6400ec (FPGA, all bitstreams): Descrambler key 3

Bits RW Description

0-11 Unused

12 W Output D0 (0 = grounded, 1 = high-z)

13 W Output D1 (0 = grounded, 1 = high-z)

14 W Output D2 (0 = grounded, 1 = high-z)

15 W Output D3 (0 = grounded, 1 = high-z)

Bits RW Description

0-11 Unused

12 W Unknown reset (0 = reset)

13 W Reset MP3 feeder and master clock divider to DAC (0 = reset)

14 W Unknown reset (0 = reset)

15 W Unknown reset (0 = reset)

Bits RW Description

0-15 W Initial key2 value

Bits RW Description

0-7 W Initial key3 value

8-15 Unused

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 865/1136 -

0x1f6400ee (FPGA, all bitstreams): 1-wire bus

When read:

When written:

In addition to the DS2401 the board has an unpopulated footprint for a DS2433 1-wire

EEPROM, connected to a separate FPGA pin.

0x1f6400f0 (CPLD): Unknown (unused?)

Konami's code does not write to this CPLD register.

0x1f6400f2 (CPLD): Unknown (unused?)

Konami's code does not write to this CPLD register.

0x1f6400f4 (CPLD): DAC reset

Konami's code uses this register to mute the DAC during FPGA and MAS3507D

initialization.

Bits RW Description

0-7 Unused

8 R DS2433 1-wire bus readout

9-11 Unused

12 R DS2401 1-wire bus readout

13-15 Unused

Bits RW Description

0-7 Unused

8 W Drive DS2433 1-wire bus low (1 = pull low, 0 = high-z)

9-11 Unused

12 W Drive DS2401 1-wire bus low (1 = pull low, 0 = high-z)

13-15 Unused

Bits RW Description

0-14 Unused

15 W Audio DAC reset/disable (0 = reset)

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 866/1136 -

0x1f6400f6 (CPLD): FPGA status and control

When read:

NOTE: all registers in the 0x1f6400f0-0x1f6400ff region seem to return the same

value as this register when read, possibly due to incomplete address decoding in the

CPLD. Konami's driver only ever reads from this register and treats all other CPLD

registers as write-only.

When written:

This register is only written to 3 times when resetting the FPGA prior to loading the

bitstream. The values written are 0x8000 first, then 0xc000 and finally 0xf000 .

0x1f6400f8 (CPLD): FPGA bitstream upload

Bits written to this register are sent to the FPGA's configuration interface (DIN and

CCLK pins, see the XCS40XL datasheet). There is no separate bit to control the CCLK

pin as clocking is handled automatically. The FPGA is wired to boot in "slave serial" mode

and wait for a bitstream to be loaded by the 573 through this port.

Bits RW Description

0-11 Unused

12 R Possibly /INIT from FPGA

13 R Possibly DONE from FPGA

14 R Board identification? (always 1)

15 R Board identification? (always 0)

Bits RW Description

0-11 Unused

12 W Possibly /INIT to FPGA

13 W Possibly DONE to FPGA

14 W Possibly /PROGRAM to FPGA

15 W Unused? (always 1)

Bits RW Description

0-14 Unused

15 W Bit to send to the FPGA

23.4.2 Digital I/O board (GX894-PWB(B)A)

- 867/1136 -

All known games load the bitstream from an array embedded in the executable or a file

on the internal flash (usually named data/fpga/fpga_mp3.bin), then write its contents

to this port LSB first and monitor the FPGA status register. The bitstream is always

330696 bits (41337 bytes) long as per the XCS40XL datasheet.

0x1f6400fa (CPLD): Bank C

0x1f6400fc (CPLD): Bank C

0x1f6400fe (CPLD): Bank B

23.4.3 Alternate analog I/O board (GX700-PWB(K))

Used by Kick & Kick. Has several optocouplers, plus a DS2401 serial number chip and

several unpopulated footprints.

This board is currently undocumented.

Bits RW Description

0-11 Unused

12 W Output C0 (0 = grounded, 1 = high-z)

13 W Output C1 (0 = grounded, 1 = high-z)

14 W Output C2 (0 = grounded, 1 = high-z)

15 W Output C3 (0 = grounded, 1 = high-z)

Bits RW Description

0-11 Unused

12 W Output C4 (0 = grounded, 1 = high-z)

13 W Output C5 (0 = grounded, 1 = high-z)

14 W Output C6 (0 = grounded, 1 = high-z)

15 W Output C7 (0 = grounded, 1 = high-z)

Bits RW Description

0-11 Unused

12 W Output B0 (0 = grounded, 1 = high-z)

13 W Output B1 (0 = grounded, 1 = high-z)

14 W Output B2 (0 = grounded, 1 = high-z)

15 W Output B3 (0 = grounded, 1 = high-z)

23.4.3 Alternate analog I/O board (GX700-PWB(K))

- 868/1136 -

23.4.4 Fishing controller I/O board (GE765-PWB(B)A)

Used by the Fisherman's Bait series. Uses an NEC uPD4701 mouse/trackball chip to

track motion of the fishing reel's rotary encoders and contains PWM drivers for the

feedback motors. Along with the analog I/O board, it is the only known board that does

not have a DS2401.

This board is currently undocumented.

23.4.5 DDR Karaoke Mix I/O board (GX921-PWB(B))

Used by DDR Karaoke Mix 1 and 2. Similarly to the digital I/O board, this board features

several optoisolated light outputs, an ARCnet PHY and a DS2401 serial number chip. It

also has composite video inputs and outputs, a video encoder to convert the 573's

native RGB output to composite and additional circuitry to superimpose it onto the video

feed from an external karaoke machine. An onboard PC16552 UART is provided to

communicate with the machine (the security cartridge also exposes SIO1).

This board is currently undocumented.

23.4.6 GunMania I/O board (PWB0000073070)

Used by GunMania and GunMania Zone Plus. Contains an RGB to S-video converter

which drives the cabinet's projector, several motor drivers, optoisolators, a PC16552

UART and a DS2401 serial number chip. A DB25 connector on the side of the board is

used to interface to the resistive matrix used to detect bullet shots.

This board is currently undocumented.

23.4.7 Hypothetical debugging board

There is no proof whatsoever of this board having ever existed, but the BIOS and some

games attempt to access the hardware on it. It seems to contain at least a Fujitsu

MB89371 UART and a 7-segment display, although these may have actually been on two

separate boards (or built into a prototype board used by Konami during development).

The MB89371 does not have a publicly available datasheet.

23.4.4 Fishing controller I/O board (GE765-PWB(B)A)

- 869/1136 -

0x1f640000 : UART data

0x1f640002 : UART control

0x1f640004 : UART baud rate select

0x1f640006 : UART mode

0x1f640010 : 7-segment display

Used by the BIOS kernel while booting (in a similar way to the standard PS1 kernel,

which uses register 0x1f802041 instead) as well as the shell and some games. This

may have been meant to be a POST display integrated into the 573 main board at some

point.

Bits RW Description

0 W Right digit segment G (0 = on)

1 W Right digit segment F (0 = on)

2 W Right digit segment E (0 = on)

3 W Right digit segment D (0 = on)

4 W Right digit segment C (0 = on)

5 W Right digit segment B (0 = on)

6 W Right digit segment A (0 = on)

7 Unused

8 W Left digit segment G (0 = on)

9 W Left digit segment F (0 = on)

10 W Left digit segment E (0 = on)

11 W Left digit segment D (0 = on)

12 W Left digit segment C (0 = on)

13 W Left digit segment B (0 = on)

14 W Left digit segment A (0 = on)

15 Unused

23.4.7 Hypothetical debugging board

- 870/1136 -

23.5 Security cartridges

Most System 573 games use cartridges that plug into the slot on the right side of the

main board as an anti-piracy measure and/or to add game specific I/O functionality

(particularly for games that do not otherwise require any I/O board). Cartridges typically

contain a password protected EEPROM, used to store game and installation information,

and in some cases a DS2401 unique serial number chip.

Electrical interface

Cartridge EEPROM types

EEPROM-less cartridge variants

X76F041 cartridge variants

ZS01 cartridge variants

Cartridge identifiers

23.5.1 Electrical interface

All communication with the cartridge is performed through the following means:

an 8-bit parallel input port (I0-I7), readable via register 0x1f400004 ;

a latched 8-bit parallel output port (D0-D7), controlled by register 0x1f6a0000 ;

a single tristate I/O pin (IO0), which can be either configured as a floating input or

set to output the same logic level as D0 through register 0x1f500000 ;

the CPU's SIO1 interface (TX , RX , /RTS , /CTS , /DTR , /DSR);

four bus handshaking lines (IRDY , DRDY , /IREQ , /DACK).

As all EEPROMs used in cartridges have an I2C interface rather than a parallel one, IO0

is used in combination with individual bits of the parallel I/O ports to bitbang I2C. The

SIO1 interface either goes unused or is translated to RS-232 voltage levels and broken

out to a connector on the cartridge.

See the pinouts section for more information on the security cartridge slot.

•

•

•

•

•

•

•

•

•

•

•

23.5 Security cartridges

- 871/1136 -

Handshaking lines

The cartridge slot carries two status lines unofficially known as IRDY and DRDY plus

two inputs named /IREQ and /DACK , probably meant for synchronization with

cartridges that would actually use D0-D7 and I0-I7 as a parallel data bus rather than

to bitbang serial protocols. No currently known cartridge uses these pins.

DRDY is set whenever the 573 writes to the output port, even if no bits have actually

changed. The cartridge can monitor this signal to know when to read a byte from the

port and then pull /DACK low to reset it. To send a byte to the 573 the cartridge can

pulse /IREQ , which will cause IRDY to go high until the 573 accesses the input port.

The 573 can read the status of IRDY (as well as DRDY) through the Konami ASIC and

wait for it to be set before reading the next byte.

The cartridge I/O ports can basically be thought of as a single-byte FIFO, with DRDY

being the "TX buffer full" flag and IRDY the "RX buffer not empty" flag. The

handshaking lines are implemented using a handful of 74LS74 flip flops.

NOTE: the JVS MCU also has its own handshaking lines, JVSIRDY and JVSDRDY , which

are actually used and work in pretty much the same way. See the JVS interface section

for more information on communicating with the MCU.

Note about RTS/CTS

The PS1 CPU's SIO1 UART has hardware flow control and will not transmit data until CTS

is asserted. In order to get around this most cartridges tie CTS to RTS, allowing it to be

controlled in software. Cartridges that use the serial port (i.e. ones with a network port)

have the pins tied together on the PCB, while other cartridge types usually break them

out to a shorted 2-pin jumper.

Some earlier games that do not use SIO1 for networking purposes redirect their debug

logging output to it (by calling the AddSIO() function provided by the Sony SDK) if CTS

and RTS are shorted on startup. On later 573 motherboard revisions, the SIO1 pins are

additionally broken out to a separate connector (CN24) and made accessible even when

a cartridge without a network port is inserted.

23.5.1 Electrical interface

- 872/1136 -

23.5.2 Cartridge EEPROM types

Konami's security cartridge driver supports the following EEPROMs:

NOTE: Konami seems to have never manufactured X76F100 cartridges, however most

games that expect an X76F041 can also use the X76F100 interchangeably. ZS01 support

was only added in later versions of the driver.

ZS01 protocol

The "ZS01" EEPROM (also known as "NS2K001") is actually a PIC16 microcontroller that

mostly replicates the X76F100's functionality, allowing the 573 to store up to 112 bytes

of data protected by a 64-bit password. Unlike the X76F041 and X76F100, which use

plaintext commands, all communication with the ZS01 is obfuscated using a

rudimentary scrambling algorithm. A CRC16 is attached to each packet and used to

detect attempts to tamper with the obfuscation. Attempting to send too many requests

with an invalid CRC16 will cause the ZS01 to self-erase and reset the password.

Manufacturer Chip "Response to reset" ID Capacity

Xicor X76F041 19 55 aa 55 (LSB first) 512 bytes

Xicor X76F100 19 00 aa 55 (LSB first) 112 bytes

Konami/Microchip ZS01 (PIC16CE625) 5a 53 00 01 (MSB first) 112 bytes

23.5.2 Cartridge EEPROM types

- 873/1136 -

A ZS01 transaction can be broken down into the following steps:

23.5.2 Cartridge EEPROM types

- 874/1136 -

The 573 prepares a 12-byte packet to be sent to the ZS01, containing a command,

address and payload:

The first byte is a 3-bit bitfield encoding the command and access type:

The access type bit specifies whether the command is privileged. Privileged commands

require the ZS01's current password, while unprivileged commands do not.

The address must be one of the following values:

Data is always read or written in aligned 8 byte blocks. Unprivileged areas can be read

using either a privileged or unprivileged read command, but writing to them still requires

a privileged write command.

If the command is a read command, a random 8-byte "response key" is generated

(typically as an MD5 hash of the current time from the RTC) and written to the payload

field; the ZS01 will later use it to encrypt the returned data as a replay attack prevention

measure. For write commands, the payload field is populated with the 8 bytes to be

written.

1.

Bytes Description

0 Command flags

1 Address bits 0-7

2-9 Payload (data for writes, response key for reads)

10-11 CRC16 of bytes 0-9, big endian

Bits Description

0 Command (0 = write/erase, 1 = read)

1 Address bit 8 (unused, should be 0)

2 Access type (0 = unprivileged, 1 = privileged)

3-7 Unused? (should be 0)

Address Length Privileged Description

0x00-0x03 32 bytes No Unprivileged data area

0x04-0x0e 80 bytes Yes Privileged data area

0xfc 8 bytes No Internal ZS01 serial number

0xfd 8 bytes No External DS2401 serial number

0xfd 8 bytes Yes Erases data area when written (write-only)

0xfe 8 bytes Yes Configuration registers

0xff 8 bytes Yes New password (write-only)

2.

23.5.2 Cartridge EEPROM types

- 875/1136 -

A CRC16 is calculated over the first 10 bytes of the packet and stored in the last 2 bytes

in big endian format. The CRC is computed as follows:

If the command is privileged, the 573 scrambles the payload field with the chip's currently

set password, using the following algorithm:

3.

#define ZS01_CRC16_POLYNOMIAL 0x1021

uint16_t zs01_crc16(const uint8_t *data, size_t length) {
uint16_t crc = 0xffff;

for (; length; length--) {
crc ^= *(data++) << 8;

for (int bit = 8; bit; bit--) {
uint16_t temp = crc;

crc <<= 1;
if (temp & (1 << 15))

crc ^= ZS01_CRC16_POLYNOMIAL;
}

}

return (~crc) & 0xffff;
}

4.

// Note that this state is preserved across calls to zs01_scramble_payload()
// and must be updated when a response is received (see step 8).
uint8_t zs01_scrambler_state = 0;

void zs01_scramble_payload(
uint8_t *output, const uint8_t *input, size_t length,
const uint8_t *password

) {
for (; length; length--) {

int value = *(input++) ^ zs01_scrambler_state;
value = (value + password[0]) & 0xff;

for (int i = 1; i < 8; i++) {
int add = password[i] & 0x1f;
int shift = password[i] >> 5;

int shifted = value << shift;
shifted |= value >> (8 - shift);
shifted &= 0xff;

value = (shifted + add) & 0xff;
}

zs01_scrambler_state = value;
*(output++) = value;

23.5.2 Cartridge EEPROM types

- 876/1136 -

The CRC16 is not updated to reflect the new data. This step is skipped for unprivileged

read commands.

All 12 bytes of the packet are scrambled with a fixed "command key", using the following

algorithm:

The scrambled packet is sent to the ZS01, which will respond to the first 11 bytes

immediately with an I2C ACK and to the last byte with an ACK after a short delay. The

573 then proceeds to read 12 bytes from the ZS01, issuing an I2C ACK for each byte

received up until the last one.

The 573 uses the response key generated in step 2 to unscramble the packet returned by

the ZS01. The unscrambling algorithm is the same one used in step 5, applied in reverse:

}
}

5.

static const uint8_t ZS01_COMMAND_ADD[] = { 237, 8, 16, 11, 6, 4, 8, 30 };
static const uint8_t ZS01_COMMAND_SHIFT[] = { 0, 3, 2, 2, 6, 2, 2, 1 };

void zs01_scramble_packet(
uint8_t *output, const uint8_t *input, size_t length

) {
// Unlike zs01_scramble_payload(), this state is *not* preserved across
// calls.
uint8_t state = 0xff;

output += length;
input += length;

for (; length; length--) {
int value = *(--input) ^ state;
value = (value + ZS01_COMMAND_ADD[0]) & 0xff;

for (int i = 1; i < 8; i++) {
int shifted = value << ZS01_COMMAND_SHIFT[i];
shifted |= value >> (8 - ZS01_COMMAND_SHIFT[i]);
shifted &= 0xff;

value = (shifted + ZS01_COMMAND_ADD[i]) & 0xff;
}

state = value;
*(--output) = value;

}
}

6.

7.

void zs01_unscramble_packet(
uint8_t *output, const uint8_t *input, size_t length,
const uint8_t *response_key

23.5.2 Cartridge EEPROM types

- 877/1136 -

For write commands, the response key required to unscramble the packet is the one sent

as part of the last read command issued. For read commands, the ZS01 may either use

the key provided in the payload field or the one from the last read command issued;

Konami's code tries unscrambling responses with both.

The unscrambled packet will contain the following fields:

The 573 proceeds to compute the CRC16 of the first 10 bytes. If it does not match the

one in the packet, it will try unscrambling the packet with a different response key (see

step 7) before giving up. Otherwise, the global zs01_scrambler_state variable from

step 4 is set to the value of byte 1, regardless of whether the status code is zero or not.

The exact meaning of non-zero status codes is currently unknown.

) {
uint8_t state = 0xff;

output += length;
input += length;

for (; length; length--) {
int value = *(--input);
int last_state = state;
state = value;

for (int i = 1; i < 8; i++) {
int add = response_key[i] & 0x1f;
int shift = response_key[i] >> 5;

int subtracted = (value - add) & 0xff;

value = subtracted >> shift;
value |= subtracted << (8 - shift);
value &= 0xff;

}

value = (value - response_key[0]) & 0xff;
*(--output) = value ^ last_state;

}
}

8.

Bytes Description

0 Status code (0 = success, 1-5 = error)

1 New payload scrambler state

2-9 Payload (empty for writes, data for reads)

10-11 CRC16 of bytes 0-9, big endian

23.5.2 Cartridge EEPROM types

- 878/1136 -

23.5.3 EEPROM-less cartridge variants

Hyper Bishi Bashi Champ 3-player cartridge (GX700-PWB(E))

This is the only known cartridge type that has no EEPROM (although the PCB does have

an unpopulated X76F041 footprint). It has no plastic case, as it's meant to be enclosed

in the same case as the 573 itself. It has open-drain outputs for driving up to 12 lights,

arranged as 3 banks of 4 outputs each (one bank for each player's buttons), plus an

RS-232 transceiver for SIO1. The following pins are used:

This cartridge has three connectors:

CN2 (5-pin): RS-232 port. Note that this port is not electrically isolated and shares its

ground with the 573, unlike all other cartridges with an RS-232 connector.

CN3 (16-pin): breaks out the light outputs and the incoming 12V supply from CN4 .

CN4 (4-pin): 12V power input, connected through a short cable to CN17 on the 573

main board.

Name Dir Usage

TX O TX to network port (via RS-232 transceiver)

RX I RX from network port (via RS-232 transceiver)

/RTS O Shorted to /CTS to enable SIO1

/CTS I Shorted to /RTS to enable SIO1

/DSR I Cartridge insertion detection (grounded)

D0 O Updates/latches bank 3 when pulsed

D1 O Updates/latches bank 2 when pulsed

D3 O Updates/latches bank 1 when pulsed

D4 O Data for light output 0 (green button)

D5 O Data for light output 1 (blue button)

D6 O Data for light output 2 (red button)

D7 O Data for light output 3 (start button)

? O DTR to network port (via RS-232 transceiver)

? I DSR from network port (via RS-232 transceiver)

•

•

•

23.5.3 EEPROM-less cartridge variants

- 879/1136 -

23.5.4 X76F041 cartridge variants

All X76F041 cartridges use the following pins:

X76F041 cartridges equipped with a DS2401 additionally use the following pins:

Generic cartridge (GX700-PWB(D))

Rectangular cartridge used by the earliest 573 games and as a separate installation key

for some later games. Contains only the X76F041 EEPROM and no DS2401, but the PCB

has an unpopulated footprint for an unknown 64-pin TQFP part.

Generic cartridge with DS2401 (GX894-PWB(D))

Rectangular cartridge similar to GX700-PWB(D) but equipped with a DS2401. The PCB

has two unpopulated SOIC footprints, one of which may possibly be for an X76F100 or

another I2C EEPROM.

Name Dir Usage

/DSR I Cartridge insertion detection (grounded)

D0 O Drives X76F041 I2C SDA when IO0 is set as output

D1 O X76F041 I2C SCL

D2 O X76F041 chip select (/CS)

D3 O X76F041 reset (RST)

IO0 IO X76F041 I2C SDA readout

Name Dir Usage

D4 O Drives 1-wire bus low when pulled high

I6 I DS2401 1-wire bus readout

23.5.4 X76F041 cartridge variants

- 880/1136 -

Early serial port cartridge (GX896-PWB(A)A)

Seems to be an older variant of the more common GX883-PWB(D) cartridge, with the

same ports but no DS2401. As with the 3-player Bishi Bashi cartridge, it has no case

and is instead meant to sit inside the 573's own case.

This cartridge has two connectors:

CN2 (5-pin): electrically isolated RS-232 port. The transceiver is powered by an

isolated DC-DC module and all signals going from/to the 573 are optoisolated.

CN3 (6-pin): three 5V logic level signals, used in some cabinets to control lights or the

speaker amplifier.

Name Dir Usage

TX O TX to network port (via RS-232 transceiver)

RX I RX from network port (via RS-232 transceiver)

/RTS O Shorted to /CTS to enable SIO1

/CTS I Shorted to /RTS to enable SIO1

? O CTRL0 to control port

? O CTRL1 to control port

? O CTRL2 to control port

? O DTR to network port (via RS-232 transceiver)

? I DSR from network port (via RS-232 transceiver)

•

•

23.5.4 X76F041 cartridge variants

- 881/1136 -

Serial port cartridge with DS2401 (GX883-PWB(D))

T-shaped cartridge with a DS2401, a "network" (RS-232) port and a "control" or "amp

box" port, commonly used by pre-ZS01 Bemani games. Uses the following pins:

This cartridge has two connectors:

Network (5-pin, unlabeled on PCB): electrically isolated RS-232 port. The transceiver is

powered by an isolated DC-DC module and all signals going from/to the 573 are

optoisolated.

Control/amp box (6-pin, unlabeled on PCB): three 5V logic level signals, used in some

cabinets to control lights or the speaker amplifier.

PunchMania cartridge (GX700-PWB(J))

T-shaped cartridge used only by PunchMania/Fighting Mania series. Contains an

X76F041, a DS2401 and an ADC0838 used to measure up to 8 analog inputs. The ADC

uses the following pins:

Name Dir Usage

TX O TX to network port (via RS-232 transceiver)

RX I RX from network port (via RS-232 transceiver)

/RTS O Shorted to /CTS to enable SIO1

/CTS I Shorted to /RTS to enable SIO1

? O CTRL0 to control port

? O CTRL1 to control port

? O CTRL2 to control port

? O DTR to network port (via RS-232 transceiver)

? I DSR from network port (via RS-232 transceiver)

•

•

Name Dir Usage

D0 O Chip select to ADC (/CS), shared with X76F041 SDA

D1 O Data clock to ADC (CLK), shared with X76F041 SCL

D5 O Data input to ADC (DI)

I0 I Data output from ADC (DO)

I1 I SAR status from ADC (SARS)

23.5.4 X76F041 cartridge variants

- 882/1136 -

This cartridge has two connectors:

Unknown (12-pin): analog input connector. As with the ADC built into the 573

motherboard there seems to be no protection on the inputs, so only voltages in 0-5V

range are accepted.

CN4 (10-pin): unknown purpose. Seems to be always unpopulated.

Hyper Bishi Bashi Champ 2-player cartridge (PWB0000068819)

T-shaped cartridge with open-drain outputs for driving up to 8 lights, arranged as 2

banks of 4 outputs each. Unlike the GX700-PWB(E) 3-player variant, it has an X76F041

(but no DS2401), lacks the RS-232 port and does not seem to be designed to be

mounted inside the 573. The latches driving the light outputs use the following pins:

This cartridge has two connectors:

CN2 (16-pin): breaks out the light outputs and the incoming 12V supply from CN3 .

CN3 (4-pin): 12V power input, presumably connected to the power supply externally

(i.e. not through the main board).

Salary Man Champ cartridge (PWB0000088954)

T-shaped cartridge with open-drain outputs for driving up to 8 lights (although only 6

outputs seem to be populated). Contains an X76F041, a DS2401 and two 4094 shift

registers, presumably chained. The shift registers use the following pins:

•

•

Name Dir Usage

? O Updates/latches bank 1 when pulsed

? O Updates/latches bank 2 when pulsed

? O Data for light output 0 (green button)

? O Data for light output 1 (blue button)

? O Data for light output 2 (red button)

? O Data for light output 3 (start button)

•

•

Name Dir Usage

D5 O Shift register clock

D6 O Shift register reset

D7 O Shift register data

23.5.4 X76F041 cartridge variants

- 883/1136 -

This cartridge has two connectors:

Unlabeled (16-pin): breaks out the light outputs and the incoming 12V supply.

Unlabeled (4-pin): 12V power input, presumably connected to the power supply

externally (i.e. not through the main board).

23.5.5 ZS01 cartridge variants

All ZS01 cartridges use the following pins:

All cartridges are fitted with a DS2401, however it is connected to a GPIO pin on the

ZS01 rather than being directly exposed to the 573. The ZS01 additionally provides its

own unique serial number, which seems to be unused by games.

Serial port cartridge (GE949-PWB(D)A)

ZS01 variant of the GX883-PWB(D) cartridge. Uses the following pins:

•

•

Name Dir Usage

/DSR I Cartridge insertion detection (grounded)

D0 O Drives ZS01 I2C SDA when IO0 is set as output

D1 O ZS01 I2C SCL

D3 O ZS01 reset

IO0 IO ZS01 I2C SDA readout

Name Dir Usage

TX O TX to network port (via RS-232 transceiver)

RX I RX from network port (via RS-232 transceiver)

/RTS O Shorted to /CTS to enable SIO1

/CTS I Shorted to /RTS to enable SIO1

? O CTRL0 to control port

? O CTRL1 to control port

? O CTRL2 to control port

? O DTR to network port (via RS-232 transceiver)

? I DSR from network port (via RS-232 transceiver)

23.5.5 ZS01 cartridge variants

- 884/1136 -

This cartridge has two connectors:

Network (5-pin, unlabeled on PCB): electrically isolated RS-232 port. The transceiver is

powered by an isolated DC-DC module and all signals going from/to the 573 are

optoisolated.

Control/amp box (6-pin, unlabeled on PCB): three 5V logic level signals, used in some

cabinets to control lights or the speaker amplifier.

Stripped down serial port cartridge (GE949-PWB(D)B)

T-shaped cartridge that uses the same PCB as GE949-PWB(D)A but only has the ZS01,

DS2401 and supporting parts are populated. Used by games that do not need the

RS-232 interface.

23.5.6 Cartridge identifiers

Most games use the security cartride's EEPROM to store, among other data such as the

game code and region, a set of up to four 8-byte identifiers.

SID (silicon/serial ID?)

The serial number of the cartridge's DS2401, always present in cartridges that have one.

As per the 1-wire specification it has the following format:

The CRC is computed as follows:

•

•

Bytes Description

0 1-wire family code (0x01 for DS2401)

1-6 48-bit progressive serial number, little endian

7 CRC8 of bytes 0-6

#define DS2401_CRC8_POLYNOMIAL 0x8c

uint8_t ds2401_crc8(const uint8_t *data, size_t length) {
uint8_t crc = 0;

for (; length; length--) {
uint8_t value = *(data++);

for (int bit = 8; bit; bit--) {
uint8_t temp = crc ^ value;

23.5.6 Cartridge identifiers

- 885/1136 -

Refer to the DS2401 datasheet and Maxim 1-wire documentation for more details.

TID (trace ID)

Seems to be a cartridge-type-agnostic serial number. On cartridges without a DS2401

the trace ID is assigned by Konami at manufacture time (see the master calendar

section) and has the following format:

On cartridges with a DS2401 the trace ID is instead derived from the SID:

The hash is calculated over bytes 1-6 of the SID (excluding the family code and CRC8)

using the following algorithm:

value >>= 1;
crc >>= 1;
if (temp & 1)

crc ^= DS2401_CRC8_POLYNOMIAL;
}

}

return crc & 0xff;
}

Bytes Description

0 Trace ID type (0x81)

1-2 16-bit "main" serial number, big endian

3-6 32-bit "sub" serial number, big endian

7 Checksum (sum of bytes 0-6 xor'd with 0xff)

Bytes Description

0 Trace ID type (0x82)

1-2 DS2401 serial number hash, big or little endian depending on game

3-6 Reserved (must be 0)

7 Checksum (sum of bytes 0-6 xor'd with 0xff)

// Note that some games set this to 14 instead of 16.
#define TRACE_ID_HASH_BIT_WIDTH 16

uint16_t trace_id_hash(const uint8_t *data, size_t length) {
uint16_t hash = 0;

for (size_t i = 0; i < (length * 8); i += 8) {
uint8_t value = *(data++);

23.5.6 Cartridge identifiers

- 886/1136 -

MID (medium ID?)

Seems to be some kind of cartridge type flag, possibly indicating whether the cartridge

shall be used during or after game installation, or if it was used when performing a

game upgrade and shall no longer be usable to run the game it initially shipped with.

NOTE: 00 00 00 00 00 00 00 00 seems to be a valid MID value, despite having an

otherwise invalid checksum, and to have a different meaning from

00 00 00 00 00 00 00 ff .

XID (external ID?)

The serial number of the digital I/O board's DS2401, written to the cartridge during

installation by most games that use it in order to prevent reinstallation on a different

system. Has the same format as the SID. On a cartridge that has not yet been paired to

a 573 the XID is set to 00 00 00 00 00 00 00 00 .

When finishing installation or attempting to use a cartridge with a mismatching XID the

game will display the digital I/O board's serial number as an 8-digit value (XXXX-YYYY),

generated as follows:

for (size_t j = i; j < (i + 8); j++, value >>= 1) {
if (value & 1)

hash ^= 1 << (j % TRACE_ID_HASH_BIT_WIDTH);
}

}

return hash;
}

Bytes Description

0 Cartridge type? (always 0x00 , 0x01 or 0x02)

1-6 Reserved (must be 0)

7 Checksum (sum of bytes 0-6 xor'd with 0xff)

// Some games seem to only use the lower 32 bits of the DS2401's serial number,
// while others use all 48 bits.
size_t xid_to_string_32(char *output, const uint8_t *xid) {

uint32_t value = 0
| (xid[1] << 0)
| (xid[2] << 8)
| (xid[3] << 16)
| (xid[4] << 24);

23.5.6 Cartridge identifiers

- 887/1136 -

Cartridges for games that use the digital I/O board typically come with a blank label

onto which the 8-digit ID can be written by the operator, to help keep track of which

cartridge goes into which system after installation.

Note that games that use other I/O boards with a DS2401, such as Kick & Kick and DDR

Karaoke Mix, do not seem to write those boards' serial numbers to the cartridge; they

are stored in the internal flash memory instead.

23.6 External modules

Over the 573's lifetime Konami introduced several add-ons that extended its

functionality. Unlike the I/O boards, these were external to the 573 unit and not always

mandatory. Not much is currently known about any of these.

23.6.1 Relay board (GN845-PWB(A))

A relatively simple lamp driver board, controlled by the optoisolated outputs from the

analog or digital I/O board. Commonly mounted in a metal box alongside audio amplifier

boards in most cabinets.

int high = (value / 10000) % 10000;
int low = value % 10000;

return sprintf(output, "%04d-%04d", high, low);
}

size_t xid_to_string_48(char *output, const uint8_t *xid) {
uint64_t value = 0

| (xid[1] << 0)
| (xid[2] << 8)
| (xid[3] << 16)
| (xid[4] << 24)
| (xid[5] << 32)
| (xid[6] << 40);

int high = (int) ((value / 10000) % 10000);
int low = (int) (value % 10000);

return sprintf(output, "%04d-%04d", high, low);
}

23.6 External modules

- 888/1136 -

23.6.2 DDR stage I/O board (GN845-PWB(B))

Sits between the 573 and the sensors in each stage's arrow panels in Dance Dance

Revolution cabinets. It is based on a Xilinx XC9536 CPLD and allows the 573 to check

the status of a specific pressure sensor (each panel has 4 sensors, one along each

edge), in addition to ensuring DDR games can only be played with an actual stage rather

than just a joystick or buttons wired up to the 573's JAMMA connector. Konami kept

using the same board long after the 573 was discontinued, with the last game to use it

being DDR X/X2 (PC based).

Each stage's board communicates with the 573 over 6 wires, of which 4 are the up/

down/left/right signals going to the JAMMA connector and 2 are light outputs from the I/

O board being misused as data and clock lines (see above). The board initially asserts

the right and up signals and waits for the 573 to issue an initialization command by

bitbanging it over the light outputs. Received bits are acknowledged by the board by

echoing them on the right signal and toggling the up signal.

Once initialization is done the board goes into passthrough mode, asserting the up/

down/left/right signals whenever any of the respective arrow panels' sensors are

pressed. The 573 can issue another command to retrieve the status of each sensor

separately, which is then sent by the board in serialized form over the right and up

signals. DDR games only use this command to display sensor status in the operator

menu, no commands are sent to the board during actual gameplay.

The initialization protocol is currently unknown. The protocol used after initialization is

partially known (see links) but needs to be verified and documented properly.

23.6.3 PS1 controller and memory card adapter (GE885-PWB(A))

A ridiculously overengineered JVS board providing support for accessing PS1 controllers

and memory cards plugged into ports on the front of the cabinet. Contains a Toshiba

TMPR3904 CPU, a Xilinx XCS10XL Spartan-XL FPGA, 512 KB of RAM and a 512 KB boot

ROM; the ROM is only a small bootloader and the actual firmware is downloaded from

the 573 into RAM. There are also two connectors for security dongles. Returns the

following JVS identifier string:

KONAMI CO.,LTD.;White I/O;Ver1.0;White I/O PCB

23.6.2 DDR stage I/O board (GN845-PWB(B))

- 889/1136 -

Memory card support became common in later Bemani games, allowing players to save

their scores and play custom charts. GuitarFreaks is the only game known to support

external controllers through this board.

23.6.4 PunchMania 2 PCMCIA splitter (PWB0000085445)

Combines two 32 MB PCMCIA flash cards into the same address space, allowing them to

be accessed as if they were a single 64 MB card. Connects to the 573 through a cable

that plugs into a passive PCMCIA slot adapter. Only used by PunchMania 2.

23.6.5 e-Amusement network unit (PWB0000100991)

Used by some Bemani games, in particular later GuitarFreaks and DrumMania releases.

Provides networking functionality (DHCP and TCP/UDP sockets) as well as a 10 or 20 GB

IDE hard drive for storage of downloaded content. The module contains a Toshiba

TMPR3927 CPU, a Xilinx XC2S100 Spartan-2 FPGA, 16 MB of RAM, a 512 KB boot ROM

and a DP83815 PCI Ethernet MAC. As with the controller and memory card adapter, the

bulk of the firmware seems to be loaded from the 573. Connects through PCMCIA slot 2,

using the same cable and adapter as the PunchMania PCMCIA splitter.

23.6.6 Multisession unit (GXA25-PWB(A))

A fairly large box containing a Toshiba TMPR3927 CPU, a Xilinx XC2S200 Spartan-2

FPGA and four (!) hardware MP3 decoders. It comes with up to four daughterboards

installed, each of which hosts a stereo DAC and has RCA jacks for audio input and

output plus a mini-DIN connector for RS-232 communication with a cabinet. The box

also has its own ATAPI CD-ROM drive and power supply.

Its purpose is to enable "session mode" in later Bemani games, which allows for the

same song to be played on multiple games at the same time with the box playing the

backing tracks and routing audio between the machines. It connects to each cabinet's

573 using RS-232, through the "network" port on the security cartridge.

23.6.7 Master calendar

A JVS device used internally by Konami to initialize motherboards and security cartridges

during manufacturing. The exact hardware Konami used is unknown, but the protocol

23.6.4 PunchMania 2 PCMCIA splitter (PWB0000085445)

- 890/1136 -

can be inferred from game code. All games search the JVS bus on startup and enter a

"factory test" mode if any device with the following identifier string is present:

The game will then proceed to request the current date, time, game and region

information from the master calendar, initialize the RTC and program the security

cartridge. The master calendar also returns a unique trace ID (see the cartridge data

formats section) for each 573, used for identification purposes on cartridges that lack a

DS2401.

KONAMI CO.,LTD.;Master Calendar;<any value>;<any value>

23.6.7 Master calendar

- 891/1136 -

0x70 : Get date and time

0x71 : Get game region or initialization data

0x7c, 0x7f, 0x00 : Get trace ID "main" serial number

0x7c, 0x80, 0x00 : Get trace ID "sub" serial number

0x7d, 0x80, 0x10 : Get next ID

0x7e : Set DS2401 identifiers

0x7f : Unknown

0xf0 : Reset master calendar

23.7 BIOS

The System 573 BIOS is based on a slightly modified version of Sony's standard PS1

kernel, plus a custom shell executable.

Shell revisions

Kernel differences

Boot sequence

Command-line arguments

JVS MCU test sequence

DVD-ROM support

Scrapped CF card support

•

•

•

•

•

•

•

23.7 BIOS

- 892/1136 -

23.7.1 Shell revisions

There seem to be either three or four different versions of the BIOS, all of which share

the same kernel but feature different shells:

700A01 is the earliest and most common version. The only difference between the two

known variants of it is that they were linked to slightly different Sony SDK releases;

Konami's own code is identical across the two. There reportedly is a third variant that

shipped on systems that came with the JVS MCU unpopulated (presumably it would skip

the check for it), however no evidence of its existence has ever been found. The shell is

stored in ROM in both variants at 0xbfc40000 , in the form of a standard PS1

executable (including the header) that gets loaded at 0x803c0000 by the kernel.

700B01 has a more complicated structure: it is split up into two separate executables,

one (at 0xbfc28000 , loaded at 0x80010000) in charge of running the self-test

sequence and the other (at 0xbfc60000 , loaded at 0x80380000) handling CD-ROM or

flash booting. The overall coding style suggests that it was developed alongside the

installers/launchers used by later Bemani games, but dropped as the main feature it

would have introduced over the 700A01 shell - CF card support - was broken due to a

PCB wiring mistake.

23.7.2 Kernel differences

The kernel in both the 700A01 and 700B01 shells identifies itself as Konami OS by

T.H. with a 1995-09-01 build date. All other Konami PS1-based arcade boards, with

the exception of the Twinkle System, use a kernel with the same identifier and date (but

potentially different code). The kernels used by other manufacturers' arcade boards also

contain the same T.H. initials, possibly hinting at the fact there was a single Sony

employee in charge of providing customized kernels to all arcade system manufacturers.

ROM marking MAME ROM name SHA-1 Used by

700A01 700a01.22g e1284add4aaddd5337bd7f4e27614460d52b5b48 Most games

700A01 700a01,gchgchmp.

22g

9aab8c637dd2be84d79007e52f108abe92bf29dd Gachagachamp

700A01 Unknown (undumped, see below)

700B01 700b01.22g a2421d0a494892c0e71003c96995ce8f945064dd Dancing Stage EuroMIX 2

23.7.1 Shell revisions

- 893/1136 -

While the 573's kernel is functionally identical to its retail counterpart (aside from its

lack of support for the PS1's CD-ROM drive), several parts of it have been slightly

tweaked to account for the hardware:

Most CD-ROM APIs and the ISO9660 filesystem driver seem to have been purged.

The code to parse SYSTEM.CNF and launch the boot executable from the CD-ROM has

been made inaccessible. The shell handles executable loading and booting on its own,

without ever returning to the kernel.

The kernel initializes the EXP1 region and clears the watchdog periodically while

booting. It does not keep clearing it in the background (e.g. from the exception

handler) once the shell is loaded.

700B01 performs a "memory initialization" sequence that fills various RAM areas with

pseudorandom values (possibly for heap debugging purposes), showing c1 through

c7 on the debugging board's 7-segment display in the process.

700B01 reads register 0x1f40000e to determine which RAM footprints on the board

are populated, then configures the main RAM controller accordingly.

The GPU is reset and a series of color bars is displayed while the shell is being

relocated to RAM. This feature is also present in other non-retail kernels such as the

DTL-H2000's.

The shell is launched through a stub that contains a Lisenced by Sony Computer

Entertainment Inc.(SCEI) [sic] string, validated by the kernel in a similar (but not

identical) way to PS1 expansion port ROMs.

23.7.3 Boot sequence

All variants of the shell are far simpler than their PS1 counterparts, as they lack any

kind of UI (aside from a non-interactive status screen) and have no copy protection or

anti-piracy checks of any kind. Once loaded by the kernel, they start by initializing the

•

•

•

•

•

•

•

23.7.3 Boot sequence

- 894/1136 -

system bus and proceed to run a hardware self-test. The outcome of all checks is

displayed on screen, with the following ones being performed:

22G : BIOS ROM integrity check. A checksum is computed and verified against the one

present in the ROM at 0xbfc7fffc-0xbfc7ffff ;

16H , 16G , 14H , 14G : main RAM read/write test (first row of chips on the board,

closest to the CPU);

12H , 12G , 9H , 9G : main RAM read/write test (second row of chips on the board,

closest to the JAMMA connector);

4L , 4P : VRAM read/write test. This causes the 573 to briefly display random pixels as

framebuffers are overwritten during the check;

10Q : SPU RAM read/write test;

18E : JVS MCU reset and status check;

CDR : ATAPI CD-ROM drive initialization and executable loading.

NOTE: 700A01 shells do not actually test 4P ! The GPU starts up in 1 MB VRAM mode

by default and the shell does not enable the chip select for the second bank, so the first

VRAM chip is tested twice instead. This bug was fixed in the 700B01 shell, which

initializes the GPU correctly.

If any check fails the shell locks up, shows a blinking "HARDWARE ERROR... RESET"

prompt and stops clearing the watchdog after a few seconds, causing the 573 to reboot.

Otherwise, the state of DIP switch 4 is checked and the shell attempts to load an

executable from four different sources in the following order:

PCMCIA flash card in slot 2 (if inserted and DIP switch 4 is on);

PCMCIA flash card in slot 1 (if inserted and DIP switch 4 is on);

Internal flash memory (if DIP switch 4 is on);

PSX.EXE in the root directory of the disc inserted in the CD-ROM drive. The drive is

only initialized after booting from flash or PCMCIA fails or if DIP switch 4 is off, thus

the shell will not error out if a drive is not connected but a boot executable is present

on the flash. Note that the drive must be set up as an IDE primary/master device

using the appropriate jumpers.

As with Sony's PS1 shell, the 573 shell's ISO9660 filesystem driver only implements a

minimal subset of the specification and may not properly support non-8.3 file names. It

•

•

•

•

•

•

•

•

•

•

•

23.7.3 Boot sequence

- 895/1136 -

also only allocates 2 KB for the disc's path table, so the total number of directories

on the disc must be kept to a minimum in order to prevent the shell from crashing.

Unlike the PS1, however, the 573 ignores SYSTEM.CNF completely regardless of whether

or not it is present on the disc; the shell is hardcoded to always load PSX.EXE .

Homebrew discs can take advantage of this behavior to provide separate PS1 and 573

executables instead of detecting the system type at runtime.

If DIP switch 4 is on, the shell expects to find a standard PS1 executable (including the

full 2048-byte header) at offset 0x24 on either the built-in flash memory or one of the

two PCMCIA flash cards, preceded by a CRC32 checksum of it at offset 0x20 . The CRC

is stored in little endian format and is not calculated on the whole executable, but rather

only on bytes whose offsets are a power of two (i.e. on bytes at 0x24 + 0 , 0x24 + 1 ,

0x24 + 2 , 0x24 + 4 and so on). The check is implemented as follows:

#define EXE_CRC32_POLYNOMIAL 0xedb88320 // 0x04c11db7 bit-reversed

uint32_t exe_crc32(const uint8_t *data, size_t length) {
size_t offset = 0;
uint32_t crc = 0xffffffff;

while (offset < length) {
crc ^= data[offset];

for (int bit = 8; bit; bit--) {
uint16_t temp = crc;

crc >>= 1;
if (temp & 1)

crc ^= EXE_CRC32_POLYNOMIAL;
}

if (offset)
offset <<= 1;

else
offset = 1;

}

return ~crc;
}

#define DIP_SWITCH_PTR ((const uint32_t *) 0x1f400004)
#define EXE_CRC32_PTR ((const uint32_t *) 0x1f000020)
#define EXE_HEADER_PTR ((const uint8_t *) 0x1f000024)
// Offset of the "text section size" field within the executable header
#define EXE_TEXT_SIZE_PTR ((const uint32_t *) 0x1f000040)

bool is_exe_valid(void) {
if (*DIP_SWITCH_PTR & (1 << 3)) // 1 = DIP switch off

23.7.3 Boot sequence

- 896/1136 -

Installing a new game usually involves inserting the installation disc and turning off DIP

switch 4 in order to prevent the shell from booting the game currently installed on the

internal flash.

23.7.4 Command-line arguments

PS1 executables are generally launched with CPU registers $a0 and $a1 set to zero, in

order to make sure programs that interpret them as argc and argv respectively will

not crash by trying to parse invalid data. The 700A01 shell follows this convention.

The 700B01 shell, however, does pass two arguments to the executable it loads. $a0 is

thus set to 2, while $a1 is set to point to an array containing pointers to the following

strings:

boot.rom=700B01

boot.from=<device> , where <device> is one of the following:

flash.0 (internal flash memory)

flash.1 (PCMCIA flash card in slot 1)

flash.2 (PCMCIA flash card in slot 2)

ata.2 (CF card in slot 2)

cdrom

The launchers used by later Bemani games use these arguments if present to determine

where to load the main game executable from, and fall back to autodetecting the game's

installation location otherwise.

return false;
if (memcmp(EXE_HEADER_PTR, "PS-X EXE", 8))

return false;

// BUG: the actual size of the executable including the header is
// (2048 + *EXE_TEXT_SIZE_PTR), however neither the 700A01 nor 700B01 shells
// take this into account and instead end up ignoring the executable's last
// 2048 bytes.
uint32_t crc = exe_crc32(EXE_HEADER_PTR, *EXE_TEXT_SIZE_PTR);

return (crc == *EXE_DATA_PTR);
}

•

•

•

•

•

•

•

23.7.4 Command-line arguments

- 897/1136 -

23.7.5 JVS MCU test sequence

The JVS MCU check is implemented in a different way between the two shell revisions.

While the 700A01 shell simply resets the MCU and validates the status and error codes,

the 700B01 self-test sequence performs 35 (!) different checks, each validating the

codes returned under different conditions. The following tests are done:

Reset MCU, clear JVSIRDY , ensure that:

status code = 0

error code = 3

JVSIRDY = 0

JVSDRDY = 0

incoming JVS data = 0x0000

Reset MCU, write valid dummy packet header (0x00e0), ensure that:

status code = 2

error code = 3

Reset MCU, write invalid dummy packet header (0x001f), ensure that:

status code = 2

error code = 2

Reset MCU, write 16 dummy packets (0x1fe0 , 0x0004 , 1 << i , checksum), for each

packet ensure that:

status code = 1

error code = 3

Reset MCU, write 16 dummy packets (same as above) with an invalid checksum, for each

packet ensure that:

status code = 1

error code = 1

It is currently unclear if any data is actually sent to the JVS bus during step 4, as the

shell may reset the MCU it before it starts sending the packet.

1.

•

•

•

•

•

2.

•

•

3.

•

•

4.

•

•

5.

•

•

23.7.5 JVS MCU test sequence

- 898/1136 -

23.7.6 DVD-ROM support

Even though neither of the shell versions was explicitly designed with DVD-ROM support

in mind, it is possible to run games from a DVD-ROM thanks to the fact that the ATAPI

commands used by the shell and games to read sectors from the disc are medium-

agnostic. Games that rely on CD-DA playback obviously cannot be put on a DVD,

however all other games (including ones that rely on the digital I/O board for MP3

playback) will work as long as the disc is formatted as if it were a typical 573 CD-ROM

(ISO9660 with no extensions, no UDF, 8.3 file names and a path table smaller than 2

KB).

NOTE: due to ATAPI incompatibility issues only a very limited number of DVD-ROM

drives will actually be recognized and work properly with the shells and games. This is

unrelated to the DVD format itself and is purely due to the fact that, unlike CD-ROM

drives, most DVD drives were manufactured after the ATAPI specification got updated in

a way that broke the 573's compatibility.

This accidental capability was greatly abused by bootleg Bemani "superdiscs" that

bundled multiple games on a single DVD-ROM and shipped with a modified installation

menu, allowing the user to pick which game to install. Each game on a superdisc is

patched to load its files from a subdirectory rather than from the DVD's root.

Homebrew 573 software can be distributed as an ISO9660 image larger than 650 MB

meant to be burned to a DVD-R, if sacrificing PS1 compatibility and CD-DA support is an

option. In such case the image shall be distributed as an .iso file with 2048-byte

sectors, rather than the typical .bin and .cue file pair used for PS1 games with 2352-

byte Mode 2 sectors.

23.7.7 Scrapped CF card support

In addition to booting from "linear" memory mapped PCMCIA flash cards, the 700B01

shell features a driver for CF cards and a FAT filesystem parser that allows it to mount a

CF card inserted in PCMCIA slot 2 (via a passive CF-to-PCMCIA adapter), search for a

flash card image file and interpret its contents as if it were an actual flash card, loading

the executable directly from it. Or at least, that would allow it to do so, had Konami not

screwed up the wiring of the PCMCIA slots.

CF cards can operate in three different interfacing modes: memory mapped, I/O mapped

and IDE compatibility mode. On the 573 only memory mapped mode is accessible as the

23.7.6 DVD-ROM support

- 899/1136 -

other modes require usage of I/O chip select pins that are not connected. This mode,

however, requires the host to issue 8-bit writes to the card's 16-bit bus through the use

of individual chip select lines for each byte (/CE1 and /CE2). While the PS1's CPU does

have separate lower (/WR0) and upper (/WR1) byte write strobes that could have been

easily adapted to the appropriate signals, Konami decided to cut this specific corner and

shorted /CE1 and /CE2 on each PCMCIA slot together, making it impossible to issue a

single-byte write.

NOTE: later revisions of the 573 main board seem to have unpopulated jumpers next to

the PCMCIA slots that can be used to rewire the chip select signals. It is currently

unclear if these jumpers are actually sufficient to enable CF card booting without any

additional hardware or BIOS modifications.

23.8 Bootleg mod boards

It is not uncommon to find 573s fitted with a bootleg BIOS "mod board" in place of the

stock 700A01 or 700B01 mask ROM. These boards used to be bundled alongside

bootleg game CD-ROMs and were apparently required in order to bypass the "anti-piracy

checks" in Konami's BIOS.

Of course, since neither version of the shell has any such checks, the claims were

completely misleading. The actual purpose of these boards was not to tamper with the

BIOS, but rather to piggyback on the system bus and provide a crude authentication

mechanism to the bootleg game, allowing it to verify that it was indeed running on a

573 equipped with an appropriate mod board. In other words, mod boards were

actually the bootleggers' implementation of Konami's security cartridge

system, meant to prevent people from simply burning copies of a bootleg CD-ROM and

forcing them to buy bootleg kits from whoever produced them instead. Oh the irony.

The added authentication circuitry will not create any issues with official nor homebrew

software, however most of these boards feature an additional party trick: the shell

executable is altered to load a differently named executable, making bootleg discs

23.8 Bootleg mod boards

- 900/1136 -

unable to boot on a stock 573 and vice versa. The following names have been found so

far in modified BIOS ROMs:

QSY.DXD

SSW.BXF

TSV.AXG

GSE.NXX

NSE.GXX

The following names have been found on unofficial game discs, but are not confirmed to

have ever been used in modified BIOS ROMs:

OSE.FXX

QSU.DXH

QSX.DXE

QSZ.DXC

RSU.CXH

RSV.CXG

RSW.CXF

RSZ.CXC

SSX.BXE

SSY.BXD

TSW.AXF

TSX.AXE

TSY.AXD

TSZ.AXC

Homebrew software should thus place multiple copies of the boot executable on the CD-

ROM to ensure any BIOS, modded or not, can successfully load it. An interesting side

note is that, for any of these names, summing the ASCII codes of each character will

always yield the same result. Presumably bootleggers were unable to find the code in

charge of BIOS ROM checksum validation and found it easier to just turn the string into

random nonsense whose checksum collided with the original one.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

23.8 Bootleg mod boards

- 901/1136 -

23.8.1 DDRTURBO mod board

Board required by and specific to the DDR Extreme PLUS hack. Unlike all other currently

known boards, this one actually adds new functionality to the system: the ability to

speed up MP3 playback... by taking the place of the 29.45 MHz main oscillator on the

digital I/O board, which is desoldered and replaced with a bodge wire. It features three

crystal oscillators supplying the following clocks:

29.5 MHz (0.16% faster than stock, referred to as "Normal Speed" in Extreme PLUS)

33 MHz (12.05% faster than stock, referred to as "Speed up 10%" in Extreme PLUS)

36 MHz (22.24% faster than stock, referred to as "Speed up 20%" in Extreme PLUS)

The board listens for reads from the upper half of BIOS ROM

(0xbfc40000-0xbfc7ffff) and latches bits 5-6 of the byte read to determine which

clock to output to the digital I/O board:

NOTE: kernel code execution while the game is running will not affect the clock as the

kernel is contained entirely within the ROM's first half. The second half is in fact only

accessed on startup when relocating the shell executable to RAM and computing the

ROM checksum.

In order to switch clocks, Extreme PLUS always reads from one of the following

addresses:

The board's EPROM holds a copy of the 700A01 BIOS with the last byte of the checksum

at 0xbfc7ffff modified from 0xf9 to 0x39 . Extreme PLUS uses this change to detect

the mod board and will refuse to run if it is not present. The padding byte at

•

•

•

Byte read Clock

0b*00***** 33 MHz

0b*01***** 36 MHz

0b*10***** 29.5 MHz

0b*11***** Unknown (none?)

Address read Byte read Clock

0xbfc40ebf 0x55 29.5 MHz

0xbfc40810 0x00 33 MHz

0xbfc41341 0xaa 36 MHz

23.8.1 DDRTURBO mod board

- 902/1136 -

0xbfc7fffb is also changed from 0xff to 0x3f in order for the contents of the ROM

to match the new checksum.

23.9 Game-specific information

23.9.1 Black case I/O connectors

Fisherman's Bait and a few other non-Bemani games use a 573 housed in a black case

with blue front and back panels. Unlike the gray metal cases used by other games, this

case model has no cutouts for removable front and back panels that hold game-specific

connectors and instead has a fixed set of ports exposed:

Power: 2x4 Molex connector that can be used as a power input or output, wired to

CN17 .

Option 1: DE9 connector providing four analog inputs, wired to CN3 on the main

board.

Option 2: DE9 connector providing six button (digital) inputs, of which four are also

exposed on the JAMMA connector. Wired to CN5 on the motherboard.

Reel connector (back side): 3x3 Molex connector wired to the GE765-PWB(B)A

fishing controller I/O board. Probably missing on systems that that did not come with

Fisherman's Bait.

•

•

•

•

23.9 Game-specific information

- 903/1136 -

23.9.2 DDR I/O connectors

Dance Dance Revolution uses a 573 enclosed in a gray metal case, with either an analog

or digital I/O board installed. The front panel has a cutout covered by a metal plate,

which in turn holds the following connectors:

1P (10-pin white, only 7 pins used): connects to the left stage and controls arrow

lights, in addition to being used for bitbanged communication with the stage PCB.

Wired to light bank A on the I/O board.

2P (10-pin orange, only 7 pins used): same as above for the right stage. Wired to light

bank B on the I/O board.

Unlabeled (10-pin red, only 7 pins used): connects to cabinet button and marquee

lights. Wired to light bank C.

Unlabeled (6-pin white, only 2 pins used): controls the inverter that drives the neon

rings around the speakers. Wired to light bank D.

The back panel has a similar cutout, covered by a plate with holes for the digital I/O

board's RCA networking jacks.

•

•

•

•

23.9.2 DDR I/O connectors

- 904/1136 -

23.9.3 DDR light mapping

Dance Dance Revolution cabinets (standard 2-player ones, not Solo) have lights wired

up to the analog or digital I/O board as follows:

Light outputs A4, A5, B4 and B5 do not actually control any lamps, but are used to

communicate with each stage's I/O board. See the external modules section for more

details.

Output Connected to

A0 Player 1 up arrow

A1 Player 1 down arrow

A2 Player 1 left arrow

A3 Player 1 right arrow

A4 Data to player 1 stage I/O

A5 Clock to player 1 stage I/O

A6-A7 Unused

B0 Player 2 up arrow

B1 Player 2 down arrow

B2 Player 2 left arrow

B3 Player 2 right arrow

B4 Data to player 2 stage I/O

B5 Clock to player 2 stage I/O

B6-B7 Unused

C0-C1 Unused

C2 Player 1 buttons

C3 Player 2 buttons

C4 Bottom right marquee light

C5 Top right marquee light

C6 Bottom left marquee light

C7 Top left marquee light

D0 Speaker neon

D1-D3 Unused

23.9.3 DDR light mapping

- 905/1136 -

23.9.4 DDR Solo input and light mapping

Dance Dance Revolution Solo cabinets, unlike 2-player cabinets, do not use a stage I/O

board to multiplex the sensors as each arrow panel only has 2 sensors (rather than 4).

Each sensor is instead wired directly to the JAMMA connector, making use of most of the

available inputs.

The light mapping is currently unknown. Solo cabinets have less lights compared to their

2-player counterparts (e.g. arrow panel lamps are missing).

JAMMA input Connected to

Player 1 left Left sensor A

Player 1 right Right sensor A

Player 1 up Up sensor A

Player 1 down Down sensor A

Player 1 button 1 Up-left sensor B

Player 1 button 2 Left sensor B

Player 1 button 3 Down sensor B

Player 1 button 4 Unused

Player 1 button 5 Left button

Player 1 start Start button

Player 2 left Up-left sensor A

Player 2 right Up-right sensor A

Player 2 up Unused

Player 2 down Unused

Player 2 button 1 Up sensor B

Player 2 button 2 Right sensor B

Player 2 button 3 Up-right sensor B

Player 2 button 4 Unused

Player 2 button 5 Right button

Player 2 start Unused (shorted?)

23.9.4 DDR Solo input and light mapping

- 906/1136 -

23.9.5 DrumMania light mapping

First-generation DrumMania cabinets have lights wired up to the I/O board as follows:

Output Connected to

A0-A7 Unused

B0-B7 Unused

C0 Hi-hat

C1 Snare

C2 High tom

C3 Low tom

C4 Cymbal

C5 Unused

C6 Start button

C7 Select button

D0 Spotlight

D1 Top neon

D2 Unused

D3 Bottom neon

23.9.5 DrumMania light mapping

- 907/1136 -

The wiring was changed in later cabinets, which use the following mapping instead:

23.10 Notes

Hard-to-install games

Homebrew guidelines

Missing support for PAL mode

Flash chips and PCMCIA cards

Known working replacement PCMCIA cards

Known working replacement drives

Bemani launcher error and status codes

Output Connected to

A0 Hi-hat

A1 Snare

A2 High tom

A3 Low tom

A4-A7 Unused

B0 Spotlight

B1 Bottom neon

B2 Top neon

B3 Unused

B4 Cymbal

B5 Unused

B6 Start button

B7 Select button

C0-C7 Unused

D0-D3 Unused

•

•

•

•

•

•

•

23.10 Notes

- 908/1136 -

23.10.1 Hard-to-install games

While the vast majority of 573 games can be trivially installed by inserting the

respective game disc (or sometimes a separate install disc) and a new security

cartridge, there are a few ones that require more complex installation procedures:

Games without a CD-ROM: for what should be obvious reasons, such games cannot

be installed without either using homebrew flashing tools or injecting a flash image

into another game's CD-ROM installer. Konami's "official" installation method was to

boot the flash image from a PCMCIA card, which the game will detect and copy over to

the internal flash.

Hyper Bishi Bashi Champ, Handle/Steering Champ: RTC RAM is employed as a

"suicide battery" of sorts by pre-populating it with a header and other data at the

factory. If any of the data is corrupted or missing, the game will display "HARDWARE

UNMATCHED" and refuse to boot any further.

Dance Dance Revolution (JAB version): also checks RTC RAM and will not boot if

its header is missing from the first 32 bytes (subsequent data can be uninitialized and

will be rebuilt automatically if needed). Additionally, even though the game requires a

CD-ROM, its disc only contains CD-DA tracks and lacks an installer or flash image,

requiring the same workarounds as CD-ROM-less games in order to install it.

Dance Dance Revolution 4thMIX PLUS and PLUS Solo: as this game is an upgrade

to DDR 4thMIX, the installer will refuse to proceed unless 4thMIX's header is present in

the first 32 bytes of RTC RAM. This check is only performed during installation; the

game itself will rebuild the entire contents of the RTC if the header is invalid.

Dancing Stage feat. Dreams Come True (both analog I/O and digital I/O versions):

notorious for requiring a lot of juggling with security cartridges. The installer prompts

for a cartridge from a previous game that is allowed to be upgraded, which will be

invalidated and made unusable as part of the installation process.

23.10.2 Homebrew guidelines

It is relatively easy to develop homebrew games that can run on both a System 573 and

a regular PlayStation 1, or to port existing PS1 homebrew to the 573. Nevertheless,

there are some significant differences between the two systems and a game meant to

•

•

•

•

•

23.10.1 Hard-to-install games

- 909/1136 -

run on both shall avoid using any feature that is only available on one. "Hybrid" PS1/573

games shall adhere to the following guidelines:

Do not use the extra RAM. With the exception of development kits and modified

units, consoles always have 2 MB of main RAM and 1 MB of VRAM. The additional RAM

on the 573 might still be useful for 573-specific purposes such as FAT filesystem

handling if an IDE hard drive is used.

Do not use XA-ADPCM. XA is not supported by any ATAPI drive. CD-DA is supported

by both the PS1 CD drive and ATAPI drives, however it will not work out-of-the-box on

a 573 fitted with a digital I/O board as the 4-pin CD audio cable will not be plugged

into the drive. Homebrew games that use CD-DA should display a splash screen

showing how to unplug the cable from the I/O board and plug it into the drive (which

is a quick reversible modification). SPU audio streaming can replace XA and will work

on both platforms.

Have separate executables for PS1 and 573. Since the PS1 BIOS parses

SYSTEM.CNF while the 573 BIOS ignores it, a disc can have two different executables,

one named PSX.EXE (which will be launched on a 573) and the other (which will run

on a PS1) referenced by SYSTEM.CNF . This makes it easier to have two separate

builds of the game rather than having to detect system type at runtime. Additional

copies of PSX.EXE with the file names commonly used by BIOS mod boards

(QSY.DXD , TSV.AXG and so on) shall also be present.

Do not rely on the RTC. Most 573 boards have a dead RTC battery by now. As the

battery is sealed inside the RTC it is basically impossible to replace without replacing

the entire chip, which is something not all 573 owners can do. RTC RAM is additionally

used by some games to store security-related data and shall not be used for saving.

Implement an operator/settings menu. Among other things, the menu should

allow the user to adjust the SPU's master volume, enable or disable the 573's built-in

amplifier (which has no physical volume controls), test cabinet lights and eject the CD

(as some cases hide the drive's eject button behind a small hole or make it difficult to

access otherwise).

23.10.3 Missing support for PAL mode

The 573 only supports 60 Hz mode (i.e. "NTSC", even though the video DAC has no

composite or S-video output so no color modulation is involved). Attempting to switch

•

•

•

•

•

23.10.3 Missing support for PAL mode

- 910/1136 -

the GPU into 50 Hz PAL mode using the GP1(0x08) command will result in a crash, as

only the NTSC clock input pin is wired up.

Support for 50 Hz can be added back by shorting pins 192 and 196 on the GPU (which

will give "PAL-on-NTSC" timings) or by connecting pin 192 to an external oscillator tuned

to generate a PAL clock. See the timings section of the GPU page for more details.

23.10.4 Flash chips and PCMCIA cards

The PCMCIA flash cards required by most 573 games are "linear" (memory mapped)

cards consisting of one or more parallel flash memory chips wired directly to the bus,

rather than CF or ATA-compatible cards. As neither linear cards nor parallel flash

command sets are fully standardized, working with these cards may be difficult without

some prior knowledge.

There are two main variants of such cards:

8-bit: these contain one or more pairs of flash chips with an 8-bit data bus each. Each

pair has one chip wired to the lower byte of the data bus and the other wired to the

upper byte. Commands must thus be issued to both chips at once by repeating the

command byte (e.g. writing 0x9090 to issue the 0x90 JEDEC ID command). Issuing

8-bit writes to a single chip is not supported on the 573 due to the way chip select

lines are wired up; see the BIOS CF card support section for more details.

16-bit: these contain flash chips with a native 16-bit bus. The chips are simply

mapped next to each other within the card's address space.

Konami's flash driver only supports 8-bit cards that use one of the following chips:

Most games, including the launchers used by later Bemani games, will check the JEDEC

IDs of the cards' chips on startup and reject any unsupported chip, even if valid

game data is otherwise present on the card. This makes it impossible to manually

•

•

Manufacturer Chip Capacity Manuf. ID Device ID

Fujitsu MBM29F016A 2 MB 0x04 0xad

Fujitsu MBM29F017A 2 MB 0x04 0x3d

Fujitsu MBM29F040A 512 KB 0x04 0xa4

Intel 28F016S5 2 MB 0x89 0xaa

Sharp LH28F016S 2 MB 0x89 0xaa

23.10.4 Flash chips and PCMCIA cards

- 911/1136 -

install a game onto an unsupported card (e.g. through homebrew tools) without also

patching the launcher in order to skip the check.

The 573 main board seems to always be fitted with either MBM29F016A or LH28F016S

chips. The internal flash memory is accessed using the same driver as the flash cards

and has the same caveats (having to issue commands to two chips at once and so on).

23.10.5 Known working replacement PCMCIA cards

This is an incomplete list of PCMCIA flash cards that are known to work, or not to work,

with Konami's flash driver. Due to the JEDEC ID checks, only cards that contain flash

chips listed in the previous section will work.

Note that most of these cards have identical labels and can typically only be told apart

from the model number printed on the bottom side or one of the edges.

IMPORTANT: the model numbers on Centennial cards seem to be inconsistent and not

necessarily related to which flash chips the card is fitted with. As such buying these

cards for use with 573 games is strongly discouraged, even though some of them

are known to use parts compatible with Konami's driver.

23.10.6 Known working replacement drives

This is an incomplete list of drives that are known to work, or to be incompatible, with

the ATAPI driver Konami used in the BIOS shell and games. The driver was likely written

using an old version of the ATAPI specification as a reference; CD-ROM drives

manufactured in the late 1990s and very early 2000s have a higher chance of being

Manufacturer Model Flash chips Capacity Bus type Manuf. ID Device ID Working Notes

Centennial PM24265, FL32M-20-*-67 16x 28F016S5 32 MB 8-bit 0x8989 0xaaaa Yes* See note below on model numbers

Centennial PM24265, FL32M-20-*-67 16x AM29F016 32 MB 8-bit 0x0101 0xadad No Same command set as Fujitsu cards, may work with ID check patching

Centennial PM24276, FL32M-20-*-J5-03 4x 28F640J5 32 MB 16-bit 0x0089 0x0015 No

Centennial PM24282, FL32M-20-*-S5-03 16x AM29F016 32 MB 8-bit 0x0101 0xadad No Same command set as Fujitsu cards, may work with ID check patching

Fujitsu "32MB Flash Card" (no model number?) 16x MBM29F016A 32 MB 8-bit 0x0404 0xadad Yes Stock card (Konami sticker covers Fujitsu logo)

Fujitsu "32MB Flash Card" (no model number?) 16x MBM29F017A 32 MB 8-bit 0x0404 0x3d3d Yes Stock card (Konami sticker covers Fujitsu logo)

Sharp ID245G01 4x LH28F016S 8 MB 8-bit 0x8989 0xaaaa Yes Stock card (Konami sticker covers Sharp logo), used by GunMania Zone Plus

Sharp ID245P01 16x LH28F016S 32 MB 8-bit 0x8989 0xaaaa Yes Stock card (Konami sticker covers Sharp logo)

23.10.5 Known working replacement PCMCIA cards

- 912/1136 -

compatible than drives manufactured later, possibly due to changes introduced in later

revisions of the ATAPI specification that broke the assumptions Konami's driver makes.

CD-DA playback is particularly problematic as Konami's code seems to be unable to

handle the subtle implementation differences across different drives. To add insult to

injury, some of the few drives that do work have bugs in their subchannel handling that

23.10.6 Known working replacement drives

- 913/1136 -

result in incorrect playback status data being reported to the 573, completely breaking

pre-digital-I/O Bemani titles that rely heavily on audio timing.

23.10.6 Known working replacement drives

- 914/1136 -

Manufacturer Known rebrands Model Type BIOS CD-DA Notes

ASUSTeK DVD-E616P3 DVD Yes Unknown

Creative CD4832E CD Yes No

Hitachi CDR-7930 CD Yes No

LG Compaq CRD-8400B Yes Unknown

LG? Compaq CRN-8241B CD Yes Yes Laptop drive, has CD-DA sync issues

LG GCE-8160B CD Yes No

LG GCR-8523B CD Yes Unknown

LG GCR-8525B CD Yes Yes Has CD-DA sync issues

LG GDR-8163B DVD Yes Yes

LG HP GDR-8164B DVD Yes Yes

LG GH22LP20 DVD Yes Unknown

LG GH22NP20 DVD Yes Unknown

LG GSA-4165B DVD No

LG GWA-4166B DVD Yes Unknown

Lite-On DH-20A4P Yes Unknown

Lite-On LH-18A1H DVD Yes Yes

Lite-On LTD-163 DVD Yes Unknown

Lite-On LTD-165H DVD Yes Unknown

Lite-On LTR-40125S CD Yes Unknown

Lite-On SHW-160P6S DVD Yes Unknown

Lite-On SOHR-48327S Yes Unknown

Lite-On HP SOHR-4839S CD Yes Unknown Jitters on CD-RW

Lite-On XJ-HD166S DVD Yes Unknown

Matsushita/Panasonic CR-583 CD Yes Yes Stock drive

Matsushita/Panasonic CR-587 CD Yes Yes Stock drive, can't read CD-R

Matsushita/Panasonic CR-589B CD Yes Yes Stock drive

Matsushita/Panasonic CR-594C CD Yes Unknown

Matsushita/Panasonic HP SR-8585B DVD Yes Unknown

Matsushita/Panasonic SR-8589B DVD Yes Unknown

Matsushita/Panasonic UJDA770 Yes Unknown Laptop drive

Mitsumi CRMC-FX4830T CD Yes Unknown

NEC CDR-1900A CD Yes Unknown

NEC ND-2510A DVD No

Sony Compaq CDU701-Q1 CD Yes Unknown

23.10.6 Known working replacement drives

- 915/1136 -

NOTE: Konami shipped some units with a Toshiba XM-7002B laptop drive and a passive

adapter board (GX874-PWB(B)) to break out the drive's signals to a regular 40-pin IDE

connector. Laptop drives were also used by Konami in the GXA25-PWB(A) multisession

unit.

23.10.7 Bemani launcher error and status codes

The installers and launchers used by Bemani titles that require the digital I/O board

have an extensive error and status reporting system. Launcher messages are easily

recognizable as they are always displayed in a blue window and have a 3-digit status

code, however Japanese versions of the games will show them in Japanese with no way

to switch language (short of patching the launcher; all launcher variants contain both

English and Japanese strings).

Manufacturer Known rebrands Model Type BIOS CD-DA Notes

Sony CRX217E CD Yes Unknown

Sony DRU-510A DVD Yes Unknown

Sony DRU-810A DVD Yes Unknown

TDK AI-CDRW241040B CD Yes Unknown

TDK AI-481648B CD Yes Unknown

TEAC CD-W552E CD Yes Unknown

Toshiba SW-252 Yes Unknown

Toshiba TS-H292C CD Yes Unknown

Toshiba XM-5702B CD Yes Unknown

Toshiba XM-6102B CD Yes Yes Stock drive

Toshiba XM-7002B CD Yes Unknown Stock drive, laptop drive

23.10.7 Bemani launcher error and status codes

- 916/1136 -

Below is a list of all messages from launcher version 1.95 in both English and Japanese,

along with the respective status codes and indices in the launcher's internal message

array.

23.10.7 Bemani launcher error and status codes

- 917/1136 -

Index Type Status codes Description (English) Description (Japanese)

0 Error 100

1 Error 101

2 Error 102

4 Error 104

7 Error 107

9 Error 109

10 Error 110

11 Error 111

12 Error 112

13 Error 113

14 Error 114

15 Error 115

16 Error 116

17 Error 117

19 Error 119

20 Error 120

21 Error 121

25 Error 125

26 Error 126

27 Error 127

28 Error 128

Boot is not available from
this device.
DEVICE=%s1

.
DEVICE=%s1

Digital Sound PCB
intialization failed.

.

Digital Sound PCB ROM error. ROM .

CD-ROM initialization
failed.

CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

Disc device initialization
failed.

.

You are using an incorrect
CD-ROM.
Replace CD-ROM to %s1 and
turn on the main power.

CD-ROM .
CD-ROM %s1 ,

.

Disc device initialization
failed.

.

Disc device initialization
failed.

.

Config file error.
FILE=%s1
ERROR=%d2, LINE=%d3,
COLUMN=%d4

.
FILE=%s1
ERROR=%d2, LINE=%d3,
COLUMN=%d4

You are using an incorrect
CD-ROM.
Replace CD-ROM to %s1 and
turn on the main power.

CD-ROM .
CD-ROM %s1 ,

.

Cassette is not installed.
Turn off the main power and
install the
correct cassette then turn
the power on.

.
,

.

Cassette error. (%d1)
Cassette does not match this
game.
Check if the cassette is for
this
game (%s2)
Refer to manual for more
information.

 (%d1)
.

(%s2)
.

.

Boot is not available from
this device.
DEVICE=%s1

.
DEVICE=%s1

Cassette error (%d1) (%d1)

Master Calendar network
error.

.

Master Calendar network
error.

.

23.10.7 Bemani launcher error and status codes

- 918/1136 -

Index Type Status codes Description (English) Description (Japanese)

29 Error 129

30 Error 130

31 Error 131

32 Error 132

35 Error 135

36 Error 136

38 Error 138

39 Error 139

40 Error 140

41 Error 141

42 Error 142

43 Error 143

44 Error 144

45 Error 145

46 Error 146

47 Error 147

48 Error 148

Master Calendar network
error.

.

Installation boot device
error.
Installation cassette is
inserted.
Turn off the power. Before
turning the
power on: 1. Change the
cassette to the
Operating Cassette to enter
the game or
2. Set DIP-SW4 to "OFF" to
install.

.
.

,
, DIP-SW4 OFF

, .

Installation Cassette does
not correspond
to the machine.
Please use Installation
Cassette marked
%s1 for installation.

. %s1

.

Cassette error (%d1) (%d1)

This cassette is used to
convert another
game. This can not be used
as an operating
cassette.

.
.

Cassette error (%d1) (%d1)

File not found.
FILE=%s1

.
FILE=%s1

File reading error.
FILE=%s1

.
FILE=%s1

File not found.
FILE=%s1

.
FILE=%s1

File reading error.
FILE=%s1

.
FILE=%s1

File reading error.
FILE=%s1

.
FILE=%s1

File reading error.
FILE=%s1

.
FILE=%s1

File data error.
FILE=%s1

.
FILE=%s1

File data error.
FILE=%s1

.
FILE=%s1

Turn off the power and check
if the Flash
Card is inserted properly.
Please turn the power on
after checking.
DEVICE=%s1

,
.
.

DEVICE=%s1

Checksum error. If you have
the latest
CD-ROM, please replace.
Turn off the
power and insert
installation cassette.
Set DIP-SW4 to "OFF", then
turn on the
power and reinstall CD-ROM.

. CD-ROM ,
. ,

,DIP-SW4 OFF
, .

Area specification error.
Only area specification
below is available.
 %s1
Check the DIP-SW of Master
Calendar.

.
.

 %s1
DIP-SW

.

23.10.7 Bemani launcher error and status codes

- 919/1136 -

Index Type Status codes Description (English) Description (Japanese)

49 Error 149

50 Error 150

51 Error 151

52 Error 152

53 Error 153

54 Error 154

55 Error 155

56 Error 156

57 Error 157

58 Error 158

59 Error 159

60 Error 160

61 Error 161

62 Error 162

64 Error 164

66 Error 166

67 Error 167

69 Error 169

70 Error 170

Cassette initialization
error.
The cassette is already
initialized as
Operating Cassette (%s1)
Reinitialization can not be
completed.

.
(%s1)

.
.

Cassette initialization
error.
The cassette is already
initialized as
Installation Cassette (%s1)
Reinitialization can not be
completed.

.

(%s1) .
.

File not found.
FILE=%s1

.
FILE=%s1

Turn off the power and check
if the Flash
Card is inserted properly.
Please turn the power on
after checking.
DEVICE=%s1

,
.
.

DEVICE=%s1

Installation failed. (%d1) (%d1)

Assertion failed.
FILE=%s1
LINE=%d2

.
FILE=%s1
LINE=%d2

Argument buffer overflow. .

File not found.
FILE=%s1

.
FILE=%s1

File data error.
FILE=%s1

.
FILE=%s1

File reading error.
FILE=%s1

.
FILE=%s1

Security Chip error. (%d1)
This Security Chip was
initialized for
another title.

.(%d1)

.

CD-ROM drive error CD-ROM .

RTC error RTC .

Specification selection
error
Only specification below can
be
selected for this title.
 %s1
Check the DIP-SW of machine.

.
.

 %s1
DIP-SW .

Operating Cassette is not
corresponding
with the machine. Turn off
the power and
replace it with Operating
Cassette
No.%s1 then reboot.

.
, %s1

.

Incorrect cassette
installed.

.

Security Chip initialization
failed. (%d1)

. (%d1)

Cannot use this security
cassette
as Installation Cassette.

.

Cannot use this security
cassette
as Installation Cassette.

.

23.10.7 Bemani launcher error and status codes

- 920/1136 -

Index Type Status codes Description (English) Description (Japanese)

71 Error 171

72 Error 172

73 Error 173

74 Error 174

75 Error 175

76 Error 176

77 Error 177

78 Error 178

79 Error 179

80 Error 180

81 Error 181

82 Error 182

83 Error 183

84 Error 184

85 Error 185

This version cannot
initialize a cassette.
Please replace CD-ROM to %s1
for initialize, and turn off
the power.
Set DIP-SW4 to "OFF", then
turn on
the power.

.
CD-ROM %s1

,DIP-SW4 OFF
.

You are using an incorrect
CD-ROM.
Replace CD-ROM to %s1 and
turn on the main power.

CD-ROM .
CD-ROM %s1 ,

.

Cannot use this security
cassette.

.

Cannot use this security
cassette.

.

Cassette is not
corresponding with the
machine. Turn off the power
and
replace it with Cassette No.
%s1
then reboot.

.
, %s1

.

Cassette is not
corresponding with the
machine. Turn off the power
and
replace it with Cassette No.
%s1
then reboot.

.
, %s1

.

Checksum error.
If you have the latest CD-
ROM, please
replace. Turn off the power
and set
DIP-SW4 to "OFF", then turn
on
the power and reinstall CD-
ROM.

.
CD-ROM .

DIP-SW4 OFF ,
.

This cassette is used to
convert another
game. This can not be used
to this game.

.
.

Boot is not available from
this device.
DEVICE=%s1

.
DEVICE=%s1

You are using an incorrect
CD-ROM.
Replace CD-ROM to %s1 and
turn on the main power.

CD-ROM .
CD-ROM %s1 ,

.

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

File system mounting failed.
Please check that correct
CD-ROM is in use.

.
CD-ROM .

Installation boot device
error.
Please turn off the power
for installation,
and set DIP-SW4 to "OFF",
then turn on
the power.

.
,DIP-SW4

OFF .

CD-ROM drive error CD-ROM .

CD-ROM drive version update
failed. (%d1)
Please call a dealer near
you.

CD-ROM
. (%d1)

.

23.10.7 Bemani launcher error and status codes

- 921/1136 -

Index Type Status codes Description (English) Description (Japanese)

86 Error 186

87 Error 187

88 Error 188

89 Error 189

90 Error 190

91 Error 191

92 Error 192

93 Error 193

94 Error 194

95 Error 195

96 Error 196

97 Error 197

98 Info 198, 500

Cassette error (%d1) (%d1)

You are using the cassette
of another
cabinet. Please use the
correct cassette.
Please see details in
operator's manual.

.
.

.

You are using the cassette
of another
cabinet. Please use the
correct cassette.
Please see details in
operator's manual.

.
.

.

You are using unknown
cabinet.
Check all connectors.
Please see details in
operator's manual.

.
.

.

You are using unknown
cabinet.
Check all connectors.
Please see details in
operator's manual.

.
.

.

Non-applicable game
installed.
To install this game,
 %s1
shall be installed first.

.

 %s1
.

This software is for the e-
Amusement
system.
The game will only work on
the e-Amusement
cabinet.

e-Amusement()

.
e-Amusement .

This software is not for the
e-Amusement
system.
The game doesn't work on the
e-Amusement
cabinet.

e-Amusement()

.
e-Amusement .

Non-applicable game
installed.
To install this game,
 %s1
shall be installed first.

.

 %s1
.

Cassette initialization
error.
The cassette is already
initialized as
%s1
Reinitialization can not be
completed.

.
%s1

. .

Cassette initialization
error.
The cassette is already
initialized as
%s1
Reinitialization can not be
completed.

.
%s1

. .

Cassette initialization
error.
The cassette is already
initialized as
%s1
Reinitialization can not be
completed.

.
%s1

. .

Installation completed.
Please write down the No.%s2
on cassette and machine.
Turn off the

.
%s2

.

23.10.7 Bemani launcher error and status codes

- 922/1136 -

Index Type Status codes Description (English) Description (Japanese)

99 Info 199, 501

100 Info 200, 502

101 Info 201, 503

102 Info 202, 504

103 Info 203, 505

104 Info 204, 506

105 Info 205, 507

106 Info 206, 508

107 Info 207, 509

108 Info 208, 510

power and replace cassette
to
%s1 then turn on the power.

%s1 ,
.

Installation complete.
Please write down
the No.%s3 on cassette and
machine.
Replace CD-ROM to %s1 and
turn off
the power then replace
cassette to
%s2. Set DIP-SW4 to "ON",
then turn on the power.

.
%s3 .
CD-ROM %s1 ,

%s2 ,
DIP-SW4 ON .

Operating cassette
initialized.
The cassette was initialized
as Operating
Cassette (%s1)

.
(%s1)

.

Installation cassette
initialized.
The cassette was initialized
as
Installation Cassette (%s1)

.
(%s1)

.

Initialized Operating
Cassette
The cassette is already
initialized as
Operating Cassette (%s1)
Reinitialization is not
necessary.

.
(%s1)

.
.

Initialized Installation
Cassette
The cassette is already
initialized as
Installation Cassette (%s1)
Reinitialization is not
necessary.

.

(%s1) .
.

Installation completed.
Please write down the No.%s2
on cassette and machine.
Turn off the
power and replace cassette
to
%s1 then turn on the power.

.
%s2

.
%s1 ,

.

Installation complete.
Please write down
the No.%s3 on cassette and
machine.
Replace CD-ROM to %s1 and
turn off
the power then replace
cassette to
%s2. Set DIP-SW4 to "ON",
then turn on the power.

.
%s3 .
CD-ROM %s1 ,

%s2 ,
DIP-SW4 ON .

Installation completed.
Please write down the No.%s1
on cassette and machine.
Turn off the power, then
reboot.

.
%s1

.
.

Installation complete.
Please write down the No.%s2
on cassette and machine.
Replace CD-ROM to %s1 and
turn off
the power.
Set DIP-SW4 to "ON", then
reboot.

.
%s2

.
CD-ROM %s1 ,
DIP-SW4 ON .

Security cassette
initialized.
The cassette was initialized
for
%s1.

.
%s1 .

23.10.7 Bemani launcher error and status codes

- 923/1136 -

23.11 Pinouts

Main board pinouts (GX700-PWB(A))

Analog I/O board pinouts (GX700-PWB(F))

Digital I/O board pinouts (GX894-PWB(B)A)

Security cartridge pinouts

Index Type Status codes Description (English) Description (Japanese)

109 Info 209, 511

110 Info 210, 512

111 Note 211, 513, 602

112 Note 212, 514, 603

113 Note 213, 515, 604

114 Note 214, 516, 605

Initialized Security
Cassette
The cassette is already
initialized for
%s1.
Reinitialization is not
necessary.

.
%s1

. .

SERVICE button is pressed.
To force installation, turn
off the power,
change the cassette to the
Installation
Cassette, and turn on the
power with
pressing SERVICE switch.

.
,

,
.

CD-ROM drive version update
in progress.
Please do not shut off
power.
This will take a few
moments.

CD-ROM
.

.

CD-ROM drive version update
completed.

CD-ROM
.

Starting CD-ROM drive
version update.
Please do not turn off the
power while
updating.
Press TEST button to begin
updating.

CD-ROM .

.

.

Cleared RTC-RAM.
At Game Demo screen, press
the test button
for the Test Mode and re-do
the settings.

Press the Test Button for
the next screen.

RTC-RAM .

.

.

•

•

•

•

23.11 Pinouts

- 924/1136 -

23.11.1 Main board pinouts (GX700-PWB(A))

Analog input port (ANALOG , CN3)

The inputs are wired directly to the 573's built-in ADC with no protection, so they can

only accept voltages in 0-5V range. This connector is usually used for potentiometers

and similar resistive analog controls.

Pin Name Dir

1 5V

2 5V

3 5V

4 5V

5 CH0 I

6 GND

7 CH1 I

8 CH2 I

9 CH3 I

10 GND

23.11.1 Main board pinouts (GX700-PWB(A))

- 925/1136 -

Digital output port (EXT-OUT , CN4)

Unlike the light output ports on most I/O boards, these are unisolated 5V logic level

outputs.

Digital input port (EXT-IN , CN5)

Unlike EXT-OUT , this port is not a separate input port. It piggybacks on the JAMMA

button inputs instead, exposing the button 4 and 5 pins for both players as well as a

Pin Name Dir

1 5V

2 5V

3 OUT7 O

4 OUT6 O

5 OUT5 O

6 OUT4 O

7 OUT3 O

8 OUT2 O

9 OUT1 O

10 OUT0 O

11 GND

12 GND

23.11.1 Main board pinouts (GX700-PWB(A))

- 926/1136 -

sixth button input which is not available on the JAMMA connector. All inputs have a

pullup resistor to 5V.

Amplified speaker output (SOUND-OUT , CN9)

The pinout of this connector is currently unknown.

Pin Name Dir JAMMA pin

1 5V

2 5V

3 P1_B4 I 25

4 P1_B5 I 26

5 P1_B6 I

6 GND

7 P2_B4 I c

8 P2_B5 I d

9 P2_B6 I

10 GND

23.11.1 Main board pinouts (GX700-PWB(A))

- 927/1136 -

Main I/O board connector (CN10)

Used by I/O boards to connect to the motherboard. Note that the address and data bus

are 3.3V, while all other signals are 5V as they go through the CPLD.

23.11.1 Main board pinouts (GX700-PWB(A))

- 928/1136 -

Pin Name Dir Pin Name Dir

A1 5V B1 5V

A2 5V B2 5V

A3 5V B3 5V

A4 5V B4 5V

A5 5V B5 5V

A6 /RD O B6 /WR0 O

A7 /WR1 O B7 GND

A8 GND B8 SYSCLK O

A9 GND B9 GND

A10 /RESET O B10 /RESET O

A11 GND B11 GND

A12 /CS1 O B12 DMARQ5 I

A13 GND B13 GND

A14 DMARQ5 I B14 /CS1 O

A15 /CS2 O B15 NC

A16 /IRQ10 I B16 /IRQ10 I

A17 A22 O B17 A23 O

A18 A20 O B18 A21 O

A19 A14 O B19 A15 O

A20 A12 O B20 A13 O

A21 A6 O B21 A7 O

A22 A4 O B22 A5 O

A23 A2 O B23 A3 O

A24 A0 O B24 A1 O

A25 D14 IO B25 D15 IO

A26 D12 IO B26 D13 IO

A27 D10 IO B27 D11 IO

A28 D8 IO B28 D9 IO

A29 D6 IO B29 D7 IO

A30 D4 IO B30 D5 IO

A31 D2 IO B31 D3 IO

A32 D0 IO B32 D1 IO

A33 GND B33 GND

23.11.1 Main board pinouts (GX700-PWB(A))

- 929/1136 -

Analog CD-DA/MP3 audio input (CD-DA IN , CN12)

Connected to either the CD-ROM drive's audio output or to CN16 on the digital I/O

board on systems equipped with a drive.

Pin Name Dir Pin Name Dir

A34 GND B34 GND

A35 GND B35 GND

A36 3.3V B36 3.3V

A37 3.3V B37 3.3V

A38 3.3V B38 3.3V

A39 3.3V B39 3.3V

A40 3.3V B40 3.3V

Pin Name Dir

1 LIN I

2 AGND

3 AGND

4 RIN I

23.11.1 Main board pinouts (GX700-PWB(A))

- 930/1136 -

Security cartridge slot (CN14)

All signals are 5V as they go through level shifters.

Pin Name Dir Notes Pin Name Dir Notes

1 GND 23 GND

2 GND 24 GND

3 /DSR I Usually shorted to ground 25 MCUCLK O 7.3728 MHz JVS MCU clock

4 NC May actually be /DTR ? 26 GND

5 TX O 27 DRDY O Goes high when 573 updates D0-

D7

6 RX I 28 IO0 IO

7 /RESET IO System reset (from watchdog) 29 /IREQ I Sets IRDY when pulsed low

8 GND 30 /DACK I Clears DRDY when pulsed low

9 GND 31 IRDY O Goes low when 573 reads I0-I7

10 Key (missing pin) 32 Key (missing pin)

11 ? Not connected? 33 I7 I

12 ? Not connected? 34 I6 I

13 D7 O 35 I5 I

14 D6 O 36 I4 I

15 D5 O 37 I3 I

16 D4 O 38 I2 I

17 D3 O 39 I1 I

18 D2 O 40 I0 I

19 D1 O 41 5V

20 D0 O 42 5V

21 5V 43 /RTS O Usually shorted to /CTS

22 5V 44 /CTS I Usually shorted to /RTS

23.11.1 Main board pinouts (GX700-PWB(A))

- 931/1136 -

Power input or output (CN17)

Commonly used to distribute the 12V rail to security cartridges with built-in light drivers

or external modules, but it can also used instead of the JAMMA connector to supply

power to the 573. The pinout is silkscreened on the board.

I2S digital SPU audio output (DIGITAL-AUDIO , CN19)

Always unpopulated. Pin 4 outputs a 16.9344 MHz master clock (system clock divided by

2, or 44100 Hz sampling rate multiplied by 384). This port does not output audio from

the CD-DA/MP3 input, which is not routed through the SPU.

Pin Name

1 12V

2 12V

3 GND

4 GND

5 5V

6 5V

Pin Name Dir

1 BCLK O

2 SDOUT O

3 GND

4 MCLK O

5 LRCK O

23.11.1 Main board pinouts (GX700-PWB(A))

- 932/1136 -

Secondary I/O board connector (CN21)

The address lines not wired to CN10 , as well as the otherwise unused SIO0 controller

and memory card bus, are broken out to this connector. No currently known I/O board

uses it. All signals are 3.3V.

Watchdog test header (WD-CHECK , CN22)

Always unpopulated. Exposes the watchdog's clear input (pulsed whenever the CPU

writes to the watchdog clear register) as well as the reset output. Injecting pulses to

forcefully clear the watchdog should work, although it's much easier to simply disable it

by placing a jumper on S86 .

Pin Name Dir Pin Name Dir

A1 A8 O B1 A9 O

A2 A10 O B2 A11 O

A3 A16 O B3 A17 O

A4 A18 O B4 A19 O

A5 GND B5 ?

A6 GND B6 ?

A7 GND B7 GND

A8 GND B8 DOTCLK O

A9 GND B9 GND

A10 GND B10 /DSR I

A11 GND B11 /DTR2 O

A12 GND B12 /DTR1 O

A13 GND B13 RX I

A14 GND B14 TX O

A15 GND B15 SCK O

Pin Name Dir

1 WDCLR IO

2 /RESET O

3 5V

4 GND

23.11.1 Main board pinouts (GX700-PWB(A))

- 933/1136 -

GPU clock and compositing output (CN23)

Only present on later revisions of the main board and only populated on DDR Karaoke

Mix, which uses the semitransparency plane of the currently displayed framebuffer as an

alpha mask in order to composite the 573's output on top of the incoming karaoke video

feed.

Security cartridge serial port (CN24)

Only present on later revisions of the main board and always unpopulated. Exposes the

same 5V SIO1 signals as the security cartridge slot.

RGB video output (CN25)

Only present on later revisions of the main board and only populated on GunMania and

DDR Karaoke Mix, whose I/O boards feature RGB to S-video and composite converters

respectively. Exposes the same RGB signals as the JAMMA and DB15 connectors.

Pin Name Dir GPU pin

1 FSC O 153

2 DMASK O 202

3 GND

Pin Name Dir Cart pin

1 TX O 5

2 RX I 6

3 GND

4 GND

5 /RTS O 43

6 /CTS I 44

Pin Name Dir JAMMA pin

1 GND O

2 CSYNC O P

3 BOUT O 13

4 GOUT O N

5 ROUT O 12

23.11.1 Main board pinouts (GX700-PWB(A))

- 934/1136 -

Watchdog configuration jumper (S86)

Always unpopulated. Shorting pins 2 and 3 will disable the watchdog while keeping

power-on reset functional. Pin 1 seems to be an active-high reset output, unused by the

573.

Pin Name Dir

1 RESET O

2 GND

3 WDEN I

23.11.1 Main board pinouts (GX700-PWB(A))

- 935/1136 -

H8/3644 JVS MCU pin mapping

Pin H8 GPIO Dir Connected to Usage

11 P9_0 I Unused

12 P9_1-2 O Konami ASIC Status code (readable from 0x1f400004)

12 P9_3-4 O Konami ASIC Error code (readable from 0x1f400004)

16 IRQ0 I Unused

17-24 P6_0-7 O Konami ASIC Low byte of value readable from 0x1f40000a

25-32 P5_0-7 O Konami ASIC High byte of value readable from 0x1f40000a

34 P7_3 I Handshaking logic Current JVSDRDY status

35 P7_4 I Handshaking logic Current JVSIRDY status

36 P7_5 I Unused

37 P7_6 I Unused

38 P7_7 I Unused

39-46 P8_0-7 I Bus (via latch) High byte of value written to 0x1f680000

47 P2_0 O RS-485 transceiver JVS driver output enable

48 P2_1 I RS-485 transceiver JVS serial port RX

49 P2_2 O RS-485 transceiver JVS serial port TX

50 P3_2 I Unused

51 P3_1 I Unused

52 P3_0 I Unused

53 P1_0 O Handshaking logic /JVSDACK (clears JVSDRDY when pulsed low)

54 P1_4 O Handshaking logic JVSIREQ (sets JVSIRDY when pulsed high)

55 P1_5 I Unused

56 P1_6 I Unused

57 P1_7 I Unused

59-2 PB_7-0 I Bus (via latch) Low byte of value written to 0x1f680000

23.11.1 Main board pinouts (GX700-PWB(A))

- 936/1136 -

23.11.2 Analog I/O board pinouts (GX700-PWB(F))

Output banks A, B (CN33 , CN34 respectively)

All outputs are open-drain. Pins 1 and 10 are tied together and connected to the

optocouplers' emitters.

Output bank C (CN35)

All outputs are open-drain. Unlike banks A and B, pin 10 is not tied to pin 1 but is

instead connected to the EMI filters' ground (FGND), isolated from the system ground

but shared across all output banks.

Pin Name Dir

1 ACOM / BCOM

2 A0 / B0 O

3 A1 / B1 O

4 A2 / B2 O

5 A3 / B3 O

6 A4 / B4 O

7 A5 / B5 O

8 A6 / B6 O

9 A7 / B7 O

10 ACOM / BCOM

Pin Name Dir

1 CCOM

2 C0 O

3 C1 O

4 C2 O

5 C3 O

6 C4 O

7 C5 O

8 C6 O

9 C7 O

10 FGND

23.11.2 Analog I/O board pinouts (GX700-PWB(F))

- 937/1136 -

Output bank D (CN36)

All outputs are open-drain.

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

Output bank C (CN10)

All outputs are open-drain. The optocouplers driving C0-C3 have their emitters wired to

CCOM0 , while those driving C4-C7 have their emitters wired to CCOM1 .

Pin Name Dir

1 DCOM

2 D0 O

3 D1 O

4 D2 O

5 D3 O

6 FGND

Pin Name Dir

1 CCOM0

2 C0 O

3 C1 O

4 C2 O

5 C3 O

6 CCOM1

7 C4 O

8 C5 O

9 C6 O

10 C7 O

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 938/1136 -

Output bank B (CN11)

All outputs are open-drain. The optocouplers driving B0-B3 have their emitters wired to

BCOM0 , while those driving B4-B7 have their emitters wired to BCOM1 .

Pin Name Dir

1 BCOM0

2 B0 O

3 B1 O

4 B2 O

5 B3 O

6 BCOM1

7 B4 O

8 B5 O

9 B6 O

10 B7 O

11 NC

12 NC

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 939/1136 -

Output bank A (CN12)

All outputs are open-drain. The optocouplers driving A0-A3 have their emitters wired to

ACOM0 , while those driving A4-A7 have their emitters wired to ACOM1 .

Output bank D (CN13)

All outputs are open-drain.

Input bank (CN14)

The pinout of this connector is currently unknown.

Pin Name Dir

1 ACOM0

2 A0 O

3 A1 O

4 A2 O

5 A3 O

6 ACOM1

7 A4 O

8 A5 O

9 A6 O

10 A7 O

11 NC

12 NC

13 NC

Pin Name Dir

1 DCOM

2 D0 O

3 D1 O

4 D2 O

5 D3 O

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 940/1136 -

RS-232 serial port (CN15)

Analog MP3 audio output (CN16)

Usually connected to CN12 on the main board. GuitarFreaks routes this output to a

separate set of RCA jacks on the front I/O panel instead.

Unknown (CN17)

The pinout of this connector is currently unknown.

I2S digital MP3 audio output (CN18)

Pin Name Dir

1 TX O

2 RX O

3 GND

4 GND

5 RTS O

6 CTS O

7 DTR O

8 DSR O

Pin Name Dir

1 LOUT O

2 AGND

3 AGND

4 ROUT O

Pin Name Dir FPGA pin

1 MCLK O 97

2 BCLK O 94

3 SDOUT O 96

4 LRCK O 95

5 ?

6 ?

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 941/1136 -

Digital I/O XC9536 CPLD pin mapping

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 942/1136 -

Pin JTAG CPLD alt. Dir Connected to Usage

1 51 IO System bus Data bus bit 15

2 105 IO System bus Data bus bit 14

3 102 IO System bus Data bus bit 13

4 96 IO System bus Data bus bit 12

5 99 GCK1 Unknown Unknown (system clock?)

6 93 GCK2 Unused

7 87 GCK3 O Light bank B Output B3

8 90 O Light bank B Output B2

9 84 O Light bank B Output B1

11 81 O Light bank B Output B0

12 78 O Light bank C Output C7

13 75 O Light bank C Output C6

14 72 O Light bank C Output C5

18 69 O Light bank C Output C4

19 66 O Light bank C Output C3

20 63 O Light bank C Output C2

22 60 O Light bank C Output C1

24 57 O Light bank C Output C0

25 3 O Audio DAC Chip reset/mute

26 6 ? FPGA Configuration status/reset (/

INIT)

27 9 ? FPGA Configuration status (DONE)

28 12 O FPGA Configuration reset (/

PROGRAM)

29 15 O FPGA Configuration data (DIN)

33 18 O FPGA Configuration bit clock (CCLK)

34 21 I System bus I/O board chip select (/CS?)

35 24 I System bus Read/write strobe?

36 27 I System bus Read/write strobe?

37 30 I System bus Address bus bit 7

38 33 I System bus Address bus bit 6

39 36 GSR I System bus Address bus bit 5

40 39 GTS2 I System bus Address bus bit 4

42 45 GTS1 I System bus Address bus bit 3

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 943/1136 -

Pin JTAG CPLD alt. Dir Connected to Usage

43 42 I System bus Address bus bit 2

44 48 I System bus Address bus bit 1

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 944/1136 -

Digital I/O XCS40XL FPGA pin mapping

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 945/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

2 170 GCK1 IO No Slow DRAM Data bus bit 4

3 173 IO No Slow DRAM Data bus bit 8

4 176 IO No Slow DRAM Data bus bit 9

5 179 IO No Slow DRAM Data bus bit 10

6 182 TDI Unused

7 185 TCK Unused

8 194 IO No Slow DRAM Data bus bit 3

9 197 IO No Slow DRAM Data bus bit 11

10 200 IO No Slow DRAM Data bus bit 2

11 203 IO No Slow DRAM Data bus bit 12

12 206 Unused

14 212 IO No Slow DRAM Data bus bit 1

15 215 IO No Slow DRAM Data bus bit 0

16 218 TMS Unused

17 221 IO No Slow DRAM Data bus bit 13

19 236 IO No Slow DRAM Data bus bit 14

20 239 IO No Slow DRAM Data bus bit 15

21 242 IO Yes Slow SRAM Data bus bit 3

22 245 IO Yes Slow SRAM Data bus bit 2

23 248 IO Yes Slow SRAM Data bus bit 4

24 251 IO Yes Slow SRAM Data bus bit 1

27 254 IO Yes Slow SRAM Data bus bit 5

28 257 IO Yes Slow SRAM Data bus bit 0

29 260 IO Yes Slow SRAM Data bus bit 6

30 263 O Slow SRAM Address bus bit 0

31 266 IO Yes Slow SRAM Data bus bit 7

32 269 O Slow SRAM Address bus bit 1

34 284 O Fast SRAM Chip select

35 287 O Slow SRAM Address bus bit 2

36 290 O Slow SRAM Address bus bit 10

37 293 O Slow SRAM Address bus bit 3

39 299 Unused

40 302 O Fast SRAM Output enable

41 305 O Slow SRAM Address bus bit 4

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 946/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

42 308 O Slow SRAM Address bus bit 11

43 311 O Slow SRAM Address bus bit 5

44 320 O Slow SRAM Address bus bit 9

45 323 O Slow SRAM Address bus bit 6

46 326 O Slow SRAM Address bus bit 8

47 329 O Slow SRAM Address bus bit 7

48 332 O Slow SRAM Address bus bit 13

49 335 GCK2 O Slow SRAM Address bus bit 12

55 342 GCK3 O Fast SRAM Write enable

56 345 /HDC O Slow SRAM Address bus bit 14

57 348 O Slow SRAM Address bus bit 16

58 351 O Slow SRAM Address bus bit 15

59 354 O Slow Light bank D Output D3

60 357 LDC O Slow Light bank D Output D2

61 366 I No Input bank Input 0

62 369 I No Input bank Input 1

63 372 I No Input bank Input 2

64 375 I No Input bank Input 3

65 378 Unused

67 384 O Slow Light bank D Output D1

68 387 O Slow Light bank D Output D0

69 390 O Slow Light bank B Output B7

70 393 O Slow Light bank B Output B6

72 396 O Slow Light bank B Output B5

73 399 O Slow Light bank B Output B4

74 414 O Slow Light bank A Output A3

75 417 O Slow Light bank A Output A2

76 420 O Slow Light bank A Output A1

77 423 /INIT IO - - CPLD Configuration status/reset

80 426 O Slow Light bank A Output A0

81 429 O Slow Light bank A Output A7

82 432 O Slow Light bank A Output A6

83 435 O Slow Light bank A Output A5

84 438 O Slow Light bank A Output A4

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 947/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

85 441 I No RS-232 transceiver Serial port DSR

87 456 O Slow RS-232 transceiver Serial port DTR

88 459 I No RS-232 transceiver Serial port RX

89 462 O Slow RS-232 transceiver Serial port TX

90 465 I Yes RS-232 transceiver Serial port CTS

92 471 Unused

93 474 O Slow RS-232 transceiver Serial port RTS

94 477 O Slow Audio DAC I2S bit clock (BCLK)

95 480 O Slow Audio DAC I2S frame clock (LRCK)

96 483 O Slow Audio DAC I2S data input (SDIN)

97 492 O Slow Audio DAC I2S master clock (MCLK)

98 495 O Slow ARCnet transceiver Network TX enable?

99 498 O Slow ARCnet transceiver Network TX?

100 501 I Yes ARCnet transceiver Network RX

101 504 Unused

102 507 GCK4 Unused

104 DONE IO - - CPLD Configuration status

106 /PROGRAM I - - CPLD Configuration reset

107 510 D7 IO No Slow DS2433 (unpopulated) Unused 1-wire bus (open-drain)

108 513 GCK5 Unused

109 516 IO No Slow DS2401 1-wire bus (open-drain)

110 519 I No System bus Address bus bit 7

111 525 Unused

112 534 D6 I No System bus Address bus bit 6

113 537 I No System bus Address bus bit 5

114 540 I No System bus Address bus bit 4

115 543 I No System bus Address bus bit 3

116 546 I No System bus Address bus bit 2

117 549 I No System bus Address bus bit 1

119 558 O Slow Unknown Unknown

120 561 IO Yes Slow System bus Data bus bit 15

122 564 D5 IO Yes Slow System bus Data bus bit 14

123 567 IO Yes Slow System bus Data bus bit 13

124 576 IO Yes Slow System bus Data bus bit 12

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 948/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

125 579 IO Yes Slow System bus Data bus bit 11

126 582 IO Yes Slow System bus Data bus bit 10

127 585 IO Yes Slow System bus Data bus bit 9

128 588 D4 IO Yes Slow System bus Data bus bit 8

129 591 IO Yes Slow System bus Data bus bit 7

132 594 D3 IO Yes Slow System bus Data bus bit 6

133 597 IO Yes Slow System bus Data bus bit 5

134 600 IO Yes Slow System bus Data bus bit 4

135 603 IO Yes Slow System bus Data bus bit 3

136 606 IO Yes Slow System bus Data bus bit 2

137 609 IO Yes Slow System bus Data bus bit 1

138 618 D2 IO Yes Slow System bus Data bus bit 0

139 621 Unused

141 624 Unused

142 627 I No System bus I/O board chip select (/CS?)

144 639 Unused

145 642 I No System bus Write strobe (/WR0)

146 645 I No System bus Read strobe (/RD)

147 648 Unused

148 651 I No MAS3507D MP3 data request flag (PI19)

149 654 D1 O Slow MAS3507D PIO chip select (/PCS)

150 657 IO No Slow MAS3507D I2C SDA

151 666 IO No Slow MAS3507D I2C SCL

152 669 O Slow MAS3507D Chip reset (/POR)

153 672 D0 / DIN I - - CPLD Configuration data

154 675 GCK6 / DOUT Unused

155 CCLK I - - CPLD Configuration bit clock

157 0 TDO Unused

159 2 I No MAS3507D Master clock ready flag (WRDY)

160 5 GCK7 I No Crystal oscillator 29.45 MHz main clock

161 8 I No MAS3507D MP3 frame sync flag (PI4)

162 11 I No MAS3507D I2S master clock (CLKO / MCLK)

163 14 CS1 O Slow MAS3507D 14.725 MHz clock input (CLKI)

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 949/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

164 17 O Slow MAS3507D MP3 stream bit clock (SIC)

165 26 Unused

166 32 O Slow MAS3507D MP3 stream frame clock (SII)

167 35 O Slow MAS3507D MP3 stream data input (SID)

168 38 I No MAS3507D MP3 error flag (PI8)

169 41 I No MAS3507D I2S bit clock (SOC / BCLK)

171 44 I No MAS3507D I2S frame clock (SOI / LRCK)

172 47 I No MAS3507D I2S data output (SOD / SDOUT)

174 62 O Slow DRAM Address bus bit 5

175 65 O Slow DRAM Address bus bit 6

176 68 O Slow DRAM Address bus bit 4

177 71 O Slow DRAM Address bus bit 7

178 74 O Slow DRAM Address bus bit 3

179 77 O Slow DRAM Address bus bit 8

180 80 O Slow DRAM Address bus bit 2

181 83 O Slow DRAM Address bus bit 9

184 86 O Slow DRAM Address bus bit 1

185 89 O Slow DRAM Address bus bit 10

186 92 O Slow DRAM Address bus bit 0

187 95 O Slow DRAM Address bus bit 11

188 98 O Slow DRAM Address bus bit 12

189 101 O Fast DRAM 22J row address strobe

190 104 O Fast DRAM Output enable

191 107 O Fast DRAM 22H row address strobe

193 122 O Fast DRAM 22G row address strobe

194 125 O Fast DRAM 22G upper column address strobe

196 128 O Fast DRAM Write enable

197 131 O Fast DRAM 22G lower column address strobe

198 134 O Fast DRAM 22H upper column address strobe

199 137 O Fast DRAM 22H lower column address strobe

200 140 O Fast DRAM 22J upper column address strobe

201 143 O Fast DRAM 22J lower column address strobe

202 152 Unused

203 155 Unused

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 950/1136 -

Pin JTAG FPGA alt. Dir Delay Slew Connected to Usage

204 158 IO No Slow DRAM Data bus bit 7

205 161 IO No Slow DRAM Data bus bit 6

206 164 IO No Slow DRAM Data bus bit 5

207 167 GCK8 I No Crystal oscillator 19.6608 MHz (UART?) clock

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 951/1136 -

Notes:

The FPGA has no access to the 33.8688 MHz system clock, despite it being broken out

to the I/O board connector. Konami's bitstreams use the 29.45 MHz oscillator as the

main clock, additionally dividing it down to 14.725 MHz and feeding it to the

MAS3507D's clock input.

The 19.6608 MHz clock is left unused by most (all?) bitstream variants, but was likely

meant to be used for RS-232. Dividing it by 512, 1024, 2048 or 4096 will give the

standard baud rates of 38400, 19200, 9600 and 4800 respectively. The UART driving

the RS-232 port may have been removed from the bitstream at some point to make

room for the other circuitry.

Most input pins have external pullup resistors, so enabling the FPGA's internal pullups

is not necessary.

Light outputs must be configured as open-drain in order to work properly. The

optocouplers' anodes are fed 5V rather than 3.3V; setting the outputs high instead of

putting them into high-z will result in a voltage difference of ~1.7V across the

optocouplers' LEDs, which is enough to trigger them.

The "5V tolerant I/O" option in Xilinx's bitstream generator must be enabled when

building custom bitstreams. There are no level shifters between the FPGA and the

573's system bus.

The FPGA's M0 , M1 and /PWRDWN pins seem to be hardwired to 3.3V.

The DAC's CKS pin is hardwired to ground, so the I2S master clock must always be

256 * the sampling rate.

Pin 119 is set up by the DDR bitstream as a logical AND of pins 61-64. It is currently

unclear if it goes to any other part on the board.

Konami's bitstreams map the DRAM chips into a single address space as follows:

0x0000000-0x07fffff : 22H

0x0800000-0x0ffffff : 22J

0x1000000-0x17fffff : 22G

•

•

•

•

•

•

•

•

•

•

•

•

23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)

- 952/1136 -

23.11.4 Security cartridge pinouts

RS-232 "network" connector

Present on GX700-PWB(E) , GX896-PWB(A)A , GX883-PWB(D) and GE949-PWB(D)A

cartridges. All signals use RS-232 voltage levels. Note that DTR and DSR are not wired

to the respective SIO1 pins but to the security cartridge I/O pins.

On the GX700-PWB(E) cartridge the signals are referenced to the 573's ground and not

isolated. On all other cartridge types, the RS-232 transceiver is powered through an

isolated DC-DC module and fully eletrically isolated from the 573; the GND pin is the

transceiver's isolated ground.

"Control" or "amp box" connector

Present on GX896-PWB(A)A , GX883-PWB(D) and GE949-PWB(D)A cartridges. Unlike the

RS-232 connector these are unisolated 5V logic level signals driven through open-drain

buffers, with pullup resistors to 5V.

Pin Name Dir

1 TX O

2 RX I

3 DTR O

4 DSR I

5 GND

Pin Name Dir

1 GND

2 CTRL0 O

3 GND

4 CTRL1 O

5 CTRL2 O

6 5V

23.11.4 Security cartridge pinouts

- 953/1136 -

23.12 Credits, sources and links

This document is the result of a joint effort consisting of years' worth of research,

brought to you by:

spicyjpeg (documentation writing, software reverse engineering, testing)

Naoki Saito (hardware reverse engineering, schematic tracing, testing)

987123879113 (digital I/O board reverse engineering, testing)

smf (initial reverse engineering and implementation of the 573 MAME driver)

tensionvex (testing)

Shiz (security cartridge details)

Traced schematics, images, datasheets and additional resources are available in Naoki's

573 repo. Shiz also maintains a general documentation repo for several arcade systems

including the 573.

•

•

•

•

•

•

23.12 Credits, sources and links

- 954/1136 -

https://github.com/NaokiS28/KSystem-573
https://github.com/NaokiS28/KSystem-573
https://github.com/Shizmob/arcade-docs

Some information has been aggregated from the following sources:

System 573 MAME driver

987123879113's MAME fork and gobbletools

ATAPI specification (revision 2.6, January 1996)

ATA/ATAPI-6 specification (revision 1e, June 2001)

JVS specification (third edition, command reference revision 1.3)

HD6473644, M48T58, ADC0834, XCS40XL, MAS3507D, X76F041 and X76F100

datasheets

DDR stage I/O protocol notes

JVS protocol notes

Original (incomplete) list of working ATAPI drives

"The Almost Definitive Guide to Session Mode Linking"

Callus Next PCB information

Light output for Salary Man Champ and Hyper Bishi Bashi Champ

system573_tool

Arduino-based master calendar implementation

Z-I-v forum post with security cartridge info

Huge thanks to the Rhythm Game Cabs Discord server and everyone who provided

valuable information about the 573!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

23.12 Credits, sources and links

- 955/1136 -

https://github.com/mamedev/mame/blob/master/src/mame/konami/ksys573.cpp
https://github.com/987123879113/mame
https://github.com/987123879113/gobbletools
https://github.com/nchowning/open-io/blob/master/NOTES.txt
https://github.com/TheOnlyJoey/openjvs/wiki/Protocol
https://gamerepair.info/hardware/1_system_573
https://www2.gvsu.edu/brittedg/SessionGuide.pdf
https://callusnext.com/pcbs
http://solid-orange.com/1569
http://solid-orange.com/1581
https://github.com/mrdion/system573_tool
https://www.arcade-projects.com/threads/konami-system-573-master-calendar.2646/#post-34907
https://zenius-i-vanisher.com/v5.2/viewthread.php?threadid=2825

24. Cheat Devices

Action Replay, GameShark, Gamebuster, GoldFinger, Equalizer (Datel/clones)

The Datel devices exist in various official/cloned hardware revisions, the DB25 connector

requires a special Comms Link ISA card (or a "FiveWire" mod for making it compatible

with normal PC parallel ports). Later "PAR3" models are said to not require Comms Link,

and do thus probably work directly with normal parallel ports).

Cheat Devices - Datel I/O

Cheat Devices - Datel DB25 Comms Link Protocol

Cheat Devices - Datel Chipset Pinouts

Cheat Devices - Datel Cheat Code Format

Xplorer/Xploder/X-Terminator (FCD/Blaze)

The FCD/Blaze devices are all same hardware-wise (with some cosmetic PCB revisions,

and with extra SRAM and bigger FLASH installed in some carts). The DB25 connector

can be directly connected to a PC parallel port.

Cheat Devices - Xplorer Memory and I/O Map

Cheat Devices - Xplorer DB25 Parallel Port Function Summary

Cheat Devices - Xplorer DB25 Parallel Port Command Handler

Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol

Cheat Devices - Xplorer Versions

Cheat Devices - Xplorer Chipset Pinouts

Cheat Devices - Xplorer Cheat Code Format

Cheat Devices - Xplorer Cheat Code and ROM-Image Decryption

FLASH Chips (for both Xplorer and Datel)

Cheat Devices - FLASH/EEPROMs

http://gamehacking.org/faqs/hackv500c.html - cheat code formats

http://doc.kodewerx.org/hacking_psx.html - cheat code formats

http://xianaix.net/museum.htm - around 64 bios versions

http://www.murraymoffatt.com/playstation-xplorer.html - xplorer bioses

Separating between Gameshark and Xplorer Codes

24. Cheat Devices

- 956/1136 -

http://gamehacking.org/faqs/hackv500c.html
http://doc.kodewerx.org/hacking_psx.html
http://xianaix.net/museum.htm
http://www.murraymoffatt.com/playstation-xplorer.html

Codebreaker

Megacom Power Replay III Game Enhancer

24.1 Cheat Devices - Datel I/O

Datel Memory and I/O Map (for PAR2 or so)

Datel PAR1

Original PAR1 might have supported only 128K FLASH (?) if so, the I/O ports are

probably same as above, but without the "second 128K" FLASH area.

Datel PAR3

The PAR3 version is said to work with parallel ports (not needing the Comms Link IDA

card), and said to support more FLASH with bankswitching, so the I/O ports must work

somehow entirely different as described above.

Some notes from a (poorly translated) japanese document:

PAR3 Memory:

PAR3 I/O:

 First Digit Usage
 3,8 Same for Gameshark & Xplorer (for Xplorer: can be encrypted)
 1,2,C,D,E Gameshark
 4,6,7,9,B,F Xplorer
 0,5 Meaning differs for Gameshark & Xplorer
 A Unused

 1F000000h-1F01FFFFh R/W Flash (first 128K)
 1F020010h R Comms Link STB pin state (bit0)
 1F020018h R Switch Setting (bit0: 0=Off, 1=On)
 1F040000h-1F05FFFFh R/W Flash (second 128K) + feedback area (see below)
 1F060000h R Comms Link data in (byte)
 1F060008h W Comms Link data out (byte, pulses ACK to Comms Link)

 1f000000-1f01ffff ROM. Change in bank switching.
 1f020000-1f03ffff ROM. Change in bank switching.
 1f040000-1f05ffff whopping RAM. It is able to use.
 1f060000-1f06003f I/O. Intently mirror to the subsequent 1f07ffff.

 1f060000 for reception. (1f060000 use only.) All bytes same treatment like.
 It is 01h in the state that does not connected anything.

24.1 Cheat Devices - Datel I/O

- 957/1136 -

24.2 Cheat Devices - Datel DB25 Comms Link Protocol

Boot Command Handler

The Boot Command Handler is executed once at Pre-Boot, and also (at least in some

firmware versions) once before displaying the GUI. Following command(s) can be sent

from PC side:

Data is always transferred as byte-pair (send one byte, receive one byte), 16bit/32bit

values are transferred MSB first (with ECHO after each byte).

The upload/exec command is supported by both Datel and Caetla, the upload/flash

command is supported by Datel only (but it's totally bugged in PAR1.99, and might also

have upwards compatiblity issues in later versions, so it's better to upload a custom flash

function via upload/exec instead of using upload/flash).

The 16bit checksum is all DATA[len] bytes added together, and then ANDed with 0FFFh

(ie. actually only 12bit wide).

 1f060008 for transmission. (1f060008 use only.) This is ffh in the state
 that does not connected anything.
 1f060010 during data reception it will stand the least significant bit.
 Usually is fe.
 1f060018 state of the push button. In not pressed and fefefefefefefefe,
 it will Ost ffffffffffffffff.
 1f060020 I think 1f060020 unused. It is ffffffffffffffff.
 1f060028 I think 1f060028 unused. It is ffffffffffffffff.
 1f060030 bank switching. 1 put and run-time of the ROM, and changes to the
 3's and the start-up of the ROM.
 1f060038 would be what? It is lbu. Like there is a meaning bits 0 and 1.
 It was fcfcfcfcfcfcfcfc. I think that it is bank cult.

 Repeatedly send 8bit "W", until receiving "R"
 Repeatedly send 8bit "B", until receiving "W"
 Send 8bit command "X" (upload/exec) or "U" (upload/flash), and receive ECHO
 Send 32bit ADDRESS, and receive ECHO or "BX" (bad command)
 Send 32bit LENGTH, and receive ECHO
 Send DATA[LENGTH], and receive ECHO
 Send 16bit CHECKSUM, and receive ECHO
 (for upload/flash and if checksum was good, PSX will now BURN ADDR,LENGTH)
 Send 16bit DUMMY, and receive "OK"/"BC"/"BF" (okay, bad chksum, bad flash)
 (for upload/exec and if checksum was good, PSX will now CALL ADDR)
 (thereafter, PAR2.0 and up will reboot via jmp BFC00000h)

24.2 Cheat Devices - Datel DB25 Comms Link Protocol

- 958/1136 -

Menu/Game Command Handler

There must be some further command handler(s) after the Boot Command Handler, with

support for additional cheat related commands, and (at least in Caetla) with support for

uploading EXE files with Kernel functions installed (the Boot Command Handler at Pre-

Boot time can also upload EXE code, but doesn't have Kernel installed).

Original Datel commands for Menu/Game mode are unknown. The Caetla commands are

documented in japanese, and there are also two english translations:

http://www.psxdev.net/forum/viewtopic.php?f=49&t=370 - good (though incomplete)

http://www.psxdev.net/forum/viewtopic.php?f=53&t=462#p6849 - very bad (beware)

24.3 Cheat Devices - Datel Chipset Pinouts

There appear to be numerous Datel hardware revisions (and possibly numerous Datel

clones). So this chapter is unlikely to cover all hardware revisions.

DATEL REF1288 board (with DATEL ASIC1 chip)

The ASIC1 chip is found in this hardware:

 PSX Expansion cards:
 PCB Controller FLASH DB25 spotted by
 DATEL REF 1215 GAL + 74HC245 128K+128K yes Type79
 DATEL REF 1288 DATEL ASIC1 256K yes nocash
 DATEL xxx? GAL + PIC + HC245 128K yes CharlesMacD
 noname? GAL + 74HC245 256K+0K yes Type79
 DATEL REF 1324 lots of chips? lots? no CyrusDevX
 DATEL REF 1326 lots of chips? lots? yes Type79
 PS-121 ZISAN GAL + PIC? + HC245 128K yes Kryptonick
 Comms Link ISA cards:
 PCB Chipset spotted by
 DATEL COMMS LINK, XXX? blurry SMD chipset? lowres photo
 DATEL REF 1113, IBM SATURN LINK 1x74HC74, 2x74HC373, 1xXXX? Type79
 EMS, PCCOM 1x74HC74, 2x74HC373, 1xXXX? jokergameth
 DIY Alternatives to Comms Link
 FiveWire ;simple hardware mod for use with parallel ports, for SPP/EPP
 FreeWing ;parallel port adaptor, lots of 74xxx TTL chips, for SPP/EPP
 ExStand ;parallel port adaptor, lots of 74xxx TTL chips, for EPP
 CommLinkUSB ;USB adaptor, Buy-and-Diy technology (adafruit/teensy based)

 Label: "EQUALIZER, EVEN THE ODDS" (sticker on outside of case)
 Case: "DATEL ENGLAND" (printed inside of case)
 PCB: "DATEL REF1288 SONY SONYPSX2meg"
 U: 44pin "DATEL, ASIC1, A8B1944A, 9832" ;custom logic chip
 U: 32pin "SST, 29EE020, 150-4C-NH, 981918-D" ;256Kx8 EEPROM

24.3 Cheat Devices - Datel Chipset Pinouts

- 959/1136 -

http://www.psxdev.net/forum/viewtopic.php?f=49&t=370
http://www.psxdev.net/forum/viewtopic.php?f=53&t=462#p6849

The ASIC1 is basically same as the PAL/GAL on other boards, with the 74HC245

transceiver intergrated; the ASIC1 is using a 44pin PLCC package, with pin1 being upper-

middle, and pin7 being upper-left. Pinouts are:

D0 is wired to both pin7 and pin29. The /MODE pin is NC (but could be GNDed via the two

solder points in middle of the PCB). The SWITCH has 10K pullup (can can get GNDed

depending on switch setting).

PALCE20V8 Cuthbert Action Replay schematic (from hitmen webpage)

Charles MacDonald Game Shark schematic

Uhm, schematic shows "PAR.ACK" instead of "BUF.DIR" as transceiver direction?

The 24pin PAL in Charles schematic does actually seem to be a 28pin PLCC GAL in actual

 U: 8pin "83BA, LM78L, 05ACM" ;5V voltage regulator
 CN: 25pin DB25 connector (for Comms Link ISA card)
 CN: 68pin PSX expansion port connector
 SW: 3pin Switch

 7 D0 18 DB25.2.DATA0 29 D0 (same as pin7) 40 A3
 8 D1 19 DB25.3.DATA1 30 EERPROM./WE 41 A4
 9 D2 20 DB25.4.DATA2 31 /WR 42 /EXP
 10 GND 21 GND 32 GND 43 GND
 11 D3 22 DB25.5.DATA3 33 /RD 44 A17
 12 D4 23 DB25.6.DATA4 34 /MODE ("jumper") 1 A18
 13 D5 24 DB25.7.DATA5 35 VCC 2 GND
 14 VCC 25 VCC 36 DB25.11.ACK 3 VCC
 15 D6 26 DB25.8.DATA6 37 ? 4 EEPROM./OE
 16 VCC 27 DB25.9.DATA7 38 VCC 5 DB25.10.STB
 17 D7 28 EEPROM./CS 39 ? 6 SWITCH

 1-NC 8-NC 15-NC 22-NC
 2-FBIN 9-CPU.A4 16-GNDed 23-FLASH./WE
 3-CPU.A17 10-CPU./EXP 17-DB25.pin10 (PAR.STB) 24-FBOUT
 4-CPU./WR 11-CPU.A3 18-FLASH./CS 25-FLASH./OE (and BUF.DIR)
 5-CPU./RD 12-CPU.A5 19-DB25.pin11 (PAR.ACK) 26-BUF./EN
 6-CPU.A18 13-SWITCH 20-CPU.D0 27-unused
 7-CPU.A20 14-GND 21-FLASH.A17 28-VCC

 1-FBIN 7-CPU.A4.NC? 13-GNDed 19-FLASH./WE
 2-PIC.RC1 8-CPU./EXP.NC? 14-PAR.STB 20-FBOUT
 3-CPU./WR 9-CPU.A3 15-PIC.RA0 21-BUF.DIR
 4-CPU./RD 10-CPU.A2 16-PAR.ACK 22-BUF./OE
 5-CPU.A18 11-SWITCH 17-CPU.D0 23-PIC.RC0
 6-CPU.A17 12-GND 18-FLASH./OE 24-VCC

24.3 Cheat Devices - Datel Chipset Pinouts

- 960/1136 -

hardware (which has four NC pins, hence the 24pin notation in the schematic).

The three PIC pins connect to a 28pin PIC16C55 microprocessor (unknown purpose). Most

of the PIC pins are NC (apart from the above three signals, plus supply, plus OSC ...

derived from some oscillator located "behind" the DB25 connector?).

Charles MacDonald Gold Finger schematic

Note: This is a datel clone, without "BUF.DIR" signal (instead, the transceiver DIR pin is

wired to "PAR.ACK"; it's probably functionally same as real datel hardware, assuming that

"PAR.ACK" is only a short pulse during writing; then reading should be possible anytime

else).

Charles MacDonald Comms Link schematic

PAL

The JP1/JP2 pins allow to select Port 300h,310h,320h,330h via two jumpers. The /IRQ pin

could be forward to ISA./IRQ2..7 via six jumpers (but the feature is ununsed and the six

jumpers aren't installed at all).

DB25 Connector

 1-FBIN 6-CPU.A17 11-CPU.A2 16-FBOUT
 2-SWITCH 7-CPU.A4.NC? 12-PAR.ACK 17-CPU.A20
 3-CPU./WR 8-CPU./EXP.NC? 13-CPU.D0 18-PAR.STB
 4-CPU./RD 9-CPU.A3 14-FLASH./OE 19-BUF./OE
 5-CPU.A18 10-GND 15-FLASH./WE 20-VCC

 1-/STATUS 7-ISA.A6 13-JP2 19-NC
 2-ISA.A1 8-ISA.A7 14-ISA.A9 20-PCWR
 3-ISA.A2 9-ISA.A8 15-NC 21-/PCRD
 4-ISA.A3 10-ISA.AEN 16-ISA./IOW 22-NC
 5-ISA.A4 11-JP1 17-/IRQ 23-ISA./IOR
 6-ISA.A5 12-GND 18-ISA.D0 24-VCC

 Pin Parallel Port CommsLink (PC) cable PAR (PSX)
 1 /STB ----> "strobe" ----.---o-------------o-- -- NC
 2-9 DATA <-/----> DATA <-- | --o-------------o-------> DATA
 10 /ACK <---- "strobe" ----'---o-------------o-------> "strobe"
 11 BUSY <---- "ack" <-------o-------------o-------- "ack"
 12 PE <---- NC -- --o-------------o-- -- NC
 13 SLCT <---- NC -- --o-------------o-- -- NC
 14 /AUTOLF ----> NC -- --o-------------o--. .-- GNDed
 15 /ERROR <---- NC -- --o-------------o--. .-- GNDed
 16 /INIT ----> NC -- --o-------------o--. .-- GNDed

24.3 Cheat Devices - Datel Chipset Pinouts

- 961/1136 -

nocash FiveWire mod (for connecting datel expansion cart to parallel port)

24.4 Cheat Devices - Datel Cheat Code Format

PSX Gameshark Code Format

Below for v2.2 and up only

Below for v2.41 and up only

Below probably v2.41, too (though other doc claims for v2.2)

 17 /SELECT ----> GNDed --. .--o-------------o--. .-- GNDed
 18-25 GND ----- GND --'--'--o-------------o--'--'-- GND

 disconnect DB25.pin14,15,16,17 from GND (may require to desolder the DB25)
 repair any GND connections that were "routed through" above pins
 wire DB25.pin1./STB to DB25.pin10./ACK
 wire DB25.pin16./INIT to PSX.EXPANSION.pin2./RESET
 wire DB25.pin15./ERROR to PSX.EXPANSION.pin28.A20
 wire DB25.pin13.SLCT to PSX.EXPANSION.pin62.A21
 wire DB25.pin12.PE to PSX.EXPANSION.pin29.A22

 30aaaaaa 00dd ;-8bit Write [aaaaaa]=dd
 80aaaaaa dddd ;-16bit Write [aaaaaa]=dddd

 D0aaaaaa dddd ;-16bit/Equal If dddd=[aaaaaa] then (exec next code)
 D1aaaaaa dddd ;-16bit/NotEqual If dddd<>[aaaaaa] then (exec next code)
 D2aaaaaa dddd ;-16bit/Less If dddd<[aaaaaa] then (exec next code)
 D3aaaaaa dddd ;-16bit/Greater If dddd>[aaaaaa] then (exec next code)
 E0aaaaaa 00dd ;-8bit/Equal If dd=[aaaaaa] then (exec next code)
 E1aaaaaa 00dd ;-8bit/NotEqual If dd<>[aaaaaa] then (exec next code)
 E2aaaaaa 00dd ;-8bit/Less If dd<[aaaaaa] then (exec next code)
 E3aaaaaa 00dd ;-8bit/Greater If dd>[aaaaaa] then (exec next code)
 10aaaaaa dddd ;-16bit Increment [aaaaaa]=[aaaaaa]+dddd
 11aaaaaa dddd ;-16bit Decrement [aaaaaa]=[aaaaaa]-dddd
 20aaaaaa 00dd ;-8bit Increment [aaaaaa]=[aaaaaa]+dd
 21aaaaaa 00dd ;-8bit Decrement [aaaaaa]=[aaaaaa]-dd

 D4000000 dddd ;-Buttons/If If dddd=JoypadButtons then (exec next code)
 D5000000 dddd ;-Buttons/On If dddd=JoypadButtons then (turn on all codes)
 D6000000 dddd ;-Buttons/Off If dddd=JoypadButtons then (turn off all codes)
 C0aaaaaa dddd ;-If/On If dddd=[aaaaaa] (turn on all codes)

24.4 Cheat Devices - Datel Cheat Code Format

- 962/1136 -

Below probably v2.41, too (though other doc claims for ALL versions)

Below from Caetla .341 release notes

These are probably caetla-specific, not official Datel-codes. In fact, Caetla .341 itself

might be an inofficial hacked version of Caetla .34 (?) so below might be totally inofficial

stuff:

Notes

A maximum of 30 increment/decrement codes can be used at a time.

A maximum of 60 conditionals can be used at a time (this includes Cx codes).

Increment/decrement codes should (must?) be used with conditionals.

Unknown if greater/less conditionals are signed or unsigned.

Unclear if greater/less compare dddd by [aaaaaa], or vice-versa.

Unknown if 16bit codes do require memory alignment.

24.5 Cheat Devices - Xplorer Memory and I/O Map

Xplorer Memory Map

 5000nnbb dddd ;\Slide Code aka Patch Code aka Serial Repeater
 aaaaaaaa ??ee ;/for i=0 to nn-1, [aaaaaaaa+(i*bb)]=dddd+(i*??ee), next i
 00000000 0000 ;-Dummy (do nothing?) needed between slides (CD version only)

 C1000000 nnnn ;-Delays activation of codes by nnnn (4000-5000 = 20-30 sec)
 C2ssssss nnnn ;\Copy ssss bytes from 80ssssss to 80tttttt
 80tttttt 0000 ;/

 C3aaaaaa 0000 ;\Indirect 8bit Write [[aaaaaa]+bbbb]=dd
 9100bbbb 000000dd ;/
 C3aaaaaa 0001 ;\Indirect 16bit Write [[aaaaaa]+bbbb]=dddd (Tomb Raider 2)
 9100bbbb 0000dddd ;/
 C3aaaaaa 0002 ;\Indirect 32bit Write [[aaaaaa]+bbbb]=dddddddd
 9100bbbb dddddddd ;/
 FFFFFFFF 0001 ;-Optional prefix for GameShark 2.2 codes(force non-caetla)
 12aaaaaa dddddddd ;-32bit Increment [aaaaaa]=[aaaaaa]+dddddddd
 22aaaaaa dddddddd ;-32bit Decrement [aaaaaa]=[aaaaaa]-dddddddd

 1F000000h-1F03FFFFh.RW First 256K of FLASH (fixed mapping)
 1F040000h-1F05FFFFh.RW Map-able: 2x128K FLASH or 4x128K SRAM (if any)
 1F060000h-1F060007h.xx I/O Ports

24.5 Cheat Devices - Xplorer Memory and I/O Map

- 963/1136 -

FLASH can be 256Kbyte (normal), or 512Kbyte (in FX versions). When programming

FLASH chips: Observe that the carts can be fitted with chips from different

manufacturers, and, Xplorer carts can have either one or two 256K chips, or one 512K

chip.

SRAM can be 0Kbyte (normal/none), or 128Kbyte (in FX versions). The PCB supports max

512K SRAM (but there aren't any carts having that much memory installed).

Xplorer I/O Map

24.6 Cheat Devices - Xplorer DB25 Parallel Port Function

Summary

Xplorer Parallel Port Commands (from PC side)

 1F060008h-1F06FFFFh Mirrors of I/O at 1F060000h..1F060007h
 1F070000h-1F07FFFFh Unused (open bus)

 1F005555h.W FLASH Cmd 1st/3rd byte ;\for first FLASH chip
 1F002AAAh.W FLASH Cmd 2nd byte ;/
 1F045555h.W FLASH Cmd 1st/3rd byte ;\for 2nd FLASH chip (if any)
 1F042AAAh.W FLASH Cmd 2nd byte ;/
 1F060000h.R I/O - Switch Setting (bit0: 0=Off, 1=On)
 1F060001h.R I/O - 8bit Data from PC (bit0-7)
 1F060001h.W I/O - 8bit Latch (Data to PC, and Memory Mapping)
 0 DB25.pin13.SLCT ;\
 1 DB25.pin12.PE ; used for data to PC
 2 DB25.pin11.BUSY ;/
 3 DB25.pin10./ACK ;-used for handshake to PC
 4 Memory Mapping (0=EEPROM, 1=SRAM)
 5 Memory Mapping (EEPROM A17 when A18=1)
 6 Memory Mapping (SRAM A17 or SRAM CE2)
 7 Memory Mapping (SRAM A18 or NC)
 1F060002h.R I/O - Handshake from PC (bit0) (DB25.pin17./SEL)
 1F060005h.W I/O - Unknown (used by Xplorer v4.52, set to 03h)
 1F060006h.R I/O - Unknown (used by Xplorer v4.52, bit0 used)
 1F060007h.R I/O - Unknown (used by Xplorer v4.52, bit0 used)

 GetByteByAddr32 Tx(5702h,Addr32), Rx(Data8)
 OldMenuBuReadFile Tx(5703h), TxFilename, RxDataFFEEh
 OldMenuBuDeleteFile Tx(5704h), TxFilename
 OldMenuBuWriteFile Tx(5705h), TxFilename, TxFiledata
 OldMenuBuGetFileHdr Tx(5706h), TxFilename, Rx(00h,00h), RxTurbo, Rx(02h)
 OldMenuBuOpenEvents Tx(5707h)
 SetCop0Breakpoint Tx(5708h,Addr32,Mask32,Ctrl32) ;Menu: Dummy?
 OldMenuBuCopyFile Tx(5709h), TxFilename ;to other memcard

24.6 Cheat Devices - Xplorer DB25 Parallel Port Function Summary

- 964/1136 -

Function names starting with "Game/Menu" and/or "New/Mid/Old" are working only in

Game/Menu mode, or only in New/Old xplorer firmware versions (new commands exist in

v4.52, old commands exist in v1.091, mid commands exist in v2.005, but neither in

v1.091 nor v4.52, unknown when those new/mid/old commands have been added/

removed exactly, in which specific versions).

The only useful command is SetMemAndExecute, which works in ALL versions, and

which can be used to do whatever one wants to do (unfortunately, most of the official &

inoffical tools are relying on other weird commands, which are working only with specific

xplorer firmware versions).

 OldMenuBuFormat Tx(570Ah,Port8)
 OldMenuBuGetStatus2x Tx(570Bh), Rx(Stat8,Stat8) ;\different in old/new
 NewMenuBuGetStatus1x Tx(570Bh,Port8), Rx(Stat8) ;/
 MenuGetSetFlag Tx(570Ch), Rx(Flag8) ;get old flg, then set flg=01h
 NewMenuBuReadSector Tx(570Dh,Port8,Sector16), Rx(Data[80h])
 NewMenuBuWriteSector Tx(570Eh,Port8,Sector16,Data[80h])
 NewRawExecute Tx(570Fh,Addr32) ;call Addr
 MidMenuBuggedExecJump Tx(5710h,ORra32,ORgp32,ORsp32,pc32) ;aka r31,r28,r29,pc
 MidMenuSendComment Tx(5711h,Len8,AsciiMessage[Len])
 NewMenuFillVram Tx(5712h,Xloc32,Yloc32,Xsiz32,Ysiz32,FillValue32)
 NewGetVram Tx(5713h,Xloc32,Yloc32), Rx(Data[800h]) ;32x32pix
 NewGetSetIrqMask Tx(5714h), Rx(OldMask16), Tx(NewMask16) ;Menu: Dummy
 NewSetVram Tx(5715h,Xloc8,Yloc8,Data[800h]) ;X/Y=div32 ;32x32pix
 NewMenuGetFlgAndOrVal Tx(5716h), Rx(00h, or 01h,Val32) ;\
 NewMenuGetTwoValues Tx(5717h), Rx(Val32,Val32) ;
 NewMenu... Tx(5718h), ... ;
 NewMenuGet2kGarbage Tx(5719h,Dummy32), Rx(Garbage[800h]) ; whatever
 NewMenuGetSomeValue Tx(571Ah), Rx(Val32) ;
 NewMenu... Tx(571Bh,Data[4]) ;similar to 5763h ;
 NewMenuNoLongerSupp. Tx(571Ch) ;probably WAS supported someday ;/
 GameAddCheatCode Tx(5741h,Addr32,Data16), Rx(Index8)
 MenuReBootKernel Tx(5742h) ;jumps to BFC00000h
 GameDelCheatCode Tx(5744h,Index8)
 GetMem Tx(5747h,Addr32,Len32), Rx(Data[Len]), TxRxChksum
 Lock/Freeze Tx(574Ch)
 OldMenuBuGetDirectory Tx(574Dh), RxTurbo
 MenuTestDB25Handshake Tx(574Eh), ...
 MenuOptimalGetMem Tx(574Fh,Addr32,Len32), RxFaster(Data[Len]), TxRxChksum
 OldMenuGetWhatever Tx(5750h), RxDataFFEEh ;-whatever
 Release/Unfreeze Tx(5752h)
 SetMem Tx(5753h,Addr32,Len32,Data[Len]), TxRxChksum
 TurboGetMem Tx(5754h,Addr32,Len32), RxFast(Data[Len]), TxRxChksum
 MenuSetMemAndBurnFirm Tx(5755h,Addr32,Len32,Data[Len]), TxRxChksum ;burnFlash
 GetStateGameOrMenu Tx(5757h), Rx(47h=Game, or 58h=Menu)
 SetMemAndExecute Tx(5758h,Addr32,Len32,Data[Len]), TxRxChksum ;call Addr
 NewMenu... Tx(5763h,Val32) ;similar to 571Bh ;-whatever
 GetByteByAddr24 Tx(5767h,Addr24), Rx(Data8)
 NewMenuBuggedExecJump Tx(577Ah,ORra32,ORgp32,ORsp32,pc32) ;formerly 5710h
 NewMenuFlashAndReboot Tx(57C7h,Dest32,Len32,DataXorD3h[Len])

24.6 Cheat Devices - Xplorer DB25 Parallel Port Function Summary

- 965/1136 -

24.7 Cheat Devices - Xplorer DB25 Parallel Port Command

Handler

The command handler is called once and then during booting, during xplorer GUI, and

during Game execution.

Each call to the command handler does allow to execute ONLY ONE command, however,

the "Freeze" command can be used to force the xplorer to stay in the command handler,

so one can send MORE commands, until leaving the command handler by sending the

"Unfreeze" command.

The command handling can vary depending on current boot phase (see below cautions

on Pre-Boot, Mid-Boot, and In-Game phases).

Pre-Boot Handler

This is called shortly after the kernel has done some basic initialization, and after the

xplorer has relocated its EEPROM content to RAM (which means it may called about a

second after reset when using official PSX kernel and Xplorer Firmware).

Observe that the Kernel function vectors at A0h, B0h, and C0h aren't installed at this

point. If you want to upload an EXE with Kernel vectors installed: send THREE dummy

commands (eg. Unfreeze) to skip the above early command handling. On the other hand,

the ReBootKernel command can be used if you WANT to upload something during Pre-

Boot (the ReBootKernel command works only in MENU mode though, ie. during Xplorer

GUI, but not during Game).

Mid-Boot Handler (Xplorer GUI)

The Xplorer GUI is called only if the Pre-Boot handler has installed it (eg. if the SWITCH

was ON). The handler is called alongsides with joypad reading (which does NOT take

place during the Xplorer intro, so there will be a long dead spot between Pre-Boot and

Mid-Boot command handling).

 OLD Explorer Firmware: Call command handler ONCE (in MENU mode)
 NEW Explorer Firmware: Call command handler TWICE (in MENU mode)
 if SWITCH=ON or [80000030h]="WHB." then
 NEW Explorer Firmware: Call command handler ONCE AGAIN (in MENU mode)
 Install Mid-Boot hook
 endif

 Call command handler ONCE (in MENU mode) alongsides with each joypad read

24.7 Cheat Devices - Xplorer DB25 Parallel Port Command Handler

- 966/1136 -

Observe that the GUI may have smashed various parts of the Kernel initialization, so you

can upload EXE files, and can use Kernel functions, but the EXE won't get booted in same

state as when booting from CDROM. The boot state can also vary dramatically depending

on the Xplorer Firmware version.

Post-Boot Handler (at start of CDROM booting)

This is called when starting CDROM booting.

In-Game Handler (after CDROM booting) (...probably also DURING booting?)

This is called via the hooked B(17h) ReturnFromException() handler.

Observe that GAME mode doesn't support all commands. And, above will work only if the

game does use B(17h), eg. when using non-kernel exception handling, or if it has

crashed, or disabled exceptions. Some internal kernel functions are using

ReturnFromException() directly (without going through the indirect B(17h) function table

entry; so the hook cannot trap such direct returns).

24.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level

Transfer Protocol

All 16bit/24bit/32bit parameters are transferred MSB first.

Tx(Data) - transmit data byte(s)

 Install GAME mode hook for the B(17h) ReturnFromException() handler
 OLD Explorer Firmware: Call command handler ONCE (still in MENU mode)
 NEW Explorer Firmware: Call command handler ONCE (already in GAME mode)

 if SWITCH=ON
 Call command handler ONCE (in GAME mode) upon each B(17h)
 And, process game cheat codes (if any) upon each B(17h)
 endif

 Output 8bit data to DATA0-7 (DB25.pin2-9) ;-Send Data (D0-D7)
 Output /SEL=HIGH (DB25.pin17) ;\Handshake High
 Wait until /ACK=HIGH (DB25.pin10) ;/
 Output /SEL=LOW (DB25.pin17) ;\Handshake Low
 Wait until /ACK=LOW (DB25.pin10) ;/

24.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol

- 967/1136 -

Rx(Data) - receive data byte(s)

RxFast(Data) for TurboGetMem - slightly faster than normal Rx(Data)

First, for invoking the Turbo transfer:

Thereafter, receive the actual Data byte(s) as so:

The /ACK transitions can be sensed by polling the parallel port IRQ flag on PC side.

RxFaster(Data) for OptimalGetMem - much faster than normal Rx(Data)

First, for invoking the Turbo transfer:

Thereafter, receive the actual Data byte(s) as so:

 Wait until /ACK=HIGH (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 1st Part (D6,D7,HIGH)
 Output /SEL=HIGH (DB25.pin17) ;/
 Wait until /ACK=LOW (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 2nd Part (D3,D4,D5)
 Output /SEL=LOW (DB25.pin17) ;/
 Wait until /ACK=HIGH (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 3rd Part (D0,D1,D2)
 Output /SEL=HIGH (DB25.pin17) ;/
 Wait until /ACK=LOW (DB25.pin10) ;\4th Part (ver,LOW,LOW)
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; (ver=LOW for v1.091)
 Output /SEL=LOW (DB25.pin17) ;/ (ver=HIGH for v4.52)
 Wait until all 4bits LOW (DB25.pin13,12,11,10);-xlink95 fails if not

 Wait for BUSY=LOW (DB25.pin11)
 Output DATA = 00h (DB25.pin2-9)
 Wait for BUSY=HIGH (DB25.pin11)
 Output DATA = ECh (DB25.pin2-9)

 Wait for /ACK transition (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 1st Part (D6,D7,LOW)
 Output DATA = 02h (DB25.pin2-9) ;/
 Wait for /ACK transition (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 2nd Part (D3,D4,D5)
 Output DATA = 04h (DB25.pin2-9) ;/
 Wait for /ACK transition (DB25.pin10) ;\
 Get 3bit from SLCT,PE,BUSY (DB25.pin13,12,11) ; 3rd Part (D0,D1,D2)
 Output DATA = 01h (DB25.pin2-9) ;/

 Output DATA = 00h ;<-- crap (DB25.pin2-9) ;-BUGGY, but REQUIRED

24.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol

- 968/1136 -

BUG: The first received byte will be garbage with upper and lower 4bit both containing

the lower 4bits (the bugged firmware does explicitely want DATA=00h before transfer,

although DATA=00h is also 'confirming' that the upper 4bit can be 'safely' replaced by

lower 4bit).

TxRxChksum for SetMem/GetMem functions

The 16bit checksum is all bytes in Data[Len] added together. The two final response bytes

should be "OK"=Okay, or, if the transmitted chksum didn't match, either

"CF"=ChecksumFail (for SetMem functions) or "BG"=BadGetChecksum (for GetMem

functions). MenuSetMemAndBurnFirm is a special case with three response codes:

"OF"=FlashOkay, "CF"=ChecksumFail, "FF"=FlashWriteFail.

TxFilename for Memcard (bu) functions

This is internally using the standard "SetMem" function; preceeded by Rx(Addr32).

Whereas Addr is the target address for the filename (just pass the Rx'ed address to the

Tx part), Len should be max 38h, Data should be the filename with ending zero (eg.

"bu10:name",00h).

TxFiledata for Memcard (bu) WriteFile

This is also using the standard "SetMem" function, plus some obscure extra's. The filedata

is split into fragments, Len should be max 2000h per fragment.

RxDataFFEEh for Memcard (bu) ReadFile and GetWhatever

 Get 4bit from SLCT,PE,BUSY,/ACK (DB25.pin13,12,11,10);\1st Part (D4,D5,D6,D7)
 Output DATA = 00h (DB25.pin2-9) ;/
 Get 4bit from SLCT,PE,BUSY,/ACK (DB25.pin13,12,11,10);\2nd Part (D0,D1,D2,D3)
 Output DATA = 01h (DB25.pin2-9) ;/

 Tx(chkMsb), Rx(chkMsb), Tx(chkLsb), Rx(chkLsb), Rx("OK" or "CF" or "BG")

 Rx(Addr32), Tx(Addr32,Len32,Data[Len]), TxRxChksum

 Rx(Filename[26h]) ;-name from TxFilename, echo'ed back
 Rx(Addr32) ;-buffer address for fragments
 Tx(NumFragments8) ;-number of fragments
 Tx(Addr32,Len32,Data[Len]), TxRxChksum ;<-- repeat this for each fragment
 Rx(FileHandle8) ;-ending dummy byte (filehandle)

24.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol

- 969/1136 -

Memcard ReadFile does transfer N fragments of Len=2000h (depending on filesize). The

GetWhatever function transfers one fragment with Len=80h, followed by N*6 fragments

with Len=40Ah.

RxTurbo for Memcard (bu) GetDirectory/GetFileHeader functions

This is internally using the standard "TurboGetMem" function; preceeded by Rx(Addr32).

Whereas Addr is the source address of the actual data (just pass the Rx'ed address to the

Tx part).

For GetDirectoy, Len should be max 800h (actual/data data is only 4B0h bytes, ie. 258h

bytes per memcard, aka 28h bytes per directory entry). For GetFileHeader, Len should be

max 80h.

24.9 Cheat Devices - Xplorer Versions

Xplorer names

Xplorer suffices

The V1/V2/V3 suffix does just indicate the pre-installed firmware version (so that suffices

become meaningless after software upgrades).

The FX suffix (or DX in japan) indicates that the PCB contains more memory and an extra

resistor (the memory/resistor are intended for use with the "X-Assist" add-on device).

Xplorer PCB types

 Rx(FFEEh,"W",Len32,Data[Len] ;<-- can be repeated for several fragments
 Rx(FFEEh,"CA") ;<-- End Code (after last fragment)

 Rx(Addr32), Tx(Addr32,Len32), RxFast(Data[Len]), TxRxChksum

 Xploder (Germany/USA)
 Xplorer (England/Spain/Netherlands)
 X-Terminator (Japan)

 V1/V2/V3 normal boards (256K EEPROM, no SRAM, no DB25 resistor)
 FX/DX extended boards (512K EEPROM, 128K SRAM, with DB25 resistor)
 PRO meaningless suffix

24.9 Cheat Devices - Xplorer Versions

- 970/1136 -

Xplorer Compatibility Issues

The three PCB versions are functionally identical, and do differ only by cosmetic changes

for alternate/smaller chip packages.

However, some things that can make difference in functionality are the installed

components and installed firmware version:

X-Assist add-on for Xplorer carts

The X-Assist is a quity huge clumsy controller with DPAD, plus 4 buttons, plus small LCD

screen. The thing connects to the Xplorer's DB25 connector, allowing to enter/search

cheat codes without using a PC.

The device works only with "FX" Xplorer boards (which contain an extra resistor for

outputting supply power on the DB25 connector, plus more memory which is somewhat

intended for use by the X-Assist thing).

24.10 Cheat Devices - Xplorer Chipset Pinouts

Xplorer Pinout GAL20V8 (generic array logic)

 1) PXT6 ;original board
 2) Nameless ;with alternate solder pads for smaller SRAM/GAL
 3) PXT6-3 ;with alternate solder pads for smaller SRAM/GAL and 2nd EEPROM

 - FX carts have some extra components & more memory installed.
 (needed for "bigger" firmwares, mainly needed for the X-Assist add-on)
 - FLASH chips from different manufacturers can occassionally cause problems
 (eg. older software not knowing how to program newer FLASH chips).
 - DB25 transfer protocol has some changed commands in each firmware version
 (and most transfer tools tend to rely on such commands, so most tools will
 fail unless the cart is flashed with a certain firmware version).

 1 IN0 (DB25.pin17./SEL)
 2 IN1 (PSX.pin14.A0)
 3 IN2 (PSX.pin48.A1)
 4 IN3 (PSX.pin15.A2)
 5 IN4 (74373.pin15.Q5)
 6 IN5 (PSX.pin4./EXP)
 7 IN6 (74373.pin12.Q4)
 8 IN7 (PSX.pin26.A16) (EEPROM.pin2.A16) (SRAM.pin2.A16) (10000h)
 9 IN8 (PSX.pin60.A17) (20000h)
 10 IN9 (PSX.pin27.A18) (EEPROM.pin1.A18 or NC) (40000h)
 11 IN10 (PSX.pin30./RD)

24.10 Cheat Devices - Xplorer Chipset Pinouts

- 971/1136 -

The GALs are programmed nearly identical for all Xplorer versions, some small differences

are: One or two EEPROM chip selects (depending on EEPROM chipset), and extra ports at

1F060005h, 1F060006h, 1F060007h (used in v4.52).

Note: The 28pin PLCC GAL has same pinout as the 24pin chip, but with four NC pins

inserted (at pin 1,8,15,22, whereof, there is a wire routed "through" pin 8, so that pin

isn't literally NC).

Xplorer Pinout 74373 (8bit tristate latch)

Xplorer Pinout 74245 (8bit bus transceiver)

 12 GND

 13 IN11 (GND)
 14 IN12 (/SWITCH_ON)
 15 IO (74373.pin11.LE)
 16 IO (PSX.pin6.D0)
 17 IO (SRAM./CE.pin22)
 18 IO (EEPROM2./CE.pin22) (for 2nd EEPROM chip, if any)
 19 IO (EEPROM1./CE.pin22) (for 1st EEPROM chip)
 20 IO (NC) (reportedly has wire?)
 21 IO (EEPROM.pin30.A17) (reportedly A14 ?)
 22 IO (74245.pin19./E)
 23 IN13 (PSX.pin64./WR) (SRAM.29, EEPROM.31)
 24 VCC

 1 /OE (GND)
 2 Q0 (DB25.pin13.SLCT)
 3 D0 (PSX)
 4 D1 (PSX)
 5 Q1 (DB25.pin12.PE)
 6 Q2 (DB25.pin11.BUSY)
 7 D2 (PSX)
 8 D3 (PSX)
 9 Q3 (DB25.pin10./ACK)
 10 GND
 11 LE (GAL.pin15.LatchEnable)
 12 Q4 (GAL.pin7) (0=EEPROM, 1=SRAM)
 13 D4 (PSX)
 14 D5 (PSX)
 15 Q5 (GAL.pin5) (EEPROM bank 2/3)
 16 Q6 (SRAM.pin30.A17 or CE2)
 17 D6 (PSX)
 18 D7 (PSX)
 19 Q7 (SRAM.pin1.A18 or NC)
 20 VCC

 1 DIR (GNDed)
 2 D7 (PSX)

24.10 Cheat Devices - Xplorer Chipset Pinouts

- 972/1136 -

Xplorer Pinout 7805 (voltage regulator)

Xplorer Pinout SWITCH (on/off)

Xplorer Pinout DB25 (parallel/printer port)

 3 D6 (PSX)
 4 D5 (PSX)
 5 D4 (PSX)
 6 D3 (PSX)
 7 D2 (PSX)
 8 D1 (PSX)
 9 D0 (PSX)
 10 GND
 11 D0 (DB25.pin2)
 12 D1 (DB25.pin3)
 13 D2 (DB25.pin4)
 14 D3 (DB25.pin5)
 15 D4 (DB25.pin6)
 16 D5 (DB25.pin7)
 17 D6 (DB25.pin8)
 18 D7 (DB25.pin9)
 19 /E (GAL.pin22)
 20 VCC

 1 5V (VCC)
 2 GND (GND)
 3 7.5V (PSX.pin18,52)

 OFF NC
 COM PAL.pin14 (with 10K pull-up to VCC)
 ON GND

 1 In /STB (NC)
 2 In DATA0 (74245.pin11)
 3 In DATA1 (74245.pin12)
 4 In DATA2 (74245.pin13)
 5 In DATA3 (74245.pin14)
 6 In DATA4 (74245.pin15)
 7 In DATA5 (74245.pin16)
 8 In DATA6 (74245.pin17)
 9 In DATA7 (74245.pin18)
 10 Out /ACK (74373.Q3)
 11 Out BUSY (74373.Q2)
 12 Out PE (74373.Q1)
 13 Out SLCT (74373.Q0)

 14 In /LF (NC)
 15 Out /ERR (VCC via 0.47ohm) (installed only on carts with SRAM)

24.10 Cheat Devices - Xplorer Chipset Pinouts

- 973/1136 -

EEPROM.pin1 is NC on 256Kx8 chip (however it is wired to A18 for use with 512Kx8

chips).

EEPROM.pin30 is A17 from GAL.pin21 (not from PSX.A17), accordingly GAL.pin21 is

EEPROM.A17 (not A14).

Boards with solder pads for TWO EEPROMs are leaving A18 not connected on the 2nd

EEPROM (but do connect A18 to the first EEPROM, so one could either use one 512K chip

or two 256K chips).

DB25.pin15./ERR is VCC via 0.47ohm (installed only on carts with SRAM, intended as

supply for the X-ASSIST thing).

SRAM (if any) is wired to GAL.pin17 (/CE), 74373.Q6 (A17 or CE2), 74373.Q7 (A18 or

NC), other SRAM pins are wired straight to D0-D7, A0-A16, /RD, /WR.

VCC is 5V, derived from a 7805 voltage converter (with 7.5V used as input).

Existing boards seem to have 128K SRAM (if any), so SRAM A17/A18 aren't actually

used (unless a board would have 512K SRAM), however, for 128K SRAMs one should

switch SRAM CE2 (aka A17) high.

24.11 Cheat Devices - Xplorer Cheat Code Format

PSX Xplorer/Xploder Code Format

 16 In /INIT (NC)
 17 In /SEL (GAL.IN0.pin1)
 18..25 GND (Ground)

 3taaaaaa 00dd ;-8bit write [aaaaaa]=dd
 8taaaaaa dddd ;-16bit write [aaaaaa]=dddd
 00aaaaaa dddd ;-32bit write [aaaaaa]=0000dddd <-- not "0taaaaaa dddd" ?
 4t000000 000x ;-Slow Motion (delay "x" whatever/ns,us,ms,frames?)
 7taaaaaa dddd ;-IF [aaaaaa]=dddd then <execute following code>
 9taaaaaa dddd ;-IF [aaaaaa]<>dddd then <execute following code>
 Ftaaaaaa dddd ;-IF [aaaaaa]=dddd then activate "other selected" codes (uh?)
 5taaaaaa ?nnn ;\
 d0d1d2d3 d4d5 ; write "?nnn" bytes to [aaaaaa] ;ordered d0,d1,d2... ?
 d6d7d8.. ;/
 6t000000 nnnn ;\COP0 hardware breakpoint
 aaaaaaaa cccc ; aaaaaaaa=break_address, mmmmmmmm=break_mask
 mmmmmmmm d0d1 ; nnnn=num_bytes (d0,d1,d2,etc.), cccc=break_type (see below)
 d2d3d4.. ;/
 B?nnbbbb eeee ;\Slide/Patch Code, with unclear end: "end=?nn+/-1" ?
 10aaaaaa dddd ;/for i=0 to end, [aaaaaa+(i*bbbb)]=dddd+(i*eeee), next i
 C0aaaaaa dddd ;-garbage/mirror of 70aaaaaa dddd ? ;\or maybe meant to be
 D0aaaaaa dddd ;-garbage/mirror of 70aaaaaa dddd ? ;/same as on GameShark?

24.11 Cheat Devices - Xplorer Cheat Code Format

- 974/1136 -

The second code digit (t) contains encryption type (bit0-2), and a "default on/off" flag

(bit3: 0=on, 1=off; whatever that means, it does probably require WHATEVER actions to

enable codes that are "off"; maybe via the Ftaaaaaa dddd code).

break_type (cccc) (aka MSBs of cop0r7 DCIC register)

The CPU supports one data breakpoint and one instruction breakpoint (though unknown if

the Xplorer does support to use both simultaneously, or if it does allow only one of them

to be used).

If the break_type/address/mask to match up with CPU's memory access actions... then

"something" does probably happen (maybe executing a sub-function that consists of the

d0,d1,d2,etc-bytes, if so, maybe at a fixed/unknown memory address, or maybe at some

random address; which would require relocatable code).

Notes

The "Slide" code shall be used only with even addresses, unknown if other 16bit/32bit

codes do also require aligned addresses.

24.12 Cheat Devices - Xplorer Cheat Code and ROM-Image

Decryption

decrypt_xplorer_cheat_code:

 E180 (instruction gotton by CPU but not yet implemented) (uh, gotton what?)
 EE80 (data to be read or written) ;<--looks okay
 E680 (data to be read) ;<--looks okay
 EA80 (data to be wrtten) ;<--looks okay
 EF80 (instruction) ;<-- looks crap, should be probably E180

 key = x[0] and 07h ;'''''''' AABBCCDD EEFF '''''''';
 x[0] = x[0] xor key ; / / / \ \ \ ;
 if key=0 ; x[0] --' / / \ \ '-- x[5] ;
 ;unencrypted (keep as is) ; x[1] ---' / \ '--- x[4] ;
 elseif key=4 ; x[2] ----' '----- x[3] ;
 x[1] = x[1] xor (025h) ;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,;
 x[2] = x[2] xor (0FAh + (x[1] and 11h))
 x[3] = x[3] xor (0C0h + (x[2] and 11h) + (x[1] xor 12h))
 x[4] = x[4] xor (07Eh + (x[3] and 11h) + (x[2] xor 12h) + x[1])
 x[5] = x[5] xor (026h + (x[4] and 11h) + (x[3] xor 12h) + x[2] + x[1])
 elseif key=5
 x[1] = (x[1] + 057h) ;"W"ayne
 x[2] = (x[2] + 042h) ;"B"eckett

24.12 Cheat Devices - Xplorer Cheat Code and ROM-Image Decryption

- 975/1136 -

decrypt_xplorer_fcd_rom_image:

24.13 Cheat Devices - FLASH/EEPROMs

FLASH/EEPROM Commands

Below commands should work on all chips (for write: page size may vary, eg. 1 byte,

128 bytes, or 256 bytes). Some chips do have some extra commands (eg. an alternate

older get id command, or sector erase commands, or config commands), but those

extras aren't needed for basic erase/write operations.

 x[3] = (x[3] + 031h) ;"1"
 x[4] = (x[4] + 032h) ;"2"
 x[5] = (x[5] + 033h) ;"3"
 elseif key=6
 x[1] = (x[1] + 0ABh) xor 01h
 x[2] = (x[2] + 0ABh) xor 02h
 x[3] = (x[3] + 0ABh) xor 03h
 x[4] = (x[4] + 0ABh) xor 04h
 x[5] = (x[5] + 0ABh) xor 05h
 elseif key=7
 x[5] = x[5] + 0CBh
 x[4] = x[4] + 0CBh + (x[5] and 73h)
 x[3] = x[3] + 05Ah + (x[4] and 73h) - (x[5] xor 90h)
 x[2] = x[2] + 016h + (x[3] and 73h) - (x[4] xor 90h) + x[5]
 x[1] = x[1] + 0F5h + (x[2] and 73h) - (x[3] xor 90h) + x[4] + x[5]
 else
 error ;(key=1,2,3)
 endif

 for i=0 to romsize-1
 x=45h
 y=(i and 37h) xor 2Ch
 if (i and 001h)=001h then x=x xor 01h
 if (i and 002h)=002h then x=x xor 01h
 if (i and 004h)=004h then x=x xor 06h
 if (i and 008h)=008h then x=x xor 04h
 if (i and 010h)=010h then x=x xor 18h
 if (i and 020h)=020h then x=x xor 30h
 if (i and 040h)=040h then x=x xor 60h
 if (i and 080h)=080h then x=x xor 40h
 if (i and 100h)=100h then x=x xor 80h
 if (i and 006h)=006h then x=x xor 0ch
 if (i and 00Eh)=00Eh then x=x xor 08h
 if (i and 01Fh)>=016h then x=x-10h
 rom[i]=(rom[i] XOR x)+y
 next i

24.13 Cheat Devices - FLASH/EEPROMs

- 976/1136 -

Above addresses are meant to be relative to the chip's base address (ie. "5555h" would

be 1F005555h in PSX expansion ROM area, or, if there are two flash chips, then it would

be 1F045555h for the 2nd chip in xplorer and datel carts; whereas, that region is using

bank switching in xplorer carts, so one must output some FLASH address bits I/O ports,

and the others via normal CPU address bus; whilst datel carts have noncontinous FLASH

areas at 1F000000h and 1F040000h, with a gap at 1F020000h).

Observe that the chips will output status info (instead of FLASH data) during write/erase/

id mode (so program code using those commands must execute in RAM, not in FLASH

memory).

FLASH/EEPROM Wait Busy

Waiting is required after chip erase and page write (after writing the last byte at page

end), and on some chips it's also required after enter/exit id mode. Some chips indicate

busy state via a toggle bit (bit6 getting inverted on each 2nd read), and/or by

outputting a value different than the written data, and/or do require hardcoded delays

(eg. AM29F040). Using the following 3-step wait mechanism should work with all chips:

Whereas, "addr" should be the last written address (or 0000h for erase and enter/exit id

mode). And "data" should be the last written data (or FFh for erase, or "don't care" for

enter/exit id mode).

Board and Chip Detection

First of, one should detect the expansion board type, this can be done as so:

 [5555h]=AAh, [2AAAh]=55h, [5555h]=A0h, [addr..]=byte(s) ;write page
 [5555h]=AAh, [2AAAh]=55h, [5555h]=90h, id=[0000h..0001h] ;enter id mode
 [5555h]=AAh, [2AAAh]=55h, [5555h]=F0h ;exit id mode
 [5555h]=AAh, [2AAAh]=55h, [5555h]=80h ;erase chip, step 1
 [5555h]=AAh, [2AAAh]=55h, [5555h]=10h ;erase chip, step 2

 Wait 10us (around 340 cpu cycles on PSX) ;-step 1, hardcoded delay
 Wait until [addr]=[addr] ;-step 2, check toggle bit
 Wait until [addr]=data ;-step 3, check data

 Enter Chip ID mode (at 1F000000h)
 Compare 400h bytes at 1F000000h vs 1F020000h
 If different --> assume Datel PAR1/PAR2 hardware
 If same --> assume Xplorer hardware (or Datel PAR3, whatever that is)
 Exit Chip ID mode (at 1F000000h)

24.13 Cheat Devices - FLASH/EEPROMs

- 977/1136 -

Next, detect the Chip ID for the (first) FLASH chip:

Finally, one needs to check if there's a second FLASH chip, there are two such cases:

In both cases, the 2nd chip would be mapped at 1F400000h, and one can test the

following four combinations:

For each combination compare 400h bytes at 1F000000h vs 1F400000h.

In the latter case, do Chip ID detection at 1F400000h to see if there's really another chip

there, and which type it is (if present, then it should be usually the same type as the 1st

chip; and if it's not present, then there might be just open bus garbage instead of valid ID

values).

FLASH/EEPROM Chip IDs

 Enter Chip ID mode (at 1F000000h)
 Read the two ID bytes (at 1F00000xh)
 Exit Chip ID mode (at 1F000000h)

 If cart=xplorer AND 1st_chip=256K --> might have a 2nd 256K chip
 If cart=datel AND 1st_chip=128K --> might have a 2nd 128K chip

 Enter Chip ID (at 1F000000h) and Enter Chip ID (at 1F400000h) ;id1+id2
 Exit Chip ID (at 1F000000h) and Enter Chip ID (at 1F400000h) ;id2
 Exit Chip ID (at 1F400000h) and Enter Chip ID (at 1F000000h) ;id1
 Exit Chip ID (at 1F400000h) and Exit Chip ID (at 1F000000h) ;none

 If they are all same --> there is only one chip (mirrored to both areas)
 If different --> 1F400000h is either garbage, or a 2nd chip

 ChipID Kbyte Page Maker/Name ;notes
 1Fh,D5h 128K 128 ATMEL AT29C010A ;xplorer/prototypes?
 1Fh,35h 128K 128 ATMEL AT29LV010A ;-
 1Fh,DAh 256K 256 ATMEL AT29C020 ;xplorer
 1Fh,BAh 256K 256 ATMEL AT29BV020 ;xplorer
 1Fh,A4h 512K 256 ATMEL AT29C040A ;xplorer
 1Fh,C4h 512K 256 ATMEL AT29xV040A ;-
 BFh,07h 128K 128 SST SST29EE010 ;-
 BFh,08h 128K 128 SST SST29xE010 ;-
 BFh,22h 128K 128 SST SST29EE010A ;-
 BFh,23h 128K 128 SST SST29xE010A ;-
 BFh,10h 256K 128 SST SST29EE020 ;xplorer
 BFh,12h 256K 128 SST SST29xE020 ;xplorer
 BFh,24h 256K 128 SST SST29EE020A ;-
 BFh,25h 256K 128 SST SST2xEE020A ;-
 BFh,04h 512K 256 SST SST28SF040 ;said to be used in "AR/GS Pro"

24.13 Cheat Devices - FLASH/EEPROMs

- 978/1136 -

The above Atmel/SST/Winbond chips are commonly used in Datel or Xplorer carts (or

both). The CATALYST chip is used in some Datel clones (but seems to require 12 volts,

meaning that it can't be properly programmed on PSX, nethertheless, it's reportedly

working "well enough" to encounter flash corruption upon programming attempts). The

two ST/AMD chips aren't really common in PSX world (except that I've personally used

them in my PSones).

 DAh,C1h 128K 128 WINBOND W29EE01x ;-
 DAh,45h 256K 128 WINBOND W29C020 ;-
 DAh,46h 512K 256 WINBOND W29C040 ;xplorer
 01h,A4h 512K 1 AMD AM29F040 ;nocash psone bios (intact console)
 20h,20h 128K 1 ST M29F010B ;nocash psone bios (broken console)
 31h,B4h 128K ?? CATALYST CAT28F010 ;NEEDS VPP=12V !!! ("PS-121 ZISAN")

24.13 Cheat Devices - FLASH/EEPROMs

- 979/1136 -

25. PSX Dev-Board Chipsets

Sony DTL-H2000 CPU Board

 CL825 20pin pin test points (2x10 pins)
 CL827 20pin pin test points (2x10 pins)
 U83 64pin SEC KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 U84 64pin SEC KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 CL828 20pin pin test points (2x10 pins)
 CL826 20pin pin test points (2x10 pins)
 X10 4pin JC53.20 (PAL, 53.203425MHz)
 X2 4pin 53.69317MHz (NTSC, 53.693175MHz)
 U62 20pin LVT244 (dual 4-bit 3-state noninverting buffer/line driver)
 U27 64pin Sony CXD2923AR ;GPU'b
 CL813 20pin pin test points (2x10 pins)
 CL814 20pin pin test points (2x10 pins) (with one resistor or so installed)
 U16 160pin Sony CXD8514Q ;GPU'a
 X7 4pin 67.73760 MHz
 CL807 20pin pin test points (2x10 pins)
 CL809 20pin pin test points (2x10 pins)
 CL811 20pin pin test points (2x10 pins)
 U801 208pin Sony CXD8530BQ ;CPU
 U11 28pin SEC KM48V2104AJ-6 (DRAM 2Mx8) ;Main RAM
 U10 28pin SEC KM48V2104AJ-6 (DRAM 2Mx8) ;Main RAM
 U9 28pin SEC KM48V2104AJ-6 (DRAM 2Mx8) ;Main RAM
 U8 28pin SEC KM48V2104AJ-6 (DRAM 2Mx8) ;Main RAM
 CN801 100pin Blue connector (to other ISA board)
 U66 48pin LVT16244? (quad 4-bit 3-state noninverting buffer/line driver)
 U65 48pin LVT16244? (quad 4-bit 3-state noninverting buffer/line driver)
 U64 48pin LVT16245? (dual 8-bit 3-state noninverting bus transceiver)
 U34 100pin Sony CXD2922Q ;SPU
 U63 14pin 74F74N (dual flipflop)
 U32 44pin SEC KM416V256B1-8 (DRAM 256Kx16) ;SoundRAM
 CL801 20pin pin test points (2x10 pins)
 CL802 20pin pin test points (2x10 pins)
 Q881 3pin voltage stuff?
 U31 20pin 74ACT244P (dual 4-bit 3-state noninverting buffer/line driver)
 U35 18pin Sony CXD2554P or OKI M6538-01 (aka MSM6538-01?) (audio related?)
 U36 20pin Sanyo LC78815 ;16bit D/A Converter
 U37 8pin NEC ...? C4558C? D426N0B or 9426HOB or so?
 J806 8pin solder pads...
 J805 9pin solder pads...
 J804 10pin solder pads... (11pins, with only 10 contacts?)
 - 48pin solder pads (12x4pin config jumpers or so)
 U26 20pin SN74ALSxxx logic?
 U71 24pin Sony CXA1xxxx? ;RGB?
 JPxx 9pin PAL/NTSC Jumpers (three 3pin jumpers)
 J801 24pin solder pads...
 J803 9pin rear connector: Serial Port (3.3V) (aka "J308") (DB9) (5+4pin)

25. PSX Dev-Board Chipsets

- 980/1136 -

Sony DTL-H2000 PIO Board

 J802 15pin rear connector: AV Multi-out (5+5+5pin)
 CN881 98pin ISA Bus Cart-edge (2x31 basic pins, plus 2x18 extended pins)

 JP72x 68pin Black connector (maybe equivalent to 68pin PSX expansion port?)
 SWI 5pin solder pads...
 U371 40pin HN27C4000G-12 (512Kx8 / 256Kx16 EPROM) (sticker: "94/7/27")
 U370 84pin Altera EPM7160ELC84-12 (sticker: "U730, cntl 1")
 U3 14pin SN74ALS1004N (hex inverters)
 U43 44pin Altera EPM7032LC44-10 (sticker: "U43, add 1")
 U716 28pin Sharp LH5498D-35 (FIFO 2Kx9)
 U717 28pin Sharp LH5498D-35 (FIFO 2Kx9)
 U719 28pin Sharp LH5498D-35 (FIFO 2Kx9)
 U720 28pin Sharp LH5498D-35 (FIFO 2Kx9)
 U724 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 U722 20pin SN74ALS245AN (8bit tristate noninverting bus transceiver)
 U47 20pin 74FCT244ATP (dual 4-bit 3-state noninverting buffer/line driver)
 U732 48pin LVT16245? (dual 8-bit 3-state noninverting bus transceiver)
 U711 20pin SN74ALS244BN (dual 4-bit 3-state noninverting buffer/line driver)
 U712 20pin SN74ALS244BN (dual 4-bit 3-state noninverting buffer/line driver)
 U713 20pin 74HC244AP (dual 4-bit 3-state noninverting buffer/line driver)
 U714 20pin 74HC244AP (dual 4-bit 3-state noninverting buffer/line driver)
 U721 20pin SN74ALS244BN (dual 4-bit 3-state noninverting buffer/line driver)
 U55 14pin SN74ALS08N (quad 2-input AND gates)
 U726 20pin SN74ALS245AN (8bit tristate noninverting bus transceiver)
 U715 20pin 74HC244AP (dual 4-bit 3-state noninverting buffer/line driver)
 JPxx 100pin Blue connector (to other ISA board)
 U738 20pin LVT244 (SMD) (dual 4-bit 3-state noninverting buffer/line driver)
 U734 32pin KM684000G-7 (SRAM 512Kx8) ;\maybe 1Mbyte EXP3 RAM ?
 U733 32pin KM684000G-7 (SRAM 512Kx8) ;/
 U725 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 S700 24pin 12bit DIP switch (select I/O Address bits A15..A4)
 JP700 8pin Jumper (4x2 pins) (select IRQ15/IRQ12/IRQ11/IRQ10)
 JP7xx 12pin Jumper (3x4 pins) (select DMA7/DMA6/DMA5)
 U64 48pin LVT16245? (dual 8-bit 3-state noninverting bus transceiver)
 U65 48pin LVT16244? (quad 4-bit 3-state noninverting buffer/line driver)
 U66 48pin LVT16244? (quad 4-bit 3-state noninverting buffer/line driver)
 U737 48pin LVT16244? (quad 4-bit 3-state noninverting buffer/line driver)
 U710 20pin SN74ALS244BN (dual 4-bit 3-state noninverting buffer/line driver)
 U709 20pin HD74HC245P (8bit tristate noninverting bus transceiver)
 U723 14pin SN74ALS38AN (quad open-collector NAND gates with buffered output)
 U2 14pin SN74LS19AN (hex inverters with schmitt-trigger)
 U1 8pin Dallas DS1232 (MicroMonitor Chip) ;power-good-detect ?
 U708 20pin HD74HC245P (8bit tristate noninverting bus transceiver)
 X3 2pin 4.1900 (4.19MHz for SPC700 CPU)
 U42 80pin P823, U01Q (Sony CXP82300 SPC700 CPU with piggyback EPROM socket)
 U42' 32pin 27C256A-15 (EPROM 32Kx8) (sticker: "94/11/28")
 U706 10pin some slim chip with 1x10 pins
 BT700 2pin battery (or super-cap?) for DS1302S (?) (not installed)
 U729? 5pin voltage stuff?
 U40 8pin Dallas DS1302S (real time clock)
 X4 2pin small crystal (32.768kHz for DS1302S)

25. PSX Dev-Board Chipsets

- 981/1136 -

JP715 must be either connected to an external CDROM drive, or to some of "terminator"

plug (which shortcuts Pin23 and Pin26 with each other; software may hang upon certain

I/O operations without that terminator).

Sony DTL-H2500 Dev board (PCI bus)

Newer revision of the DTL-H2000 board. Consists of a single PCI card (plus tiny

daughterboard with Controller ports).

 JP702 34pin Black connector (maybe for internal CDROM Emulator ISA cart?)
 U736 28pin Sony CXK58257ASP-70L (SRAM 32Kx8) ;CDROM Sector Buffer?
 U735 100pin Sony CXD1199BQ ;CDROM Decoder/FIFO
 JP715 40pin Blue connector... to external DTL-H2010 CDROM drive?
 JP721 9pin rear connector: Joypad/Memcard 2 (DB9)
 JP719 9pin rear connector: Joypad/Memcard 1 (DB9)
 ? - rear hole for cdrom-cable to Blue 40pin connector?
 J70x 98pin ISA Bus Cart-edge (2x31 basic pins, plus 2x18 extended pins)

 Mainboard "PI-27 1-589-867-11, DTL-H2500, MAIN BOARD 1575E01A0, SONY"
 Daughterboard "SONY,CN-102 1-589-865-11,CONNECTOR BOARD,DTL-H2500,1575E02A0"
 CJ1 9pin rear connector: DB9
 CJ2? 15pin rear connector: AV Multi-out (5+5+5pin)
 CJ3 10pin gray connector (to controller daughterboard with two DB9's)
 CJ4 34pin black connector (maybe for internal CDROM Emulator ISA cart?)
 CJ5 50pin black connector (to DTL-H2510, Gray Internal CDROM Drive?)
 CJ6 68pin black connector (maybe equivalent to 68pin PSX expansion port?)
 - 124pin PCI bus cart edge connector
 CJ1' 9pin rear connector: DB9 (CTR1, joypad 1) ;\
 CJ2' 9pin rear connector: DB9 (CTR2, joypad 2) ; on daughterboard
 CJ3' 10pin gray ribbon cable (to CJ3 on main board) ;/
 IC103 208pin Sony CXD8530CQ (CPU)
 IC106 28pin SEC KM48V2104AT-6 (DRAM 2Mx8)
 IC107 28pin SEC KM48V2104AT-6 (DRAM 2Mx8)
 IC108 28pin SEC KM48V2104AT-6 (DRAM 2Mx8)
 IC109 28pin SEC KM48V2104AT-6 (DRAM 2Mx8)
 IC201 64pin SEC KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 IC202 64pin SEC KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 IC203 160pin Sony CXD8514Q ;GPU'a
 IC207 64pin Sony CXD2923AR ;GPU'b
 IC303 28pin HM62W256LFP-7T (CDROM SRAM 32Kx8) ;on back side
 IC304 52pin "D 2021, SC430920PB, G64C 185, JSAA9618A" (Sub-CPU) ;on back
 IC305 100pin Sony CXD1199BQ (CDROM Decoder/FIFO) ;on back side
 IC308 100pin Sony CXD2922BQ (SPU) ;on back side
 IC310 44pin SEC KM416V256BLT-7 (DRAM 256Kx16) ;SoundRAM ;on back side
 IC402 24pin something bigger
 IC404 8pin something small
 IC405 8pin something small
 IC501 24pin Sony CXA1645M (Analog RGB to Composite) ;on back side
 IC701 4pin "RD, 5B" or so ;on back side
 IC801 +++pin "ALTERA, FLEX, EPF8820ARC208-3, A9607"
 IC802 20pin LVT245A <-- ;on back side

25. PSX Dev-Board Chipsets

- 982/1136 -

Sony DTL-H2700 Dev board (ISA bus) (CPU, ANALYZER ...?)

Another revision of the DTL-H2000/DTL-H2500 boards. Consists of a single ISA card

stacked together with two huge daughterboards, and probably additionally having a

small connector daughterboard. Exact chipset is unknown (there might be components

on both sides of the PCBs, most of them not visible due to the PCB stacking, so taking

photos/scans of the PCBs would require advanced techniques with screwdrivers).

Currently the only known chip name is an EPROM (MX 27C1000DC-90, with sticker

"Title=DTL-H2700, Ver=1.00, Date=96.12.4, Sum=046B No."). The ISA card is having

markings: "SONY HCD MWB-7? MADE IN JAPAN, PA47 1-589-003-01 1642E03A0".

One uncommon feature is an extra connector for a "trigger switch" (foot pedal), which is

reportedly used for activating performance analyzer logging.

Sony DTL-H201A / DT-HV - Graphic Artist Board (IBM PC/ATs to NTSC video)

 IC803 52pin "IDT71321, LA35J, S9704P" (2Kx8 dual port SRAM)
 IC804 20pin LVT244A
 IC805 8pin something with socket (sticker: "PD3")
 IC807-2 32pin MX 27C1000MC-90 (PROM) ;\on back side
 IC808 32pin F 29F040A-90 (FLASH) ;/BIOS on these chip(s) or so?
 IC901 4pin 37, 69 ;\on back side
 IC902 4pin 37, 69 ;/
 ICxxx? 28pin "DALLAS, DS1230Y-100, NONVOLATILE SRAM"
 U28 20pin LVT244A
 Z1 20pin LVT244A ;\on back side
 Z2 20pin LVT245A <-- ;/
 Z3 20pin LVT244A
 Z4 20pin LVT244A ;\
 Z5 20pin LVT245A <-- ; on back side
 Z6 20pin LVT244A ;/
 Z7 20pin LVT244A
 Z8 20pin LVT244A
 Z9 20pin LVT244A
 X101 4pin RC67.73, JVC 5L (67.7376MHz oscillator for main cpu)
 X201 4pin JC53.20, JVC 6A (for GPU, PAL)
 X202 4pin JC53.69, JVC 6A (for GPU, NTSC)
 X302 3pin 4.000MHz (for sub-cpu)

 X2 xpin TXC-2 OSC 66.000MHz
 X1 xpin TXC-2AOSC 53.693MHz
 U16 14pin 74F74 (dual flipflop)
 U29 14pin 74AS04 (hex inverters)
 U14 20pin LVT244 (dual 4-bit 3-state noninverting buffer/line driver)
 U18 20pin LVT244 (dual 4-bit 3-state noninverting buffer/line driver)
 U15 20pin ACT244 (dual 4-bit 3-state noninverting buffer/line driver)
 U11 84pin Altera EPM7096LC84-12 (sticker: "artpc13" or "ARTPC13")
 U13 160pin Sony CXD8514Q ;GPU'a
 U5 14pin ALS38A ? (quad open-collector NAND gates with buffered output)

25. PSX Dev-Board Chipsets

- 983/1136 -

DTL-S2020 aka Psy-Q CD Emu

Note: There's also a similar ISA cart (DTL-S510B) with less chips and less connectors.

Note: The SN Systems carts seem to have been distributed by Sony (with "DTL-Sxxxx"

numbers), and also distributed by Psygnosis. The external SCSI connectors can be

possibly also used with Psy-Q Development Systems for SNES and Sega Saturn?

 U27 20pin ALS244AJ ? (dual 4bit tristate noninverting buffer/line driver)
 Q1 3pin T B596
 U23 64pin KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 U22 64pin KM4216V256G-60 (DRAM 256Kx16) ;dual-ported VRAM
 U28 64pin Sony CXD2923AR ;GPU'b
 S1 16pin 8bit DIP switch (select I/O address A15..A8)
 S2 8pin 4bit DIP switch (select I/O address A7..A4)
 U1 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 U2 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 U3 20pin ALS245A (8bit tristate noninverting bus transceiver)
 JP9 12pin Jumper (6x2 pins) (select IRQ15/IRQ11/IRQ10/IRQ9/IRQ5/IRQ3)
 U26 24pin Sony CXA1145M ? ;RGB?
 JP10 3pin Jumper ;\
 JP12 3pin Jumper ; select "S" or "O" (?)
 JP11 3pin Jumper ;/
 J3 2pin? Yellow connector (composite video out?)
 J2? pin? Mini DIN? connector (maybe S-video out?)
 J1 15pin High Density SubD (maybe video multi out?)
 CJx 98pin ISA Bus Cart-edge (2x31 basic pins, plus 2x18 extended pins)

 Yellow PCB "CD Emulator System, (C) Cirtech & SN Systems Ldt, 1994 v1.2"
 IC 24pin GAL20V8B
 IC 68pin Analog Devices ADSP-2101 (16bit DSP Microprocessor)
 IC 20pin HD74HC244P
 IC15 20pin HD74HC244P
 IC14 20pin CD74HCT245E
 IC7 28pin 27C512-10 (EPROM 64Kx8) (yellow sticker, without text)
 IC 28pin HY62256ALP-70 (SRAM 32Kx8)
 IC12 28pin HY62256ALP-70 (SRAM 32Kx8)
 IC 28pin HY62256ALP-70 (SRAM 32Kx8)
 IC13 84pin Emulex/QLogic FAS216 (Fast Architecture SCSI Processor)
 IC5 84pin Emulex/QLogic FAS216 (Fast Architecture SCSI Processor)
 IC4 24pin GAL20V8B (near IO Addr jumpers)
 IC 20pin 74LS244B1 (near lower 8bit of ISA databus)
 IC 20pin SN74LS245N? (near lower 8bit of ISA databus)
 IC 20pin SN74LS245N (near upper 8bit of ISA databus)
 DMA 12pin Jumpers (select DMA7/6/5)
 IRQ 12pin Jumpers (select IRQ15/12/11/10/7/5)
 IO 16pin Jumpers (select IO Addr 300/308/310/318/380/388/390/398)
 SCSI 6pin Jumpers (select SCSI ID 4/2/1) (aka 3bit 0..7 ?)
 PL3 34pin Connector to DTL-H2000 ?
 PL1 50pin Connector to INTERNAL SCSI hardware ?
 PL2 50pin? Connector to EXTERNAL SCSI hardware ? (25pin plug/50pin cable?)
 Jx 98pin ISA Bus Cart-edge (2x31 basic pins, plus 2x18 extended pins)

25. PSX Dev-Board Chipsets

- 984/1136 -

PSY-Q Development System (Psygnosis 1994)

Sony DTL-H800 Sound Artist Board (with optical fibre audio out)

Note: There's also a similar board (DTL-H700) for MAC/NuBus instead of PCI bus.

Sony COH-2000 (unknown purpose)

 32pin GM76C8128ALLFW85 (SRAM 128Kx8)
 44pin ALTERA EPM7032LC44-15T
 34pin EMULEX FAS101 (SCSI Interface Processor)
 28pin 27C64 (EPROM 8Kx8) (green sticker, without text)
 20pin LCX245 (=74245?)
 8pin 2112, CPA, H9527 (?)
 3pin transistor? voltage regulator?
 20pin DIP socket (containing two 10pin resistor networks)
 20pin DIP socket (containing two 10pin resistor networks)
 2pin CR2032 Battery 3V
 68pin Connector to PSX "Parallel I/O" expansion port
 25pin Connector to SCSI hardware (to DTL-S510B or DTL-S2020 ISA cart or so?)

 U15 24pin ?
 U5 28pin 27C256 (EPROM 32Kx8) (not installed)
 U7 4pin 67.7376MHz oscillator
 U8 14pin ?
 U11 44pin SEC KM416V256B1-8 (DRAM 256Kx16) ;SoundRAM
 (44pin package with middle 4pin missing, 40pins used)
 U10 100pin Sony CXD2925Q ;SPU
 U4 160pin Lattice IspLSI 3256 (sticker: "VER3")
 U6 128pin Lattice IspLSI xxxx ?
 U12 48pin ?
 U13 48pin ?
 U3 20pin 74ACT244
 U14 5pin "LM25755, -3.3 P+" ?
 U2 54pin ?
 U1 54pin ?
 U9 ?pin GP1F31T (light transmitting unit for optical fibre cable)
 ? 124pin PCI bus cart edge connector
 ? 8pin internal jumper/connector? (7pin installed, 1pin empty)

 U1 14pin SN74ALS388N ?
 U2 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 U3 20pin SN74ALS688N (8bit inverting identity comparator with enable)
 U4 24pin PALxxx ?
 U5 20pin SN74ALS245AN
 U6 20pin SN74ALS245AN
 U7 20pin SN74ALS244N
 U8 20pin SN74ALS244N
 U9 20pin SN74ALS245AN
 U10 20pin SN74ALS245AN

25. PSX Dev-Board Chipsets

- 985/1136 -

Unknown what COH-2000 was used for. One theory was that it's related to PSX-based

arcade cabinets. The 68pin connector might be also related to the 68pin PSX "Parallel I/O"

expansion port.

Sony DTL-H2010 (Black External CDROM Drive for DTL-H2000, CD-R compatible)

External front loading CDROM drive with Eject button. Connects to the blue 40pin

connector on DTL-H2000 boards.

The required cable consists of a Yamaichi NFS-40a female connector (blue connector on

DTL-H2000 side), 0.635mm pitch ribbon cable, and 3M Sub-D MDR40 connector (silver

connector on DTL-H2010 side). But caution: the odd/even pins on the cable are somewhat

swapped, on DTL-H2000 side the wires should be ordered 1,2,3,4,..,39,40, but on DTL-

H2010 side they should be ordered 2,1,4,3,..,40,39.

 U11 20pin SN74ALS244N
 S2 16pin 8bit DIP switch (ISA 15/14/13/12/11/10/9/8) ;I/O address bit15-8
 S1 8pin 4bit DIP switch (ISA 7/6/5/4) ;I/O address bit7-4
 S3 8pin 4bit DIP switch (BISO? 3/2/1/0) ;BISO? or BISD? or 8150?
 JPxx several jumpers (unknown purpose)
 Jx 98pin ISA Bus Cart-edge (2x31 basic pins, plus 2x18 extended pins)
 J5 68pin Connector on rear side (unknown purpose)

 IC101 100pin SONY CXD2515Q (Signal Processor + Servo Amp) ;\
 IC102 28pin BA6297AFP ; on mainboard
 ICxx 20pin SONY CXA1571N (RF Amp) (on tiny daughtboard) ; (HCMK-81X)
 CN101 21pin connector to DEX2010.SCH board ;
 CN10x 12pin connector to KSS-240A (laser pickup) ;
 S101 2pin pos0 switch or so? ;
 M101 2pin spindle motor ;/
 U1 20pin 74ALS244BN ;\
 U2 20pin 74ALS244BN ;
 U3 20pin 74ALS244BN ; on DEX2010.SCH board
 J1 2pin connector to EJECT BUTTON ;
 J2 5pin connector to LOADING MOTOR ;
 J3 21pin connector to mainboard ;
 JP1 40pin external connector to DTL-H2000 ;/
 CN151 5pin connector to DEX2010.SCH board ;\
 M151 2pin loading motor (eject motor) ; on CDM 14, CMK PSX board
 S151 2pin OUT SW ;\switches, probably to ;
 S152 2pin IN SW ;/sense load/eject status ;/
 CN1 2pin connector to DEX2010.SCH board ;\on DTL-H2010(1) board
 SW1 2pin eject button ;/

25. PSX Dev-Board Chipsets

- 986/1136 -

Sony DTL-H2510 (Gray Internal CDROM Drive)

This is some sort of a mimmicked front loading PC CDROM drive (consisting of a tray

that contains a normal (top-loading) PSX cdrom drive unit).

There is no eject button, unknown if there's some eject motor, or if one needs to push/

pull the drive tray manually.

Sony SCPH-9903 (Gray SCEx-free Playstation)

A rare SCEx-free Playstation that can boot from CDR's without SCEx strings; maybe

intended for beta-testers. Marked "Property of Sony Computer Entertainment", "U/C".

 IC309 80pin Sony CXD2510Q (CDROM Signal Processor)
 ICxx ?pin Unknown if there are further ICs (eg. CXA1782BR should exist?)
 CN1 10pin Connector to daughterboard (with drive unit)
 CN2 4pin Connector to PC power supply (12V/5V and 2xGND)
 CN3 50pin Connector to DTL-H2500 or so? (need "PCS-E50FC" plug?)

25. PSX Dev-Board Chipsets

- 987/1136 -

26. Hardware Numbers

Sony's own hardware (for PSX) (can be also used with PSone)

 SCPH-1000 PlayStation (1994) (NTSC-J) (with S-Video)
 SCPH-1001 PlayStation (1995) (NTSC-U/C) (without S-Video)
 SCPH-1002 PlayStation (199x) (PAL) (without S-Video)
 SCPH-1010 Digital joypad (with short cable) (1994)
 SCPH-1020 Memory Card 1Mbits (1994)
 SCPH-1030 2-button Mouse (with short cable) (1994)
 SCPH-1040 Serial Link Cable
 SCPH-1050 RGB Cable (21-pin RGB Connector)
 SCPH-1060 RFU Cable/Adaptor (antennae connector) (NTSC-JP?) (1995)
 SCPH-1061 RFU Cable/Adaptor (antennae connector) (NTSC-US?)
 SCPH-1062 RFU Cable/Adaptor (antennae connector) (PAL)
 SCPH-1070 Multitap adaptor (four controllers/memory cards on one slot) (1995)
 SCPH-1080 Digital joypad (with longer cable) (1996)
 SCPH-1090 2-button Mouse (with longer cable) (1998)
 SCPH-1100 S Video Cable (1995)
 SCPH-1110 Analog Joystick (1996)
 SCPH-1120 RFU Adaptor (antennae connector) (NTSC-JP?) (1996)
 SCPH-1121 RFU Adaptor (antennae connector) (NTSC-US?)
 SCPH-1122 RFU Adaptor (antennae connector) (PAL)
 SCPH-1130 AC Power Cord (1996)
 SCPH-1140 AV Cable (1997)
 SCPH-1150 Analog Joypad (with one vibration motor, with red/green led) (1997)
 SCPH-1160 AV Adaptor (1997)
 SCPH-1170 Memory Card Triple Pack (three Memory Cards) (1996)
 SCPH-1180 Analog Joypad (without vibration motors, with red/green led)
 SCPH-119X Memory Card (X=different colors) (1997)
 SCPH-1200 Analog Joypad (with two vibration motors) (dualshock) (1997)
 SCPH-1210 Memory Card Case (1998)
 SCPH-2000 Keyboard/Mouse adapter (PS/2 to PSX controller port; for Lightspan)
 SCPH-3000 PlayStation (1995) (NTSC-J) (with the S-video output removed)
 SCPH-3500 PlayStation Fighting Box (console bundled with 2 controllers)(1996)
 SCPH-4000 PocketStation (Memory Card with LCD-screen) (1999)
 SCPH-4010 VPick (guitar-pick controller) (for Quest for Fame, Stolen Song)
 SCPH-4020 Long Strap for PocketStation (1999)
 SCPH-4030 Wrist Strap for PocketStation (1999)
 SCPH-5000 PlayStation (cost reduced) (Japan) (1996) ;\exists in these three
 SCPH-5001 PlayStation (cost reduced) (North America) ; regions only (not
 SCPH-5003 PlayStation (Asia) ;/in Europe)
 SCPH-5500 PlayStation without Cinch sockets (ie. AV Multi Out only) (1996)(J)
 SCPH-5501 "" North American version of the 5500
 SCPH-5502 "" European version of the 5500 (shipped with 1 digital joypad)
 SCPH-5552 Same as SCPH-5502 (but shipped with memcard and 2 digital joypads)
 SCPH-5903 PlayStation with built-in MPEG Video-CD decoder (Asia-only)
 SCPH-7000 PlayStation with Dualshock (1997) (Japan)
 SCPH-7001 PlayStation with Dualshock (199x) (North America)
 SCPH-7002 PlayStation with Dualshock (199x) (Europe)

26. Hardware Numbers

- 988/1136 -

Sony's own hardware (for PSone)

Sony's own hardware (for PS2, can be used with PSX/PSone)

Sony's own devkits

 SCPH-7003 PlayStation with Dualshock (199x) (Asia)
 SCPH-7000W PlayStation (10 million model, not for sale, blue, region free)
 SCPH-7500 PlayStation with Dualshock, cost reduced (1999) (Japan)
 SCPH-7501 PlayStation with Dualshock, cost reduced (199x) (North America)
 SCPH-7502 PlayStation with Dualshock, cost reduced (199x) (Europe)
 SCPH-7503 PlayStation with Dualshock, cost reduced (199x) (Asia)
 SCPH-9000 PlayStation without Parallel I/O port (1999) (Japan)
 SCPH-9001 PlayStation without Parallel I/O port (199x) (North America)
 SCPH-9002 PlayStation without Parallel I/O port (199x) (Europe)
 SCPH-9003 PlayStation without Parallel I/O port (199x) (Asia)
 SCPH-9903 Rare SCEx-free PSX (Property of Sony Computer Entertainment, U/C)
 SFX-100 PlayStation Super Disc Prototype (with SNES chipset, no PSX chips)

 SCPH-100 PSone (miniaturized PlayStation) (2000) (Japan)
 SCPH-101 PSone (miniaturized PlayStation) (200x) (North America)
 SCPH-102 PSone (miniaturized PlayStation) (200x) (Europe)
 SCPH-103 PSone (miniaturized PlayStation) (200x) (Asia)
 SCPH-102A PSone Europe (UK/AU, with A/V cable) ;\revision of "SCPH-102"
 SCPH-102B PSone Europe (UK, with RFU adaptor) ; with PM-41(2) board ?
 SCPH-102C PSone Europe (Continent, with A/V cable) ;/
 SCPH-110 Dual Analog Pad (for PSone) (Dualshock) (2000)
 SCPH-111 Multitap for PSone (seems to be quite rare, except in brazil)
 SCPH-112 AC adapter for PSone (In: 110-220VAC, Out: 7.5VDC, 2.0A, Japan)
 SCPH-113 AC adapter for PSone (In: 120VAC/60Hz, Out: 7.5VDC, 2.0A, USA)
 SCPH-114 AC adapter for PSone (In: 220-240VAC, Out: 7.5VDC, 2.0A, Europe)
 SCPH-115 AC adapter for PSone (In: 220-240VAC, Out: 7.5VDC, 2.0A, UK)
 SCPH-116 AC adapter for PSone (In: 220-240VAC, Out: 7.5VDC, 2.0A, Australia)
 SCPH-117 AC adapter for PSone (In: 110VAC, Out: 7.5VDC, 2.0A, Asia?)
 SCPH-120 AC adapter for PSone with LCD Screen (In: 100VAC, Out: 7.5VDC, 3.0A)
 SCPH-130 LCD Screen for PSone (to be attached to the console) (2001)
 SCPH-140 PSone and LCD screen combo (2001)
 SCPH-152 LCD screen for PSone (PAL SCPH-152C)
 SCPH-162 PSone and LCD screen (PAL SCPH-162C)
 SCPH-170 Car Adapter for PSone from car cigarette lighter (2001)
 SCPH-180 AV Connection Cable for LCD-screen's AV IN
 SCPH-10180K DoCoMo I-Mode Adaptor Cable (for internet via mobile phones)

 SCPH-10150 PS2 DVD remote
 SCPH-10160 IR receiver dongle for PS2 DVD remote

 DTL-H201A Graphic Artist Board (ISA bus) (with NTSC video out)
 DTL-H240 PS-X RGB Cable
 DTL-H500C Digital joypad prototype (SNES-style design, with DB9 connector)

26. Hardware Numbers

- 989/1136 -

SN System / Psy-Q devkit add-ons / SCSI cards

Sony Licensed Hardware (Japan)

 DTL-H505 PS-X (Code Name) Target Box ? (PSX prototype, SCSI instead CDROM?)
 DTL-H700 Sound Artist Board (NuBus for Mac)
 DTL-H800 Sound Artist Board (PCI Bus for IBM) (with optical fibre sound out)
 DTL-H1000 Debugging Station (CD-R compatible PSX console) (Japan)
 DTL-H1001 Debugging Station (CD-R compatible PSX console) (North America)
 DTL-H1002 Debugging Station (CD-R compatible PSX console) (Europe)
 DTL-H1030 Mouse ?
 DTL-H1040 Link Cable ?
 DTL-H1050 RGB Cable ?
 DTL-H110x Debugging Station revision? (DC-powered)
 DTL-H120x Debugging Station revision? (AC-powered)
 DTL-H1500 Stand-Alone Box ? With ethernet, for SGI Workstation ?
 DTL-H2000 Dev board v1 (PSX on two ISA carts) (old pre-retail)
 DTL-H2010 Black External CDROM Drive for DTL-H2000 (CD-R compatible)
 DTL-H2040 Memory Box ?
 DTL-H2050 Adaptor for Controller port ?
 DTL-H2060 Serial Link cable
 DTL-H2070 RGB Cable ?
 DTL-H2080 Controller Box (joypad/memcard adaptor for DTL-H2000/DTL-xxxx?)
 DTL-H2500 Dev board (PCI bus)
 DTL-H2510 Gray Internal CDROM Drive for DTL-H2500/DTL-H2700 (CD-R compatible)
 DTL-H2700 Dev board (ISA bus) (CPU, ANALYZER ...?)
 DTL-H3000 Net Yaroze (hobby programmer dev kit) (Japan)
 DTL-H3001 Net Yaroze (hobby programmer dev kit) (North America)
 DTL-H3002 Net Yaroze (hobby programmer dev kit) (Europe)
 DTL-H3020 Access Card (for yaroze)
 DTL-H3050 Communication Cable (link port to rs232, for yaroze)
 DTL-D2020 Documentation: BUILD CD (Manual of Programmer's Tool)
 DTL-D2120 Documentation: (Manual of Programmer's Tool)
 DTL-D2130 Documentation: PsyQ (Manual of Programmer's Tool)
 DTL-D2130 Documentation: SdevTC (Manual of Programmer's Tool)
 DTL-D2140A Documentation: Ver.1.0 (Manual of Programmer's Tool)
 DTL-D2150A Documentation: Ver.2.0 (Manual of Programmer's Tool)

 DTL-S510B Unknown (another CDROM emulator version?)
 DTL-S2020 CD-ROM EMULATOR for DTL-H2000/DTL-H2500/DTL-H2700

 SLPH-00001 Namco neGcon (white) (NPC-101), Twist controller (SLEH-0003)
 SLPH-00002 Hori Fighting stick, digital stick with autofire/slowmotion/rumble
 SLPH-00003 ASCII Fighter stick V, psx-shaped digital stick (SLEH-0002)
 SLPH-00004 Sunsoft Sunstation pad, digital pad with autofire/slowmotion
 SLPH-00005 ASCII ASCIIPAD V, digital pad with autofire/slowmotion
 SLPH-00006 Imagineer Sandapaddo ThunderPad
 SLPH-00007 SANKYO N.ASUKA aka Nasca Pachinco Handle, bizarre paddle
 SLPH-00008 Spital SANGYO Programmable joystick
 SLPH-00009 Hori Fighting commander 2way controller
 SLPH-00010 Optec Super Pro Commander

26. Hardware Numbers

- 990/1136 -

 SLPH-00011 Super Pro Commander Accessory / Extended memo repack memory
 SLPH-00012 Hori Fighting Commander 10B Pad (gray), digital pad with extras
 SLPH-00013 Konami Hyper Blaster (green) ;\IRQ10-based Lightgun
 SLPH-00014 Konami Hyper Blaster (black) ;/(SLEH-0005/SLUH-00017)
 SLPH-00015 Namco Volume controller, paddle with 2 buttons
 SLPH-00016 Waka Up Scan Converter "[chiyo] clean! peripheral equipment?"
 SLPH-00017 Hori Fighting Commander 10B Pad (black), digital pad with extras
 SLPH-00018 Hori Real Arcade Stick, digital stick, small L1/L2 (HPS-10)
 SLPH-00019 Konami Hyperstick
 SLPH-00020 Imagineer Thunder Pad Transparent
 SLPH-00021 Imagineer Imagegun
 SLPH-00022 Optec AI Commander Pro, digital pad with extras / lcd display
 SLPH-00023 Namco Joystick (SLEH-00004)
 SLPH-00024 Optec Cockpit Wheel, analog joystick/analog pedals or so
 SLPH-00025 Optec AI Commander Accessory (extended memo repack ZERO2 version)
 SLPH-00026 Hori Command Stick PS (SLPH-00026 aka HPS11)
 SLPH-00027 ASCII Grip, single-handed digital pad (SLEH-00008)
 SLPH-00028 Hori Grip (gray) (see also: SLPH-00040, and 00086..00088)
 SLPH-00029 Hori Horipad (clear), digital pad
 SLPH-00030 Hori Horipad (black), digital pad
 SLPH-00031 Hori Horipad (gray), digital pad
 SLPH-00032 Hori Horipad (white), digital pad
 SLPH-00033 Hori Horipad (blue), digital pad
 SLPH-00034 Namco G-CON 45, Cinch-based Lightgun (SLEH-0007/SLUH-00035)
 SLPH-00035 ASCII Fighter stick V Jr. (SLEH-00009)
 SLPH-00036 Optec Wireless Dual Shot, digital pad with turbo button
 SLPH-00037 ?
 SLPH-00038 ASCII Pad V Jr., digital pad without any extras
 SLPH-00039 ASCII Pad V2 (gray), digital pad with turbo switches (SLEH-00010)
 SLPH-00040 Hori Grip (black)
 SLPH-00041 ASCII Grip V
 SLPH-00042 ASCII Grip V plus (Derby Stallion'99 supplement set), single-hand
 SLPH-00043 ASCII Pad V2 (clear pink)
 SLPH-00044 ASCII Pad V2 (clear white)
 SLPH-00045 ASCII Pad V2 (clear blue)
 SLPH-00046 ASCII Pad V2 (clear green)
 SLPH-00047 ASCII Pad V2 (clear black)
 SLPH-00048 ASCII Pad V2 (clear red/lead?)
 SLPH-00049 ASCII Pad V2 (clear yellow)
 SLPH-00050 ASCII Pad V2 (clear orange)
 SLPH-00051 Taito Streetcar GO! Controller 2 steering "wheel?" tie toe strange
 SLPH-00052 Koei Video Capture, Ergosoft EGWord, and Lexmark Printer bundle
 SLPH-00053 Koei Word Processor Ergosoft September EGWORD Ver.2.00
 SLPH-00054 Hori Zerotech Steering Controller (black)
 SLPH-00055 Hori Grip (clear blue)
 SLPH-00056 Hori Grip (clear pink)
 SLPH-00057 Hori Grip (clear yellow)
 SLPH-00058 ASCII Pad V2 (gold)
 SLPH-00059 ASCII Pad V2 (silver)
 SLPH-00060 ASCII Biohazard, digital pad with re-arranged buttons (SLEH-0011)
 SLPH-00061 ASCII Pad V2 (pearl white)
 SLPH-00062 ASCII Pad V2 (pearl blue)
 SLPH-00063 ASCII Pad V2 (pearl pink)
 SLPH-00064 ASCII Pad V2 (pearl green)

26. Hardware Numbers

- 991/1136 -

 SLPH-00065 ASCII Pad V Pro, with lcd for button-combinations (ASC-0508GX)
 SLPH-00066 ASCII Arcade Stick 3 "Ultimate"
 SLPH-00067 ASCII Pad V2 (purple metallic)
 SLPH-00068 ASCII Pad V2 (lead metallic)
 SLPH-00069 Namco neGcon (black) (NPC-104), Twist controller (SLEH-0003)
 SLPH-00070 Sankyo Pachinko FF Controller (alternate to SLPH-00007)
 SLPH-00071 Hori Command Stick PS Custom
 SLPH-00072 ASCII Command Pack (memory card add-on or so)
 SLPH-00073 Optec Wireless digital set (gray) ;\
 SLPH-00074 Optec Wireless digital set (black) ; pad with receiver
 SLPH-00075 Optec Wireless digital set (clear) ;
 SLPH-00076 Optec Wireless digital set (clear blue) ;
 SLPH-00077 Optec Wireless digital set (clear black) ;/
 SLPH-00078 Optec Wireless digital shot (gray) ;\
 SLPH-00079 Optec Wireless digital shot (black) ; extra pad for
 SLPH-00080 Optec Wireless digital shot (clear) ; second player
 SLPH-00081 Optec Wireless digital shot (clear blue) ; (without receiver)
 SLPH-00082 Optec Wireless digital shot (clear black) ;/
 SLPH-00083 ASCII Stick Justice controller
 SLPH-00084 Hori ZeroTech Steering Controller (clear)
 SLPH-00085 Hori Compact joystick (black)
 SLPH-00086 Hori Compact joystick (clear)
 SLPH-00087 Hori Compact joystick (clear blue)
 SLPH-00088 Hori Multi Analog Pad (clear) or Hori Grip (pink?)
 SLPH-00089 Hori AV Cable with selector
 SLPH-00090 Hori Multi Analogue Pad (clear black)
 SLPH-00091 Hori AV Multi-Out Converter
 SLPH-00092 ASCII Pad V2 (margin green)
 SLPH-00093 ASCII Pad V2 (margin blue)
 SLPH-00094 ASCII Pad V2 (margin pink)
 SLPH-00095 ASCII Pad V2 (margin orange)
 SLPH-00096 ASCII Hyper Steering V ("high pass tear ring V controller?")
 SLPH-00097 Hori S Cable with selector (uh, maybe S-video or so?) (HPS-36)
 SLPH-00098 NSYSCOM Pachinko slot controller (NSC-1)
 SLPH-00099 ASCII Pad V2 (rainbow)
 SLPH-00100 ASCII 'Hanging' Fishing Controller, controller for fishing games
 SLPH-00101 Optec Cockpit big shock
 SLPH-00102 ASCII Grip V (set for mars story)
 SLPH-00103 Hori Pad V2 (clear)
 SLPH-00104 Hori Pad V2 (clear blue)
 SLPH-00105 Hori Pad V2 (clear pink)
 SLPH-00106 Hori Pad V2 (black)
 SLPH-00107 Hori Compact Joystick (camouflage)
 SLPH-00108 Hori Rumble Digital Pad (clear blue)
 SLPH-00109 Hori Monoaural AV Cable
 SLPH-00110 ASCII Pad V2 (marble)
 SLPH-00111 ASCII Pad V2 (camouflage)
 SLPH-00112 ASCII Pad V3
 SLPH-00113 ASCII Pad V3 with cable reel
 SLPH-00114 ASCII Pad V3 with V2 (pearl white) bundle
 SLPH-00115 ASCII Pad V3 with V2 (pearl pink) bundle
 SLPH-00116 ASCII Pad V3 with V2 (pearl blue) bundle
 SLPH-00117 ASCII Pad V3 (blue) with V2 (pearl green) bundle
 SLPH-00118 Hori Pad V3

26. Hardware Numbers

- 992/1136 -

And, maybe unlicensed (they don't have official SLPH numbers, still they are listed as

official controllers on PSX CDROM back covers):

And whatever:

Sony Licensed Hardware (Europe)

 SLPH-00119 Hori Pad V3 (white)
 SLPH-00120 Hori Analog Rumble Pad (clear pink)
 SLPH-00121 Hori Analog Rumble Pad (clear)
 SLPH-00122 Hori Analog Rumble Pad (clear blue)
 SLPH-00123 Hori Analog Rumble Pad (clear red)
 SLPH-00124 Hori Analog Rumble Pad (clear black)
 SLPH-00125 Hori Analog Rumble Pad (clear yellow)
 SLPH-00126 Namco Jogcon, digital pad, steering dial (SLEH-0020/SLUH-00059)
 SLPH-00127 ?
 SLPH-00128 ASCII stick ZERO3
 SLPH-00129 ASCII Pad V2 (wood grain pitch)
 SLPH-00130 Hori Real Arcade (camouflage)
 SLPH-00131 Hori Ehrgeiz Stick
 SLPH-00132 ASCII Pad V3 (blue)
 SLPH-00133 ASCII Fighter Stick V Jr. (limited edition)
 SLPH-00134 ASCII Pad V3 (blue) with cable reel
 SLPH-00135 ASCII Pad V3 (blue) with V2 (silver)
 SLPH-00136 ASCII Pad V3 with V2 (purple metallic)
 SLPH-00137 ASCII Pad V3 with V2 (gold)
 SLPH-00138 ASCII Pad V3 with "VPRO. aka Ascii Fighter Stick V"
 SLPH-00139 Hori Analog Rumble Pad (gray)
 SLPH-00140 Hori Analog Rumble Pad (black)
 SLPH-00141 Hori Analog Rumble Pad (blue)

 ASC-05158B ASCII Beatmania Junk (similar to SLEH-0021)
 ASC-0528T Sammy Shakkato Tambourine
 BANC-0001 Bandai Fishing Controller
 BANC-0002 Bandai Kids Station
 RU017 Konami Dance Dance Revolution Controller (Dance Mat)
 GAE001 G.A.E. Baton stick with 2 buttons (for The Maestromusic)

 RU029 Konami Beatmania IIDX
 RU014 Konami Pop'n Music (buttons A,B,C,D,E,F,G,H,I, and Select/Start)
 RU014-J2 Konami Pop'n Controller 2
 RU036 Konami Pop'n Controller (Arcade Style)
 ? Produce! Paca Paca Passion
 ? Sega/Ascii Minimoni Shakatto Tambourine

 SLEH-00001 Ascii Specialized Pad (similar to SLPH-00005: ASCII ASCIIPAD V)
 SLEH-00002 Ascii Arcade Stick, psx-shaped digital stick (SLPH-00003)
 SLEH-00003 Namco Negcon, Twist controller (SLPH-00001)
 SLEH-00004 Namco Arcade Stick (SLPH-00023)
 SLEH-00005 Konami Hyper Blaster, IRQ10-based Lightgun (SLPH-00014/SLUH-00017)

26. Hardware Numbers

- 993/1136 -

And, maybe unlicensed:

Sony Licensed Hardware (USA)

 SLEH-00006 Mad Catz Steering Wheel (SLPH-?)
 SLEH-00007 Namco G-Con 45, Cinch-based Lightgun (SLPH-00034/SLUH-00035)
 SLEH-00008 Ascii Grip, single-handed digital pad (SLPH-00027/SLUH-00038)
 SLEH-00009 Ascii Arcade Stick v2 (SLPH-00035)
 SLEH-00010 Ascii Enhanced Control Pad (similar as SLEH-00001) (SLPH-00039)
 SLEH-00011 Resident Evil Pad (aka SLPH-00060 ASCII Biohazard)
 SLEH-00012 Reality-Quest The Glove (right-handed only) (SLUH-00045/SLPH-?)
 SLEH-00013 CD Case (small nylon bag for fourteen CDs) (SLPH-?)
 SLEH-00014 ?
 SLEH-00015 PlayStation Case (bigger bag for the console) (SLPH-?)
 SLEH-00016 PlayStation Case + Digital Joypad + Memory Card
 SLEH-00017 ?
 SLEH-00018 Ascii Sphere 360 (SLUH-00028/SLPH-?)
 SLEH-00019 Interact V3 Racing Wheel (SLPH-?)
 SLEH-00020 Namco JogCon, digital pad, steering dial (SLPH-00126/SLUH-00059)
 SLEH-00021 Konami Beatmania Controller (SLPH-?)
 SLEH-00022 ?
 SLEH-00023 Official Dance Mat (RU017/SLUH-00071) (for PSone and PS2)
 SLEH-00024 Fanatec Speedster 2 (wheel with pedals) (for PSone and PS2)
 SLEH-00025 Mad Catz 8MB Memory Card (for PS2)
 SLEH-00026 Olympus Eye-Trek FMD-20P Game/DVD glasses (for PS2)
 SLEH-00027 Logitech Cordless Controller... or Eye-Trek FMD-20P, too? (PSx?)
 SLEH-00028 ?
 SLEH-00029 Fanatec Speedster 3 (for PS2)
 SLEH-00030 Logitech Eye Toy (camera?) (for PS2)

 Mad Catz Wrist Rumbler (rumble add-on for pre-dualshock controllers)

 SLUH-00001 Specialized Joystick (single-axis, digital?)
 SLUH-00002 Control Pad (redesigned joypad)
 SLUH-00003 InterAct Piranha Pad, digital pad, autofire/slowmotion
 SLUH-00017 Konami Justifier, IRQ10-based Lightgun (Hyperblaster/SLPH-00014)
 SLUH-00018 Enhanced Pad (joypad with whatever extra functions)
 SLUH-00022 Analog and Digital Steering Wheel with pedals (for testdrive 4?)
 SLUH-00026 Optec Mach 1 (gray steering/flight controller with pedals)
 SLUH-00028 Ascii Sphere 360 (SLEH-00018)
 SLUH-00029 Namco NPC-102 Joystick (single-axis, digital?)
 SLUH-00031 Interact Program Pad
 SLUH-00033 Piranha Pad (redesigned joypad)
 SLUH-00034 NUBY Manufacturing The Heater, white lightgun (irq10 or cinch?)
 SLUH-00035 Namco G-CON 45, Cinch-based Lightgun (SLEH-0007/SLPH-00034)
 SLUH-00037 Arcade Stick (single-axis, digital?)
 SLUH-00038 ASCII Grip V, single-handed digital pad (SLPH-00027/SLEH-00008)
 SLUH-00040 System Organizer (huh? looks like... a black storage box?)
 SLUH-00041 V3 Racing Wheel with pedals
 SLUH-00043 GunCon (bundled with Time Crisis 1)
 SLUH-00044 Remote Wizard (looks like wireless joypad or so)
 SLUH-00045 Reality-Quest The Glove (right-handed only) (SLEH-00012/SLPH-?)

26. Hardware Numbers

- 994/1136 -

Sony Licensed Hardware (Asia)

Newer hardware add-ons?

Note

Early SLEH/SLUH devices used 4-digit numbers (eg. the "official" name for SLEH-00003

is SLEH-0003; unlike as shown in the above list).

Software (CDROM Game Codes)

 SLUH-00046 GunCon (bundled with Point Blank)
 SLUH-00055 Aftershock Wheel with pedals
 SLUH-00056 UltraRacer Steering Controller (grip-style)
 SLUH-00057 EA Sports Game Pad (redesigned joypad)
 SLUH-00058 something for point blank 2 (?) (maybe a lightgun)
 SLUH-00059 Namco Jogcon, digital pad, steering dial (SLEH-0020/SLPH-00126)
 SLUH-00061 MadCatz MC2 Racing Wheel (black/gray)
 SLUH-00063 Bass Landing Fishing Reel controller
 SLUH-00066 Sportster racing wheel
 SLUH-00068 Jungle Book Rhythm N Groove Dance Pack
 SLUH-00071 Konami Dance Pad (DDR Dance Pad) (RU017)
 SLUH-00072 GunCon (bundled with Point Blank 3)
 SLUH-00073 GunCon (bundled with Time Crisis 2 - Project Titan)
 SLUH-00077 Logitech Cordless Controller, analog pad (ps1/ps2)
 SLUH-00081 Logitech NetPlay Controller, pad with keyboard (usb/ps2)
 SLUH-00083 Konami Dance Dance Revolution Controller (for PS1 and PS2)
 SLUH-00084 NYKO iType2, pad with keyboard (usb/ps2)
 SLUH-00085 Logitech Cordless Action Controller (for PS2)
 SLUH-00086 Namco/Taiko Drum Master (Taiko Controller Pack) (for PS2)
 SLUH-00088 RedOctane In the Groove Dance Pad Controller ?
 SLUH-00090 Dance Pad (bundled with Pump It Up) (for PS2)

 Unknown (if any)

 SCEH-0001 SingStar (USB to Microfon) (for PS2)

 CPCS-00701 Dino Crisis 5th Anniversary Box Serial
 DTL-NNNNN Development Tool Licensed (Net Yaroze)
 ESPM-NNNNN Sony Music Entertainment Japan (Music Video Discs)
 LSP-NNNNNN Lightspan series (non-retail educational games)
 PAPX-NNNNN Japanese Demos/Rental Editions/Taikenban
 PBPX-NNNNN Official Playstation Sampler Discs (USA/UK)
 PCPX-NNNNN Japanese Otameshi Discs (Samplers)
 PEPX-NNNNN Analog Controller Service Disc
 PUPX-NNNNN Analog controller Service Disc
 PSRM-017100 Syphon Filter 2 Disc 2 Preview Version
 PSXCDCLEAN Laser Clean

26. Hardware Numbers

- 995/1136 -

Note: Multi-disc games have more than one game code. The game code for Disc 1 is also

printed on the CD cover, and used in memory card filenames. The per-disk game codes

are printed on the discs, and are used as boot-executable name in SYSTEM.CNF file.

There is no fixed rule for the multi-disc numbering; some games are using increasing

numbers of XNNNN or NNNNX (with X increasing from 0 upwards), and some are

randomly using values like NNNXX and NNNYY for different discs.

 PTPX-NNNNN Aging Disk
 SCAJ-NNNNN Sony Computer Entertainment America ... ?
 SCED-NNNNN Sony Computer Europe Demo
 SCES-NNNNN Sony Computer Europe Software
 SCPM-NNNNN Sony Computer Japan ...?
 SCPS-NNNNN Sony Computer Japan Software
 SCUS-NNNNN Sony Computer USA Software
 SCZS-NNNNN Sony Computer ... Software? (Fan Books)
 SIPS-NNNNN Sony Imports ...? (All Imports to Japan)
 SLED-NNNNN Sony Licensed Europe Demo
 SLES-NNNNN Sony Licensed Europe Software
 SLKA-NNNNN Sony Licensed Korea ...? (3 Korean Releases)
 SLPM-NNNNN Sony Licensed Japan ... ?
 SLPS-NNNNN Sony Licensed Japan Software
 SLUS-NNNNN Sony Licensed USA Software
 SPUS-NNNNN Sony Playstation US ...? (Playstation Picks Disc)

26. Hardware Numbers

- 996/1136 -

27. Pinouts

External Connectors

Pinouts - Controller Ports and Memory-Card Ports

Pinouts - Audio, Video, Power, Expansion Ports

Pinouts - SIO Pinouts

Internal Pinouts

Pinouts - Chipset Summary

Pinouts - CPU Pinouts

Pinouts - GPU Pinouts (for old 160-pin GPU)

Pinouts - GPU Pinouts (for new 208-pin GPU)

Pinouts - SPU Pinouts

Pinouts - DRV Pinouts

Pinouts - VCD Pinouts

Pinouts - HC05 Pinouts

Pinouts - MEM Pinouts

Pinouts - CLK Pinouts

Pinouts - PWR Pinouts

Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103

Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

Pinouts - Memory Cards

Mods/Upgrades

Mods - Nocash PSX-XBOO Upload

Mods - PAL/NTSC Color Mods

27. Pinouts

- 997/1136 -

27.1 Pinouts - Controller Ports and Memory-Card Ports

Controller Ports and Memory-Card Ports

Memory card slot: | 9 7 6 | 5 4 3 | 2 1 |
 |_=_=_=_|_=_=_=_|__=_=__|

 | 9 8 7 | 6 5 4 | 3 2 1 |

27.1 Pinouts - Controller Ports and Memory-Card Ports

- 998/1136 -

/CSn are two separate signals (/CS1 for controller/memory card port 1, /CS2 for port 2).

All other signals are exactly the same on all four connectors (with the memory card slots

lacking the /IRQ pin and shield).

/IRQ pin

Most or all controllers leave pin 8 unused, the pin can be used as lightpen input (not

sure if the CPU is automatically latching a timer somewhere?), if there's no auto-latched

timer, then the interrupt would be required to be handled as soon as possible; ie. don't

disable interrupts, and don't "halt" the CPU for longer periods (as far as I understood,

the GTE can halt the CPU when trying to read results of incomplete operations; to avoid

that, one could wait by software, eg. inserting NOPs, before reading GTE results...?)

(Some (or maybe all?) existing psx lightguns are reportedly connected to the Video

output on the Multiout port for determining the current cathode ray position though).

27.2 Pinouts - Audio, Video, Power, Expansion Ports

AV Multi Out (Audio/Video Port)

Controller port: | * * * | * * * | * * * |
 '______|_______|______/'

Pin Dir Name SIO0 pin Description

1 In DAT / MISO RX Serial data from device

2 Out CMD / MOSI TX Serial data to device

3 +7.5V Supply for rumble motors

4 GND Ground

5 +3.5V Supply for main logic

6 Out /CSn DTRn Port select

7 Out SCK SCK Serial data clock

8 In /IRQ /IRQ10 Lightgun IRQ (controller only)

9 In /ACK DSR Data acknowledge IRQ

 1 RGB-Video Green
 2 RGB-Video Red
 3 Supply +5.0V (eg. supply for external RF adaptor)
 4 RGB-Video Blue
 5 Supply Ground
 6 S-Video C (chrominance)

27.2 Pinouts - Audio, Video, Power, Expansion Ports

- 999/1136 -

The standard AV-cable connects only to Pins 7,9,10,11,12,Shield (with pin 1 and 3 and

Shield shortcut with each other, used for both audio and video ground).

The plug on that cable does have additional sparings for pin 1,3,5 (though without any

metal-contacts installed in there) (pin 3,5 would be used as supply for external RF

modulators) (no idea what pin 1 could be used for though?).

RGB displays may (or may not) be able to extract /SYNC from the Composite signal, if

that doesn't work, note that /SYNC (and separate /VSYNC, /HSYNC signals) are found on

the GPU pinouts, moreover, the GPU outputs 24bit digital RGB.

Not sure if a VGA monitor can be connected? The SYNC signals are there (see GPU

pinputs), but the vertical resolution is only 200/240 lines... standard VGA displays

probably support only 400/480 lines (or higher resolutions for newer multisync SVGA

displays) (as far as I know, the classic 200 lines VGA mode is actually outputting 400

lines, with each line repeated twice).

Parallel Port (PIO) (Expansion Port) (CN103)

This port exists only on older PSX boards (not on newer PSX boards, and not on PSone

boards).

The parallel port is used by various third-party unlicensed cheat cartridges and VCD

player addons, as well as by the PSIO optical drive emulator (see below).

 7 Composite Video (yellow cinch)
 8 S-Video Y (luminance) ____________________________
 9 Audio Left (white cinch) | |
 10 Audio Left Ground | 12 11 10 9 8 7 6 5 4 3 2 1 |
 11 Audio Right (red cinch) |____________________________|
 12 Audio Right Ground
 Shield Video Ground

 | | Console Rear View
 GND ==| 1 35 |== GND .-------------------------.
 /RESET =| 2 36 |= DACK5 |1 2 3 32 33 34|
 DREQ5 =| 3 37 |= /IRQ10 |35 36 37 66 67 68|
 /CS0 =| 4 38 |= /WR1 |__.-------------------.__|
(SBEN)GND =| 5 39 |= GND(CS2)
 D0 =| 6 40 |= D1
 D2 =| 7 41 |= D3
 D4 =| 8 42 |= D5
 D6 =| 9 43 |= D7
 D8 =|10 44 |= D9
 D10 =|11 45 |= D11
 D12 =|12 46 |= D13
 D14 =|13 47 |= D15
 A0 =|14 48 |= A1
 A2 =|15 49 |= A3

27.2 Pinouts - Audio, Video, Power, Expansion Ports

- 1000/1136 -

On a stock console, pin 5 is ground and pins 31 and 65 are not connected. These pins are

repurposed by the PSIO's switch board to allow the PSIO to emulate the CD-ROM drive;

when pin 5 (SBEN) is high, the switch board disconnects the CPU's /CS5 and /IRQ2 pins

from the CD drive and routes them to pins 65 and 31 respectively, allowing the PSIO to

take over. Pin 39 can also be repurposed in a similar way to allow /CS2 and thus the

internal BIOS ROM to be overridden.

For more details see:

pcsx-redux - PIO port

pcsx-redux - Switch Board

Internal Power Supply (PSX)

The PSX contains an internal power supply, however, like the PSone, it's only having a

"Standby" button, which merely disconnects 3.5V and 7.9V from the mainboard. The

actual power supply remains powered, and wastes energy day and night, thanks Sony!

External Power Supply (PSone)

 GND =|16 50 |= GND
 +3.5V ==|17 51 |== +3.5V
 +7.5V ==|18 52 |== +7.5V
 GND =|19 53 |= GND
 A4 =|20 54 |= A5
 A6 =|21 55 |= A7
 A8 =|22 56 |= A9
 A10 =|23 57 |= A11
 A12 =|24 58 |= A13
 A14 =|25 59 |= A15
 A16 =|26 60 |= A17
 A18 =|27 61 |= A19
 A20 =|28 62 |= A21
 A22 =|29 63 |= A23
 /RD =|30 64 |= /WR0
(/IRQ2)NC =|31 65 |= NC(/CS5)
 SYSCK =|32 66 |= LRCK
 BCLK =|33 67 |= SDIN
 GND ==|34 68 |== GND
 |________|

 Inner +7.5V DC 2.0A (inside diameter 0.8mm)
 Outer GND (outside diameter 5.0mm)

27.2 Pinouts - Audio, Video, Power, Expansion Ports

- 1001/1136 -

https://github.com/grumpycoders/pcsx-redux/wiki/PIO-port
https://github.com/grumpycoders/pcsx-redux/wiki/Switch-Board

27.3 Pinouts - SIO Pinouts

Serial Port

That port exists only on original Playstation (not on the PSone). The shape of the Serial

Port is identical to the 12pin Multiout (audio/video) port, but with only 8pins.

Can be used to communicate with another PSX via simple cable connection. With an

external RS232 adaptor (for voltage conversion) it could be also used to communicate

with a PC, a mouse, a modem, etc.

PSone Serial Port

The PSone doesn't have an external serial connector, however, easy to use soldering

points for serial port signals are found as cluster of 5 soldering points (below CPU

pin52), and a single soldering point (below CPU pin100), arranged like so (on PM-41

boards) (might be different on PM-41(2) boards):

The three outputs (RTS,DTR,TXD) are left floating, the RXD input is wired via a 1K ohm

pull-up resistor to 3.5V, the other two inputs (CTS,DSR) are wired via 1K ohm pull-down

resistors to GND.

If you want to upgrade the PSone, remove that resistors, and then install the PSX-style

serial circuit (as shown below), or, think of a more simplified circuit without (dis-)inverted

signals.

PSX Serial Port Connection (PU-23 board) (missing on PM-41 board)

The PSX serial circuit basically consists of a few transistors, diodes, and resistors. The

relevant part is that most of the signals are inverted - compared with RS232 signals, the

 1 SIO1 In RXD receive data (from remote TXD)
 2 SIO2 - VCC +3.5VDC (supply, eg. for voltage conversion)
 3 SIO3 In DSR (from remote DTR) _________________
 4 SIO4 Out TXD transmit data (to remote RXD) | |
 5 SIO5 In CTS clear to send (from remote RTS) | 8 7 6 5 4 3 2 1 |
 6 SIO6 Out DTR (to remote DSR) |_________________|
 7 SIO7 - GND Ground (supply, eg. for voltage conversion)
 8 SIO8 Out RTS request to send (to remote CTS)
 Shield GND Ground (to/from remote GND)

 CPU70.RTS
 CPU71.CTS CPU74.TxD
 CPU72.DTR CPU75.RxD CPU73.DSR

27.3 Pinouts - SIO Pinouts

- 1002/1136 -

CPU uses normal high/low levels (of course with 0V and 3.5V levels, not -12V and

+12V), and the signals at the serial port socket are inverted. Ie. if you want to built a

RS232 adaptor, you must either externally undo the inversion, or, disconnect the

transistors, and wire your circuit directly to the CPU signals.

All six signals are passed through fuses (or loops or so). The three inputs have 1K ohm

pull-ups, and diodes as protection against negative voltages, two of the inputs are

inverted via transistors, with 470 ohm pull-ups at the CPU side, the other input is passed

through 22 ohm to the CPU. The three outputs are also passed through 22 ohm, one of

them having a diode as negative voltage protection, the other two are inverted via

transistors (which may also serve as negative voltage protection).

Note that there is no positive voltage protection (ie. +12V inputs would do no good, also

strong -12V inputs might overheat the diodes/fuses, so if you want to use RS232

voltages, better use a circuit for voltage conversion).

Serial RS232 Adaptor

The PSX serial port uses 0V/3.5V logic, whilst RS232 uses -5V/+5V...-15V/+15V logic.

An example circuit for converting the logic levels would be:

 SIO8 SIO6 SIO4 SIO1 SIO3 SIO5 SIO2 SIO7---GND
 | | | | | | |
 FB112 FB114 FB116 FB115 FBnnn FBnnn o--L102-------3.5V
 | | | | | |
 | | o-------|-------|-------|--------diode-------GND
 | | | o-------|-------|--------diode-------GND
 | | | | o-------|--------diode-------GND
 | | | | | o--------diode-------GND
 | | | | | |
 | | | o-------|-------|--------[1K]--------3.5V
 | | | | o-------|--------[1K]--------3.5V
 [22] [22] [22] [22] | o--------[1K]--------3.5V
 | | | | | |
 Q105-----|-------|-------|-------|-------|--------------------GND
 | Q105-----|-------|-------|-------|--------------------GND
 | | | | Q106-----|--------------------GND
 | | | | | Q106------------------GND
 | | | | | |
 | | | | o-------|--------[470]-------3.5V
 | | | | | o--------[470]-------3.5V
 | | | | | |
 RTS DTR TxD RxD DSR CTS
 CPU70 CPU72 CPU74 CPU75 CPU73 CPU71 <-- CPU Pin Numbers
 out out out in in in

27.3 Pinouts - SIO Pinouts

- 1003/1136 -

Parts List: 1 or 2 MAX232 chips (voltage conversion), 0 or 1 7400 (NAND, used as

inverter), 4 or 8 1uF/16V capacitors, 1x 10uF/16V capacitor, 1x 9pin male SubD plug.

The four inverters are needed only for external adapters (which need to undo the

transistor inversion on the PSX mainboard) (ie. the inverters are not needed when when

connecting the circuit directly to the PSX CPU).

The second MAX232 chip is needed only if DTR/DSR "not ready" conditions are required

(for an "always ready" condition: DSUB.4.DTR can be wired to -8.5V, which is available at

Pin6 of the first MAX232 chip, and PSX.DSR can be wired to +3.5V).

With the above DSUB pin numbers, peripherals like mice or modems can be connected

directly to the circuit. For connection to another computer, use a "null modem" cable (with

crossed RXD/TXD, RTS/CTS, DTR/DSR wires).

The circuit works with both VCC=5V (default for MAX232) and with VCC=3.5V (resulting

in slightly weaker signals, but still strong enough even for serial mice; which are mis-

using the RS232 signals as power supply).

27.4 Pinouts - Chipset Summary

PSX/PSone Mainboards

 PSX.VCC--+||--PSX.GND PSX.GND----DSUB.5.GND----DSUB.SHIELD DSUB.1,9----NC
 ______ ______
 ,-----------||+-|1 16|-------PSX.VCC ,-----------||+-|1 16|-------PSX.VCC
 | PSX.GND---||+-|2 15|-------PSX.GND | PSX.GND---||+-|2 15|-------PSX.GND
 '---------------|3 14|----DSUB.3.TXD '---------------|3 14|--- N/A
 ,---+||--|4 13|----DSUB.2.RXD ,---+||--|4 13|--- N/A
 '--------|5 12|-------PSX.RXD '--------|5 12|--- N/A
 PSX.GND--+||--|6 11|-------PSX.TXD PSX.GND--+||--|6 11|--- N/A
 DSUB.7.RTS----|7 10|--o<|--PSX.RTS DSUB.4.DTR----|7 10|--o<|--PSX.DTR
 DSUB.8.CTS----|8 9|--|>o--PSX.CTS DSUB.6.DSR----|8 9|--|>o--PSX.DSR
 |______| |______|

 Board Expl.
 PU-7 PSX, with AV multiout+cinch+svideo, GPU in two chips (160+64pins)
 PU-8 PSX, with AV multiout+cinch, four 8bit Main RAM chips
 EARLY-PU-8: "PU-8 1-658-467-11, N4" --> old chipset, resembles PU-7
 LATE-PU-8: "PU-8 1-658-467-22, N6" --> new chipset, other as PU-7
 PU-9 PSX, without SCPH-number (just sticker saying "NOT FOR SALE, SONY)
 PU-16 PSX, with extra Video CD daughterboard (for SCPH-5903)
 PU-18 PSX, with AV multiout only, single 32bit Main RAM (instead 4x8bit)
 PU-20 PSX, unknown if/how it differs from PU-18
 PU-22 PSX, unknown if/how it differs from PU-18
 PU-23 PSX, with serial port, but without expansion port
 PM-41 PSone, older PSone, for GPU/SPU with RAM on-board (see revisions)
 PM-41(2) PSone, newer PSone, for GPU/SPU with RAM on-chip

27.4 Pinouts - Chipset Summary

- 1004/1136 -

There are at least two revisions of the "PM-41" board:

The "incomplete" board reportedly requires to solder one wire to the multiout port to

make it fully functional... though no idea which wire... looks like the +5V supply? Also,

the capacitors near multiout are arranged slightly differently.

CPU chips

These chips contain the MIPS CPU, COP0, and COP2 (aka GTE), MDEC and DMA.

GPU chips - Graphics Processing Unit

SPU chips - Sound Processing Unit

IC106 CPU-RAM / Main RAM chips

 PM-41, 1-679-335-21 PSone with incomplete RGB signals on multiout port
 PM-41, 1-679-335-51 PSone with complete RGB signals on multiout port

 IC103 - 208pin - "SONY CXD8530BQ" ;seen on PU-7 board
 IC103 - 208pin - "SONY CXD8530CQ" ;seen on PU-7 and PU-8 boards
 IC103 - 208pin - "SONY CXD8606Q" ;seen in PU-18 schematic
 IC103 - 208pin - "SONY CXD8606AQ" ;seen on PU-xx? board
 IC103 - 208pin - "SONY CXD8606BQ" ;seen on PM-41, PU-23, PU-20 boards
 IC103 - 208pin - "SONY CXD8606CQ" ;seen on PM-41 board, too

 IC203 - 160pin - "SONY CXD8514Q" ;seen on PU-7 and EARLY-PU-8 boards
 IC203 - 208pin - "SONY CXD8561Q" ;seen on LATE-PU-8 board
 IC203 - 208pin - "SONY CXD8561BQ" ;seen on PU-18, PU-20 boards
 IC203 - 208pin - "SONY CXD8561CQ" ;seen on PM-41 board
 IC203 - 208pin - "SONY CXD9500Q" ;with on-chip RAM ;for PM-41(2) board
 IC21 - 208pin - "SONY CXD8538Q" ;seen on GP-11 (namco System 11) boards
 IC103 - 208pin - "SONY CXD8654Q" ;seen on GP-15 (namco System 12) boards

 IC308 - 100pin - "SONY CXD2922Q" (SPU) ;PU-7 and EARLY-PU-8
 IC308 - 100pin - "SONY CXD2922BQ"(SPU) ;EARLY-PU-8
 IC308 - 100pin - "SONY CXD2925Q" (SPU) ;LATE-PU-8, PU-18, PU-20
 IC732 - 208pin - "SONY CXD2938Q" (SPU+CDROM) ;PSone/PM-41 Board
 IC732 - 176pin - "SONY CXD2941R" (SPU+CDROM+SPU_RAM) ;PSone/PM-41(2) Board
 IC402 - 24pin - "AKM AK4309VM" (Serial 2x16bit DAC);older boards only
 IC405 - 8pin - "NJM2100E (TE2)" Audio Amplifier ;PU-8 and PU-22 boards
 IC405 - 14pin - "NJM2174" Audio Amplifier with Mute ;later boards

27.4 Pinouts - Chipset Summary

- 1005/1136 -

GPU-RAM / Video RAM chips

Note: The older 64pin VRAM chips are special dual-ported DRAM, the newer 100pin VRAM

chips are just regular DRAM.

Note: The PM-41 board uses a 2MB VRAM chip (but allows to access only 1MB)

Note: The PM-41(2) board has on-chip RAM in the GPU (no external memory chip)

IC310 - SPU-RAM - Sound RAM chips

Note: The PM-41(2) board has on-chip RAM in the SPU (no external memory chip)

BIOS ROM

Oscillators and Clock Multiplier/Divider

Voltage Converter (for +7.5V to +5.0V conversion)

 IC106/IC107/IC108/IC109 - NEC 424805AL-A60 (28pin, 512Kx8) (PU-8 board)
 IC106 - "Samsung K4Q153212M-JC60" (70pin, 512Kx32) (newer boards)
 IC106 - "Toshiba T7X16 (70pin, 512Kx32) (newer boards, too)

 IC201 - 64pin NEC uPD482445LGW-A70-S ;VRAM ;\on PU-7 and EARLY-PU-8 board
 IC202 - 64pin NEC uPD482445LGW-A70-S ;VRAM ;/split into 2 chips !
 IC201 - 64pin SEC KM4216Y256G-60 ;VRAM ;\on other PU-7 board
 IC202 - 64pin SEC KM4216Y256G-60 ;VRAM ;/split into 2 chips !
 IC201 - 100pin - Samsung KM4132G271BQ-10 (128Kx32x2) ;-on later boards
 IC201 - 100pin - Samsung K4G163222A-PC70 (256Kx32x2) ;-on PM-41

 IC310 - 40pin - "TOSHIBA TC51V4260DJ-70" ;seen on PU-8 board
 IC310 - 40pin - EliteMT M11B416256A-35J (256K x 16bit)

 IC102 - 40pin - "SONY ..." ;seen on PU-7 & early-PU-8 board (40pin!)
 IC102 - 44pin - "SONY M538032E-02" ;seen on PU-16 (video CD, 1Mbyte BIOS)
 IC102 - 32pin - "SONY M534031C-25" ;seen on later-PU-8 board
 IC102 - 32pin - "SONY 2022" ;seen on PU-8 (1-658-467-23)
 IC102 - 32pin - "SONY 2030" ;seen on PU-18 board
 IC102 - 32pin - "SONY M534031E-47" ;seen on PM-41 board and PM-41(2)
 IC102 - 32pin - "SONY M27V401D-41" ;seen on PM-41 board, too

 X101 - 4pin - "67.737" (NTSC, presumably) ;PU-7 .. PU-20
 X201 - 2pin - "17.734" (PAL) or "14.318" (NTSC) ;PU-22 .. PM-41(2)
 IC204 - 8pin - "2294A" (PAL) or <unknown?> (NTSC) ;PU-22 .. PM-41(2)

27.4 Pinouts - Chipset Summary

- 1006/1136 -

Pulse-Width-Modulation Power-Control Chip

The PM-41 board has locations for both IC606 and IC607, some boards have the bigger

IC606 (10mm) installed, others the smaller IC607 (5mm), both chips have exactly the

same pinouts, the only difference is the size.

Reset Generator

CDROM Chips

Note: The SUB-CPU contains an on-chip BIOS (which does exist in at least seven

versions, plus US/JP/PAL-region variants, plus region-free debug variants).

RGB Chips

 IC601 - 3pin - "78M05" or "78005" ;used in PSone

 IC606 16pin/10mm "TL594CD" (alternately to IC607) ;seen on PM-41 board
 IC607 16pin/5mm "T594" (alternately to IC606) ;seen on PM-41 board, too

 IC002 - 8pin - <not installed> (would be alternately to IC003) ;\on PSone
 IC003 - 5pin - <usually installed> ;/
 IC101 - 5pin - M51957B (Reset Generator) (on PSX-power supply boards)

 U42 80pin SUB-CPU (CXP82300) with piggyback EPROM ;DTL-H2000
 IC304 80pin SUB-CPU (MC68HC05L16) 80pin package ;PU-7 and EARLY-PU-8
 IC304 52pin SUB-CPU (MC68HC05G6) 52pin package ;LATE-PU-8 and up
 IC305 - 100pin SONY CXD1199BQ (Decoder/FIFO) ;PU-7
 IC305 - 100pin SONY CXD1815Q (Decoder/FIFO) ;PU-8, PU-18
 IC309 - 100pin SONY CXD2516Q (Signal Processor) ;PU-7 (100pin!)
 IC309 - 80pin SONY CXD2510Q (Signal Processor) ;PU-8 and DTL-H2510
 IC702 - 48pin SONY CXA1782BR (Servo Amplifier) ;PU-7, PU-8
 IC101 - 100pin SONY CXD2515Q (=CXD2510Q+CXA1782BR) ;DTL-H2010
 IC701 - 100pin SONY CXD2545Q (=CXD2510Q+CXA1782BR) ;PU-18
 IC720 - 144pin SONY CXD1817R (=CXD2545Q+CXD1815Q) ;PU-20
 IC102 - 28pin - "BA6297AFP" ;seen on DTL-H2010 drives
 IC704 - 28pin - "BA6398FP" ;seen on PU-7
 IC722 - 28pin - "BA6397FP" ;seen on late PU-8
 IC722 - 28pin - "BA5947FP" ;seen on PM-41 and various boards
 IC722 - 28pin - "Panasonic AN8732SB" ;seen on PM-41 board
 ICxxx - 20pin SONY CXA1571N (RF Amplifier) (on DTL-H2010 drives)
 IC703 - 20pin SONY CXA1791N (RF Amplifier) (on PU-18 boards)
 IC723 - 20pin SONY CXA2575N-T4 (RF Matrix Amplifier) (on PU-22 .. PM-41(2))

27.4 Pinouts - Chipset Summary

- 1007/1136 -

MISC

Controller/Memory Card Chips

 IC207 64pin "SONY CXD2923AR" VRAM Data to Analog RGB ;\oldest
 IC501 24pin "SONY CXA1645M" Analog RGB to Composite ;/
 IC202 44pin "Philips TDA8771H" Digital RGB to Analog RGB ;\old boards
 IC202 44pin "Motorola MC141685FT" Digital RGB to Analog RGB ;/
 IC? 48pin "H7240AKV" 24bit RGB to Analog+Composite ;-SCPH-7001?
 IC502 48pin "SONY CXA2106R-T4" 24bit RGB to Analog+Composite ;-newer boards

 CDROM Drive: "KSM-440BAM" ;seen used with PM-41 board
 IC602 5pin "L/\1B" or "<symbol> 3DR"

 U? 24pin "9625H, CFS8121" ;SCPH-1080, digital pad (alternate?)
 U? ?pin "SC438001" ;SCPH-1080, digital pad (alternate?)
 U? 32pin "(M), SC401800" ;SCPH-1080, digital pad
 U? 32pin "(M), SC442116" ;SCPH-xxxx, mouse
 IC? 64pin "SONY CXD103, -166Q" ;SCPH-1070, multitap
 U1 42pin "SD657, 9702K3006" ;SCPH-1150, analog pad, single motor
 U1 42pin "SD657, 9726K3002" ;SCPH-1180, analog pad, without motor
 U1 44pin "SONY CXD8771Q" ;SCPH-1200, analog pad, two motors (PSX)
 U1 44pin "SD707, 039 107" ;SCPH-110, analog pad, two motors (PSone)
 U1 44pin "SD787A" ;SCPH-xxx, analog pad, two motors (PS2?)
 U? 64pin "SONY CXD8732AQ" ;SCPH-1020, memory card, on-chip FLASH
 U? XXpin other chips ;SCPH-xxxx, memory card, external FLASH
 U1 44pin "NAMCO103P" ;NPC-103, namco lightgun

27.4 Pinouts - Chipset Summary

- 1008/1136 -

27.5 Pinouts - CPU Pinouts

CPU Pinouts (IC103)

27.5 Pinouts - CPU Pinouts

- 1009/1136 -

Pin Name Pin Name Pin Name Pin Name

1 VDD 53 VDD 105 VDD 157 VDD

2 VDD 54 VDD 106 VDD 158 VDD

3 CRYSTALN 55 RAM.A11 107 SBUS.D0 159 TIMER1.CLK

4 CRYSTALP 56 RAM.A10 108 SBUS.D1 160 TIMER0.CLK

5 RAM.D31 57 RAM.A9 109 SBUS.D2 161 GPU.D0

6 RAM.D30 58 RAM.A8 110 SBUS.D3 162 GPU.D1

7 RAM.D29 59 RAM.A7 111 SBUS.D4 163 GPU.D2

8 RAM.D28 60 RAM.A6 112 SBUS.D5 164 GPU.D3

9 RAM.D27 61 RAM.A5 113 SBUS.D6 165 GPU.D4

10 RAM.D26 62 RAM.A4 114 SBUS.D7 166 GPU.D5

11 RAM.D25 63 RAM.A3 115 SBUS.D8 167 GPU.D6

12 RAM.D24 64 RAM.A2 116 SBUS.D9 168 GPU.D7

13 RAM.D23 65 GND 117 GND 169 GPU.D8

14 VDD 66 VDD 118 VDD 170 GND

15 GND 67 RAM.A1 119 SBUS.D10 171 VDD

16 RAM.D22 68 RAM.A0 120 SBUS.D11 172 GPU.D9

17 RAM.D21 69 /RC_NET 121 SBUS.D12 173 GPU.D10

18 RAM.D20 70 SIO1./RTS 122 SBUS.D13 174 GPU.D11

19 RAM.D19 71 SIO1./CTS 123 SBUS.D14 175 GPU.D12

20 RAM.D18 72 SIO1./DTR 124 SBUS.D15 176 GPU.D13

21 RAM.D17 73 SIO1./DSR 125 SBUS.A0 177 GPU.D14

22 RAM.D16 74 SIO1.TX 126 SBUS.A1 178 GPU.D15

23 RAM.D15 75 SIO1.RX 127 SBUS.A2 179 GPU.D16

24 RAM.D14 76 /EXT_RESET 128 SBUS.A3 180 GPU.D17

25 RAM.D13 77 SIO0./DTR2 129 SBUS.A4 181 GPU.D18

26 VDD 78 GND 130 GND 182 GND

27 GND 79 VDD 131 VDD 183 VDD

28 RAM.D12 80 SIO0./DTR1 132 SBUS.A5 184 GPU.D19

29 RAM.D11 81 SIO0./SCK 133 SBUS.A6 185 GPU.D20

30 RAM.D10 82 SIO0./DSR 134 SBUS.A7 186 GPU.D21

31 RAM.D9 83 SIO0.TX 135 SBUS.A8 187 GPU.D22

32 RAM.D8 84 SIO0.RX 136 SBUS.A9 188 GPU.D23

33 RAM.D7 85 SBUS.DACK5_PIO 137 SBUS.A10 189 GPU.D24

27.5 Pinouts - CPU Pinouts

- 1010/1136 -

Pin5-68 = Main RAM bus. Pin 95-152 = System bus. Pin 102,153,159-206 = Video bus.

CPU Pinout Notes

On (some?) retail consoles, RAM.A11 is wired to the RAM chips' A8 line, while RAM.A8

and RAM.A10 are left unconnected.

RAM./RAS1 is only used on systems with 4 or 8 MB RAM.

/RC_NET is tied to 3.5V, while /CSHTST (test pin?) is wired to ground.

SYSCK0 (33 MHz), DSYSCK0 (67 MHz) and SYSCK1 (33 MHz) are clock outputs from

the CPU to the rest of the system.

TIMER0.CLK is fed from the GPU's DOTCK output, while TIMER1.CLK is fed from its

HBLANK output.

Pin Name Pin Name Pin Name Pin Name

34 RAM.D6 86 SBUS.DREQ5_PIO 138 SBUS.A11 190 GPU.D25

35 RAM.D5 87 SBUS.DACK4_SPU 139 SBUS.A12 191 GPU.D26

36 RAM.D4 88 SBUS.DREQ4_SPU 140 SBUS.A13 192 GPU.D27

37 RAM.D3 89 /IRQ10_PIO 141 SBUS.A14 193 GPU.D28

38 VDD 90 /IRQ9_SPU 142 SBUS.A15 194 GPU.D29

39 GND 91 GND 143 GND 195 GND

40 RAM.D2 92 VDD 144 VDD 196 VDD

41 RAM.D1 93 /CSHTST 145 SBUS.A16 197 GPU.D30

42 RAM.D0 94 /IRQ2_CDROM 146 SBUS.A17 198 GPU.D31

43 RAM./WE 95 SBUS./

CS5_CDROM

147 SBUS.A18 199 /IRQ0

44 RAM./RAS1 96 SBUS./CS4_SPU 148 SBUS.A19 200 GPU.DREQ2

45 RAM./RAS0 97 SBUS./CS2_BIOS 149 SBUS.A20 201 SYSCK0

46 RAM./CAS3 98 SBUS./CS0_EXP1 150 SBUS.A21 202 GPU.DACK2

47 RAM./CAS2 99 SBUS./WR1 151 SBUS.A22 203 GPU./WR

48 RAM./CAS1 100 SBUS./WR0 152 SBUS.A23 204 GPU./RD

49 RAM./CAS0 101 SBUS./RD 153 GPU.A0 205 GPU./CS7

50 VDD 102 /IRQ1_GPU 154 SYSCK1 206 DSYSCK0

51 GND 103 GND 155 GND 207 GND

52 GND 104 GND 156 GND 208 GND

•

•

•

•

•

27.5 Pinouts - CPU Pinouts

- 1011/1136 -

CRYSTALP and CRYSTALN are meant to be connected to a crystal, however all known

console models feed CRYSTALP with the clock generated by an external oscillator and

leave CRYSTALN open.

SBUS./WR1 (upper byte write strobe) is routed to the expansion port but otherwise

left unused, as all system bus devices are either 8-bit (CD-ROM, BIOS ROM) or only

support 16-bit writes (SPU).

SBUS.A0-SBUS.A23 are latched outputs and are not affected by RAM and GPU

addressing.

27.6 Pinouts - GPU Pinouts (for old 160-pin GPU)

Old 160-pin GPU is used on PU-7 boards and EARLY-PU-8 boards.

IC203 - Sony CXD8514Q - Old 160pin GPU for use with Dual-ported VRAM

Unlike the later 208pin GPU's, the old 160pin GPU has less supply pins, and, it doesn't

have a 24bit RGB output (nor any other video output at all), instead, it's used with a

RGB D/A converter that reads the video data directly from the Dual-ported VRAM chips

(ie. from special RAM chips with two data busses, one bus for GPU read/write access,

and one for the RGB video output).

•

•

•

 1-VCC 21-GND 41-D16 61-D2 81-D12'a 101-GND 121-D7'b 141-GND
 2-GND 22-D31 42-D15 62-D1 82-D11'a 102-DT/OE'b 122-D6'b 142-53MHz
 3-/GPUCS 23-D30 43-VCC 63-D0 83-D10'a 103-DT/OE'a 123-D5'b 143-VCC
 4-GPU.A2 24-D29 44-GND 64-GND 84-D9'a 104-/RAS 124-D4'b 144-GND
 5-/GPURD 25-D28 45-D14 65-VCC 85-D8'a 105-/WE'a 125-D3'b 145-FSC
 6-/GPUWR 26-D27 46-D13 66-A8'a 86-VCC 106-/WE'b 126-D2'b 146-VCC
 7-DACK2 27-D26 47-D12 67-A7'a 87-GND 107-/SE 127-D1'b 147-GND
 8-/RESET 28-VCC 48-D11 68-A6'a 88-D7'a 108-SC 128-D0'b 148-DOTCLK
 9-VCC 29-GND 49-D10 69-A5'a 89-D6'a 109-VCC 129-VCC 149-VCC
 10-GND 30-D25 50-GND 70-GND 90-D5'a 110-GND 130-GND 150-GND
 11-SYSCK0 31-D24 51-VCC 71-A4'a 91-D4'a 111-D15'b 131-A8'b 151-MEMCK1
 12-VCC 32-D23 52-D9 72-A3'a 92-D3'a 112-D14'b 132-A7'b 152-MEMCK2
 13-GND 33-D22 53-D8 73-A2'a 93-D2'a 113-D13'b 133-A6'b 153-BLANK
 14-DREQ2 34-D21 54-D7 74-A1'a 94-D1'a 114-D12'b 134-A5'b 154-/24BPP
 15-/IRQ1 35-D20 55-D6 75-A0'a 95-D0'a 115-D11'b 135-A4'b 155-/CSYNC
 16-HBLANK 36-VCC 56-D5 76-GND 96-VCC 116-D10'b 136-A3'b 156-/HSYNC
 17-VBLANK 37-GND 57-D4 77-VCC 97-DSF 117-D9'b 137-A2'b 157-/VSYNC
 18-high? 38-D19 58-D3 78-D15'a 98-/CAS'b 118-D8'b 138-A1'b 158-VCC
 19-high? 39-D18 59-GND 79-D14'a 99-/CAS'a 119-VCC 139-A0'b 159-GND
 20-VCC 40-D17 60-VCC 80-D13'a 100-VCC 120-GND 140-VCC 160-DSYSCK0

27.6 Pinouts - GPU Pinouts (for old 160-pin GPU)

- 1012/1136 -

Pin 1-63,148,160 = CPU Bus, Pin 66-139 = VRAM Bus (two chips, A and B), Pin 142-155

= Misc (CXA and RGB chips), Pin 18-19,156-157 = Test points.

Pin 3,5,6,11,98,99,102,103,108,148,160 via 22 ohm. Pin 104,105,106 via 100 ohm. Pin

107 via 220 ohm. Pin 155 via 2200 ohm. Pin 145 via 220+2200 ohm.

IC207 - SONY CXD2923AR - Digital VRAM to Analog RGB Converter (for old GPU)

This chip is used with the old 160pin GPU and two Dual-ported VRAM chips. The 2x16bit

databus is capable of reading up to 32bits of VRAM data, and the chip does then extract

the 15bit or 24bit RGB values from that data (depending on the GPU's current color

depth).

The RGB outputs (pin 5,7,9) seem to be passed through transistors and capacitors... not

sure how the capacitors could output constant voltage levels... unless the RGB signals

are actually some kind of edge-triggering PWM pulses rather than real analog levels(?)

Pin 5,7,9 = RGB outputs (via transistors and capacitors?), Pin 18-22 = GPU, Pin 25-59 =

VRAM (chip A and B), Pin 1-2,11-13,63 = Test points.

IC201 - 64pin NEC uPD482445LGW-A70-S or SEC KM4216Y256G-60 (VRAM 256Kx16)

IC202 - 64pin NEC uPD482445LGW-A70-S or SEC KM4216Y256G-60 (VRAM 256Kx16)

These are special Dual-ported VRAM chips (with two data busses), the D0-D15 pins are

wired to the GPU (for read/write access), the Q0-Q15 pins are wired to the RGB D/A

converter (for sequential video output).

 151-? --- (mem clock?)
 152-? (mem clock?)
 153-BLANK (high in HBLANK & VBLANK)
 154-/24BPP (high=15bpp, low=24bpp)
 156-/HSYNC rate:65us=15KHz, low:3.5us
 157-/VSYNC rate:20ms=50Hz, low:130us=TwoLines

 1-test? 9-BLUE 17-GND 25-D0'a 33-D8'a 41-D15'a 49-D7'b 57-D13'b
 2-test? 10-Vxx 18-MEMCK1 26-D1'a 34-D9'a 42-D0'b 50-D8'b 58-D14'b
 3-Vxx 11-test? 19-/24BPP 27-D2'a 35-D10'a 43-D1'b 51-D9'b 59-D15'b
 4-Vxx 12-test? 20-MEMCK2 28-D3'a 36-D11'a 44-D2'b 52-D10'b 60-GND
 5-RED 13-test? 21-BLANK 29-D4'a 37-D12'a 45-D3'b 53-D11'b 61-GND
 6-Vxx 14-aGND? 22-DOTCLK 30-D5'a 38-D13'a 46-D4'b 54-D12'b 62-GND
 7-GREEN 15-aGND? 23-GND 31-D6'a 39-D14'a 47-D5'b 55-GND 63-test?
 8-GND 16-aGND? 24-Vxx 32-D7'a 40-GND 48-D6'b 56-Vxx 64-GND

27.6 Pinouts - GPU Pinouts (for old 160-pin GPU)

- 1013/1136 -

The 8bit /LWE and /UWE write signals are shortcut with each other and wired to the GPU's

16bit /WE write signal.

IC501 24pin "SONY CXA1645M" Analog RGB to Composite (older boards only)

Used only on older boards (eg. PU-7, PU-8, PU-16), newer boards generate composite

signal via 48pin IC502.

Pin7 (NPIN): NTSC=VCC, PAL=GND. Pin6 (SCIN aka FSC): Sub Carrier aka PAL/NTSC

color clock, which can be derived from three different sources:

for the color clocks from GPU pins, the GPU does try to automatically generate PAL or

NTSC clock depending on current frame rate, which is resulting in "wrong" color clock

when chaning between 50Hz/60Hz mode).

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

New 206-pin GPU is used LATE-PU-8 boards and up.

 1-VCC 9-Q2 17-D5 25-/UWE 33-GND 41-DSF 49-Q10 57-VCC
 2-/DT/OE 10-D2 18-VCC 26-/RAS 34-A3 42-GND 50-D11 58-D14
 3-GND 11-Q3 19-Q6 27-A8 35-A2 43-D8 51-Q11 59-Q14
 4-Q0 12-D3 20-D6 28-A7 36-A1 44-Q8 52-GND 60-D15
 5-D0 13-GND 21-Q7 29-A6 37-A0 45-D9 53-D12 61-Q15
 6-Q1 14-Q4 22-D7 30-A5 38-QSF 46-Q9 54-Q12 62-GND
 7-D1 15-D4 23-GND 31-A4 39-/CAS 47-VCC 55-D13 63-/SE
 8-VCC 16-Q5 24-/LWE 32-VCC 40-NC 48-D10 56-Q13 64-SC

 1-GND1 4-BIN 7-NPIN 10-SYNCIN 13-IREF 16-YOUT 19-VCC2 22-GOUT
 2-RIN 5-NC 8-BFOUT 11-BC 14-VREF 17-YTRAP 20-CVOUT 23-ROUT
 3-GIN 6-SCIN 9-YCLPC 12-VCC1 15-COUT 18-FO 21-BOUT 24-GND2

 GPU pin 145 (old 160-pin GPU)
 GPU pin 154 (new 208-pin GPU)
 IC204 (on later boards, eg. PSone)

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

- 1014/1136 -

GPU Pinouts (IC203)

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

- 1015/1136 -

Pin Name Pin Name Pin Name Pin Name

1 HOST./CS 53 HOST.D10 105 GND 157 NTSC/PAL

2 HOST.A0 54 HOST.D9 106 VDD 158 /VSYNC

3 HOST./RD 55 HOST.D8 107 SGRAM.D9 159 /HSYNC

4 HOST./WR 56 HOST.D7 108 SGRAM.D8 160 DAC.B0

5 HOST.DACK 57 HOST.D6 109 SGRAM.D7 161 DAC.B1

6 /RESET 58 HOST.D5 110 SGRAM.D6 162 DAC.B2

7 VDD 59 HOST.D4 111 SGRAM.D5 163 DAC.B3

8 GND 60 GND 112 SGRAM.D4 164 GND

9 /SYSCLK 61 VDD 113 GND 165 VDD

10 VDD 62 HOST.D3 114 VDD 166 DAC.B4

11 GND 63 HOST.D2 115 SGRAM.D3 167 DAC.B5

12 HOST.DREQ 64 HOST.D1 116 SGRAM.D2 168 DAC.B6

13 HOST./IRQ 65 HOST.D0 117 SGRAM.D1 169 DAC.B7

14 HBLANK 66 GND 118 SGRAM.D0 170 DAC.G0

15 GND 67 VDD 119 GND 171 DAC.G1

16 VDD 68 PCKSL2 120 VDD 172 DAC.G2

17 VBLANK 69 PCKSL1 121 SGRAM./CS1 173 DAC.G3

18 HVHLD 70 PCKSL0 122 SGRAM./CS0 174 GND

19 GND 71 TEST3 123 SGRAM.DSF 175 VDD

20 GND 72 TEST2 124 SGRAM./RAS 176 DAC.G4

21 NC 73 TEST1 125 SGRAM./CAS 177 DAC.G5

22 VDD 74 TEST0 126 SGRAM./WE 178 DAC.G6

23 VDD 75 VDD 127 SGRAM.DQMH 179 DAC.G7

24 HOST.D31 76 GND 128 SGRAM.DQML 180 DAC.R0

25 HOST.D30 77 SGRAM.D31 129 GND 181 DAC.R1

26 HOST.D29 78 SGRAM.D30 130 VDD 182 DAC.R2

27 HOST.D28 79 SGRAM.D29 131 MCLKOUT 183 DAC.R3

28 HOST.D27 80 VDD 132 GND 184 GND

29 VDD 81 GND 133 VDD 185 VDD

30 GND 82 SGRAM.D28 134 MCLKIN 186 DAC.R4

31 HOST.D26 83 SGRAM.D27 135 GND 187 DAC.R5

32 HOST.D25 84 SGRAM.D26 136 VDD 188 DAC.R6

33 HOST.D24 85 SGRAM.D25 137 SGRAM.A9 189 DAC.R7

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

- 1016/1136 -

Pin 77..150 = Video RAM Bus. Pin 156..189 = Video Out Bus. Other = CPU Bus. Pin 153:

Sub Carrier (NC on newer boards whick pick color clock from IC204).

GPU Pinout Notes

SGRAM./CS1 is only used on arcade boards with 2 MB VRAM (two 1 MB chips).

HVHLD is a lightgun input (similar to /IRQ10 but handled in hardware) used only by

some arcade boards. On retail consoles it has a 4.7k pullup to 3.5V.

TEST0-TEST3 are tied to 3.5V. PCKSL0-PCKSL2 (outputs possibly related to the

current horizontal/vertical resolution and thus pixel clock?) are left unconnected.

MCLKIN and MCLKOUT are tied together and wired to the DAC's clock input. MCLKIN

could possibly be an external clock input for genlocking purposes.

Pin Name Pin Name Pin Name Pin Name

34 HOST.D23 86 SGRAM.D24 138 SGRAM.A8 190 GND

35 HOST.D22 87 VDD 139 SGRAM.A7 191 VDD

36 HOST.D21 88 GND 140 SGRAM.A6 192 VCLK_NTSC

37 VDD 89 SGRAM.D23 141 VDD 193 VDD

38 GND 90 SGRAM.D22 142 GND 194 GND

39 HOST.D20 91 SGRAM.D21 143 SGRAM.A5 195 VDD

40 HOST.D19 92 SGRAM.D20 144 SGRAM.A4 196 VCLK_PAL

41 HOST.D18 93 SGRAM.D19 145 SGRAM.A3 197 VDD

42 HOST.D17 94 SGRAM.D18 146 GND 198 GND

43 VDD 95 SGRAM.D17 147 VDD 199 PCK

44 GND 96 GND 148 SGRAM.A2 200 GND

45 HOST.D16 97 VDD 149 SGRAM.A1 201 VDD

46 HOST.D15 98 SGRAM.D16 150 SGRAM.A0 202 DMASK

47 HOST.D14 99 SGRAM.D15 151 VDD 203 ODE2

48 HOST.D13 100 SGRAM.D14 152 GND 204 GND

49 HOST.D12 101 SGRAM.D13 153 FSC 205 VDD

50 HOST.D11 102 SGRAM.D12 154 VDD 206 /DSYSCK

51 VDD 103 SGRAM.D11 155 GND 207 GND

52 GND 104 SGRAM.D10 156 CSYNC 208 VDD

•

•

•

•

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

- 1017/1136 -

On earlier motherboards and on most arcade boards only VCLK_PAL or VCLK_NTSC is

wired up, depending on the console's region. On later boards both are tied together

and connected to a programmable clock generator, which is preprogrammed to

generate the appropriate frequency.

/VSYNC and /HSYNC are only connected to test points.

/CSYNC = (/VSYNC AND /HSYNC) . BLANK = (VBLANK OR HBLANK) .

SGRAM.DQML is wired to both DQM0 and DQM2 on the SGRAM, while SGRAM.DQMH is

wired to both DQM1 and DQM3 .

DMASK outputs the mask/"alpha" bit of the current pixel and is used by some arcade

boards to composite the GPU's output on top of an external video source. ODE2

indicates which field is currently being output in interlaced mode.

IC202 44pin "Philips TDA8771H" Digital to Analog RGB (older boards only)

Region Japan+Europe: TDA8771AN

Region America+Asia: MC151854FLTEG or so?

Used only LATE-PU-8 boards (and PU-16, which does even have two TDA8771AH chips:

one on the mainboard, and one on the VCD daughterboard).

Earlier boards are generating analog RGB via 64pin IC207, and later boards RGB via

48pin IC502.

•

•

•

•

•

 1-IREF 6-GNDd1 11-R1 16-G4 21-B7 26-B2 31-CLK 36-OUTB 41-NC
 2-GNDa1 7-VDDd1 12-R0 17-G3 22-B6 27-VDDd2 32-VDDa1 37-NC 42-GNDa2
 3-R7 8-R4 13-G7 18-G2 23-B5 28-GNDd2 33-VREF 38-NC 43-VDDa4
 4-R6 9-R3 14-G6 19-G1 24-B4 29-B1 34-NC 39-VDDa3 44-OUTR
 5-R5 10-R2 15-G5 20-G0 25-B3 30-B0 35-VDDa2 40-OUTG

27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)

- 1018/1136 -

IC502 48pin "SONY CXA2106R-T4" - 24bit RGB video D/A converter

Pin 3..8 (analogue outputs) are passed via external 75 ohm resistors.

Pin 6,7 additionally via 220uF. Pin 8 additionally via smaller capacitor.

Pin 10 (YTRAP) wired via 2K7 to 5.0V.

Pin 1,44,46,48 (can) connect via capacitors to ground (only installed for 44).

The 4.4MHz clock is obtained via 2K2 from IC204.Pin6.

The /PAL pin can be reportedly GROUNDED to force PAL colors in NTSC mode, when

doing that, you may first want to disconnect the pin from the GPU.

Note: Rohm BH7240AKV has same pinout (XXX but with pin7/pin8 swapped?)

Beware

Measuring in the region near GPU Pin10 is the nocash number one source for blowing up

components on the mainboard. If you want to measure that signals while power is on,

better measure them at the CPU side.

27.8 Pinouts - SPU Pinouts

IC308 - SONY CXD2922Q (SPU) (on PU-7, EARLY-PU-8 boards)

IC308 - SONY CXD2925Q (SPU) (on LATE-PU-8, PU-16, PU-18, PU-20 boards)

Pin Name Pin Name Pin Name Pin Name

1 BCLAMP 13 NTSC/PAL 25 G7 37 B3

2 AGND2 14 SYNCIN 26 G6 38 B2

3 ROUT 15 SCIN 27 G5 39 B1

4 GOUT 16 R7 28 G4 40 B0

5 BOUT 17 R6 29 G3 41 VCLK

6 YOUT 18 R5 30 G2 42 DGND

7 COUT 19 R4 31 G1 43 VREFIN

8 VOUT 20 DVDD 32 G0 44 VREFOUT

9 AVCC2 21 R3 33 B7 45 AGND1

10 YTRAP 22 R2 34 B6 46 RCRAMP

11 NC 23 R1 35 B5 47 AVCC1

12 POWER_SAVE 24 R0 36 B4 48 GCLAMP

27.8 Pinouts - SPU Pinouts

- 1019/1136 -

Pin 1..36 = MIPS-CPU bus. Pin 45..87 = SPU-RAM bus (A0,A10-A15,/WE1,OE1=NC). Pin

91..99 = Digital serial audio in/out (A=CDROM, B=EXP, O=OUT).

IC732 - SONY CXD2941R (SPU+CDROM+SPU_RAM) (on PM-41(2) boards)

IC732 - SONY CXD2938Q (SPU+CDROM) (on newer boards) (PM-41 boards)

 1-D0 14-D11 27-A8 40-GND 53-3.5V 66-A15 79-5V 92-LRIA
 2-D1 15-GND 28-3.5V 41-SYSCK 54-GND 67-A14 80-A3 93-DTIA
 3-3.5V 16-D12 29-GND 42-GND 55-D7 68-A13 81-A2 94-BCIB
 4-GND 17-D13 30-A9 43-TEST 56-D6 69-A12 82-A1 95-LRIB
 5-D2 18-D14 31-/SPU 44-TES2 57-D5 70-A11 83-A0 96-DTIB
 6-D3 19-D15 32-/RD 45-D15 58-D4 71-A10 84-/WE0 97-BCKO
 7-D4 20-A1 33-/WR 46-D14 59-D3 72-A9 85-/OE0 98-LRCO
 8-D5 21-A2 34-DACK 47-D13 60-D2 73-A8 86-/WE1 99-DATO
 9-D6 22-A3 35-/IRQ 48-D12 61-D1 74-A7 87-/OE1 100-WCKO
 10-D7 23-A4 36-DREQ 49-D11 62-D0 75-A6 88-GND
 11-D8 24-A5 37-MUTE 50-D10 63-/RAS 76-A5 89-XCK
 12-D9 25-A6 38-/RST 51-D9 64-/CAS 77-A4 90-GND
 13-D10 26-A7 39-NC 52-D8 65-GND 78-GND 91-BCIA

 1-DA16 23-FILO 45-LOCK 67-FSTO 89-SCSY 111-XCS 133-HD9 155-VSS5
 2-DA15 24-FILI 46-SSTP 68-COUT 90-SCLK 112-XRD 134-HD8 156-HA1
 3-DA14 25-PCO 47-SFDR 69-XDRST 91-SQSO 113-XWR 135-HD7 157-HA0
 4-VDDM0 26-CLTV 48-SRDR 70-DA11 92-SENS 114-HINT 136-HD6 158-VDDM3
 5-DA13 27-AVSSO 49-TFDR 71-DA10 93-DATA 115-XIRQ 137-VDD4 159-XCK
 6-DA12 28-RFAC 50-TRDR 72-DA09 94-XLAT 116-VDDM2 138-HD5 160-DTIB
 7-LRCK 29-BIAS 51-VSSM1 73-DA08 95-CLOK 117-XSCS 139-HD4 161-BCKO
 8-WDCK 30-ASYI 52-FFDA 74-AVSMO 96-XINT 118-XHCS 140-HD3 162-LRCO
 9-VDD0 31-AVDDO 53-FRDA 75-AVDMO 97-A4 119-XHRD 141-HD2 163-DAVDD0
 10-VSS0 32-ASYO 54-MDP 76-DA07 98-A3 120-XHWR 142-VSS4 164-DAREFL
 11-PSSL 33-VC 55-MDS 77-DA06 99-A2 121-DACK 143-HD1 165-AOUTL
 12-ASYE 34-CE 56-VDD2 78-VDDM1 100-A1 122-DREQ 144-HD0 166-DAVSS0
 13-GND 35-CEO 57-VSS2 79-DA05 101-A0 123-XRST 145-VSSM3 167-DAVSS1
 14-C4M 36-CEI 58-MIRR 80-DA04 102-D7 124-VDD3 146-HA9 168-AOUTR
 15-C16M 37-RFDC 59-DFCT 81-DA03 103-D6 125-SYSCK 147-HA8 169-DAREFR
 16-FSOF 38-ADIO 60-AVSM1 82-DA02 104-D5 126-VSS3 148-HA7 170-DAVDD1
 17-XTSL 39-AVDD1 61-AVDM1 83-DA01 105-D4 127-HD15 149-HA6 171-MUTO
 18-VDD1 40-IGEN 62-FOK 84-WFCK 106-VSSM2 128-HD14 150-HA5 172-DATO
 19-GND 41-AVSS1 63-PWMI 85-SCOR 107-D3 129-HD13 151-HA4 173-MTS3
 20-VPCO1 42-TE 64-FSW 86-SBSO 108-D2 130-HD12 152-VDD5 174-MTS2
 21-VPCO2 43-SE 65-MON 87-EXCK 109-D1 131-HD11 153-HA3 175-MTS1
 22-VCTL 44-FE 66-ATSK 88-SQCK 110-D0 132-HD10 154-HA2 176-MTS0

 1-SCLK 27-RFAC 53-TrckR 79-/XINT 105-A0 131-3.5V 157-(tst) 183-A8
 2-GNDed 28-GNDed 54-TrckF 80-SQCK 106-3.5V 132-D9 158-(tst) 184-A7
 3-GNDed 29-CLTV 55-FocuR 81-SQSO 107-A1 133-D8 159-GND 185-A6
 4-SBSO 30-PCO 56-3.5V 82-SENSE 108-A2 134-D7 160-D15 186-A5
 5-WFCK 31-FILI 57-FocuF 83-GND 109-A3 135-D6 161-D0 187-GND
 6-GNDed 32-FILO 58-SledR 84-GND 110-A4 136-D5 162-D14 188-A4

27.8 Pinouts - SPU Pinouts

- 1020/1136 -

Pin 74..102 = SubCPU. Pin 103..144 = MainCPU. Pin 160..192 = Sound RAM Bus.

Pin 21 and 53..59 = Drive Motor Control (IC722).

Pin 1..47 are probably mainly CDROM related.

Pin 39 "TE9" = IC723.Pin16 - CL709, and via 15K to SPU.39

Pin 66 connects via 4K7 to IC723.Pin19.

Pin 67 not connected (but there's room for an optional capacitor or resistor)

The (tst) pins are wired to test points (but not connected to any components)

CXD2938Q SPU Pinout Notes

Pin 74,75,76,119,120 are connected via 22 ohm.

Pin 103,104 are connected via 100 ohm.

ZZnn = IC405 Pin nn (analog audio related, L/R/MUTE).

Pin 103..142 = System Bus (BIOS,CPU). Pin 160..192 = Sound RAM Bus.

Pin 178 used for both /CASL and /CASH (which are shortcut with each other).

Pin 146 and 151 are 3.48V (another supply, not 3.5V).

Pin 147 and 150 are connected via capacitors.

Pin 195 and 197 testpoints are found below of the pin 206/207 testpoints.

 7-C16M 33-VCTL 59-SledF 85-CD.D7 111-A5 137-3.5V 163-D1 189-A3
 8-3.5V 34-VPC02 60-NC 86-CD.D6 112-3.5V 138-D4 164-D13 190-A2
 9-C4M 35-VPC01 61-GND 87-CD.D5 113-A6 139-D3 165-3.5V 191-A1
 10-GNDed 36-VC 62-NC 88-CD.D4 114-A7 140-D2 166-D2 192-A0
 11-4.3MHz 37-FE 63-GND 89-CD.D3 115-A8 141-D1 167-D12 193-3.5V
 12-12MHz 38-SE 64-(tst) 90-CD.D2 116-A9 142-D0 168-D3 194-NC
 13-V16M 39-TE 65-(tst) 91-CD.D1 117-/IRQ2 143-GND 169-D11 195-(tst)
 14-DOUT 40-CE 66-note 92-CD.D0 118-/IRQ9 144-33MHzS 170-D10 196-GND
 15-LACK 41-CEO 67-note 93-3.5V 119-/RD 145- 171-D4 197-(tst)
 16-WDCK 42-CEI 68-(tst) 94-CD/CS 120-/WR 146-3.48V 172-D9 198-NC
 17-3.5Ved 43-RFDC 69-3.5V 95-CD/WR 121-DMA4 147-ZZ11 173-GND 199-NC
 18-LOCK 44-ADIO 70-(tst) 96-CD/RD 122-GND 148-GND 174-D5 200-NC
 19-GND 45-GND 71-(tst) 97-CD.A0 123-GND 149-GND 175-D8 201-3.5V
 20-MDS 46-IGEN 72-(tst) 98-CD.A1 124-/SPUW 150-ZZ7 176-D6 202-NC
 21-MDP 47-AVD1 73-(tst) 99-CD.A2 125-D15 151-3.48V 177-D7 203-NC
 22-3.5Ved 48-GNDed 74-DATA 100-GND 126-D14 152-/RES 178-/CAS 204-NC
 23-AVDO 49-GNDed 75-XLAT 101-CDA3 127-D13 153-3.5V 179-/WE 205-GND
 24-ASYO 50-GND 76-CLOK 102-CDA4 128-D12 154-ZZ5 180-3.5V 206-(tst)
 25-ASYI 51-GNDed 77-SCOR 103-/CD 129-D11 155-(tst) 181-/OE 207-(tst)
 26-BIAS 52-GNDed 78-GND 104-/SPU 130-D10 156-(tst) 182-/RAS 208-GND

 SPU155 (tst) always low ;=maybe external audio (serial) this?
 SPU156 (tst) 45kHz (22us) ;=probably 44.1kHz (ext audio sample-rate)
 SPU157 (tst) 2777kHz (0.36us) ;=probably 64*44.1kHz (ext audio bit-rate)
 SPU158 (tst) always high ;=maybe external audio (serial) or this?

27.8 Pinouts - SPU Pinouts

- 1021/1136 -

SPU.Pin5 connects to MANY modchips

SPU.Pin42 connects to ALL modchips

SPU.Pin42 via capacitor to SPU.Pin41, and via resistor?/diode? to IC723.10

CXD2938Q CDROM clocks

(*) these frequencies are twice as fast in double speed mode.

CXD2938Q CDROM signals

CXD2938Q CDROM/SPU Testpoints (on PM-41 board)

IC402 - 24pin AKM AK4309VM (or AK4309AVM/AK4310VM) - Serial 2x16bit DAC

 SPU197 (*) 7.35kHz (44.1kHz/6) (stable clock, maybe DESIRED drive speed)
 SPU5 (*) 7.35kHz (44.1kHz/6) (unstable clock, maybe ACTUAL drive speed)
 SPU15 (*) 44.1kHz (44.1kHz*1)
 SPU16 (*) 88.2kHz (44.1kHz*2)
 SPU206 (*) circa 2.27MHz
 SPU70 (*) whatever clock (with SHORT low pulses)

 SPU207 fastsignal?
 SPU195 slowsignal?
 SPU18 usually high, low during seek or spinup or so
 SPU44 superslow hi/lo with superfast noise on it
 SPU73 mainly LOW with occasional HIGH levels...
 SPU71 LOW=SPIN_OK, PULSE=SPIN_UP/DOWN_OR_STOPPED
 SPU72 similar as SPU71
 SPU64 LOW=STOP, HI=SPIN
 SPU68 always low...?
 SPU65 whatever?
 SPU75 mainly HIGH, short LOW pulses when changing speed up/down/break

 | | SPU73
 | CXD2938Q (SPU) | SPU72
 | (on PM-41 board) | SPU70 SPU71
 | | SPU64 SPU65 SPU68
 SPU206 SPU207 |_______________________________________|
 SPU197
 SPU195 SPU16 SPU44
 SPU18 SPU5 SPU15
 SPU12

 1-TST? 4-/PD 7-CKS 10-LRCK 13-NC? 16-AOUTL 19-GNDa 22-VREFH
 2-VCCd 5-/RST 8-BICK 11-NC? 14-NC? 17-VCOM 20-NC? 23-VREFL
 3-GNDd 6-MCLK 9-SDATA 12-NC? 15-AOUTR 18-VCCa 21-NC? 24-DZF?

27.8 Pinouts - SPU Pinouts

- 1022/1136 -

Used only on older boards (eg. PU-8), newer boards seem to have the DAC in the 208pin

SPU.

No 24pin AK4309VM datasheet exists (however it seems to be same as 20pin AK4309B's,

with four extra NC pins at pin10-14).

IC405 - "2174, 1047C, JRC" or "3527, 0A68" (on newer boards)

Called "NJM2174" in service manual. Audio Amplifier with Mute.

Audio amplifier, for raising the signals to 5V levels.

IC405 - "NJM2100E (TE2)" Audio Amplifier (on older PU-8 and PU-22 boards)

27.9 Pinouts - DRV Pinouts

IC304 - 52pin/80pin - Motorola HC05 8bit CPU

Pinouts - HC05 Pinouts

IC305 - SONY CXD1815Q - CDROM Decoder/FIFO (used on PU-8, PU-16, PU-18)

 1 GND
 2 NC ? via 100ohm to multiout pin 9 ;Audio Left (white cinch)
 3 OUT-R ?
 4 MUTE1 ;specified as LOW = Mute
 5 MUTE2 ;specified as HIGH = Mute
 6 MUTEC ;unspecified, maybe capacitor, or output based on MUTE1+MUTE2?
 7 IN-R via capacitor to SPU.150
 8 BIAS
 9 NC
 10 NC
 11 IN-L via capacitor to SPU.147
 12 OUT-L ?
 13 NC ? via 100ohm to multiout pin 11 ;Audio Right (red cinch)
 14 VCC +5.0V (via L401)

 1-ROUT
 2-RIN- IC732.SPU.150
 3-RIN+
 4-GND
 5-LIN+
 6-LIN- IC732.SPU.147
 7-LOUT
 8-VCC 4.9V (+5.0V via L401)

27.9 Pinouts - DRV Pinouts

- 1023/1136 -

Pin 1..20 to HC05 CPU, pin 22..42 to MIPS cpu, pin 43..75 to SRAM cd-buffer.

The pinouts/registers in CXD1199AQ datasheet are about 99% same as CXD1815Q.

Note: Parity on the 8bit data busses is NC. SRAM is 32Kx8 (A15+A16 are NC). Later

boards have this integrated in the SPU.

ICsss - SONY CXA1782BR - CDROM Servo Amplifier (used on PU-8 boards)

Datasheet exists. Later boards have CXA1782BR+CXD2510Q integrated in CXD2545Q,

and even later boards have it integrated in the SPU.

IC309 - SONY CXD2510Q - CDROM Signal Processor (used on PU-8, PU-16 boards)

Datasheet exists. Later boards have CXA1782BR+CXD2510Q integrated in CXD2545Q,

and even later boards have it integrated in the SPU.

 1-D0 14-/XINT 27-/HRD 40-GND 53-VDD 66-/MWR 79-GND 92-LRCO
 2-D1 15-GND 28-VDD 41-HDRQ 54-GND 67-MDB0 80-CLK 93-WCKO
 3-VDD 16-A0 29-GND 42-/HAC 55-MA8 68-MDB1 81-HCLK 94-BCKO
 4-GND 17-A1 30-/HWR 43-MA0 56-MA9 69-MDB2 82-CKSL 95-MUTE
 5-D2 18-A2 31-HD0 44-MA1 57-MA10 70-MDB3 83-RMCK 96-TD7
 6-D3 19-A3 32-HD1 45-MA2 58-MA11 71-MDB4 84-LRCK 97-TD6
 7-D4 20-A4 33-HD2 46-T01 59-MA12 72-MDB5 85-DATA 98-TD5
 8-D5 21-TD0 34-HD3 47-T02 60-MA13 73-MDB6 86-BCLK 99-TD4
 9-D6 22-/HRS 35-HD4 48-MA3 61-MA14 74-MDB7 87-C2PO 100-TD3
 10-D7 23-/HCS 36-HD5 49-MA4 62-MA15 75-MDBP 88-EMP
 11-/CS 24-HA0 37-HD6 50-MA5 63-MA16 76-XTL2 89-/RST
 12-/RD 25-HA1 38-HD7 51-MA6 64-/MOE 77-XTL1 90-GND
 13-/WR 26-HINT 39-HDP 52-MA7 65-GND 78-VDD 91-DATO

 1-FEO 7-FE_M 13-RA_O 19-CLK 25-FOK 31-RF_O 37-FE_BIAS 43-LPFI
 2-FEI 8-SRCH 14-SL_P 20-XLT 26-CC2 32-RF_M 38-F 44-TEI
 3-FDFCT 9-TGU 15-SL_M 21-DATA 27-CC1 33-LD 39-E 45-ATSC
 4-FGD 10-TG2 16-SL_O 22-XRST 28-CB 34-PD 40-EI 46-TZC
 5-FLB 11-FSET 17-ISET 23-C.OUT 29-CP 35-PD1 41-GND 47-TDFCT
 6-FE_O 12-TA_M 18-VCC 24-SENS 30-RF_I 36-PD2 42-TEO 48-VC

 1-FOK 11-PDO 21-GNDa 31-WDCK 41-DA09-XPLCK 51-APTL 61-EMPH 71-DATA
 2-FSW 12-GND 22-VLTV 32-LRCK 42-DA08-GFS 52-GND 62-WFCK 72-XLAT
 3-MON 13-TEST0 23-VDDa 33-VDD 5V 43-DA07-RFCK 53-XTAI 63-SCOR 73-VDD
 4-MDP 14-NC 24-RF 34-DA16-SDTA48 44-DA06-C2PO 54-XTAO 64-SBSO 74-CLOK
 5-MDS 15-NC 25-BIAS 35-DA15-SCLK48 45-DA05-XRAOF 55-XTSL 65-EXCK 75-SEIN
 6-LOCK 16-VPCO 26-ASYI 36-DA14-SDTA64 46-DA04-MNT3 56-FSTT 66-SQSO 76-CNIN
 7-NC 17-VCKI 27-ASYO 37-DA13-SCLK64 47-DA03-MNT2 57-FSOF 67-SQCK 77-DATO
 8-VCOO 18-FILO 28-ASYE 38-DA12-LRCK64 48-DA02-MNT1 58-C16M 68-MUTE 78-XLTO
 9-VCOI 19-FILI 29-NC 39-DA11-GTOP 49-DA01-MNT0 59-MD2 69-SENS 79-CLKO
 10-TEST 20-PCO 30-PSSL 40-DA10-XUGF 50-APTR 60-DOUT 70-XRST 80-MIRR

27.9 Pinouts - DRV Pinouts

- 1024/1136 -

IC701 - SONY CXD2545Q - Signal Processor + Servo Amp (used on PU-18 boards)

Datasheet exists. The CXD2545Q combines the functionality of CXA1782BR+CXD2510Q

from older boards (later boards have it integrated in the SPU). XTAI/XTAO input is

16.9344MHz (44.1kHz*180h), with XTSL=GND. Clock outputs are FSTO=16.9344MHz/3,

FSOF=16.9344MHz/4, C16M=16.9344MHz/1.

IC101 - SONY CXD2515Q - Signal Processor + Servo Amp (used on DTL-H2010)

Pinouts are same as CXD2545Q, except, three pins are different: Pin24=ADII (instead of

ADIO), Pin25=ADIO (instead of RFC), Pin68=C4M (instead of FSOF).

IC720 - 144pin SONY CXD1817R (=CXD2545Q+CXD1815Q) ;PU-20

IC701 - 8pin chip (on bottom side, but NOT installed) (PU-7 and EARLY-PU-8)

IC722 "BA5947FP" or "Panasonic AN8732SB" - IC for Compact Disc Players

Drive Motor related.

 1-SRON 14-TEST 27-TE 40-VDDa 53-DA09-XPLCK 66-FSTI 79-MUTE 92-DFCT
 2-SRDR 15-GND 28-SE 41-VDD 54-DA08-GFS 67-FSTO 80-SENS 93-FOK
 3-SFON 16-TES2 29-FE 42-ASYE 55-DA07-RFCK 68-FSOF 81-XRST 94-FSW
 4-TFDR 17-TES3 30-VC 43-PSSL 56-DA06-C2PO 69-C16M 82-DIRC 95-MON
 5-TRON 18-PDO 31-FILO 44-WDCK 57-DA05-XRAOF 70-MD2 83-SCLK 96-MDP
 6-TRDR 19-VPCO 32-FILI 45-LRCK 58-DA04-MNT3 71-DOUT 84-DFSW 97-MDS
 7-TFON 20-VCKI 33-PCO 46-DA16-SDTA48 59-DA03-MNT2 72-EMPH 85-ATSK 98-LOCK
 8-FFDR 21-VDDa 34-CLTV 47-DA15-SCLK48 60-DA02-MNT1 73-WFCK 86-DATA 99-SSTP
 9-FRON 22-IGEN 35-GNDa 48-DA14-SDTA64 61-DA01-MNT0 74-SCOR 87-XLAT 100-SFDR
 10-FRDR 23-GNDa 36-RFAC 49-DA13-SCLK64 62-XTAI 75-SBSO 88-CLOK
 11-FFON 24-ADIO 37-BIAS 50-DA12-LRCK64 63-XTAO 76-EXCK 89-COUT
 12-VCOO 25-RFC 38-ASYI 51-DA11-GTOP 64-XTSL/GNDed 77-SQSO 90-VDD
 13-VCOI 26-RFDC 39-ASYO 52-DA10-XUGF 65-GND 78-SQCK 91-MIRR

 1..48 - unknown
 49 - SCOR
 50..144 - unknown

 1-8 Unknown (maybe CDROM related, at least it's near other CDROM chips)

 1 to pin24,27
 2 SPINDLE - via 15K to SPU21
 3 SW (ON/OFF) - IC304.27
 4 TRACKING FORWARD
 5 TRACKING REVERSE

27.9 Pinouts - DRV Pinouts

- 1025/1136 -

Additionally to the above 28pins, the chip has two large grounded pins (between pin 7/8

and 21/22) for shielding or cooling purposes.

IC703 - 20pin - "SONY CXA1791N" (RF Amplifier) (on PU-18 boards)

 6 FOCUS FORWARD
 7 FOCUS REVERSE
 8 GND - CN702 pin 11
 9 NC (INTERNAL) - via C731 (10uF) to GND
 10 +7.5V (Pow VCC ch1,2)
 11 FOCUS COIL (1) - CN702 pin 15
 12 FOCUS COIL (2) - CN702 pin 14
 13 TRACKING COIL (1) - CN702 pin 16
 14 TRACKING COIL (2) - CN702 pin 13
 15 SPINDLE MOTOR (1) - CN701 pin 4
 16 SPINDLE MOTOR (2) - CN701 pin 3
 17 SLED MOTOR (1) - CN701 pin 1
 18 SLED MOTOR (2) - CN701 pin 2
 19 +7.5V (Pow VCC ch3,4)
 20 MUTE - /RES (via 5K6)
 21 GND
 22 SLED REVERSE
 23 SLED FORWARD
 24 to pin1
 25 via capacitors to pin1
 26 BIAS 1.75V
 27 to pin1
 28 +7.5V (Pre VCC)

 1 LD O APC amplifier output
 2 PD I APC amplifier input
 3 PD1 I Input 1 for RF I-V amplifiers
 4 PD2 I Input 2 for RF I-V amplifiers
 5 GND/VEE - Supply Ground
 6 F I Input F for I-V amplifier
 7 E I Input E for I-V amplifier
 8 VR O DC Voltage Output (VCC+VEE)/2
 9 VC I Center Voltage Input
 10 NC - NC
 11 NC - NC
 12 EO O Monitoring Output for I-V amplifier E
 13 EI - Gain Adjust for I-V amplifier E
 14 TE O Tracking Error Amplifier Output
 15 FE_BIAS I BIAS Adjustment for Focus Error
 16 FE O Focus Error Amplifier Output
 17 RFO O RF Amplifier Output
 18 RFI I RF Amplifier Input
 19 /LD_ON I APC amplifier ON=GND, OFF=VCC
 20 VCC - Supply

27.9 Pinouts - DRV Pinouts

- 1026/1136 -

Datasheet for CXA1791N does exist. Later boards have IC703 replaced by IC723. Older

PU-7/PU-8 boards appear to have used a bunch of smaller components (8pin chips and/or

transistors) instead of 20pin RF amplifiers.

IC723 - 20pin - "SONY CXA2575N-T4" (RF (Matrix?) Amplifier) (PU-22..PM-41(2))

Used only on PU-22 .. PM-41(2) boards (PU-18 boards used IC703 "CXA1791N", and even

older boards... maybe had this in CXA1782BR... or maybe had it in a bunch of 8pin

NJMxxxx chips?).

There is no CXA2575N datasheet (but maybe some signals do resemble CXA2570N/

CXA2571N/CXA1791N datasheets).

CN702 CDROM Data Signal socket (PU-23 and PM-41 board)

 1-TEIM
 2-TEIG
 3-VEE GND
 4-E via 33K to CN702 pin 4
 5-F via 33K to CN702 pin 8
 6-PD2 via 36K to CN702 pin 6
 7-PD1 via 36K to CN702 pin 7
 8-PD to CN702 pin 9
 9-LD
 10-VC CL710, and CN702.Pin3, and via resistor?/diode? to SPU42
 11-LD_ON IC304.Pin49 "LDON" XXX or is that Pin 20 "LD_ON" ?
 12-G_CONT ;or AL/TE?
 13-RF0 CL704, and...
 14-RFM
 15-FE CL708, and... (maybe focus error?)
 16-TE CL709, and via 15K to SPU.39 (maybe tracking error?)
 17-TE0
 18-COMP+
 19-MIRR via 4K7 to SPU66
 20-VCC 3.48V (not 3.5V)

 1-LD to Q701
 2-VCC to Q701
 3-VC to IC723.Pin10 (and CL710)
 4-F- to IC723.Pin4 (via 33K ohm)
 5-NC to CL776
 6-PD2 to IC723.Pin6 (via 33K ohm)
 7-PD1 to IC723.Pin7 (via 33K ohm)
 8-E- to IC723.Pin5 (via 33K ohm)
 9-M1 to IC723.Pin8
 10-VR via 91 ohm to GND
 11-GND GND
 12-LS /POS0 (switch, GNDed when at head is at inner-most position)
 13-FCS+ TRACKING COIL (2) ;\

27.9 Pinouts - DRV Pinouts

- 1027/1136 -

PU-23 and PM-41 board seem to be using exactly the same Drive, the only difference is

the length (and folding) of the attached cable.

CN701 CDROM Motor socket (PU-8, PU-18, PU-23, PM-41 boards)

CLnnn - Calibration Points (PU-23 and PM-41 boards)

Probably test points for drive calibration or so.

27.10 Pinouts - VCD Pinouts

SCPH-5903 Video CD PlayStation

VCD Mainboard "PU-16, 1-655-191-11" Component List

The overall design is very close to LATE-PU-8 boards (1-658-467-2x). Changed

components are IC102/IC304 (different kernel and cdrom firmware), C318/C325/C327

(height reduced capacitors for mounting the daughterboard above of them). Plus some

extra components: Three triple multiplexors (for switching between PSX and VCD audio/

video), and the daughterboard connector.

 14-TRK+ FOCUS COIL (2) ; or swapped?
 15-TRK FOCUS COIL (1) ;
 16-FCS TRACKING COIL (1) ;/

 1-SL- SLED MOTOR (1)
 2-SL+ SLED MOTOR (2)
 3-SP+ SPINDLE MOTOR (2)
 4-SP- SPINDLE MOTOR (1)

 CL616 +7.5V (PM-41 only, not PM-23) (before power switch)
 CL617 GND (PM-41 only, not PM-23)
 CL316 to IC304 pin 21
 CL704 to IC723.Pin13
 CL706 GND
 CL708 to IC723.Pin15
 CL709 to IC723.Pin16
 CL710 to IC723.Pin10, and CN702.Pin3
 CL711 via 1K to IC723.Pin15
 CL776 to CN702.Pin5

 IC102 44pin SONY, M538032E-02, JAPAN 6465401 (uncommonly big BIOS, 1Mx8)
 IC304 52pin C 4021 SC430924PB (HC05 sub-cpu, with extra Video CD command 1Fh)
 C318 2pin S5 ;\tantalum capacitors with lower height (instead

27.10 Pinouts - VCD Pinouts

- 1028/1136 -

VCD Daughterboard "MP-45, 1-665-192-11" Component List

VCD Daughterboard Connector

IC104 "Sony CXD1852AQ" (MPEG-1 Decoder for Video CD) (120 pin)

 C325 2pin CA7 ; of the electrolytic capacitors on PU-8 boards)
 C327 2pin CA7 ;/
 ICnnn 16pin 4053C (Triple multiplexor, for Audio LRCK,BCLK,DATA) (PCB top)
 ICnnn 16pin 4053C (Triple multiplexor, for Video FSC,CSYNC) (PCB bottom)
 ICnnn 16pin 2283 (Triple multiplexor, for Video R,G,B) (PCB bottom)
 CNnnn 30pin Connector to daughterboard (PCB top)

 IC102 3pin TA78M05F voltage regulator (7.5V to 5V) (Toshiba)
 IC104 120pin CXD1852AQ Video CD decoder (Sony)
 IC106 40pin MB814260-70 (256Kx16 DRAM) (Fujitsu) ;see also: IC114
 IC107 20pin 6230FV 649 115 (OSD, similar to BU6257AFV-E2) (PCB back)
 IC109 14pin Y2932 (TLC2932 PLL) (TI) (for RGB.DAC.CLK)
 IC110 44pin TDA8771AH Triple Video DAC for RGB (Philips) (PCB back)
 IC111 64pin CXP10224-603R 732A02E (MCU) (Sony)
 IC112 14pin HCT32A (74HCT32 Quad OR gate) (TI) (PCB back) (for RGB.DAC.CLK)
 IC113 8pin H74 7H (single D-type flip-flop; OSD clock divider) (PCB back)
 IC114 40pin MB814260-70 (256Kx16 DRAM) (Fujitsu) ;see also: IC106
 CN101 30pin Male Connector (to female 30pin socket on PU-16 mainboard)
 X103 2pin 45.00MHz (for VCD decoder chip)
 X104 4pin 12.000MHz (for MCU chip)
 X105 2pin 28.636MHz (for VCD decoder chip) (8*3.579545 NTSC clock)

 .--.---.
 GND / 1 2 | GND
 (CXD1815Q.86) CD.BCLK | 3 4 | CD.LRCK (CXD1815Q.84)
 (CXD1815Q.87) CD.C2PO | 5 6 | CD.DATA (CXD1815Q.85)
 GND | 7 8 | CD.SQCK (CXD2510Q.67) CXP.31
 (TDA.44) VIDEO.OUTR | 9 10 | CD.SQSO (CXD2510Q.66) CXP.29
 GND | 11 12 | SIO.OUT (HC05.51.PORTF1 to CXP.47)
 (TDA.40) VIDEO.OUTG | 13 14 | SIO.IN (HC05.50.PORTF0 from CXP.48)
 GND | 15 16 | SIO.CLK (HC05.52.PORTF2 to CXP.49)
 (TDA.36) VIDEO.OUTB | 17 18 | VIDEO.FSC (CXD1852AQ.95)
 GND | 19 20 | VIDEO.CSYNC(CXD1852AQ.96)
 (PSU.3) 3.5V | 21 22 | 3.5V (PSU.3)
 (PSU.1) 7.5V | 23 24 | AUDIO.FSXI (CXD1852AQ.103 to VCD)
 (PSU.7) /RES | 25 26 | AUDIO.DATA (CXD1852AQ.100)
 (CXD1852AQ.102) AUDIO.BCLK | 27 28 | AUDIO.LRCK (CXD1852AQ.101)
 GND | 29 30 | GND
 '--------'

 1-GND 16-HD7 31-GND 46-MD4 61-GND 76-G/Y3 91-GND 106-XTL2O
 2-XTL0O 17-MA3 32-MA7 47-MD11 62-/VOE 77-G/Y4 92-HSYNC 107-XTL2I
 3-XTL0I 18-MA4 33-MA8 48-MD3 63-R/Cr0 78-G/Y5 93-VSYNC 108-VDD

27.10 Pinouts - VCD Pinouts

- 1029/1136 -

The Hxxx pins are for the Host (the 8bit CXP CPU), the Mxxx for the RAM chips, the R/G/B

pins are 24bit RGB video. Pin36 can be /CAS2 or MA9 (and, the VCD daughterboard has

alternate solderpads for one large RAM instead of two small RAMs).

IC107 "6230FV" (OSD chip, similar to BU6257AFV-E2) (20 pin)

SIO pin1/2/3 are wired to CXP pin38/37/36. OSCIN is the RGB DAC CLK divided by two

(from H74 chip pin5). OSD/SYNC on pin15-20 connect to the MPEG1 decoder chip.

No datasheet (but pinouts are same/similar as for BU6257AFV, documented in several

service manuals for tape decks with vcd player: HCD-V5500, HCD-V8900/V8900AV, HCD-

V909AV).

IC111 "Sony CXP10224-603R" (8bit SPC700 CPU) (64pin LQFP)

 4-VDD 19-MA2 34-/RAS 49-MD12 64-R/Cr1 79-G/Y6 94-FID/FHREF 109-C2PO
 5-HA2 20-MA5 35-/MWE 50-MD2 65-R/Cr2 80-G/Y7 95-CBLNK/FSC 110-LRCI
 6-HA3 21-MA1 36-/CAS2 51-MD13 66-R/Cr3 81-B/Cb0 96-CSYNC 111-DATI
 7-HD0 22-GND 37-/CAS0 52-MD1 67-R/Cr4 82-B/Cb1 97-/SGRST 112-BCKI
 8-HD1 23-MA6 38-MD7 53-MD14 68-R/Cr5 83-B/Cb2 98-CLK0O 113-DOIN
 9-HD2 24-MA0 39-MD8 54-MD0 69-R/Cr6 84-B/Cb3 99-DOUT 114-/HCS
 10-HD3 25-BC 40-MD6 55-MD15 70-R/Cr7 85-B/Cb4 100-DATO 115-/HDT
 11-HD4 26-TCKI 41-MD9 56-OSDEN 71-G/Y0 86-B/Cb5 101-LRCO 116-HRW
 12-HD5 27-TDI 42-MD5 57-OSDB 72-G/Y1 87-B/Cb6 102-BCKO 117-/HIRQ
 13-HD6 28-TENA1 43-MD10 58-OSDG 73-G/Y2 88-B/Cb7 103-FSXI 118-/RST
 14-VDD 29-TDO 44-VDD 59-OSDR 74-VDD 89-DCLK 104-VDD 119-HA0
 15-GND 30-VST 45-GND 60-VDD 75-GND 90-VDD 105-GND 120-HA1

 1-SIO.CLK 5-VDD 9-TEST 13-BLK2 17-OSDG
 2-SIO./CS 6-/CKOUT 10-GND 14-VC2 18-OSDB
 3-SIO.DTA 7-OSCOUT 11-BLK1 15-OSDEN 19-/VSYNC
 4-/RESET 8-OSCIN 12-VC1 16-OSDR 20-/HSYNC

 1-PB5=TP 17-PD5=/HCS 33-AVREF=VDD 49-PG5/SCK1=HC05.PF2
 2-PB4=TP 18-PD4=TP 34-AVDD=VDD 50-PG4=/RST.OUT
 3-PB3=HA3 19-PD3=TP 35-PF7/AN7=TP 51-PG3/TO=TP
 4-PB2=HA2 20-PD2=TP 36-PF6/AN6=OSD.DTA 52-PA7=TP
 5-PB1=HA1 21-PD1=TP 37-PF5/AN5=OSD./CS 53-PA6=TP
 6-PB0=HA0 22-PD0=TP 38-PF4/AN4=OSD.CLK 54-PA5=TP
 7-PC7=HD7 23-MP/TEST=GND 39-PF3/AN3=GND 55-PA4=TP
 8-PC6=HD6 24-XTAL=12MHZ 40-PF2/AN2=GND 56-VPP=VDD
 9-PC5=HD5 25-EXTAL=12MHZ 41-PF1/AN1=GND 57-VDD=VDD
 10-PC4=HD4 26-VSS=GND 42-PF0/AN0=10KtoGND 58-VSS=GND
 11-PC3=HD3 27-/RST=/RES 43-PE3/PWM1=TP 59-PA3=TP
 12-PC2=HD2 28-/CS0=VDD 44-PE2/PWM0=TP 60-PA2=TP
 13-PC1=HD1 29-SI0=CD.SQSO 45-PE1/INT2/EC=/VSYNC 61-PA1=TP
 14-PC0=HD0 30-SO0=TP 46-PE0/INT0=/HIRQ 62-PA0=TP

27.10 Pinouts - VCD Pinouts

- 1030/1136 -

Pin 3-15,45,46,50 connect to MPEG1 decoder. Pin 36-38 to OSD. Pin 47-49 to HC05.PortF.

Pin 27 is /RESET from PSU. Pin 29,31 are SUBQ from CXD2510Q. The "TP" pins connect

to test points (but seem to be NC otherwise).

Pinouts are same as in CXP811P24 datasheet (which uses SPC700 instruction set; that

instruction set is also used by SNES sound CPU).

IC109 "TLC2932" (PLL) (14pin)

Used to generate the CLK for the TDA chip (that is, the dotclk, paused during VSYNC, or

so?). The same CLK, divided by two, is also used as OSD.OSCIN.

IC112 "74HCT32" (Quad OR gate) (14pin)

Used to sharpen the output from the PLL chip, and to level-shift signals for the two PLL

inputs from 3.5V to 5V. The input-pairs for the OR gates are shortcut with each other, so

the chip isn't actually ORing anything.

IC113 "H74 7H" (single D-type flip-flop; OSD clock divider) (8 pin)

Used to divide the RGB DAC CLK by two. CLK comes from TDA.pin31, D and /Q are

shortcut with each other, /RES and /SET are wired to VDD, and Q goes to OSD.OSCIN.

ICnnn "4053C" (Triple multiplexor, for Audio LRCK,BCLK,DATA) (16pin)

 15-PD7=HRW 31-/SCK0=CD.SQCK 47-PG7/SI1/INT1=HC05.PF1 63-PB7=TP
 16-PD6=/HDT 32-AVSS=GND 48-PG6/SO1=HC05.PF0 64-PB6=TP

 1-LOGIC_VDD=5V 5-FIN-B=HSYNC.PLL 9-PFD_INHIBIT=GND 13-BIAS
 2-SELECT=5V 6-PFD_OUT 10-VCO_INHIBIT=GND 14-VCO_VDD=5V
 3-VCO_OUT=RGB.DAC.CLK.PLL 7-LOGIC_GND=GND 11-VCO_GND=GND
 4-FIN-A=FID/FHREF.PLL 8-NC 12-VCO_IN

 1-FID/FHREF.MPEG 4-HSYNC.MPEG 8-(low) 11-RGB.DAC.CLK.TDA 7-GND
 2-FID/FHREF.MPEG 5-HSYNC.MPEG 9-GNDed 12-RGB.DAC.CLK.PLL 14-VCC/5V
 3-FID/FHREF.PLL 6-HSYNC.PLL 10-GNDed 13-RGB.DAC.CLK.PLL

 1-CLK 2-D 3-/Q 4-GND 5-Q 6-/RES 7-/SET 8-VCC

 1-IN2B=DATA.VCD 5-IN3A=LRCK.SPU 9-SEL3=LRCK.SEL 13-IN1B=BCLK.VCD
 2-IN2A=DATA.SPU 6-/OE=GNDed 10-SEL2=DATA.SEL 14-OUT1=BCLK.OUT
 3-IN3B=LRCK.VCD 7-VEE=GNDed 11-SEL1=BCLK.SEL 15-OUT2=DATA.OUT
 4-OUT3=LRCK.OUT 8-GND=GND 12-IN1A=BCLK.SPU 16-VDD=VDD/3.5V

27.10 Pinouts - VCD Pinouts

- 1031/1136 -

The three SEL pins are wired to HC05.PortF3, the three SPU pins are wired via 10Kohm.

ICnnn "4053C" (Triple multiplexor, for Video FSC,CSYNC) (16pin)

The three SEL pins are wired to HC05.PortF3, the two OUTx pins are wired via 2.2Kohm.

ICnnn "NJM2283" (Triple multiplexor, for Video R,G,B) (16pin)

The three SEL pins are wired to HC05.PortF3, the six INxx pins wired through resistors

and capacitors, the three OUTx pins are wired through capacitors.

27.11 Pinouts - HC05 Pinouts

Motorola HC05 chip versions for PSX cdrom control

The early DTL-H2000 devboard is also using a 80pin CPU (with piggyback EPROM socket),

but that CPU is a Sony CXP82300 SPC700 CPU, not a Motorola HC05 CPU.

IC304 - "C 3060, SC430943PB, G63C 185" (PAL/PSone) - CDROM Controller

Called "MC68HC05G6PB" in service manual (=8bit CPU).

 1-IN2B=FSC.VCD 5-IN3A=CSYNC.PSX 9-SEL3=CSYNC.SEL 13-IN1B=GNDed
 2-IN2A=FSC.PSX 6-/OE=GNDed 10-SEL2=FSC.SEL 14-OUT1=NCed
 3-IN3B=CSYNC.VCD 7-VEE=GNDed 11-SEL1=DUMMY.SEL 15-OUT2=FSC.OUT
 4-OUT3=CSYNC.OUT 8-GND=GND 12-IN1A=GNDed 16-VDD=VCC/5V

 1-IN1B=R.VCD 5-OUT2=G.OUT 9-IN3B=B.VCD 13-V=VCC/5V
 2-SEL1=R.SEL 6-OUT3=B.OUT 10-GND3=81ohm/GND 14-IN2B=G.VCD
 3-OUT1=R.OUT 7-SEL3=B.SEL 11-IN2A=G.PSX 15-GND1=GND
 4-GND2=GND 8-IN3A=B.PSX 12-SEL2=G.SEL 16-IN1A=R.PSX

 80pin "4246xx" - MC68HC05L16, on-chip ROM (DTL-H120x & old retail consoles)
 80pin "MC68HC705L16CFU" - MC68HC705L16, on-chip ROM (DTL-H100x, and PU-9)
 52pin "SC4309xx" - MC68HC05G6, on-chip ROM (newer retail consoles)

 1 NC NC (TEST:DTR/out) (VCD:AVSEL/out) ;-Port F ;PortF.Bit3
 2 VDD 3.5V
 3 NC NC ;\ ;maybe PortE.Bit7?
 4 NC NC ; maybe MSBs of Port E ;maybe PortE.Bit6?
 5 NC NC ;/ ;maybe PortE.Bit5?
 6 DECA4 SPU102 ;\ ;PortE.Bit4
 7 DECA3 SPU101 ; Port E [04h], aka Address/Index ;PortE.Bit3
 8 DECA2 SPU99 ; ;PortE.Bit2

27.11 Pinouts - HC05 Pinouts

- 1032/1136 -

This chip isn't connected directly to the CPU, but rather to a Fifo Interface, which is then

forwarding data to/from the CPU. On older PSX boards, that Fifo Interface has been

located in a separate chip, on newer PSX boards and PSone boards, the Fifo stuff is

contained in the SPU chip. The CDROM has a 32K buffer, which is also implemeted at the

Fifo Interface side.

OSC input (internally HC05 is running at OSC/2, ie. around 2MHz):

 9 DECA1 SPU98 ; ;PortE.Bit1
 10 DECA0 SPU97 ;/ ;PortE.Bit0
 11 VSS GND
 12 NDLY GND reserved for factory test, should be wired to VDD, not GND?
 13 /RES /RES (via 5K6)
 14 OSC1 4.3MHz (SPU11)(used as external clock for some modchips)(low volts)
 15 OSC2 NC
 16 F-BIAS aka FOK=NC (in SCPH-5500) ;PortB.Bit0
 17 CG NC aka CG=CG (in SCPH-5500) ;this IS portb.1! ;PortB.Bit1
 18 LMTSW /POS0 (switch, GNDed when head at inner-most position) ;PortB.Bit2
 19 DOOR SHELL_OPEN ;PortB.Bit3
 20 TEST2 NC ;PortB.Bit4
 21 TEST1 to CL316 ;PortB.Bit5
 22 COUT NC ;PortB.Bit6
 23 SENSE SPU82 ;CXD2510Q.69 ;PortB.Bit7
 24 SUBQ SPU81 ;CXD2510Q.66 ;PortC.Bit0
 25 NC NC ;NC ;PortC.Bit1
 26 SQCK SPU80 ;CXD2510Q.67 ;PortC.Bit2
 27 SPEED IC722.Pin3 (SW) ;PortC.Bit3
 28 AL/TE ;transisor aka MIRROR=.. (in SCPH-5500);ISN'T PortB.Bit1 !
 29 ROMSEL ;NC aka ROMSEL=SCLK (in SCPH-5500) ;PortC.Bit5
 30 /XINT SPU79 ;CXD1815Q.14 ;PortC.Bit6
 31 SCOR SPU77 ;CXD2510Q.63 ;PortC.Bit7
 32 VDD 3.5V
 33 DECD0 CD.D0 ;\ ;PortA.Bit0
 34 DECD1 CD.D1 ; ;PortA.Bit1
 35 DECD2 CD.D2 ; ;PortA.Bit2
 36 DECD3 CD.D3 ; Port A [00h], aka Data ;PortA.Bit3
 37 DECD4 CD.D4 ; ;PortA.Bit4
 38 DECD5 CD.D5 ; ;PortA.Bit5
 39 VSS GND ;
 40 DECD6 CD.D6 ; ;PortA.Bit6
 41 DECD7 CD.D7 ;/ ;PortA.Bit7
 42 NC NC ;maybe PortD.Bit0?
 43 DATA SPU74 (via 22 ohm) ;PortD.Bit1
 44 XLAT SPU75 (via 22 ohm) ;PortD.Bit2
 45 CLOK SPU76 (via 22 ohm) ;PortD.Bit3
 46 DECCS SPU94 ;PortD.Bit4
 47 DECWR SPU95 ;PortD.Bit5
 48 DECRD SPU96 ;PortD.Bit6
 49 LDON IC723.Pin11 ;PortD.Bit7
 50 NC NC (TEST:TX/out) (VCD:SIO.IN/in) ;\PortF (used by ;PortF.Bit0
 51 NC NC (TEST:RX/in) (VCD:SIO.OUT/out) ; Motorola Testmode;PortF.Bit1
 52 NC NC (TEST:RTS/out) (VCD:SIO.CLK/out) ;/and VCD version) ;PortF.Bit2

27.11 Pinouts - HC05 Pinouts

- 1033/1136 -

HC05 - 80pin version (pinout from MC68HC05L16 datasheet)

 PU-8 4.0000MHz from separate 4.000MHz oscillator (X302)
 PU-16 4.0000MHz from separate 4.000MHz oscillator (X302)
 DTL-H2000 4.1900MHz from separate 4.1900MHz oscillator (SPC700, not HC05)
 PU-18 4.2336MHz from CXD2545Q.pin68 (Servo+Signal) (FSOF=16.9344MHz/4)
 PU-20 4.2xxxMHz from CXD1817R.pin? (Servo+Signal+Decoder)
 PM-41 4.2xxxMHz from CXD2938Q.pin11 (Servo+Signal+Decoder+SPU)

 1 VDD
 2 FP28/PE6 ;\
 3 FP29/PE5 ;
 4 FP30/PE4 ;
 5 FP31/PE3 ; Port E LSBs
 6 FP32/PE2 ;
 7 FP33/PE1 ;
 8 FP34/PE0 ;/
 9 FP35/PD7 ;\
 10 FP36/PD6 ; Port D MSBs
 11 FP37/PD5 ;
 12 FP38/PD4 ;/
 13 VLCD3
 14 VLCD2
 15 VLCD1
 16 VSS
 17 NDLY
 18 XOSC1
 19 XOSC2
 20 /RESET

 21 OSC1
 22 OSC2
 23 PA0 ;\
 24 PA1 ;
 25 PA2 ;
 26 PA3 ; Port A
 27 PA4 ;
 28 PA5 ;
 29 PA6 ;
 30 PA7 ;/
 31 PB0/KWI0 ;\
 32 PB1/KWI1 ;
 33 PB2/KWI2 ;
 34 PB3/KWI3 ; Port B
 35 PB4/KWI4 ;
 36 PB5/KWI5 ;
 37 PB6/KWI6 ;
 38 PB7/KWI7 ;/
 39 PC0/SDI ;\
 40 PC1/SDO ;
 --- ;
 41 PC2/SCK ; Port C

27.11 Pinouts - HC05 Pinouts

- 1034/1136 -

HC05 - 32pin/64pin Versions

Sony's Digital Joypad and Mouse contain 32pin CPUs, which are probably also HC05's:

Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

Moreover, some old memory cards contain a 64pin Motorola SC419510FU (probably also

a HC05) with separate Atmel AT29LV010A (128Kx8 FLASH).

 42 PC3/TCAP ;
 43 PC4/EVI ;
 44 PC5/EVO ;
 45 PC6/IRQ2 ;
 46 PC7/IRQ1 ;/
 47 VDD
 48 BP3/PD3 ;\
 49 BP2/PD2 ; Port D LSBs
 50 BP1/PD1 ;
 51 BP0 (no "PD0") ;/
 52 FP0
 53 FP1
 54 FP2
 55 FP3
 56 FP4
 57 FP5
 58 FP6
 59 FP7
 60 VSS

 61 FP8
 62 FP9
 63 FP10
 64 FP11
 65 FP12
 66 FP13
 67 FP14
 68 FP15
 69 FP16
 70 FP17
 71 FP18
 72 FP19
 73 FP20
 74 FP21
 75 FP22
 76 FP23
 77 FP24
 78 FP25
 79 FP26
 80 FP27/PE7 ;- Port E MSB

27.11 Pinouts - HC05 Pinouts

- 1035/1136 -

27.12 Pinouts - MEM Pinouts

IC102 - BIOS ROM (32pin, 512Kx8, used on LATE-PU-8 boards, and newer boards)

Uses standard EPROM pinouts, VCC is 3.5V though, when replacing the ROM by an

EPROM, it may be required to replace the supply by 5V. Note that, on PM-41 boards at

least, Pin 1 is connected to A19 (allowing to install a 1MB BIOS chip on that board,

however, normally, a 512KB BIOS chip is installed, and, the CPU is generating an

exception when trying to access more than 512KB, but that 512K limit can be disabled via

memory control registers).

Datasheet for (MS-)M534031E does exist.

IC102 - BIOS ROM (40pin, 512Kx8, used on PU-7 boards, and EARLY-PU-8 boards)

The chip supports 8bit/16bit mode, on the PSX D0-D14 are actually wired, but A0/D15 is

wired to A0, and /BYTE is wired to GND, so 16bit mode doesn't work.

Datasheet for MX23L4100 does exist.

IC102 - BIOS ROM (44pin, 1Mx8, used on P16-boards, ie. VCD console)

Pinouts are from OKI MSM538032E datasheet.

 1-A19 5-A7 9-A3 13-D0 17-D3 21-D7 25-A11 29-A14
 2-A16 6-A6 10-A2 14-D1 18-D4 22-/CE 26-A9 30-A17 ;/CE=/BIOS
 3-A15 7-A5 11-A1 15-D2 19-D5 23-A10 27-A8 31-A18
 4-A12 8-A4 12-A0 16-GND 20-D6 24-/OE 28-A13 32-3.5V ;/OE=/RD

 1-A18 6-A4 11-GND 16-D9 21-VCC 26-D6 31-GND(/BYTE) 36-A13
 2-A8 7-A3 12-/OE 17-D2 22-D4 27-D14 32-A17 37-A12
 3-A7 8-A2 13-D0 18-D10 23-D12 28-D7 33-A16 38-A11
 4-A6 9-A1 14-D8 19-D3 24-D5 29-A0(D15) 34-A15 39-A10
 5-A5 10-/CS 15-D1 20-D11 25-D13 30-GND 35-A14 40-A9

 1-NC 5-A7 9-A3 13-GND 17-D1 21-D3 25-D12 29-D14 33-/BYT 37-A14 41-A10
 2-A19 6-A6 10-A2 14-/OE 18-D9 22-D11 26-D5 30-D7 34-A17 38-A13 42-A9
 3-A18 7-A5 11-A1 15-D0 19-D2 23-VCC 27-D13 31-D15/A0 35-A16 39-A12 43-NC
 4-A8 8-A4 12-/CE 16-D8 20-D10 24-D4 28-D6 32-GND 36-A15 40-A11 44-NC

27.12 Pinouts - MEM Pinouts

- 1036/1136 -

CPU-RAM (four 28pin chips) (older boards)

Unknown.

Note: The newer 70pin RAM comes up without external /REFRESH signal, but maybe the

28pin RAMs required refresh (the CPU has some odd delays once and when).

IC106 - CPU-RAM (single 70pin chip, on newer boards)

"Samsung K4Q153212M-JC60" (70pin, 512Kx32) (newer boards)

"Toshiba T7X16" (70pin, 512Kx32) (newer boards, too)

Notes: Pin23 must NC or VSS. In the PSone, /OE is wired to GND.

Datasheet for K4Q153212M-JC60 does exist (the chip supports 27ns Hyper Page mode

access, which seems to be used for DMA).

IC106/IC107/IC108/IC109 - CPU-RAM (four 28pin chips, on PU-8, PU-18 boards)

SEC KM48V514BJ-6 (DRAM 512Kx8) (four pieces = 512Kx32 = 2Mbyte)

Datasheet for KM48V514B-6 and BL-6 exist (though none for BJ-6). The chips support

25ns Hyper Page mode access.

IC310 - SPU-RAM (512Kbyte)

EliteMT M11B416256A-35J (256K x 16bit) (40pin SOJ, PM-41 boards)

Nippon Steel NN514256ALTT-50 (256K x 16bit) (40pin TSOP-II, PU-23 boards)

Toshiba TC51V4260DJ-70 (40pin, PU-8 board) (PseudoSRAM)

 1-VCC 11-N.C 21-DQ15 31-A3 41-N.C 51-DQ17 61-DQ24
 2-DQ0 12-VCC 22-N.C 32-A4 42-N.C 52-DQ18 62-DQ25
 3-DQ1 13-DQ8 23-N.C! 33-A5 43-/OE 53-DQ19 63-DQ26
 4-DQ2 14-DQ9 24-N.C 34-A6 44-/W 54-VSS 64-DQ27
 5-DQ3 15-DQ10 25-N.C 35-VCC 45-/CAS3 55-DQ20 65-VSS
 6-VCC 16-DQ11 26-N.C 36-VSS 46-/CAS2 56-DQ21 66-DQ28
 7-DQ4 17-VCC 27-/RAS 37-A7 47-/CAS1 57-DQ22 67-DQ29
 8-DQ5 18-DQ12 28-A0 38-A8 48-/CAS0 58-DQ23 68-DQ30
 9-DQ6 19-DQ13 29-A1 39-A9 49-N.C 59-VSS 69-DQ31
 10-DQ7 20-DQ14 30-A2 40-N.C 50-DQ16 60-N.C 70-VSS

 1-VCC 5-DQ3 9-A9 13-A3 17-A5 21-NC 25-DQ5
 2-DQ0 6-NC 10-A0 14-VCC 18-A6 22-/OE 26-DQ6
 3-DQ1 7-/W 11-A1 15-GND 19-A7 23-/CAS 27-DQ7
 4-DQ2 8-/RAS 12-A2 16-A4 20-A8 24-DQ4 28-GND

27.12 Pinouts - MEM Pinouts

- 1037/1136 -

Note: SPU-RAM supply can be 3.5V (PU-8), or 5.0V (PU-22 and PM-41).

Note: The /CASL and /CASH pins are shortcut with each other on the mainboard, both

wired to the /CAS pin of the SPU (ie. always accessing 16bit data at once).

Note: The TSOP-II package (18mm length, super-flat and with spacing between pin 10/11

and 30/31) is used on PU-23 boards. The pinouts and connections are identical for SOJ

and TSOP-II.

Note: Nippon Steels NN514256-series is normally 256Kx4bit, nethertheless, for some

bizarre reason, their 256Kx16bit chip is marked "NN514256ALTT"... maybe that happened

accidently in the manufacturing process.

Note: The PM-41(2) board has on-chip RAM in the SPU (no external memory chip).

IC303 - CDROM Buffer (32Kbyte)

"HM62W256LFP-7T" (SRAM 32Kx8) (PCB bottom side) (PU-8)

"SONY CXK5V8257BTM" 32Kx8 SRAM (PU-18)

Used only on older boards (eg. PU-8, PU-18), newer boards seem to have that RAM

included in the 208pin SPU chip.

IC201 - GPU-RAM (1MByte) (or 2MByte, of which, only 1MByte is used though)

Samsung KM4132G271BQ-10 (128K x 32bit x 2 Banks, Synchronous Graphic RAM) 1MB

Samsung K4G163222A-PC70 (256K x 32bit x 2 Banks, Synchronous Graphic RAM) 2MB

 1-5.0V 6-5.0V 11-NC 16-A0 21-VSS 26-A8 31-I/O8 36-I/O12
 2-I/O0 7-I/O4 12-NC 17-A1 22-A4 27-/OE 32-I/O9 37-I/O13
 3-I/O1 8-I/O5 13-/WE 18-A2 23-A5 28-/CASH 33-I/O10 38-I/O14
 4-I/O2 9-I/O6 14-/RAS 19-A3 24-A6 29-/CASL 34-I/O11 39-I/O15
 5-I/O3 10-I/O7 15-NC 20-5.0V 25-A7 30-NC 35-VSS 40-VSS

 1-A14 4-A6 7-A3 10-A0 13-D2 16-D4 19-D7 22-/OE 25-A8 28-VCC
 2-A12 5-A5 8-A2 11-D0 14-GND 17-D5 20-/CS 23-A11 26-A13
 3-A7 6-A4 9-A1 12-D1 15-D3 18-D6 21-A10 24-A9 27-/WE

 1-DQ3 13-DQ19 25-/WE 37-N.C 49-A6 61-DQ9 73-VDDQ 85-VSS 97-DQ0
 2-VDDQ 14-VDDQ 26-/CAS 38-N.C 50-A7 62-VSSQ 74-DQ24 86-N.C 98-DQ1
 3-DQ4 15-VDD 27-/RAS 39-N.C 51-A8 63-DQ10 75-DQ25 87-N.C 99-VSSQ
 4-DQ5 16-VSS 28-/CS 40-N.C 52-N.C 64-DQ11 76-VSSQ 88-N.C 100-DQ2
 5-VSSQ 17-DQ20 29-A9(BA) 41-N.C 53-DSF 65-VDD 77-DQ26 89-N.C
 6-DQ6 18-DQ21 30-NC(GND) 42-N.C 54-CKE 66-VSS 78-DQ27 90-N.C
 7-DQ7 19-VSSQ 31-A0 43-N.C 55-CLK 67-VDDQ 79-VDDQ 91-N.C
 8-VDDQ 20-DQ22 32-A1 44-N.C 56-DQM1 68-DQ12 80-DQ28 92-N.C
 9-DQ16 21-DQ23 33-A2 45-N.C 57-DQM3 69-DQ13 81-DQ29 93-N.C
 10-DQ17 22-VDDQ 34-A3 46-VSS 58-NC 70-VSSQ 82-VSSQ 94-N.C

27.12 Pinouts - MEM Pinouts

- 1038/1136 -

Newer boards often have 2MB VRAM installed (of which only 1MB is used, apparently the

2MB chips became cheaper than the 1MB chips). At the chip side, the only difference is

that Pin30 became an additional address line (that, called A8, and, accordingly, the old

A8,A9 pins were renamed to A9,A10). At the mainboard side, the connection is exactly

the same for both 1MB and 2MB chips; Pin30 is grounded on both PU-23 boards (which

typically have 1MB) and PM-41 boards (which typically have 2MB).

Note: The PM-41(2) board has on-chip RAM in the GPU (no external memory chip).

27.13 Pinouts - CLK Pinouts

The "should-be" CPU clock is 33.868800 Hz (ie. the 44100Hz CDROM/Audio clock,

multiplied by 300h). However, the different PSX/PSone boards are using different

oscillators, multipliers and dividers, which aren't exactly reaching that "should-be" value.

The PSone are using a single oscillator for producing CPU/GPU clocks, and for producing

the TV/color signal:

PSone/PAL - IC204 8pin - "CY2081, SL-509" or "2294A, 1913"

Clock Multiplier/Divider

PSone/NTSC - IC204 8pin "CY2081 SL-500" (PSone, and PSX/PU-20 and up)

Unknown. Uses a 14.318MHz oscillator, so multiply/divide factors must be somehow

different.

 11-VSSQ 23-DQM0 35-VDD 47-A4 59-VDDQ 71-DQ14 83-DQ30 95-N.C
 12-DQ18 24-DQM2 36-N.C 48-A5 60-DQ8 72-DQ15 84-DQ31 96-VDD

 For PAL, Fsc=4.43361875MHz (5^6*283.75Hz+25Hz) --> 4*Fsc=17.734MHz
 For NTSC, Fsc=3.579545MHz (4.5*455/572 MHz) --> 4*Fsc=14.318MHz

 1 53MHz ;17.734MHz*3 = 53.202 MHz (?)
 2 GND
 3 X1 17.734MHz
 4 X2 17.734MHz
 5 67MHz ;17.734MHz*3*2*7/11 = 67.711636 MHz (?)
 6 4.4Mhz ;17.734MHz/4 = 4.4335MHz (?) ;via 2K2 to IC502.pin15
 7 3.5V
 8 3.5V

27.13 Pinouts - CLK Pinouts

- 1039/1136 -

The "optimal" conversion would be (hardware is barely able to do that):

So, maybe it's doing

PSX/PAL

PU-7 and PU-8 boards are using three separate oscillators:

PU-18 does have same X101/X201 as above, but doesn't seem to have X302.

PSX/NTSC

PU-7 and PU-8 boards are using three separate oscillators:

PU-20 works more like PSone (a single oscillator, and CY2081 SL-500 divider)

27.14 Pinouts - PWR Pinouts

Voltage Summary

 3*3*7*5/2/11 = 14.3181818
 3*3*7*7*100 = 44100

 14.3181818 * 3*7*11*64 / (5*5*5*5*5) = 67.737600

 14.3181818 * 2*2*13/11 ... or so?

 X101: 67.737MHz (div2 = CPU Clock = 33.8685MHz) (div600h = 44.1kHz audio)
 X201: 53.20MHz (GPU Clock) (div12 = PAL color clock)
 X302: 4.000MHz (for CDROM SUB CPU)

 X101: 67.737MHz (div2 = CPU Clock = 33.8685MHz) (div600h = 44.1kHz audio)
 X201: 53.69MHz (GPU Clock) (div15 = NTSC color clock)
 X302: 4.000MHz (for CDROM SUB CPU)

 +7.5V Used to generate other voltages and CDROM/Joypad/MemoryCard/Expansion
 +5.0V Used for Multiout, IC405, and IC502, and IC602
 +3.5V Used for most ICs, and for Joypad/MemoryCard/Expansion
 +3.48V Used for SPU and CDROM
 GND Ground, shared for all voltages

27.14 Pinouts - PWR Pinouts

- 1040/1136 -

Fuses

There are a lot of SMD elements marked FBnnn, these are NOT fuses (at least they don't

seem to blow-up whatever you do). The actual fuses are marked PSnnn, found near the

power switch and near the power socket.

IC601 3pin +5.0V "78M05, RZ125, (ON)"

IC602 - Audio/CDROM Supply

Called "LP29851MX-3.5" in service manual.

IC002/IC003 - Reset Generator (PM-41 board)

/RES is connected via 330 ohm to GPU/CPU, and via 5K6 SPU/IC722/IC304.

Note: Either IC002 or IC003/Q004 can be installed on PM-41 boards. Most or all boards

seem to contain IC003/Q004.

Note: PSX consoles have something similar on the Power Supply boards (IC101:

M51957B).

IC606/IC607 - TL594CD - Pulse-Width-Modulation Power-Control Chip

 1 +7.5V
 2 GND
 3 +5.0V (used for Multiout, IC405, and IC502)

 1 VIN 5.0V (in)
 2 GND GND
 3 ON/OFF 5.0V (in)
 4 NOISE ?
 5 VOUT 3.48V (out)

 IC002 IC003 Expl.
 2 2 connected to Q002 (reset input?)
 5 5 connected via capacitor to GND
 6 1 reset-output (IC002=wired to /RES, IC003: via Q004 to /RES)
 7 - 7.5V
 4 3 GND
 1,3,8 4 NC

 1 1IN+
 2 1IN-
 3 FEEDBACK
 4 DTC

27.14 Pinouts - PWR Pinouts

- 1041/1136 -

Q602

CN602 - PU-8, PU-9 board Power Socket (to internal power supply board)

Purpose of the standy-by voltage is unknown... maybe to expansion port?

CN602 - PU-18, PU-23 board Power Socket (to internal power supply board)

CN102 - Controller/memory card daughter-board connector (PU-23 board)

 5 CT
 6 RT
 7 GND
 8 C1
 9 E1
 10 E2
 11 C2
 12 VCC
 13 OUTPUT CTRL
 14 REF
 15 2IN-
 16 2IN+

 x +7.5V
 y +3.5V
 z REG

 1 Brown 7.5V (actually 7.69V)
 2 Red GND Ground
 3 Orange 3.5V (actually 3.48V)
 4 Yellow GND Ground
 5 White STAND-BY (3.54V, always ON, even if power switch is off)
 6 Blue GND Ground
 7 Magenta /RES Reset input (from power-on logic and reset button)

 1 Brown 7.5V (actually 7.92V or so) (ie. higher than in PSone)
 2 Red GND Ground
 3 Orange 3.5V (actually 3.53V or so) (ie. quite same as PSone)
 4 Yellow GND Ground
 5 White /RES Reset input (from power-on logic and reset button)

 1 /IRQ10 (/IRQ10)
 2 /ACK (/IRQ7)
 3 /JOY2
 4 7.5V (or actually 7.92V)
 5 /JOY1
 6 DAT

27.14 Pinouts - PWR Pinouts

- 1042/1136 -

27.15 Pinouts - Component List and Chipset Pin-Outs for Digital

Joypad, SCPH-1080

Digital Joypad Component List (SCPH-1080)

Digital Joypad Connection Cable:

 7 GND
 8 CMD
 9 3.5V
 10 CLK

 Case: "SONY, CONTROLLER, Sony Computer Entertainment Inc. H"
 Case: "SCPH-1080 Made in China"
 PCB: "CMK-PIHB /\, CFS8121-200010-01"
 U?: 32pin "(M), SC401800, FB C37B, JSJD520C" (Motorola) (TQFP-32 package)
 U?: 14pin "BA10339F, 528 293" (Quad Comparator) (/ACK,JOYDAT,and reset or so)
 X?: 3pin "4.00G1f" (on PCB bottom side)
 Z1: 2pin z-diode or so (on PCB bottom side) (+1.7V VREF for BA10339F)
 CN?: 7pin cable to controller port (plus shield; but not connected to PCB)
 C1 2pin to GND and R5
 C2 2pin capacitor for power supply input (between +3.5V and GND)
 C3 2pin between BA.pin8 and (via R6) BA.pin15
 R1 2pin 1M ohm (for X1)
 R2 2pin 2.7K
 R3 2pin 8xK ohm?
 R4 2pin 100K
 R5 2pin 22K ohm
 R6 2pin 56K ohm
 RN1 8pin 4x200 ohm (/JOYn,JOYCMD,JOYCLK)
 RN2 8pin 4x22K ohm (pull-ups for button bit0..3)
 RN3 8pin 4x22K ohm (pull-ups for button bit12..15)
 RN4 8pin 4x22K ohm (pull-ups for button bit8..11)
 RN5 8pin 4x22K ohm (pull-ups for button bit4..7)

 PSX.1 -------brown---- PAD.2 JOYDAT
 PSX.2 -------orange--- PAD.6 JOYCMD
 PSX.3 --- NC +7.5V
 PSX.4 -------black---- PAD.3 GND
 PSX.5 -------red------ PAD.4 +3.5V
 PSX.6 -------yellow--- PAD.5 /JOYn
 PSX.7 -------blue----- PAD.7 JOYCLK
 PSX.8 --- NC /IRQ10
 PSX.9 -------green---- PAD.1 /ACK
 PSX.Shield --shield--- NC (cable is shielded but isn't connected in joypad)

27.15 Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

- 1043/1136 -

Digital Joypad 32pin SC401800 Chip Pin-Outs

Digital Joypad 14pin BA10339F Chip Pin-Outs

 1 Bit14 SW-X
 2 Bit13 SW-O
 3 Bit12 SW-/\
 4 Bit11 SW-R1 (via cable pin1, white wire)
 5 Bit10 SW-L1 (via cable pin1, white wire)
 6 Bit9 SW-R2 (via cable pin3, black wire)
 7 Bit8 SW-L2 (via cable pin3, black wire)
 8 via BA10339F.pin7 to cn.2 JOYDAT (PSX.1)

 9 via RN1 (200 ohm) to cn.5 /JOYn (PSX.6)
 10 via RN1 (200 ohm) to cn.6 JOYCMD (PSX.2)
 11 via RN1 (200 ohm) to cn.7 JOYCLK (PSX.7)
 12 GND to cn.3 (PSX.4)
 13 Bit7 SW-LEFT
 14 Bit6 SW-DOWN
 15 Bit5 SW-RIGHT
 16 via BA10339F.pin5 to cn.1 /ACK (PSX.9)

 17 Bit4 SW-UP
 18 Bit3 SW-START
 19 Bit2 (HI) (would be R3 on Analog Pads) ;\unused, but working button inputs
 20 Bit1 (HI) (would be L3 on Analog Pads) ;/(each fitted with a RN2 pullup)
 21 Bit0 SW-SELECT
 22
 23
 24 wired to SC401800.pin25

 25 wired to SC401800.pin24
 26 4.00MHz'a
 27 4.00MHz'b
 28 +3.5V to cn.4 (PSX.5)
 29 wired to SC401800.pin32, and via 22K ohm to +3.5V, and to BA.14
 30
 31 Bit15 SW-[]
 32 wired to SC401800.pin29

 1 OUT2 CN.2 JOYDAT (PSX.1)
 2 OUT1 CN.1 /ACK (PSX.9)
 3 VCC +3.5V
 4 -IN1 +1.7V VREF via Z1 to GND
 5 +IN1 CXD.16 /ACK
 6 -IN2 +1.7V VREF via Z1 to GND
 7 +IN2 CXD.8 JOYDAT

 8 -IN3 +1.7V VREF via Z1 to GND
 9 +IN3 C3,R3,R4
 10 -IN4 C1 to +3.5V
 11 +IN4 GND

27.15 Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080

- 1044/1136 -

27.16 Pinouts - Component List and Chipset Pin-Outs for Analog

Joypad, SCPH-1150

This applies for two controller versions:

Both are using the same PCB, and the same SD657 chip. The difference is that the motor,

transistors, and some resistors aren't installed in SCPH-1180.

Analog Joypad Component List (SCPH-1150, single motor)

Analog Joypad Connection Cables (SCPH-1150)

CN1 (cable to PSX controller port) (same for SCPH-1150 and SCPH-1200)

 12 GND GND
 13 OUT4 NC ??
 14 OUT3 CXD.29/32

 SCPH-1150 Analog Pad with Single Rumble Motor (japan only)
 SCPH-1180 Analog Pad without Rumble Motor

 Case "SONY, ANALOG, CONTROLLER, SonyCompEntInc. A, SCPH-1150 MADE IN CHINA"
 PCB1 "DD1P09A" (mainboard with digital buttons)
 PCB2 "DD1Q14A" (daughterboard with analog joysticks)
 PCB3 "DD1Q15A-R" (daughterboard with R-1, R-2 buttons) (J3)
 PCB4 "DD1Q15A-L" (daughterboard with L-1, L-2 buttons) (J2)
 U1 42pin "SD657, 9702K3006" (2x21pins, L=17.8mm, W=7mm, W+Pins=11mm)
 U2 3pin "DR, 4.Z"
 Q1 3pin "BQ03" or so (motor post-amp)
 Q2 3pin "S6","SG","9S" or so (motor pre-amp)
 Y1 3pin "400CMA"
 CN1 8pin cable to PSX controller port
 CN2 8pin ribbon cable to analog-joystick daughterboard (not so robust cable)
 J1 2pin wires to rumble motor (in left handle) (digital, on/off)
 J2 3pin ribbon cable to L-1, L-2 button daughterboard
 J3 3pin ribbon cable to R-1, R-2 button daughterboard
 LED1 4pin red/green LED (optics without mirror)
 D1,D2 diodes
 plus resistors/capacitors

 PSX.1 -------brown---- PAD.2 JOYDAT
 PSX.2 -------orange--- PAD.6 JOYCMD
 PSX.3 -------magenta-- PAD.8 +7.5V
 PSX.4 -------black---- PAD.3 GND
 PSX.5 -------red------ PAD.4 +3.5V

27.16 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

- 1045/1136 -

CN2 (ribbon cable to analog-joystick daughterboard) (SCPH-1150)

J3 (ribbon cable to R-1, R-2 button daughterboard) (SCPH-1150)

J2 (ribbon cable to L-1, L-2 button daughterboard) (SCPH-1150)

J1 wires to small rumble motor (SCPH-1150)

Analog Joypad Chipset Pin-Outs (SCPH-1150)

U1 42pin "SD657, 9702K3006"

 PSX.6 -------yellow--- PAD.5 /JOYn
 PSX.7 -------blue----- PAD.7 JOYCLK
 PSX.8 --- NC /IRQ10
 PSX.9 -------green---- PAD.1 /ACK
 PSX.Shield --shield--- NC (cable is shielded but isn't connected in joypad)

 8 +3.5V to POT pins
 7 Button L3 pins A,C
 6 GND to POT pins and Button L3/R3 pins B,D
 5 Button R3 pins A,C
 4 Axis R_Y middle POT pin (SD657.18)
 3 Axis R_X middle POT pin (SD657.17)
 2 Axis L_Y middle POT pin (SD657.16)
 1 Axis L_X middle POT pin (SD657.15)

 1 (red) R1
 2 (gray) GND
 3 (gray) R2

 1 (red) L1
 2 (gray) GND
 3 (gray) L2

 1 (red) +7.5V
 2 (black) Q1

 1 NC?
 2 NC?
 3 /RESET? (U2.3)
 4 OSC
 5 OSC
 6 BUTTON Bit3 START SW1
 7 BUTTON Bit2 R3 (via CN2.5)
 8 BUTTON Bit1 L3 (via CN2.7)
 9 BUTTON Bit0 SELECT SW3
 10 GND

27.16 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

- 1046/1136 -

U2 (probably reset signal related)

Q1 "BQ03" or so (motor post-amp)

Q2 "S6","SG","9S" or so (motor pre-amp)

 11 BUTTON Bit7 LEFT SW4
 12 BUTTON Bit6 DOWN SW5
 13 BUTTON Bit5 RIGHT SW6
 14 BUTTON Bit4 UP SW7
 15 Analog Axis L_X (via CN2.1)
 16 Analog Axis L_Y (via CN2.2)
 17 Analog Axis R_X (via CN2.3)
 18 Analog Axis R_Y (via CN2.4)
 19 NC?
 20 3.5V
 21 3.5V

 22 BUTTON Bit15 [] SW11
 23 BUTTON Bit14 >< SW10
 24 BUTTON Bit13 () SW9
 25 BUTTON Bit11 R1 (via J3.1)
 26 BUTTON Bit12 /\ SW8
 27 BUTTON Bit10 L1 (via J3.1)
 28 BUTTON Bit9 R2 (via J3.3)
 29 BUTTON Bit8 L2 (via J3.3)
 30 PSX.2/CN1.6 JOYCMD orange (via 220 ohm R14)
 31 PSX.1/CN1.2.JOYDAT brown (via 22 ohm R13 and diode D2)
 32 PSX.7/CN1.7 JOYCLK blue (via 220 ohm R12)
 33 PSX.6/CN1.5./JOYn yellow (via 220 ohm R11)
 34 LED.GREEN (LED.4)
 35 LED.RED (LED.3)
 36 MOTOR (via 4.7Kohm R8 to Q2, then via Q1 to motor)
 37 NC?
 38 NC?
 39 PSX.9/CN1.1./ACK green (via 22 ohm R10)
 40 NC?
 41 MODE SW2 (analog button)
 42 GND

 1 from 3.5V (via R1,D1,R2)
 2 to U1.3 (/RESET?) (U2.rear contact = same as U2.pin2)
 3 GND

 1 Q2.2 (via 1Kohm R7)
 2 to Motor (-)
 3 GND

 1 SD657.36 (via 4.7Kohm R8)
 2 Q1.1 (via 1Kohm R7) (and via 100Kohm R13 to GND)
 3 3.5V

27.16 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150

- 1047/1136 -

Motor

Left/Single Motor (SCPH-1150)

27.17 Pinouts - Component List and Chipset Pin-Outs for Analog

Joypad, SCPH-1200

Analog Joypad Component List (SCPH-1200, two motors)

Note: There's also a different SCPH-1200 revision, which having a smaller mainboard

with analog joysticksonboard, plus a single sided PCB for the digital buttons (that is,

similar to SCPH-110, but with the single sided PCB instead of membrane foil).

Analog Joypad Connection Cables (SCPH-1200)

CN1 (cable to PSX controller port) (same for SCPH-1150 and SCPH-1200)

 27.5mm Total Length (18.5mm Motor, 2mm Axis, 7mm Weight/block)
 12.0mm Width/Diameter (of Weight, and of Motor at flat side)

 Case "SONY, ANALOG, CONTROLLER, SonyCompEntInc. H, SCPH-1200 MADE IN CHINA"
 PCB1 "01, /\YG-H2, (r)RU" (mainboard with digital buttons)
 PCB2 "M-29-01, YG-H3, (r)RU" (daughterboard with analog joysticks)
 PCB3 "E, /\YG-H2, (r)RU, 01" (daughterboard with R-1, R-2 buttons) (J1)
 PCB4 "01, W, /\YG-H2, (r)RU" (daughterboard with L-1, L-2 buttons) (J2)
 U1 44pin "SONY, CXD8771Q 4A03, JAPAN 9840 HAL, 148896"
 U2 4pin ",\\ 29" (PST9329) (System Reset with 2.9V detection voltage)
 U3 8pin "2904, 8346G, JRC" (NJM2904) (Dual Operational Amplifier)
 Q1 3pin ".Y S'" (big transistor for big M1 rumble motor)
 Q2 3pin "Z" (small transistor for small M2 rumble motor)
 Y1 3pin "800CMLX" or so (hides underneath of the CN2 ribbon cable)
 CN1 8pin cable to PSX controller port
 CN2 8pin ribbon cable to analog-joystick daughterboard
 J1 3pin ribbon cable to R-1, R-2 button daughterboard
 J2 3pin ribbon cable to L-1, L-2 button daughterboard
 M1 2pin wires to left/big rumble motor (analog, slow/fast)
 M2 2pin wires to right/small rumble motor (digital, on/off)
 ZD1,ZD2 some Z-diodes
 D1,D2 diodes near M1,M2 motors (these diodes aren't installed)
 LED1 red analog mode LED (with transparent optics/light direction mirror)
 plus resistors/capacitors

 PSX.1 -------brown---- PAD.2 JOYDAT
 PSX.2 -------orange--- PAD.6 JOYCMD
 PSX.3 -------magenta-- PAD.8 +7.5V

27.17 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

- 1048/1136 -

CN2 (ribbon cable to analog-joystick daughterboard) (SCPH-1200)

J1 (ribbon cable to R-1, R-2 button daughterboard) (SCPH-1200)

J2 (ribbon cable to L-1, L-2 button daughterboard) (SCPH-1200)

M1 wires to big rumble motor (SCPH-1200)

M2 wires to small rumble motor (SCPH-1200)

Analog Joypad Chipset Pin-Outs (SCPH-1200)

U1 SONY CXD8771Q

 PSX.4 -------black---- PAD.3 GND
 PSX.5 -------red------ PAD.4 +3.5V
 PSX.6 -------yellow--- PAD.5 /JOYn
 PSX.7 -------blue----- PAD.7 JOYCLK
 PSX.8 --- NC /IRQ10
 PSX.9 -------green---- PAD.1 /ACK
 PSX.Shield --shield--- NC (cable is shielded but isn't connected in joypad)

 1 +3.5V to POT pins
 2 Button L3 pins C,D
 3 GND to POT pins and Button L3/R3 pins A,B
 4 Button R3 pins C,D
 5 Axis R_Y middle POT pin (CXD.20)
 6 Axis R_X middle POT pin (CXD.19)
 7 Axis L_X middle POT pin (CXD.21)
 8 Axis L_Y middle POT pin (CXD.22)

 1 (red) R1
 2 (gray) GND
 3 (gray) R2

 1 (red) L1
 2 (gray) GND
 3 (gray) L2

 + (red) Q1.E
 - (black) GND

 + (red) +7.5V
 - (black) Q2.C

 1 PSX.7/CN1.7 JOYCLK (via 220 ohm R2)
 2 via R10 to U3.3 (for big M1 motor)

27.17 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

- 1049/1136 -

U2 PST9329 (System Reset with 2.9V detection voltage)

 3 via R15 to Q2.B (for small M2 motor)
 4 GND
 5 BUTTON Bit15 []
 6 BUTTON Bit14 ><
 7 BUTTON Bit13 ()
 8 BUTTON Bit12 /\
 9 BUTTON Bit11 R1 (via J1.1)
 10 BUTTON Bit10 L1 (via J2.1)
 11 BUTTON Bit9 R2 (via J1.3)

 12 BUTTON Bit8 L2 (via J2.3)
 13 GND
 14 U2.Pin3 (reset)
 15 Y1'a
 16 Y1'b
 17 GND
 18 +3.5V
 19 Analog Axis R_X via CN2.6
 20 Analog Axis R_Y via CN2.5
 21 Analog Axis L_X via CN2.7
 22 Analog Axis L_Y via CN2.8

 23 GND
 24 GND
 25 GND
 26 GND
 27 GND
 28 +3.5V
 29 BUTTON Bit0 SELECT
 30 BUTTON Bit1 L3 (via CN2.2)
 31 BUTTON Bit2 R3 (via CN2.4)
 32 BUTTON Bit3 START
 33 BUTTON Bit4 UP

 34 BUTTON Bit5 RIGHT (aka spelled RIHGT on the PCB)
 35 BUTTON Bit6 DOWN
 36 BUTTON Bit7 LEFT
 37 PSX.6/CN1.5./JOYn (via 220 ohm R1)
 38 ANALOG BUTTON
 39 GND
 40 +3.5V
 41 /LED (to LED1, and from there via 300 ohm R6 to +3.5V)
 42 PSX.9/CN1.1./ACK (via 22 ohm R5)
 43 PSX.1/CN1.2.JOYDAT (via 22 ohm R3)
 44 PSX.2/CN1.6 JOYCMD (via 220 ohm R4)

 1 NC GND
 2 GND GND
 3 Vout U1.14
 4 VCC +3.5V

27.17 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200

- 1050/1136 -

U3 NJM2904 (Dual Operational Amplifier)

Q1 (transistor for big M1 motor)

Q2 (transistor for small M2 motor)

Motors

27.18 Pinouts - Component List and Chipset Pin-Outs for Analog

Joypad, SCPH-110

Analog Joypad Component List (SCPH-110, two motors, PSone-design)

 1 A.OUTPUT Q1.B (big motor M1 transistor)
 2 A.INPUT- to R11/R12
 3 A.INPUT+ to R10/R17
 4 GND PSX.4/CN1.3 GND
 5 B.INPUT+ GND
 6 B.INPUT- NC?
 7 B.OUTPUT NC?
 8 VCC PSX.3/CN1.8 +7.5V

 E M1+
 B U3.1 (NJM2904)
 C +7.5V

 E GND
 B via 1K ohm R15 to U1.3 (CXD), and via 100K ohm R16 to GND
 C M2-

 Left/Large Motor (SCPH-1200)
 24.0mm Total Length (12.0mm Motor, 2.5mm Axis, 9.5mm Weight/plates)
 24.0mm Diameter (Motor), 20.0mm Diameter (Weight/plates)
 Right/Small Motor (SCPH-1200)
 25.4mm Total Length (18.7mm Motor, 2mm Axis, 4.7mm Weight/plates)
 12.0mm Width/Diameter (of Weight, and of Motor at flat side)

 Case "SONY, ANALOG CONTROLLER, SonyCompEntInc. A, SCPH-110 MADE IN CHINA"
 PCB1 "SA1Q22A, <PF-LP>, KPC, 7694V-0" (mainboard with joysticks onboard)
 PCB2 "..." (membrane/foil with digital buttons)
 U1 44pin "SD707, 039 107"" (4x11pin)
 Q1 3pin "KA" (big transistor for left/big M1 rumble motor)
 Q2 3pin "LG" (small transistor for right/small M2 rumble motor)
 D1 2pin diode (for large motor, reference Z-diode with pull-up?)
 D2 3pin dual-diode (R5/IRQ7 to GND and R3/DAT to GND)

27.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

- 1051/1136 -

Analog Joypad Connection Cables (SCPH-110)

CN1 (cable to PSX controller port)

J1 (ribbon cable with membrane/foil with digital buttons)

M1 wires to left/big rumble motor (SCPH-110)

M2 wires to right/small rumble motor (SCPH-110)

 CN1 9pin cable to PSX controller port
 J1 16pin ribbon cable from membrane/foil
 M1 2pin wires to left/big rumble motor (analog, slow/fast)
 M2 2pin wires to right/small rumble motor (digital, on/off)
 LED1 2pin red analog mode LED (with long legs, without mirror/optics)
 plus resistors/capacitors

 1 +3.5V (logic supply)
 2 GND3 (logic supply)
 3 /IRQ7
 4 /SEL
 5 CMD
 6 DAT
 7 CLK
 8 GND7 (motor supply)
 9 +7.5V (motor supply)

 1 BUTTON Bit8 L2
 2 BUTTON Bit10 L1
 3 BUTTON Bit4 UP
 4 BUTTON Bit5 RIGHT
 5 BUTTON Bit6 DOWN
 6 BUTTON Bit7 LEFT
 7 GND3
 8 ANALOG BUTTON
 9 BUTTON Bit0 SELECT
 10 BUTTON Bit3 START
 11 BUTTON Bit15 SQUARE []
 12 BUTTON Bit14 CROSS ><
 13 BUTTON Bit13 CIRCLE ()
 14 BUTTON Bit12 TRIANGLE /\
 15 BUTTON Bit11 R1
 16 BUTTON Bit9 R2

 1 (red) Q1
 2 (black) GND (via some ohm)

 1 (red) +7.5V
 2 (black) Q2

27.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

- 1052/1136 -

U1 ("SD707, 039 107")

 1 via R9/Q2 to M2 (right/small) (digital 0V=off, 3V=on)
 2 via "JP1" to LED (330 ohm)
 3 +3.5V
 4 BUTTON Bit2 R3
 5 vr2 RX (lt/rt)
 6 vr1 RY (up/dn)
 7 vr4 LX (lt/rt)
 8 vr3 LY (up/dn)
 9 BUTTON Bit1 L3
 10 GND3
 11 GND7

 12 via Q1 to M1 (left/large) (1V=off, 6V=fast)
 13 via D1/R7 to M1 (left/large) (6.7V)
 14 +7.5V
 15 +7.5V
 16 BUTTON Bit8 L2
 17 BUTTON Bit10 L1
 18 BUTTON Bit4 UP
 19 BUTTON Bit5 RIGHT
 20 BUTTON Bit6 DOWN
 21 BUTTON Bit7 LEFT
 22 GND3

 23 BUTTON Bit9 R2
 24 BUTTON Bit11 R1
 25 BUTTON Bit12 TRIANGLE /\
 26 BUTTON Bit13 CIRCLE ()
 27 BUTTON Bit14 CROSS ><
 28 BUTTON Bit15 SQUARE []
 29 BUTTON Bit3 START
 30 BUTTON Bit0 SELECT
 31 ANALOG BUTTON
 32 NC
 33 +3.5V

 34 GND3
 35 NC
 36 via R5 to /IRQ7
 37 via R1 to /SEL
 38 via R4 to CMD
 39 via R3 to DAT
 40 via R2 to CLK
 41 +7.5V
 42 +7.5V
 43 GND7
 44 GND7

27.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

- 1053/1136 -

Misc

VR1..VR4 -- analog inputs

R1..R5 -- signals to/from psx

R6 ?

R7 M1

R8

R9

R10

JP1

C1 3.5V to GND3 (22uF)

C2 3.5V to GND3 (U1)

C3 VR1 to GND3

C4 VR2 to GND3

C5 VR3 to GND3

C6 VR4 to GND3

C7 M2+ to M2-

C8 M1+ to M1-

C9 M1 related

S5

S6

Motors

 Left/Large Motor (SCPH-110)
 23.0mm Total Length (12.0mm Motor, 3mm Axis, 8.0mm Weight/plates)
 24.0mm Diameter (Motor), 20.0mm Diameter (Weight/plates)
 Right/Small Motor (SCPH-110)
 25.4mm Total Length (18.7mm Motor, 2mm Axis, 4.7mm Weight/plates)
 12.0mm Width/Diameter (of Weight, and of Motor at flat side)

 M1+ --o---Q1---o--------- U1.12
 | | | analog
 Left | | C9
 Large | | |
 | o----o--------- 7.5V
 | |
 C8 R7
 | D1 | 6.7V
 o---|>|--o--------- U1.13
 |
 M1- --o------------------ GND7

27.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110

- 1054/1136 -

D1 is probably a Z-diode with R7 as pull-up, creating a reference/source voltage at

U1.13 for the analog output at U1.12.

27.19 Pinouts - Component List and Chipset Pin-Outs for Namco

Lightgun, NPC-103

Schematic

http://www.nicolaselectronics.be/reverse-engineering-the-playstation-g-con45/

Namco Lightgun "NPC-103, (C) 1996 NAMCO LTD." Component List

PCB "DNP-0500A, NPC10300, namco, CMK-P3X"

PCB "DN-P-0501"

PCB "DN-P-0502"

 M2+ --o------------------ 7.5V
 |
 Right | o-------o--R9-- U1.1
 Small | | | on/off
 C7 | R10
 | | |
 M2- --o---Q2------o------ GND7
 ___ ___ ____
 axis | | / \ \
 __/___ ______| m | __.____________|__. | |
 /__/__/ | | w | | | | | | axis | | |
 | |/ weight |___| |___| ___/_/ ___/____/
 ____/ weight motor

 U1 44pin "NAMCO103P, 1611U1263, JAPAN 9847EAI, D0489AAF"
 U2 8pin "7071, 8C19" (=BA7071F, Sync Separator IC with AFC)
 XTAL 2pin "CSA 8.00WT"
 PS1 3pin Light sensor with metal shielding
 J1 9pin Connector for 9pin cable to PSX controller and GunCon plugs
 plus resistors and capacitors, and A1,A2,B1,B2,T1,T2 wires to buttons

 DIP Button (with black T1,T2 wires) (trigger)

 Button A (with red A1,A2 wires) (left side)
 Button B (with white B1,B2 wires) (right side)

27.19 Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103

- 1055/1136 -

Other Components

Cable Pinouts

U1 "NAMCO103P" Pinouts (44pin, arranged as 4x11pin)

U2 "7071" Pinouts (=BA7071F, Sync Separator IC with AFC) (2x4pin)

 Lens (20mm)

 J1.Pin1 green PSX.Controller.Pin5 +3.5V
 J1.Pin2 brown PSX.Controller.Pin4 GND
 J1.Pin3 black PSX.Controller.Pin9 /ACK/IRQ7
 J1.Pin4 red PSX.Controller.Pin6 /JOYn
 J1.Pin5 yellow PSX.Controller.Pin1 JOYDAT
 J1.Pin6 orange PSX.Controller.Pin2 JOYCMD
 J1.Pin7 blue PSX.Controller.Pin7 JOYCLK
 J1.Pin8 gray GunCon shield (GND)
 J1.Pin9 white GunCon composite video
 N/A PSX.Controller.Pin3 +7.5V
 N/A PSX.Controller.Pin8 /IRQ10
 N/A PSX.Controller Shield

 1 GND 12 SYNC (from U2) 23 3.5V 34 SW1 (A)
 2 GND 13 3.5V 24 3.5V 35 3.5V
 3 GND 14 3.5V 25 3.5V 36 3.5V
 4 GND 15 SW3 (TRIGGER) 26 GND 37 SW2 (B)
 5 GND 16 JOYCLK (J1.Pin7 via 220 ohm R7) 27 GND 38 3.5V
 6 GND 17 3.5V 28 GND 39 3.5V
 7 GND 18 JOYCMD (J1.Pin6 via 220 ohm R8) 29 GND 40 LIGHT (from PS1)
 8 GND 19 JOYDAT (J1.Pin5 via 0 ohm R10) 30 - 41 GND
 9 - 20 /JOYn (J1.Pin4 via 220 ohm R9) 31 GND 42 GND
 10 GND 21 /ACK/IRQ7 (J1.Pin3 via 0 ohm R11) 32 GND 43 OSC 8MHz
 11 GND 22 GND 33 GND 44 OSC 8MHz

 1 VIN = SYNC.IN from J1.Pin9 Composite Video (via C5/C6/C7/R6)
 2 HD_OUT = NC
 3 GND = GND
 4 PD_OUT = NC
 5 HOSC_R = via 100K to GND
 6 VCC = 3.5V
 7 VD_OUT = NC
 8 SYNC_OUT = SYNC.OUT to U1.pin12 (with R4 pull-up)

27.19 Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103

- 1056/1136 -

27.20 Pinouts - Component List and Chipset Pin-Outs for Multitap,

SCPH-1070

Multitap Component List

Cables from Multitap PCB1 to PCB2:

plus a bunch of SMD capacitors and around 70 SMD resistors.

Multitap PSX Controller Port Cable

Multitap CARD A/B/C/D Slots

 Case "SONY, MULTITAP, SonyComputerEntertainmentInc, SCPH-1070 MADE IN CHINA"
 PCB1 "SONY 1-659-343-11" (mainboard with Slot A,B, ICs, X1, PSX-cable)
 PCB2 "SONY 1-711-414-11" (daughterboard with Slot C,D)
 IC? 64pin "SONY JAPAN, CXD103, -166Q, 550D66E" (smd/back side)
 IC02 8pin "7W14, 5K" some tiny SMD chip (for JOYCLK) (smd/back side)
 X1 2pin "4.00G CMj" oscillator (front side)
 J34 2pin fuse or 1 ohm resistor or so (for +3.5V input) (front side)
 Jxx 2pin normal wire bridges (except: J34 is NOT a wire) (front side)

 1pin black wire Shield/GND (lower edge)
 1pin black wire Shield/GND (upper edge)
 2x8pin red/gray ribbon cable (side edge)
 2x2pin red/gray ribbon cable (lower edge)
 2pin red/gray ribbon cable (upper middle) (gray=+3.3V, red=+7.5V)

 PSX.1 -------brown------ TAP.1 JOYDAT ;via 47 ohm (R57) to CXD.35
 PSX.2 -------orange----- TAP.2 JOYCMD ;via 220 ohm (R58) to CXD.37
 PSX.3 -------magenta---- TAP.3 +7.5V ;directly to +7.5V on JOY/CARD's
 PSX.4 -------black------ TAP.4 GND ;directly to GND
 PSX.5 -------red-------- TAP.5 +3.5V ;via 1 ohm or so (J34) to +3.3V
 PSX.6 -------yellow----- TAP.6 /JOYn ;via 220 ohm (R59) to CXD.46
 PSX.7 -------blue------- TAP.7 JOYCLK ;via 220 ohm (R60) to IC02.pin6
 PSX.8 -------gray------- TAP.8 /IRQ10 ;via 47 ohm (R02/R16/R30/R44) to JOY's
 PSX.9 -------green------ TAP.9 /ACK ;via 47 ohm (R61) to CXD.51
 PSX.Shield --shield----- TAP.shielding.plate (GND)

 1 JOYDAT Via 47 ohm (R11/R25/R38/R5x) to CXD.18/29/60/5 (and to JOY slot)
 2 JOYCMD Via 220 ohm (R10/R24/R39/R52) to CXD.19/30/62/6
 3 +7.5V Directly to PSX.3
 4 GND Directly to PSX.4
 5 +3.3V Via J34 to PSX.5 (+3.5V)
 6 /JOYn Via 220 ohm (R09/R2x/Rxx/R51) to CXD.11/22/52/61

27.20 Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

- 1057/1136 -

Multitap JOY A/B/C/D Slots

Multitap IC02 8pin "7W14, 5K" some tiny SMD chip

Multitap "SONY CXD103-166Q" Chip Pin-Outs (Multitap CPU)

 7 JOYCLK Via 220 ohm (R08/R2x/Rxx/R50) to CXD.33/33/47/47
 9 /ACK Via 47 ohm (R07/R2x/Rxx/R49) to CXD.12/21/45/64

 1 JOYDAT Via 47 ohm (R06/Rxx/R34/R5x) to CXD.18/29/60/5 (and to CARD slot)
 2 JOYCMD Via 220 ohm (R05/R19/R35/R5x) to CXD.17/28/59/4
 3 +7.5V Directly to PSX.3
 4 GND Directly to PSX.4
 5 +3.3V Via 1 ohm or so (J34) to PSX.5 (+3.5V)
 6 /JOYn Via 220 ohm (R04/R18/R32/R4x) to CXD.16/20/55/63
 7 JOYCLK Via 220 ohm (R03/R17/R31/R45) to CXD.15/23/56/2
 8 /IRQ10 Via 47 ohm (R02/R16/R30/R44) to PSX.8
 9 /ACK Via 47 ohm (R01/R15/R29/R43) to CXD.13/27/54/7
 Shield Directly to Shield/GND

 1
 2
 3
 4 GND
 5
 6 via 220 ohm (R60) to PSX.7 (JOYCLK)
 7 to CXD.Pin48
 8 +3.3V, aka via 1 ohm (J34) to PSX.5 (+3.5V)

 1 via to 10K (R63) to +3.3V, and via C13 to GND (probably power-on reset)
 2 JOY.D.7.JOYCLK
 3
 4 JOY.D.2.JOYCMD
 5 JOY/CARD.D.1.JOYDAT
 6 CARD.D.2.JOYCMD
 7 JOY.D.9./ACK
 8 4MHz X1/C12
 9 4MHz X1/C11
 10 GND
 11 CARD.A.6./JOYn
 12 CARD.A.9./ACK
 13 JOY.A.9./ACK
 14
 15 JOY.A.7.JOYCLK
 16 JOY.A.6./JOYn
 17 JOY.A.2.JOYCMD
 18 JOY/CARD.A.1.JOYDAT
 19 CARD.A.2.JOYCMD

27.20 Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

- 1058/1136 -

 20 JOY.B.6./JOYn
 21 CARD.B.9./ACK
 22 CARD.B.6./JOYn
 23 JOY.B.7.JOYCLK
 24
 25 GND
 26 +3.3V
 27 JOY.B.9./ACK
 28 JOY.B.2.JOYCMD
 29 JOY/CARD.B.1.JOYDAT
 30 CARD.B.2.JOYCMD
 31 GND
 32

 33 CARD.A/B.7.JOYCLK
 34
 35 PSX.1.JOYDAT
 36
 37 PSX.2.JOYCMD
 38
 39
 40
 41
 42 GND
 43
 44 GND
 45 CARD.C.9./ACK
 46 PSX.6./JOYn
 47 CARD.C/D.7.JOYCLK
 48 IC02.Pin7.PSX.JOYCLK
 49
 50
 51 PSX.9./ACK

 52 CARD.C.6./JOYn
 53
 54 JOY.C.9./ACK
 55 JOY.C.6./JOYn
 56 JOY.C.7.JOYCLK
 57 GND
 58 +3.3V
 59 JOY.C.2.JOYCMD
 60 JOY/CARD.C.1.JOYDAT
 61 CARD.D.6./JOYn
 62 CARD.C.2.JOYCMD
 63 JOY.D.6./JOYn
 64 CARD.D.9./ACK

27.20 Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070

- 1059/1136 -

27.21 Pinouts - Memory Cards

Sony Playstation Memory Card (SCPH-1020)

The "SONY CXD8732AQ" chip is installed on memory cards with "SPC02K1020B" boards,

however, the text layer on the board says that it's an "LC86F8604A" chip. So, the

CXD8732AQ is most probably a standard LC86F8604A chip (more on that below) with a

Sony Memory Card BIOS ROM on it.

The "SONY CXD8732AQ" comes in a huge 64pin package, but it connects only to:

Aside from that chip, the board additionally contains some resistors, capacitors, z-diodes

(for protection against too high voltages), a 6MHz oscillator (for the CPU), and a 5pin

reset generator (on the cart edge connector, the supply pins are slightly longer than the

data signal pins, so when inserting the cartridge, power/reset gets triggered first; the

7.5V supply pin is left unconnected, only 3.5V are used).

Caution: The "diagonal edge" at the upper-left of the CXD8732AQ chip is Pin 49 (not pin

1), following the pin numbers on the board (and the Sanyo datasheet pinouts), pin 1 is at

the lower-left.

Sanyo LC86F8604A

8bit CPU with 132Kbyte EEPROM, 4Kbyte ROM, 256 bytes RAM, 2 timers, serial port, and

general purpose parallel ports. The 132K EEPROM is broken into 128K plus 4K, the 4K

might be internally used by the CPU, presumably containing the BIOS (not too sure if it's

really containing 4K EEPROM plus 4K ROM, or if it's meant to be only either one).

Ports P10..P17 have multiple functions (I/O port, data bus, serial, etc):

 5 = /IRQ7 (via 22 ohm) 2 = /RESET (from U2)
 6 = JOYCLK (via 220 ohm) 30,31 = CF1,CF2 (12 clock pulses per 2us)
 7 = /JOYn (via 220 ohm) 14,16,25,32,38,39,61 = 3.5V (via 3.3 ohm)
 12 = JOYCMD (via 220 ohm) 8,15,28,29 = GND
 13 = JOYDAT (via 22 ohm) All other pins = Not connected

 1=P40/A0 9=P13 17=TP0 25=VDD 33=A11 41=NC 49=A7 57=NC
 2=/RES 10=P14 18=TP1 26=NC 34=A9 42=NC 50=A6 58=NC
 3=TEST2 11=P15 19=TP2 27=NC 35=A8 43=NC 51=A5 59=NC
 4=TEST1 12=P16 20=TP3 28=NC 36=A13 44=NC 52=A4 60=NC
 5=P10 13=P17 21=TP4 29=VSS 37=A14 45=A17 53=NC 61=NC61
 6=P11 14=/CE 22=TP5 30=CF1 38=/WE 46=A16 54=NC 62=P43/A3
 7=P12 15=A10 23=TP6 31=CF2 39=VDD 47=A15 55=NC 63=P42/A2
 8=VSS 16=/OE 24=TP7 32=VDD 40=EP 48=A12 56=NC 64=P41/A1

27.21 Pinouts - Memory Cards

- 1060/1136 -

In March 1998, Sanyo has originally announced the LC86F8604A as an 8bit CPU with

"2.8V FLASH, achieved for the first time in the industry", however, according to their

datasheet, what they have finally produced is an 8bit CPU with "3.5V EEPROM". Although,

maybe the 3.5V EEPROM version came first, and the 2.8V FLASH was announced to be a

later low-power version of the old chip; namely, otherwise, it'd be everyones guess what

kind of memory Sony used in memory cards before 1998?

Note

For the actual pin-outs of the cart-edge connector, see

Pinouts - Controller Ports and Memory-Card Ports

27.22 Mods - Nocash PSX-XBOO Upload

Nocash PSX-XBOO Connection (required)

Nocash PSX-BIOS Connection (required)

 P10/DQ0/SEPMOD P12/DQ2/FSI0 P14/DQ4 P16/DQ6/SI0/FSTART
 P11/DQ1/SCLK0/FSCLK P13/DQ3 P15/DQ5 P17/DQ7/SO0/FRW

 GND (BOARD) --------- GND (SUBD.18-25, CNTR.19-30)
 A16 (ROM.2) --------- SLCT (SUBD.13, CNTR.13) ;\
 A17 (ROM.30) --------- PE (SUBD.12, CNTR.12) ; 4bit.dta.out
 A18 (ROM.31) --------- /ACK (SUBD.10, CNTR.10) ;
 A19 (ROM.1) --------- BUSY (SUBD.11, CNTR.11) ;/
 /RESET ---|>|--- /INIT (SUBD.16, CNTR.31) ;-reset.in
 D0..D7 (74HC541) --------- DATA (SUBD.2-9, CNTR.2-9) ;\
 Y0..Y7 (74HC541) --------- D0..D7 (ROM.13-15,17-21) ; 7bit.dta.in, and
 /OE1 (74HC541.1) --------- /EXP (CPU.98) ; 1bit.dta.clk.in
 /OE2 (74HC541.19) --------- /OE (ROM.24) ;
 GND (74HC541.10) --------- GND (BOARD) ;
 VCC (74HC541.20) --------- +5V (BOARD) ;/

 A0..A19 (ROM) --------- A0..A19 (EPROM)
 D0..D7 (ROM) --------- D0..D7 (EPROM)
 /BIOS (CPU.97)--------- /CS (EPROM.22)
 /OE (ROM.24) --------- /OE (EPROM.24)
 +5V (BOARD) --------- VCC (EPROM.32)
 GND (BOARD) --------- GND (EPROM.16)
 /CS (ROM.22) --/cut/-- /BIOS (CPU.97)
 /CS (ROM.22) --------- +5V (BOARD) (direct, or via 100k ohm)

27.22 Mods - Nocash PSX-XBOO Upload

- 1061/1136 -

Nocash BIOS "Modchip" Feature (optional)

The nocash PSX bios outputs the "data" signal on the A20 address line, so (aside from the

BIOS chip) one only needs to install a 1N4148 diode and two wires to unlock the CDROM.

For more variants, see:

CDROM Protection - Chipless Modchips

Composite NTSC/PAL Mod (optional)

Mods - PAL/NTSC Color Mods

Component List

PSX-XBOO Upload BIOS

The required BIOS is contained in no$psx (built-in in the no$psx.exe file), the Utility

menu contains a function for creating a standalone ROM-image (file PSX-XBOO.ROM in

no$psx folder; which can be then burned to FLASH or EPROM).

Pinouts

 SPU.Pin42 "data" -------|>|------ CPU.Pin149 (A20)
 SPU.Pin5 "sync" ---------------- IC723.Pin17

 32pin socket for EPROM
 EPROM (or FLASH)
 74HC541 (8-bit 3-state noninverting buffer/line driver)
 1N4148 diode (for reset signal)
 1N4148 diode (for optional "modchip" feature)
 36pin Centronics socket for printer cable (or 25pin dsub)

 ______ ______ ____ ____
 | \/ | | \/ |
 A19,VPP12 | 1 32 | VCC6 /OE1 |1 20| VCC
 A16 | 2 31 | A18,/PGM D0 |2 19| /OE2
 A15 | 3 30 | A17 D1 |3 18| Y0
 A12 | 4 29 | A14 D2 |4 17| Y1
 A7 | 5 28 | A13 D3 |5 74541 16| Y2
 A6 | 6 27 | A8 D4 |6 15| Y3
 A5 | 7 26 | A9,IDENT12 D5 |7 14| Y4
 A4 | 8 25 | A11 D6 |8 13| Y5
 A3 | 9 24 | /OE,VPP12 D7 |9 12| Y6
 A2 | 10 23 | A10 GND |10 11| Y7
 A1 | 11 22 | /CE,(/PGM) |__________|
 A0 | 12 21 | D7

27.22 Mods - Nocash PSX-XBOO Upload

- 1062/1136 -

Note

Instead of the above internal mod, the nocash kernel clone can be also installed on

cheat devices, which do also include DB25 connectors for parallel port uploads, too.

For DB25 parallel port uploads, do the following mods to the cheat device:

27.23 Mods - PAL/NTSC Color Mods

The PSX hardware is more or less capable of generating both PAL and NTSC signals.

However, it's having the bad habbit to do this automatically depending on the game's

frame rate. And worse, it's doing it regardless of whether the board is having matching

oscillators installed (eg. a PAL board in 60Hz mode will produce NTSC encoding with

faulty NTSC color clock).

RGB Cables

RGB cables don't rely on composite PAL/NTSC color encoding, and thus don't need any

color mods (except, see the caution on GNDed pins for missing 53.20MHz/53.69MHz

oscillators below).

Newer Consoles (PU-22, PU-23, PM-41, PM-41(2))

These consoles have 17.734MHz (PAL) or 14.318MHz (NTSC) oscillators with constant

dividers, so the color clock will be always constant, and one does only need to change

the color encoding:

 D0 | 13 20 | D6
 D1 | 14 19 | D5
 D2 | 15 18 | D4
 GND | 16 17 | D3
 |______________|

 - Datel: use the FiveWire mod to get it parallel port compatible
 - Xplorer: simply wire DB25./INIT to EXP./RESET (with diode, if needed)

 color encoding PAL NTSC
 color clock 4.43361875MHz 3.579545MHz
 frame rate 50Hz 60Hz

 /PAL (IC502.pin13) ---/cut/--- /PAL (GPU.pin157)
 /PAL (IC502.pin13) ----------- GND (PAL) or VCC (NTSC)

27.23 Mods - PAL/NTSC Color Mods

- 1063/1136 -

This forces the console to be always producing the desired composite color format

(regardless of whether the GPU is in 50Hz or 60Hz mode).

That works for NTSC games on PAL consoles (and vice-versa). However, it won't work for

NTSC consoles with PAL TV Sets (for that case it'd be easiest to install an extra oscillator,

as done on older consoles).

Older Consoles (PU-7, PU-8, PU-16, PU-18, PU-20)

These consoles have 53.20MHz (PAL) or 53.69MHz (NTSC) oscillators and the GPU does

try to change the clock divider depending on the frame rate (thereby producing a

nonsense clock signal that's neither PAL nor NTSC). Best workaround is to install an

extra 4.43361875MHz (PAL) or 3.579545MHz (NTSC) oscillator (with internal amplifier,

ie. in 4pin package, which resembles DIP14, hence the pin 1,7,8,14 numbering):

Caution: Many mainboards have solder pads for both 53.20MHz and 53.69MHz oscillators,

the missing oscillator is either GNDed or shortcut with the installed oscillator (varies from

board to board, usually via 0 ohm resistors on PCB bottom side). If it's GNDed, remove

that connection, and instead have it shortcut with the installed oscillator.

Alternately, instead of the above mods, one could also install the missing oscillator (and

remove its 0 ohm resistor), so the board will have both 53.20MHz and 53.69MHz

installed; that will produce perfect PAL and NTSC signals in 50Hz and 60Hz mode

accordingly, but works only if the TV Set recognizes both PAL and NTSC signals.

Notes

External 4.433MHz/3.579MHz osciallors won't be synchronized with the GPU frame rate

(normally you don't want them to be synchronized, but there's some small risk that they

might get close to running in sync, which could result in static or crawling color

artifacts).

For the CXA1645 chip modded to a different console region, one should also change one

of the resistors (see datasheet), there's no noticable difference on the TV picture

though.

 GPU ------------------/cut/--- CXA1645M.pin6 SCIN
 GPU ------------------/cut/--- CXA1645M.pin7 /PAL
 Osc.pin14 VCC ---------------- CXA1645M.pin12 VCC (5V)
 Osc.pin7 GND ---------------- CXA1645M.pin1 GND
 Osc.pin8 OUT ---------------- CXA1645M.pin6 SCIN
 Osc.pin1 NC --
 GND (PAL) or VCC (NTSC) ------ CXA1645M.pin7 /PAL

27.23 Mods - PAL/NTSC Color Mods

- 1064/1136 -

Region Checks

Some kernel versions contain regions checks (additionally to the SCEx check),

particulary for preventing NTSC games to run on PAL consoles, or non-japanese games

on japanese consoles. Some PAL modchips can bypass that check (by patching the

region byte in BIOS). Expansions ROMs or nocash kernel clone could be also used to

avoid such checks.

27.23 Mods - PAL/NTSC Color Mods

- 1065/1136 -

28. About & Credits

Credits

Contributors to Martin Korth's original documentation:

All the contributors to the psx-spx.github.io repo who've helped update, correct and

expand this information.

PSXSPX homepage

no$psx emulator/debugger

psx specs in html format

psx specs in text format

Contact

Martin Korth's email

psx-spx issue tracker

PSX.Dev Discord server

GPU.TXT by doomed/padua; based on info from K-communications & Nagra/Blackbag
GTE.TXT by doomed@c64.org / psx.rules.org
SPU.TXT by doomed@c64.org / psx.rules.org
CDINFO.TXT by doomed with big thanks to Barubary, who rewrote a large part
SYSTEM.TXT by doomed with thanx to Herozero for breakpoint info
PS_ENG.TXT PlayStation PAD/Memory Interface Protocol by HFB03536
IDT79R3041 Hardware User's Manual by Integrated Device Technology, Inc.
IDTR3051, R3052 RISController User's Manual by Integrated Device Technology
PSX.* by Joshua Walker (additional details in various distorted file formats)
LIBMIRAGE by Rok; info/source code for various cdrom-image formats
psxdev.ru; cdrom sub-cpu decapping

•

•

•

•

•

•

28. About & Credits

- 1066/1136 -

https://github.com/psx-spx/psx-spx.github.io
http://problemkaputt.de/psx.htm
http://problemkaputt.de/psx-spx.htm
http://problemkaputt.de/psx-spx.txt
http://problemkaputt.de/email.htm
https://github.com/psx-spx/psx-spx.github.io/issues
https://discord.gg/QByKPpH

29. CDROM Video CDs (VCD)

VCDs are Video CDs with MPEG compression, yielding a playtime of 72 minutes per disc

(whole movies usually being stored on two CDs). VCDs are popular in asia (as opposed

to VHS tapes used in western world).

VCDs on Playstation

For the Playstation, the asian SCPH-5903 model includes a special daughterboard with

MPEG decoding hardware for playing VCDs.

CDROM - Video CD Commands

Pinouts - VCD Pinouts

Without that hardware it has been widely believed to be impossible to play VCDs on

Playstations, although, as of 2017, it turned out that the Playstation's CPU and MDEC

decoder are fast enough for that purpose (when skipping B-frames, rendering the movie

in monochrome without colors, and reducing audio output to 11kHz/mono).

ISO Filesystem (Track 1)

VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO Filesystem)

VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)

VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO, PICTURES, CDI)

MPEG Streams (Track 2 and up)

VCD MPEG-1 Multiplex Stream

VCD MPEG-1 Video Stream

XXX MPEG-1 Macroblocks

VCD MP2 Audio Stream

VCD Versions & Variants

XXX

29. CDROM Video CDs (VCD)

- 1067/1136 -

29.1 VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO

Filesystem)

Primary Volume Descriptor (00:02:16)

VCDs are having a standard ISO Primary Volume Descriptor, with some VCD specific

entries:

There are some more differences to normal CDROMs:

Due to the fixed sector numbers, VCDs players can completely ignore the ISO filesystem

with filenames and folders, and just address everything via sector numbers (though

accessing files in EXT and CDI folders seem to require using the filesystem).

VCD\INFO.VCD or SVCD\INFO.SVD (00:04:00) (800h bytes, one sector)

 008h 32 System Identifier (always "CD-RTOS CD-BRIDGE" for VCDs)
 028h 32 Volume Identifier (often nonsense, eg. "" or "__" or "VolumeLabel")
 23Eh 128 Application Identifier ("CDI/CDI_APPL.VCD;1" or "CDI/CDI_VCD.APP;1")
 400h 8 CD-XA Identifying Signature ("CD-XA001" for PSX and VCD)

 VCDs are using MODE2 (with 800h-byte and 914h-byte sectors)
 MPEG videos are on extra data tracks (outside of the ISO area on Track 1)
 Files in VCD or SVCD folders use fixed sectors numbers (00:04:00 and up)
 All 16bit/32bit values in files in VCD,SVCD,EXT,etc are BIG-ENDIAN

 000h 8 ID "VIDEO_CD" for VCD (or "SUPERVCD"/"HQ-VCD " for SVCD)
 008h 1 Version ;Version Major (01h) (or 02h for VCD 2.0)
 009h 1 System Profile Tag ;Version Minor (00h) (or 01h for VCD 1.1 or HQ)
 00Ah 16 Album ID/Desc (name in ASCII, padded with SPC) (usually empty)
 01Ah 2 Total Number of CDs in Album (1..N) ;\usually always 1,1 (even
 01Ch 2 Number of this CD in Album (1..N) ;/for movies with 2 discs)
 01Eh 13 PAL Flags, 98x1bit, for each Track? (0=NTSC, 1=PAL)
 02Bh 1 InfoStatusFlags (see below)
 Below is usually zero-filled when not using PBC
 02Ch 4 Size of PSD.VCD file (or PSD.SVD?) (0=None)
 030h 3 First segment addr MM:SS:00 in BCD (00:02:00 ???)
 033h 1 Offset Multiplier for "PsdOffset" values in PSD.VCD (must be 8)
 034h 2 Number of ListIDs in LOT.VCD file (1..7FFFh, plus 1 in some discs)
 036h 2 Number of ITEMnnnn.DAT files (plus nonsense in some discs?)
 Below is usually zero-filled (maybe exists on SVCD only?)
 038h 1980 SegmentContent[1..1980] (b0-1=Audio, b2-4=Video, b5=Cont, b6-7=OGT)
 7F4h 5*2 volume start time[0]: 5x16bit ;aka playing_time[5] in seconds (?)
 7FEh 2 Reserved (0)

29.1 VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO Filesystem)

- 1068/1136 -

InfoStatusFlags at [02Bh] describes certain characteristics of the disc:

Note: Bit5/6 are used only if the next disc has the same Album ID (eg. the feature allows

to skip copyright messages if the same message was already shown on another disc).

First_segment_addr: The location of the first sector of the Segment Play Item Area [that

is... the first ITEMnnnn.DAT file?], in the form mm:ss:00. Must be 00:00:00 if PSD size is

zero. If PSD size is nonzero, but no segments used: Usually set to 00:02:00.

VCD\ENTRIES.VCD or SVCD\ENTRIES.SVD (00:04:01) (800h bytes, one sector)

Version;

Sys_prof_tag;

MPEGAV\AVSEQnn.DAT (pointers to max 98 MPEG-1 Tracks, nn=01..98) (for VCDs)

MPEG2\AVSEQnn.MPG (pointers to max 98 MPEG-2 Tracks, nn=01..98) (for SVCDs)

MPEGAV\AVSEQnn.MPG (pointers to WHATEVER) (as so on some SVCDs or VCD30?)

These filesystem entries contain pointers to the video tracks (that is, outside of the ISO

area on Track 1).

Commercially made SVCDs can reportedly contain 7 folders: Autorun, Data, Ext,

 bit0 Reserved, must be zero
 bit1-2 Restriction (0=No, 1..3=Restricted category 1..3) (eg. "not for kids")
 bit3 Special Information is encoded in the pictures, uh?
 bit4 MPEG User Data is used for Closed Caption (user_data_cc) (0=No, 1=Yes)
 bit5 Next Disc with PBC (0=Start at ListID#1, 1=Start at ListID#2)
 bit6 Next Disc without PBC (0=Start at Track #2, 1=Start at Track #3)
 bit7 Extended PBC available (0=No, 1=Yes... aka EXT\PSD_X exists?)

 000h 8 ID "ENTRYVCD" for VCD and SVCD (or "ENTRYSVD" for VCD30)
 008h 1 Version ;\same as in INFO.VCD/SVD
 009h 1 System Profile Tag ;/
 00Ah 2 Number of Entries/Chapters (1..500)
 00Ch 4*500 Entry[N] (Track 02h..99h, and MM:SS:FF) (all 4 bytes in BCD)
 7DCh 36 Reserved (0)

 0x02 --- VCD2.0
 0x01 --- SVCD, should be same as version in INFO.SVD

 0x01 if VCD1.1
 0x00 else

29.1 VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO Filesystem)

- 1069/1136 -

Mpegav, Segment, Svcd and Vmp (ie. there's no MPEG2 folder on all SVCDs? though

that MPEGAV folder is said to contain a .MPG file instead of .DAT file).

29.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

Playback Control (PBC) is an optional feature that allows to define menues, pictures or

text pages (whereas all those is internally just consisting of MPEG compressed bitmaps;

rather than of text characters).

Presence of the PBC feature is indicated by PSD.VCD filesize entry (in INFO.VCD) being

nonzero. PBC seems to be supported by most VCDs (except older discs from around

1997), however, many VCDs are merely including a single PlayList entry for the movie

track, without any further menues/extras.

VCD\PSD.VCD or SVCD\PSD.SVD (00:04:34 and up) (max 256 sectors)

The Descriptors in this file can be considered as being "program code". The program is

usually stuck on "executing" the current descriptor (eg. playing a movie, or showing a

selection menu) without automatically increasing the program counter. Actual program

flow occurs only if the user presses a button (or upon selection timeouts), causing the

program to "goto" to a new PsdOffset. And, something does probably happen upon end-

of-track/item... maybe that does automatically trigger the Next button handler?

 PsdPlayListDescriptor (14+2*N bytes):
 00h 1 Type (10h=PlayList)
 01h 1 Number of Items (noi) ;for Start-of-Movie and Numeric-Input?
 02h 2 ListID for this Descriptor (1..7FFFh)
 04h 2 PsdOffset for Prev button (FFFFh=Disable)
 06h 2 PsdOffset for Next button (FFFFh=Disable)
 08h 2 PsdOffset for Return/back button (FFFFh=Disable)
 0Ah 2 Play time in 1/15s (=max 72.8 minutes) (or 0000h=full item)
 0Ch 1 Delay time in "1s/10s" units after ;<-- uh, after? after what?
 0Dh 1 Auto pause time in "1s/10s" units (used for each item in list if
 the auto pause flag in a sector is true) [WHAT is that? Trigger bit?]
 0Eh 2*N ItemID[N] ;item number (0..599 or 1000..2979)
 Entry 0 is for "start of movie" (usually 0002h=Track 2)
 Entry 1..N-1 is for numeric input ?
 PsdSelectionListDescriptor (20+2*N bytes, or 36+6*N bytes):
 00h 1 Type (18h=SELECTION_LIST, or 1Ah=EXT_SELECTION_LIST)
 01h 1 Flags (bit0=SelectionArea, bit1=CommandList, bit2-7=Reserved)
 02h 1 nos <-- aka Number of Numeric-input selections ?
 03h 1 bsn <-- ?
 04h 2 ListID for this Descriptor (1..7FFFh)
 06h 2 PsdOffset for Prev button
 08h 2 PsdOffset for Next button
 0Ah 2 PsdOffset for Return/back button

29.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

- 1070/1136 -

Delay values in "1s/10s" units (for PlayList[0Ch,0Dh]):

Item numbers (0..599 or 1000..2979) can be:

PsdOffset values can be:

 0Ch 2 PsdOffset for Default button (uh, what is that?)
 0Eh 2 PsdOffset for Timeout
 10h 1 totime <-- aka Timeout Time maybe? in WHAT units?
 11h 1 loop <-- aka ?
 12h 2 itemid <-- aka Item to be displayed during the selection?
 14h 2*N PsdOffset[N] for Numeric-input ?
 Below only for SVCDs (with Type=18h), or for Extended VCDs (with Type=1Ah):
 (14h+2*N) 4 Area for Prev (x1,y1,x2,y2) ;\these extra entries exist for
 (18h+2*N) 4 Area for Next (x1,y1,x2,y2) ; SVCDs with Type=18h, and
 (1Ch+2*N) 4 Area for Return (x1,y1,x2,y2) ; Extended VCDs with Type=1Ah
 (20h+2*N) 4 Area for Default (x1,y1,x2,y2) ; (but do NOT exist for
 (24h+2*N) 4*N Area[N] (x1,y1,x2,y2) ;/older VCDs with Type=18h)
 PsdEndListDescriptor (8 bytes)
 00h 1 Type (1Fh=EndList)
 01h 1 Next_disc ;00h to stop PBC or NNh to switch to disc no NN (BCD!?)
 02h 2 Item (0 or 1000..2979, should be still image, eg. Change Disc pic)
 04h 4 Reserved (0)
 N/A - This descriptor doesn't have a ListID (unlike as other descriptors)
 PsdCommandListDescriptor (5+2*N bytes)
 00h 1 Type (20h=CommandList)
 01h 2 Command_count
 03h 2 ListID for this Descriptor (1..7FFFh)
 05h 2*N command[EMPTY_ARRAY_SIZE] ;uh, WHAT is a command?
 PsdAlignmentPadding (after each list entry)
 00h 0..7 Padding to next 8-byte PsdOffset boundary (00h-filled)

 1..60 --> wait "N" seconds
 61..254 --> wait "(N-60)*10+60" seconds
 255 --> wait infinite

 0..1 - Play nothing
 2..99 - Play Track 2..99 (TOC tracks, for AVSEQnn.DAT and AUDIOnn.DAT?)
 100..599 - Play Entry 1..500 from table in ENTRIES file up to end of track
 600..999 - Reserved
 1000..2979 - Play SPI Segment Play Item 1..1980 (ITEMnnnn.DAT file)
 2980..65535 - Reserved

 0..N Offset within PSD.VCD file, in 8-byte units
 FFFDh PSD_OFS_MULTI_DEF_NO_NUM ;\uh, what is that?
 FFFEh PSD_OFS_MULTI_DEF ;/
 FFFFh PSD_OFS_DISABLED ;-no function assigned to the button

29.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

- 1071/1136 -

For whatever reason, some PsdOffsets are specified as ListID (lid), these ListID values

must be translated to actual PsdOffset via the ListID Offset Table (aka LOT.VCD/LOT.SVD

file).

VCD\LOT.VCD or SVCD\LOT.SVD (00:04:02..33) (64Kbyte, 32 sectors)

The ListID Offset Table (LOT) allows to translate ListIDs to PsdOffsets. The file is always

64Kbyte in size (unused entries should be set to FFFFh).

The PSD.VCD file does also assign ListIDs to each descriptor (ie. instead of using the

LOT.VCD file, one could also scan all descriptors in PSD.VCD when searching a specific

ListID).

Note: ListID#1 is used as entrypoint to PSD.VCD when inserting a new disc (or when

inserting another disc of the SAME movie, the entrypoint can be ListID#2, depending on

the Next Disc flag in INFO.VCD).

SEGMENT\ITEMnnnn.DAT (Pictures, Menu screens) (nnnn=0001..1980)

These files contain Pictures/Menu screens referenced from PSD.VCD. The files seem to

be stored in FORM2 sectors (not FORM1). Unknown if the files are located on Track 1.

The content of the files seems to resemble short MPEG video clips (with only one picture

frame, or eventually with a few frames for short animations, including audio in some

cases). Still images are said to be allowed to use twice the resolution of MPEG videos.

EXT\PSD_X.VCD or EXT\PSD_X.SVD (extended version of PSD.VCD)

EXT\LOT_X.VCD or EXT\LOT_X.SVD (extended version of LOT.VCD)

The "extended" files are often identical to the normal PSD/LOT files. The difference is

that, if disc uses SelectionLists, then PSD should use the normal descriptor (18h), and

PSD_X should use the extended descriptor (1Ah), the latter one seems to be intended to

allow to highlight the current menu selection (particulary useful when using +/- buttons

instead of Numeric Keypad input). Note: Nethertheless, Muppets from Space uses

descriptor 18h in PSD_X.

Unknown if SVCDs do really have "extended" files, too (theoretically the VCD extension

should be a default feature for SVCDs).

 0000h 2 Reserved (0)
 0002h 2*7FFFh PsdOffset[1..7FFFh] ;for ListID 1..7FFFh

29.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)

- 1072/1136 -

Playback Control Issues

Although PBC was intended as "nice extra feature", many VCDs are containing faulty

PSD files. In general, VCD players should either leave PBC unsupported (or at the very

least, provide an option for disabling it).

Red Dragon from 2003 uses extended selection lists, but crops PSD_X.VCD to the same

filesize as PSD.VCD.

Muppets from Space from 1999 assigns weird functions to Prev/Next buttons (Next

wraps from Last Track to First Track, but Prev doesn't wrap from First to Last; default

Non-PBC Prev/Next functions are more user friendly).

Sony's SCPH-5903 console refuses to display the HH:MM:SS playback time when using

PBC (instead it does only display a "PBC" logo).

29.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS,

SPICONTX)

Below files can help searching I-frames, and provide some info about the content of

Tracks and Segments.

Essentially, searching I-frames is possible without these files - however, if present, then

the files may be useful in two cases: For discs with variable bitrates (which isn't allowed

on VCDs though), and, for CDROM firmwares that don't support "inaccurate" seeking

(like telling it to start reading anywhere NEAR some MM:SS:FF value, so one could skip

sectors till reaching an I-frame) (ie. if the firmware insists on a "accurate" seek position,

then it's best to give it a known I-frame address).

Caution: Overlapping Sectors (!?!)

Reportedly the new SVCD files TRACKS.SVD and SEARCH.DAT are on these sectors:

If that's correct, then the files would overlap with PSD.SVD (when PSD.SVD is bigger than

one sector), that would be weird, but possible (ie. the "PsdOffset" in PSD.SVD would need

to "skip" the region used by those two files).

 TRACKS_SVD_SECTOR = (PSD_VCD_SECTOR+1) ;aka 2nd sector in PSD.SVD?
 SEARCH_DAT_SECTOR = (TRACKS_SVD_SECTOR+1) ;aka 3rd..Nth sector in PSD.SVD?

29.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)

- 1073/1136 -

EXT\SCANDATA.DAT (12+3*N bytes for VCD 2.0) (or 16+3*N+2*X+3*Y+3*Z for SVCD)

This file fulfills much the same purpose of the SEARCH.DAT file except that this file is

mandatory only if the System Profile Tag of the INFO.SVD file is 0x01 (HQ-VCD) and

also that it contains sector addresses also for each video Segment Play Items in addition

to the regular MPEG tracks.

SVCD\SEARCH.DAT (13+3*N bytes)

This file defines where the scan points are. It covers all mpeg tracks together. A scan

point at time T is the nearest I-picture in the MPEG stream to the given time T. Scan

points are given at every half-second for the entire duration of the disc.

Note: This SVCD file is about same as the old EXT\SCANDATA.DAT file on VCDs (with one

extra entry for Time Interval). Whilst, SVCDs are storing some different stuff in

EXT\SCANDATA.DAT (despite of the identical filename).

 SCANDATA.DAT Format for VCD 2.0 (12+3*N bytes):
 000h 8 ID "SCAN_VCD"
 008h 1 Version (02h for VCD 2.0)
 009h 1 Reserved (0)
 00Ah 2 Number of scan points (in 0.5s units) (max FFFFh = ca. 9.1 hours)
 00Ch 3*N Scan Point[0..N-1] ;MM:SS:FF of closest I-frame
 SCANDATA.DAT Format for SVCD (16+3*N+2*X+3*Y+3*Z bytes):
 000h 8 ID "SCAN_VCD"
 008h 1 Version (01h for SVCD)
 009h 1 Reserved (0)
 00Ah 2 scandata_count ;number of 3-byte entries in the table
 00Ch 2 track_count ;number of MPEG tracks on disc
 00Eh 2 spi_count ;number of consecutively recorded play item segments
 ; (as opposed to the number of segment play items).
 010h 3*N msf_t cum_playtimes[N] ;cumulative playing time up to track N.
 ; (track time just wraps at 99:59:74)
 xxxh 2*X spi_indexes[X] ;Indexes into the following scandata table
 xxxh 2 mpegtrack_start_index ;Index into the following scandata table
 ; (where the MPEG track scan points start)
 xxxh 3*Y The scandata table... [Y] ;8bit Track Number and 16bit Index
 uint8_t track_num; /* Track number as in TOC
 uint16_t table_offset; /* Index into scandata table
 xxxh 3*Z msf_t scandata_table[Z] ;MM:SS:FF

 000h 8 ID "SEARCHSV"
 008h 1 Version (01h)
 009h 1 Reserved (0)
 00Ah 2 Number of scan points
 00Ch 1 Time_interval (in units of 0.5 seconds) (must be 01h)
 00Dh 3*N Scan Point[0..N-1] ;MM:SS:FF of closest I-frame

29.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)

- 1074/1136 -

SVCD\TRACKS.SVD (11+4*N bytes) (or rarely:11+5*N bytes)

The TRACKS.SVD file contains a series of structures, one for each track, which indicates

the track's playing time (in sectors, not actually real time) and contents.

SVCD\TRACKS.SVD is a mandatory file which describes the numbers and types of MPEG

tracks on the disc.

SVCD\SPICONTX.SVD (1000h bytes, two sectors)

Unknown if/when/where/why this file exists, possibly only on VCD30?

Note: The same info can be stored in INFO.SVD at offsets [038h..7F3h].

Content Flags for Segments and Tracks

For SVCD\INFO.SVD and SVCD\TRACKS.SVD (on SVCD) these are encoded in 1 byte:

 SVCD\TRACKS.SVD Format for SVCD (11+4*N bytes):
 000h 8 ID "TRACKSVD"
 008h 1 Version (01h)
 009h 1 Reserved (0)
 00Ah 1 Number of MPEG tracks (N)
 00Bh 3*N Track playing_time[N] (MM:SS:FF, in BCD)(in sectors, not real time)
 0xxh 1*N TrackContent[N] ;bit0-1=Audio,bit2-4=Video,bit5=Reserved,bit6-7=OGT
 SVCD\TRACKS.SVD Format for VCD30 (11+5*N bytes) (some sort of SVCD-prototype):
 000h 8 ID "TRACKSVD"
 008h 1 Version (01h)
 009h 1 Reserved (0)
 00Ah 1 Number of MPEG tracks (N)
 00Bh 5*N Cum_Playing_time and Content (MM:SS:FF in BCD, and OGT, Audio)

 0000h 8 ID "SPICONSV"
 0008h 1 Version (01h)
 0009h 1 Reserved (0)
 000Ah 2*1980 Segment Content[1..1980] (1st byte=OGT, 2nd byte=Audio)
 0F82h 126 Reserved (0)

 bit0-1 Audio characteristics:
 0 = No MPEG audio stream
 1 = One MPEG1 or MPEG2 audio stream without extension
 2 = Two MPEG1 or MPEG2 audio streams without extension
 3 = One MPEG2 multi-channel audio stream with extension
 bit2-4 Video characteristics:
 In TRACKS.SVD this must be 0,3,7 (no still pictures)
 0 = No MPEG video data
 1 = NTSC still picture
 2 = NTSC Reserved (NTSC still pic hires?)
 3 = NTSC motion picture

29.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)

- 1075/1136 -

For SPICONTX.SVD and SVCD\TRACKS.SVD (on VCD30) these are encoded in 2 bytes:

29.4 VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO,

PICTURES, CDI)

EXT\CAPTnn.DAT (Closed Caption data, aka subtitles) (SVCD only?)

VCDs with subtitles are usually/always having the subtitles encoded directly in the

picture frames (ie. in the MPEG macroblocks, rather than using the Closed Caption

feature).

These CAPTnn.DAT files are intended for Closed Captions (eg. subtitles in different

languages and/or for deaf people).

Alternately, the "user_data_cc" flag in INFO.VCD?/INFO.SVD can indicate to store Closed

Captions in MPEG User Data (with START_CODE=000001B2h=User Data) instead of in

EXT\CAPTnn.DAT. Either way, the format of those Closed Captions is unknown.

Moreover, Content can be flagged to have Overlay Graphics/Text (OGT), whatever that

is: it might be related to Closed Captions.

Note: Reportedly CAPTnn.DAT can exist on VCDs and SVCDs (although the same person

reported that VCDs do not support subtitles, so that info sounds wrong).

CDDA\AUDIOnn.DAT (pointers to uncompressed CD Audio Tracks)

These filesystem entries contain pointers to uncompressed audio tracks tracks (that is,

outside of the ISO area on Track 1).

Most VCDs don't have audio tracks (though some VCDs do contain empty CDDA folders).

 4 = Reserved
 5 = PAL still picture
 6 = PAL Reserved (PAL still pic hires?)
 7 = PAL motion picture
 bit5 Indicates segment is continuation of an item
 In TRACKS.SVD this must be 0 (reserved)
 0 = First or only segment of item
 1 = Second or later segment of item
 bit6-7 Overlay Graphics/Text (OGT):
 0 = No OGT substream
 1 = Sub-stream 0 available
 2 = Sub-stream 0 & 1 available
 3 = All OGT sub-substreams available

 1st byte = Audio characteristics ;\probably same values as
 2nd byte = Overlay Graphics/Text (OGT) ;/in above bitfields?

29.4 VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO, PICTURES, CDI)

- 1076/1136 -

Maybe the feature is occassionally used the other way around: Music discs containing

VCD clips as bonus feature?

KARAOKE\KARINFO.xxx (whatever)

The KARAOKE folder exists on many VCDs (about 50%), but it's usually/always empty

on all discs.

Reportedly the folder can contain "KARINFO.xxx" files, but the purpose/format of that

files is unknown.

Reportedly there are Midi VCDs (MVCDs) for karaoke, maybe those discs have

"KARINFO.xxx" files(?)

PICTURES*.* (whatever)

Unknown purpose. The PICTURES folder has been spotted on one VCD (Wallace and

Gromit), but the folder was just empty.

CDI*.* (some kind of GUI/driver for Philips CDI Players)

The CDI folder is some relict for Philips CDI Players, it isn't used by normal VCD players,

however, the CDI folder & files are included on most or all VCDs.

The path/name for the CDI executable is stored at offset 23Eh in the ISO Primary

Volume Descriptor (usually "CDI/CDI_APPL.VCD;1" or "CDI/CDI_VCD.APP;1") (or

accidentally "CDI_CDI_VCD.APP;1" on homebrew Nero discs).

The files in the CDI folder are usually just some standard files (without any

customizations), however, there are some different revisions of these files:

CDI_VCD.CFG is some ASCII text file (with uncommon 0Dh,0Dh,0Ah line breaks), the file

could be customized to change things like GUI colors, but most or all discs seem to

 Revision A (spotted on two discs from 1997 and 1999):
 CDI_APPL.VCD 80702 bytes, 04-Mar-1996, CRC32=AE8FC5D0h ;executable
 VCD_BACK.DYV 92572 bytes, 18-Jul-1995, CRC32=00693E5Eh ;whatever?
 VCD_BTN.C8 93719 bytes, 18-Jul-1995, CRC32=FF0A636Ah ;whatever?
 Revision B (spotted on a disc from 2003):
 CDI_VCD.APP 20648 bytes, 00-Nul-0000 CRC32=DC885F70h ;executable
 CDI_FONT.FNT 145388 bytes, 00-Nul-0000 CRC32=FB4D63F4h ;font?
 CDI_ALL.RTF ? bytes, CRC32=? ;realtimefile?
 CDI_BUM.RTF ? bytes, CRC32=? ;realtimefile?
 Revision C (spotted on a disc from 2006, and homebrews from 2001 and 2017):
 CDI_VCD.APP 102400 bytes, 00-Nul-0000 CRC32=E91E128Dh ;executable
 CDI_VCD.CFG 193 bytes, 00-Nul-0000 CRC32=D1C6F7ADh ;config/ascii
 CDI_TEXT.FNT 13616 bytes, 00-Nul-0000 CRC32=BDC55E86h ;font?
 CDI_IMAG.RTF 1510028 bytes, 00-Nul-0000 CRC32=(RIFF) ;realtimefile?

29.4 VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO, PICTURES, CDI)

- 1077/1136 -

contain the same file with CRC32=D1C6F7ADh. Note: The CFG file is missing on the

homebrew DemoVCD.

CDI_IMAG.RTF is seen as 1510028 byte file under windows (that is, with a windows RIFF

header, and with data area containing the whole 930h bytes from each sector; this

includes the MM:SS:FF values from the sector header, so the RTF file may look slightly

different depending on which sectors it has been stored on, although the files are usually

exactly same apart from those MM:SS:FF values). Note: The RTF file is cropped to

1324220 bytes (instead of 1510028) on the homebrew DemoVCD (apart from that, the

file is same as normal).

CDI_ALL.RTF and CDI_BUM.RTF cannot be read/copied under Windows 7 (which is weirdly

reporting them to use an "invalid MS-DOS function"; some people also reported having

CDI_IMAG.RTF files with similar problems). The reason is unknown, maybe windows

doesn't fully support the CD filesystem, or some VCDs are violating the filesystem specs,

or whatever... maybe windows is mis-identifying certain RTF files as Rich Text Format files

and tries to prevent virus-infections by throwing a faked "MS-DOS" error message.

29.5 VCD MPEG-1 Multiplex Stream

Multiplex Stream & Sector Boundaries

The Multiplex stream is some higher level stream, intended to help to distinguish

between Audio- and Video-streams (which are enclosed in the Multiplex stream). MPEG's

are somewhat organized in "sectors", with sector size varying for normal .mpg files and

VCDs:

Sectors are always beginning with a Multiplex Packet (and Multiplex Packets are never

crossing sector boundaries). If the amount of video data exceeds the sector size, then it's

split into several Multiplex packets, whereas, that may happen anywhere in the video

stream (ie. there can be Multiplex Headers occurring even in the middle of Video packet).

MPEG-1 Multiplex Pack (sector header) (12 bytes)

The Pack Header is found at the begin of the stream (on VCDs, it's also found at the

begin of each sector). The SCR values might help on identifying the current playback

position, and, with the bitrate value, this could be also used to compute the distance to

 VCD discs --> Sector Size = 914h bytes (the discs MODE2/FORM2 sector size)
 .mpg files --> Sector Size = 800h bytes (regardless of physical sector size)

29.5 VCD MPEG-1 Multiplex Stream

- 1078/1136 -

another position (though there are other ways to determine the position/bitrate, so the

Pack is kinda useless).

MPEG-1 Multiplex System Header (12+N*3 bytes)(optionally)(at start of stream)

The System Header is usally found after the first Pack at the begin of the stream.

Followed by N*3 bytes for the streams (each with first bit=set):

Terminated by a value with first bit=cleared (eg. next 000001xxh value).

MPEG-1 Multiplex Video/Audio/Special Packets (7..24 bytes, plus data)

These packets are encapsulating the lower-level Video/Audio streams.

 32bit PACK_START_CODE (000001BAh) ;-4byte
 2bit Fixed (00b for MPEG-1) (would be 01b for MPEG-2) ;\
 2bit Fixed (10b) ;
 3bit System Clock Reference, bit32-30 ;\ ;
 1bit Marker (1) ; System Clock Reference (SCR) ;
 15bit System Clock Reference, bit29-15 ; (intended Time, ; 5byte
 1bit Marker (1) ; in 90kHz clock cycles) ;
 15bit System Clock Reference, bit14-0 ;/ ;
 1bit Marker (1) ;/
 1bit Marker (1) ;\
 22bit Multiplex Rate (total bitrate of the stream, in 400bit/s units) ; 3byte
 1bit Marker (1) ;/

 32bit SYSTEM_HEADER_START_CODE (000001BBh) ;\6byte
 16bit Header Length minus 6 (in bytes) (0006h+N*3) ;/
 1bit Marker (1) ;\
 22bit Rate bound (max multiplex rate of all packs in the stream, ; 3byte
 1bit Marker (1) in 400bit/s units) ;/
 6bit Audio Bound (max number of audio streams in this ISO stream) ;\
 1bit Fixed Flag (1=Fixed bitrate) ; 1byte
 1bit CSPS Flag (1=Constrained) ;/
 1bit System Audio Lock Flag XXX ;\
 1bit System Video Lock Flag XXX ; 1byte
 1bit Marker (1) ;
 5bit Video Bound (max number of video streams in this ISO stream) ;/
 8bit Reserved (FFh) ;-1byte

 8bit Stream ID (C0h..DFh=Audio, E0h..EFh=Video) ;\
 2bit Fixed (11b) ; 3byte
 1bit STD buffer scale (0=Mul128/audio, 1=Mul1024/video) ;
 13bit STD buffer size (largest required buffer over all packets) ;/

29.5 VCD MPEG-1 Multiplex Stream

- 1079/1136 -

If (and while) next two bits are 11b (0..16 padding bytes):

If next two bits are 01b (buffer size info):

Always:

If PTS Flag set:

If DTS Flag set (in this case PTS Flag must be also set):

If PTS and DTS Flags are both zero:

Always:

 32bit START (000001xxh BDh-BFh=Special, C0h-DFh=Audio, E0h-EFh=Video);\6byte
 16bit Packet Length minus 6 (in bytes) (1..18, plus data) ;/

 (2bit) Fixed (11b, indicates presence of stuffing) ;\optional 0..16byte
 (6bit) Fixed (111111b) ;/

 (2bit) Fixed (01b, indicates presence of buffer size) ;\
 (1bit) STD Buffer Scale (0=Mul128/audio, 1=Mul1024/video) ; optional 2byte
 (13bit) STD Buffer Size (for decoding, in above scale units) ;/

 2bit Fixed (00b, indicates no further stuffing/buffer info);\
 1bit PTS Flag (Presentation Time Stamp) ; 0.5 bytes
 1bit DTS Flag (Decoding Time Stamp) ;/

 (3bit) Presentation Time Stamp, bit32-30 ;\
 (1bit) Marker (1) ; optional 4.5 bytes
 (15bit) Presentation Time Stamp, bit29-15 ; (time when to output the
 (1bit) Marker (1) ; the packet to audio/video
 (15bit) Presentation Time Stamp, bit14-0 ; hardware, in 90kHz cycles)
 (1bit) Marker (1) ;/

 (4bit) Fixed (0001b) ;\
 (3bit) Decoding Time Stamp, bit32-30 ; optional 5 bytes
 (1bit) Marker (1) ; (recommended time when
 (15bit) Decoding Time Stamp, bit29-15 ; to decode the block,
 (1bit) Marker (1) ; in 90kHz cycles)
 (15bit) Decoding Time Stamp, bit14-0 ;
 (1bit) Marker (1) ;/

 (4bit) Fixed (1111b) ;-optional 0.5 bytes

 ... packet data bytes ;-data...(not crossing sector)

29.5 VCD MPEG-1 Multiplex Stream

- 1080/1136 -

Note: The first Multiplex Video Packet would usually start with a Sequence Header Code

(000001B3h), and the first Multiplex Audio Packet should always start with an Audio Sync

Word (FFFh).

However, the size of the Multiplex packets does usually differ from the size of the packets

in the audio/video stream, so new Multiplex Packets may occur anywhere in the middle of

those streams (eg. in the middle of a video slice, the next Multiplex Video packet would

then begin with the remaining slice bytes, rather than with a 000001xxh code; it's also

possible that a Multiplex Audio packet gets inserted in the middle of the video slice).

The best (or easiest) way to get continous data for the lower level streams might be to

memcopy the data from Multiplex packets to separate Audio & Video buffers.

MPEG-1 Multiplex End Code (4 bytes)

This should occur at the end of the video. On a VCD it does also occur at the end of each

video track.

29.6 VCD MPEG-1 Video Stream

The Video stream is part of the Multiplex stream, meaning that the Video packets

preceeded (and interrupted) by Multiplex headers. Ie. before processing the Video

packets, one must first extract the video snippets from the Multiplex stream (see

previous chapter).

MPEG-1 Video Sequence Header (12, 76, or 140 bytes, ie. 12+N*64)

Next 64byte only when above bit was set:

 32bit END_CODE (000001B9h) ;-4byte

 32bit SEQUENCE_HEADER_CODE (000001B3h) ;-4byte
 12bit Width in pixels (1..4095) ;\3byte
 12bit Height in pixels (1..2800, for max AFh slices) ;/
 4bit Aspect Ratio (01h..0Eh, see below) ;\1byte
 4bit Framerate (01h..08h, see below) ;/
 18bit Bitrate (in 400bit/s units, 3FFFFh=variable rate) ;\
 1bit Marker (1) ; 3byte
 10bit VBV (required decoding memory size, in "16 kB" units) ; +6bit
 1bit Constrained Parameter Flag ;/
 1bit Load Intra Q Matrix (0=No, use Standard Matrix, 1=Yes, Custom)

29.6 VCD MPEG-1 Video Stream

- 1081/1136 -

Next 64byte only when above bit was set:

Aspect Ratio values:

Frame Rate values:

MPEG-1 Video Group of Pictures (GOP) (8 bytes) XXX...

 (64byte) Intra Quantizer Matrix (64 x 8bit, unsigned) (in zigzag order)
 1bit Load Non-Intra Q Matrix (0=No, use Standard Matrix, 1=Yes, Custom)

 (64byte) Non-Intra Quantizer Matrix (64 x 8bit, unsigned) (in zigzag order)

 0 - ;forbidden
 1 1.0 ;square pixels
 2 0.6735 ;0.6735
 3 0.7031 ;16:9, 625 line, PAL
 4 0.7615 ;0.7615
 5 0.8055 ;0.8055
 6 0.8437 ;16:9, 525 line, NTSC
 7 0.8935 ;0.8935
 8 0.9157 ;4:3, 625 line, PAL, CCIR601
 9 0.9815 ;0.9815
 10 1.0255 ;1.0255
 11 1.0695 ;1.0695
 12 1.0950 ;4:3, 525 line, NTSC, CCIR601
 13 1.1575 ;1.1575
 14 1.2015 ;1.2015
 15 - ;reserved

 0 - ;forbidden
 1 23.976 (24000/1001) ;NTSC encapsulated film rate
 2 24.0 ;Standard international cinema film rate
 3 25.0 ;PAL video frame rate (625/50)
 4 29.97 (30000/1001) ;NTSC video frame rate
 5 30.0 ;NTSC video frame rate drop-frame (525/60)
 6 50.0 ;PAL double frame rate/progressive
 7 59.94 (60000/1001) ;NTSC double frame rate
 8 60.0 ;NTSC double frame rate drop-frame
 9-15 - ;reserved

 32bit GROUP_START_CODE (000001B8h)
 1bit Drop Frame (1=drop this frame; for reducing 30 fps to 29.97 fps)
 5bit Time Code Hours (0..23)
 6bit Time Code Minutes (0..59)
 1bit Marker (1)
 6bit Time Code Seconds (0..59)
 6bit Time Code Picture (0..59)

29.6 VCD MPEG-1 Video Stream

- 1082/1136 -

MPEG-1 Video Picture Header XXX...

If Coding Type is 2 or 3 (P-Frame or B-Frame):

If Coding Type is 3 (B-Frame):

If (and while) next bit is set:

End of Extra:

Coding Type values:

Frame Order

 1bit Closed GOP
 1bit Broken Link

 32bit PICTURE_START_CODE (00000100h) ;\
 10bit Temporal Reference (display order, 0..3FFh) ; 61bit
 3bit Coding Type (0=Invalid, 1=I, 2=P, 3=B, 4=D, 5-7=Reserved);
 16bit VBV Delay (in 90kHz cycles, FFFFh=variable bitrate) ;/

 (1bit) full fel forward vector (0=half pix, 1=full pix) ;\optional 4bit
 (3bit) forward f code (0=invalid, 1..7=0..6bits) ;/

 (1bit) full backward vector ;\optional 4bit
 (3bit) backward f code ;/

 (1bit) Fixed (1, indicates presence of Extra Info) ;\opt. N*9bit
 (8bit) Extra Information ;/

 1bit Fixed (0, indicates no further Extra Info) ;-1bit
 0-7bit Padding to byte boundary (0) ;-0..7bit

 0 Forbidden
 1 I - Intra Coded (full image)
 2 P - Predictive Coded (based on prev I or P frame)
 3 B - Bidirectionally Predictive Coded (based on prev+next I or P frame)
 4 D - DC Intra Coded (don't care, lowres thumbnail)
 5 Reserved
 6 Reserved
 7 Reserved

 DISPLAY ORDER:
 I B B B P B B B P B B B P B B B I B B B P B B B P B B B P B B B ...
 | |_______|_______| | |_______|_______|

29.6 VCD MPEG-1 Video Stream

- 1083/1136 -

The B-fames require to know the next P- (or I-) frame in advance, for that reason, the

frames are stored as "PBBB" (although being played as "BBBP"):

MPEG-1 Video Slice

Slices are containing the actual 16x16 pixel Macro Blocks. Usually a Slice contains one

horizontal line - although, theoretically, it could be longer or shorter, ie. a slice could

wrap to next line, or a line could be split into several slices (with the leading "MBA

Increment" value greater than 1 to define the horizontal start offset).

If (and while) next bit is set:

End of Extra:

If (and while) next 23bit are nonzero (ie. until next 000001xxh):

Final padding:

MPEG-1 Video Group/Sequence Extension Data (reserved)

MPEG-1 Video User Data (optional)

 | | | |
 I-Frame P-frames I-Frame P-frames

 STORAGE ORDER:
 I P B B B P B B B P B B B I B B B P B B B P B B B P B B B ...
 | |_______|_______| | |_______|_______|
 | | | |
 I-Frame P-frames I-Frame P-frames

 32bit PACK_START_CODE (000001xxh; xx=01h..AFh; vertical index) ;-4byte
 5bit Quantizer Scale (1..31) (may be later changed by blocks) ;-5bit

 (1bit) Fixed (1, indicates presence of Extra Info) ;\opt. N*9bit
 (8bit) Extra Information ;/

 1bit Fixed (0, indicates no further Extra Info) ;-1bit

 ... Macroblock (within horizontal line) ;...

 0-7bit Padding to byte boundary (0) ;-0..7bit

29.6 VCD MPEG-1 Video Stream

- 1084/1136 -

User Data can contain Closed Captions (see flag in VCD\INFO.VCD or SVCD\INFO.SVD).

User Data contains 11h-byte "Created with Nero" in some homebrew discs.

MPEG-1 Video Sequence End Code (4 bytes)

MPEG-1 Video 4:2:0 Macroblock

Aka...

29.7 VCD MP2 Audio Stream

VCD video discs and .mpg movie files are having the MP2 Audio Stream enclosed in the

Multiplex stream (whilst .mp2 audio files may contain raw MP2 data without Multiplex

stream).

Each MP2 frame is starting with a FFFh syncword (which is always located on a byte

boundary). Unfortunately, the value FFFh can also occur anywhere in the audio data (eg.

a 16bit sample with value 3FFCh).

 32bit START_CODE (000001B2h=User Data, 000001B5h=Extension Data) ;-4byte
 ... data (end is signaled by presence of next 000001xxh code) ;-data

 32bit SEQUENCE_END_CODE (000001B7h) ;-4byte

 N*11bit Macroblock_address_increase escape/stuffing codes (if any)
 1..11bit Macroblock_address_increase
 1-6bit Macroblock_type
 5bit Quantizer_scale
 ... Motion_vector
 3-9bit Coded_block_pattern
 ... Block(i)

 Addr Incr
 Type
 Motion Vector
 QScale
 CBP
 Block b0 (Y1)
 Block b1 (Y2)
 Block b2 (Y3)
 Block b3 (Y4)
 Block b4 (Cb)
 Block b5 (Cr)

29.7 VCD MP2 Audio Stream

- 1085/1136 -

So, when starting mid-stream, one will need some guessing when searching a valid

syncword. The best method is to compute the frame size (based on the supposed frame

header), and then to check if supposed frame begins AND ends with a sync word.

Moreover, one could check for invalid sample rate values in the frame header, or invalid

"groupings" in the frame's data part.

VCDs are conventionally having three audio frames encoded in one CDROM sector, so

the first syncword can be simply found right after the multiplex packet header (though

that might differ in some cases: VCD2.0 allows different audio bitrates, and a CDROM

sector could be theoretically shared for Audio and Video data).

Overall MP2 Frame Format

MP2 Header

MP2 Checksum (optional)

 Header (32bit)
 Optional CRC (16bit) (or 0bit if none)
 Allocation Information
 Scale Factor Selector Information
 Scale Factors
 Data

 12bit Syncword (FFFh) ;\
 1bit Revision (0=MPEG-2, 1=MPEG-1) ; 2 bytes
 2bit Layer (2=Audio LayerII) ;for VCDs ;
 (3=LayerI, 1=LayerIII, 0=reserved) ;not on VCDs ;
 1bit Protection_bit (1=no crc) ;/
 4bit Bitrate_index (1..14) ;\
 (0=free format, 15=reserved) ;
 2bit Sampling_frequency ; 1 byte
 1bit Padding_bit ;
 1bit Private_bit ;/
 2bit Mode ;\
 2bit Mode_extension (aka bound) ;
 1bit Copyright ; 1 byte
 1bit Original/home ;
 2bit Emphasis ;/

 16bit CRC

29.7 VCD MP2 Audio Stream

- 1086/1136 -

Allocation Information

Scale Factor Selector Information

Scale Factors

Data

 XXX...

29.7 VCD MP2 Audio Stream

- 1087/1136 -

30. CDROM Internal Info on PSX CDROM
Controller

PSX software can access the CDROM via Port 1F801800h..1F801803h (as described in

the previous chapters). The following chapters describe the inner workings of the PSX

CDROM controller - this information is here for curiosity only - normally PSX software

cannot gain control of those lower-level stuff (although some low level registers can be

manipulated via Test commands, but that will usually conflict with normal operation).

Motorola MC68HC05 (8bit single-chip CPU)

The Playstation CDROM drive is controlled by a MC68HC05 8bit CPU with on-chip I/O

ports and on-chip BIOS ROM. There is no way to reprogram that BIOS, nor to tweak it to

execute custom code in RAM.

CDROM Internal HC05 Instruction Set

CDROM Internal HC05 On-Chip I/O Ports

CDROM Internal HC05 I/O Port Usage in PSX

CDROM Internal HC05 Motorola Selftest Mode

The PSX can read HC05 I/O Ports and RAM via Test Commands:

CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports

Decoder/FIFO (CXD1199BQ or CXD1815Q)

This chip handles error correction and ADPCM decoding, and acts as some sort of FIFO

interface between main/sub CPUs and incoming cdrom sector data. On the MIPS Main

CPU it is controlled via Port 1F801800h..1F801803h.

CDROM Controller I/O Ports

On the HC05 Sub CPU it is controlled via Port A (data in/out), Port E (address/index),

and Port D (read/write/select signals); the HC05 doesn't have external address/data

bus, so one must manually access the CXD1815Q via those ports.

CDROM Internal CXD1815Q Sub-CPU Configuration Registers

CDROM Internal CXD1815Q Sub-CPU Sector Status Registers

CDROM Internal CXD1815Q Sub-CPU Address Registers

CDROM Internal CXD1815Q Sub-CPU Misc Registers

The PSX can read/write the Decoder I/O Ports and SRAM via Test commands:

CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports

30. CDROM Internal Info on PSX CDROM Controller

- 1088/1136 -

The sector buffer used in the PSX is 32Kx8 SRAM. Old PU-7 boards are using

CXD1199BQ chips, later boards are using CXD1815Q, and even later boards have the

stuff intergrated in the SPU. Note: The CXD1199BQ/CXD1815Q are about 99% same as

described in CXD1199AQ datasheet.

Signal Processor and Servo Amplifier

Older PSX mainboards are using two separate chips:

CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier

CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

Later PSX mainboards have the above intergrated in a single chip, with some extended

features:

CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

Later version is CXD1817R (Servo/Signal/Decoder Combo).

Even later PSX mainboards have it integrated in the Sound Chip: CXD2938Q

(SPU+CDROM) with some changed bits and New SCEx transfer:

CDROM Internal Commands CX(0x..Ex) - CXD2938Q Servo/Signal/SPU Combo

Finally, PM-41(2) boards are using a CXD2941R chip (SPU+CDROM+SPU_RAM),

unknown if/how far the CDROM part of that chip differs from CXD2938Q.

Some general notes:

CDROM Internal Commands CX(xx) - Notes

CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands

The PSX can manipulate the CX(..) registers via some test commands:

CDROM - Test Commands - Test Drive Mechanics

Note: Datasheets for CXD2510Q/CXA1782BR/CXD2545Q do exist.

CDROM Pinouts

Pinouts - DRV Pinouts

Pinouts - HC05 Pinouts

30.1 CDROM Internal HC05 Instruction Set

ALU, Load/Store, Jump/Call

 Opcode Clk HINZC Name Syntax
 x6 ... 2-5 --NZ- LDA MOV A,<op> ;A=op
 xE ... 2-5 --NZ- LDX MOV X,<op> ;X=op
 x7 ... 4-6 --NZ- STA MOV <op>,A ;op=A

30.1 CDROM Internal HC05 Instruction Set

- 1089/1136 -

Operands can be...

Read-Modify-Write

Operands can be...

 xF ... 4-6 --NZ- STX MOV <op>,X ;op=X
 xC ... 2-4 ----- JMP JMP <op> ;PC=op
 xD ... 5-7 ----- JSR CALL <op> ;[SP]=PC, PC=op
 xB ... 2-5 H-NZC ADD ADD A,<op> ;A=A+op
 x9 ... 2-5 H-NZC ADC ADC A,<op> ;A=A+op+C
 x0 ... 2-5 --NZC SUB SUB A,<op> ;A=A-op
 x2 ... 2-5 --NZC SBC SBC A,<op> ;A=A-op-C
 x4 ... 2-5 --NZ- AND AND A,<op> ;A=A AND op
 xA ... 2-5 --NZ- ORA OR A,<op> ;A=A OR op
 x8 ... 2-5 --NZ- EOR XOR A,<op> ;A=A XOR op
 x1 ... 2-5 --NZC CMP CMP A,<op> ;A-op
 x3 ... 2-5 --NZC CPX CMP X,<op> ;X-op
 x5 ... 2-5 --NZ- BIT TEST A,<op> ;A AND op
 A7,AF,AC = Reserved (no STA/STX/JMP with immediate operand)

 Opcode Clk ALU/LDA/LDX Clk STA/STX Clk JMP/CALL
 Ax nn 2 cmd r,nn - N/A -/6 call relative (BSR)
 Bx nn 3 cmd r,[nn] 4 mov [nn],r 2/5 cmd nn
 Cx nn mm 4 cmd r,[nnmm] 5 mov [nnmm],r 3/6 cmd nnmm
 Dx nn mm 5 cmd r,[X+nnmm] 6 mov [X+nnmm],r 4/7 cmd X+nnmm
 Ex nn 4 cmd r,[X+nn] 5 mov [X+nn],r 3/6 cmd X+nn
 Fx 3 cmd r,[X] 4 mov [X],r 2/5 cmd X

 Opcode Clk HINZC Name Syntax
 xC ... 3-6 --NZ- INC INC op ;increment ;op=op+1
 xA ... 3-6 --NZ- DEC DEC op ;decrement ;op=op-1
 xF ... 3-6 --01- CLR ?? op,00h ;clear ;op=op AND 00h
 x3 ... 3-6 --NZ1 COM NOT op ;complement ;op=op XOR FFh
 x0 ... 3-6 --NZC NEG NEG op ;negate ;op=00h-op
 x9 ... 3-6 --NZC ROL RCL op ;rotate left through carry
 x6 ... 3-6 --NZC ROR RCR op ;rotate right through carry
 x8 ... 3-6 --NZC LSL SHL op ;shift left logical
 x4 ... 3-6 --0ZC LSR SHR op ;shift right logical
 x7 ... 3-6 --NZC ASR SAR op ;shift right arithmetic
 xD ... 3-5 --NZ- TST TEST op,FFh ;test for negative or zero (AND FFh?)
 x1,x2,x5,xB,xE = Reserved (except for: 42 = MUL)

 Opcode Clk RMW Clk CLR Clk TST
 3x nn 5 cmd [nn] 5 MOV [nn],00h 4 TEST [nn],0FFh
 4x 3 cmd A 3 MOV A,00h,slow 3 TEST A,0FFh,slow
 5x 3 cmd X 3 MOV X,00h,slow 3 TEST X,0FFh
 6x nn 6 cmd [X+nn] 6 MOV [X+nn],00h 5 TEST [X+nn],0FFh
 7x 5 cmd [X] 5 MOV [X],00h 4 TEST [X],0FFh

30.1 CDROM Internal HC05 Instruction Set

- 1090/1136 -

CLR includes a dummy-read-cycle, whilst TST does omit the dummy-write cycle.

The ",slow" RMW opcodes are smaller, but slower than equivalent ALU opcodes.

Bit Manipulation and Bit Test with Relative Jump (to $+3+/-dd)

Branch (Relative jump to $+2+/-nn)

Control/Misc

 Opcode Clk HINZC Name Syntax
 00h+i*2 nn dd 5 ----C BRSET JNZ [nn].i,dest ;C=[nn].i, branch if set
 01h+i*2 nn dd 5 ----C BRCLR JZ [nn].i,dest ;C=[nn].i, branch if clear
 10h+i*2 nn 5 ----- BSET SET [nn].i ;set [nn].i
 11h+i*2 nn 5 ----- BCLR RES [nn].i ;clear [nn].i

 Opcode Clk HINZC Name Syntax
 20 nn 3 ----- BRA JR nn ;branch always
 21 nn 3 ----- BRN NUL nn ;branch never
 22 nn 3 ----- BHI JA nn ;if C=0 and Z=0, higher ?
 23 nn 3 ----- BLS JBE nn ;if C=1 or Z=1, lower or same ?
 24 nn 3 ----- BCC/BHS JNC/JAE nn ;if C=0, carry clear, higher.same
 25 nn 3 ----- BCS/BLO JC/JB nn ;if C=1, carry set, lower
 26 nn 3 ----- BNE JNZ/JNE nn ;if Z=0, not equal / not zero
 27 nn 3 ----- BEQ JZ/JE nn ;if Z=1, equal / zero
 28 nn 3 ----- BHCC JNH nn ;if H=0, half-carry clear
 29 nn 3 ----- BHCS JH nn ;if H=1, half-carry set
 2A nn 3 ----- BPL JNS nn ;if S=0, plus / not signed
 2B nn 3 ----- BMI JS nn ;if S=1, minus / signed
 2C nn 3 ----- BMC JEI nn ;if I=0, interrupt mask clear
 2D nn 3 ----- BMS JDI nn ;if I=1, interrupt mask set
 2E nn 3 ----- BIL JIL nn ;if XX=LO, interrupt line low
 2F nn 3 ----- BIH JIH nn ;if XX=HI, interrupt line high
 AD nn 6 ----- BSR CALL relative nn ;branch to subroutine always

 Opcode Clk HINZC Name Syntax
 9D 2 ----- NOP NOP ;no operation
 97 2 ----- TAX MOV X,A ;transfer A to X
 9F 2 ----- TXA MOV A,X ;transfer X to A
 9C 2 ----- RSP MOV SP,00FFh ;reset stack pointer (SP=00FFh)
 42 11 0---0 MUL MUL X,A ;X:A=X*A (unsigned multiply)
 81 6 ----- RTS RET ;return from subroutine
 80 9 xxxxx RTI RETI ;return from interrupt
 99 2 ----1 SEC STC ;set carry flag
 98 2 ----0 CLC CLC ;clear carry flag
 9B 2 -1--- SEI DI ;set interrupt mask (disable ints)
 9A 2 -0--- CLI EI ;clear interrupt mask (enable ints)
 8E ..2 -0--- STOP STOP ;?
 8F ..2 -0--- WAIT WAIT ;?
 83 10 -1--- SWI SWI ;software interrupt ...? PC=[FFFCh]

30.1 CDROM Internal HC05 Instruction Set

- 1091/1136 -

MUL isn't supported in original "M146805 CMOS" family (MUL is used/supported in PSX

cdrom controller).

Registers

Pushed on IRQ are:

Addressing Modes

Notes:

Exception Vectors

Exception vectors are 16bit BIG-ENDIAN values at FFF0h-FFFFh (or at FFE0h-FFEFh

when running in Motorola Bootstrap mode).

 <IRQ> ? ????? Interrupt ;? PC=[FFFxh]
 <RESET> ? ????? Reset ;? PC=[FFFEh]
 82,84..8D,90..96,9E = Reserved

 A 8bit accumulator
 X 8bit index register
 SP 6bit stack pointer (range 00C0h..00FFh)
 PC 16bit program pointer (range 0000h..FFFFh)
 CCR 5bit condition code register (flags) (111HINZC)

 SP.highest PC.lo
 PC.hi
 X
 A
 SP.lowest Flags (CCR, 5bit condition code register) (111HINZC)

 nn immediate ;00h..FFh
 [nn] direct address ;[0000h..00FFh]
 [nnmm] extended address ;[0000h..FFFFh]
 [X] indexed, no offset ;[0000h..00FFh]
 [X+nn] indexed, 8bit offset ;[0000h..01FEh]
 [X+nnmm] indexed, 16bit offset ;[0000h..FFFFh]
 [nn].i bit ;[0000h..00FFh].bit0..7
 dd relative ;$+2..3+(-80h..+7Fh)

 operand "X+nn" performs an unsigned addition, and can address 0000h..01FEh.
 16bit operands (nnmm) are encoded in BIG-ENDIAN format (same for pushed PC).

30.1 CDROM Internal HC05 Instruction Set

- 1092/1136 -

Directives/Pseudos (used by a22i assembler; in no$psx utility menu)

30.2 CDROM Internal HC05 On-Chip I/O Ports

HC05 Port 3Eh - MISC - Miscellaneous Register (R/W)

Note: For PSX, OSC is 4.0000MHz (PU-7/PU-8), 4.2336MHz (PU-18 and up). SysClk is

usually set to OSC/2, ie. around 2MHz.

 Vector Prio Usage
 FFF0h 7=lo TBI Vector (Timebase)
 FFF2h 6 SSPI Vector (SPI bus) (SPI1 and SPI2)
 FFF4h 5 Timer 2 Interrupt Vector (Timer 2 Input/Compare)
 FFF6h 4 Timer 1 Interrupt Vector (Timer 1 Input/Compare/Overflow)
 FFF8h 3 KWI Vector (Key Wakeup) (KWI0..7 pins)
 FFFAh 2 External Interrupt Vector (/IRQ1 and /IRQ2 pins)
 FFFCh none Software Interrupt Vector (SWI opcode) ;\regardless of
 FFFEh 1=hi Reset Vector (/RESET signal and COP) ;/CPU's "I"

 .hc05 select HC05 instruction set (default would be .mips)
 .nocash select nocash syntax (default would be .native opcode names)
 db ... define 8bit byte(s), or quoted ascii strings
 dw ... define 16bit word(s) in BIG ENDIAN (for HC05 exception vectors)
 org nnnn change origin for following opcodes
 end end of file
 mov c,[nn].i alias for "jnz [nn].i,$+3" (dummy jump & set carry=[nn].i)

 0 OPTM Option Map Select (bank-switching for Port 00h..0Fh)
 1 FOSCE Fast (Main) Oscillator Enable (0=Disable OSC, 1=Normal)
 2-3 SYS System Clock Select (0=OSC/2, 1=OSC/4, 2=OSC/64, 3=XOSC/2)
 4-5 - Not used (0)
 6 STUP XOSC Time Up Flag (R)
 7 FTUP OSC Time Up Flag (R) (0=Busy, 1=Ready/Good/Stable)

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1093/1136 -

HC05 Port OPTM=0:00h - PORTA - Port A Data Register (R/W)

HC05 Port OPTM=0:01h - PORTB - Port B Data Register (R)

HC05 Port OPTM=0:02h - PORTC - Port C Data Register (R/W)

HC05 Port OPTM=0:03h - PORTD - Port D Data Register (R/W)

HC05 Port OPTM=0:04h - PORTE - Port E Data Register (R/W)

HC05 Port OPTM=0:05h - PORTF - Port F Data Register (R) (undoc: R/W)

These are general purpose I/O ports (controlling external pins). Some ports are Input-

only, and some can be optionally used for special things (like IRQs, SPI-bus, or as Timer

input/output).

HC05 Port OPTM=1:00h - DDRA - Port A Data Direction Register (R/W)

HC05 Port OPTM=1:02h - DDRC - Port C Data Direction Register (R/W)

HC05 Port OPTM=1:03h - DDRD - Port D Data Direction Register (R/W)

HC05 Port OPTM=1:04h - DDRE - Port E Data Direction Register (R/W)

HC05 Port OPTM=1:05h - DDRF - Port F Data Direction Register (undoc)

 PA.0-7 PAn Port A Bit0..7 Input/Output (0=Low, 1=High) (R/W)
 PB.0-7 PBn Port B Bit0..7 Input /KWI0..7 (0=Low, 1=High) (R)
 PC.0 PC0 Port C Bit0 Input/Output /SDI1 (SPI)(0=Low, 1=High) (R/W)
 PC.1 PC1 Port C Bit1 Input/Output /SDO1 (SPI)(0=Low, 1=High) (R/W)
 PC.2 PC2 Port C Bit2 Input/Output /SCK1 (SPI)(0=Low, 1=High) (R/W)
 PC.3 PC3 Port C Bit3 Input/Output /TCAP (T1) (0=Low, 1=High) (R/W)
 PC.4 PC4 Port C Bit4 Input/Output /EVI (T2) (0=Low, 1=High) (R/W)
 PC.5 PC5 Port C Bit5 Input/Output /EVO (T2) (0=Low, 1=High) (R/W)
 PC.6 PC6 Port C Bit6 Input/Output /IRQ2 (0=Low, 1=High) (R/W)
 PC.7 PC7 Port C Bit7 Input/Output /IRQ1 (0=Low, 1=High) (R/W)
 PD.0-7 PDn Port D Bit0..7 Input/Output (0=Low, 1=High) (R/W)
 PE.0-7 PEn Port E Bit0..7 Input/Output (0=Low, 1=High) (R/W)
 PF.0-7 PFn Port F Bit0..7 Input/Undoc A/D-input (0=Low, 1=High) (R)(R/W)

 DDRX.0-7 DDRXn Port X Data Direction Bit0..7 (0=Input, 1=Output) (R/W)

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1094/1136 -

Officially, there are no DDRB and DDRF registers (Port B and F are always Inputs).

Although, actually, Motorola's Bootstrap RAM \<does> manipulate DDRF.

HC05 Port OPTM=1:08h - RCR1 - Resistor Control Register 1 (R/W)

HC05 Port OPTM=1:09h - RCR2 - Resistor Control Register 2 (R/W)

HC05 Port OPTM=1:0Ah - WOM1 - Open Drain Output Control Register 1 (R/W)

HC05 Port OPTM=1:0Bh - WOM2 - Open Drain Output Control Register 2 (R/W)

==== Interrupts =====

HC05 Port OPTM=0:08h - INTCR - Interrupt Control Register (R/W)

HC05 Port OPTM=0:09h - INTSR - Interrupt Status Register (R and W)

 RCR1.0 RAL Port A.Bit0-3 Pullup Resistors (0=Off, 1=On)
 RCR1.1 RAH Port A.Bit4-7 Pullup Resistors (0=Off, 1=On)
 RCR1.2 RBL Port B.Bit0-3 Pullup Resistors (0=Off, 1=On)
 RCR1.3 RBH Port B.Bit4-7 Pullup Resistors (0=Off, 1=On)
 RCR1.4 RGL Port G.Bit0-3 Pullup Resistors (0=Off, 1=On) ;\
 RCR1.5 RGH Port G.Bit4-7 Pullup Resistors (0=Off, 1=On) ; on chips
 RCR1.6 RHL Port H.Bit0-3 Pullup Resistors (0=Off, 1=On) ; with Port G,H
 RCR1.7 RHH Port H.Bit4-7 Pullup Resistors (0=Off, 1=On) ;/
 RCR2.0-7 RCn Port C.Bit0-7 Pullup Resistors (0=Off, 1=On)

 WOM1.0 AWOML Port A.Bit0-3 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.1 AWOMH Port A.Bit4-5 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.2 GWOML Port G.Bit0-3 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.3 GWOMH Port G.Bit4-5 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.4 HWOML Port H.Bit0-3 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.5 HWOMH Port H.Bit4-5 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM1.6-7 - Not used (0)
 WOM2.0-5 CWOMn Port C.Bit0..5 Open Drain Mode when DDR=1 (0=No, 1=Open Drain)
 WOM2.6-7 - Not used (always both bits set)

 0-1 - Not used (0)
 2 IRQ2S IRQ2 Select Edge-Sensitive Only (0=LowLevelAndNegEdge, 1=NegEdge)
 3 IRQ1S IRQ1 Select Edge-Sensitive Only (0=LowLevelAndNegEdge, 1=NegEdge)
 4 KWIE Key Wakeup Interrupt Enable (0=Disable, 1=Enable)
 5 - Not used (0)
 6 IRQ2E IRQ2 Interrupt Enable (0=Disable, 1=Enable)
 7 IRQ1E IRQ1 Interrupt Enable (0=Disable, 1=Enable)

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1095/1136 -

HC05 Port OPTM=1:0Eh - KWIE - Key Wakeup Interrupt Enable Register (R/W)

==== SPI Bus ====

HC05 Port OPTM=0:0Ah - SPCR1 - Serial Peripheral Control Register 1 (R/W)

HC05 Port OPTM=0:0Bh - SPSR1 - Serial Peripheral Status Register 1 (R)

Note: SPSR1.7 appears to be reset after reading SPSR1 (probably same for SPSR1.6, and

maybe also same for whatever SPI IRQ signal).

HC05 Port OPTM=0:0Ch - SPDR1 - Serial Peripheral Data Register 1 (R/W)

==== Time Base / Config ====

HC05 Port 10h - TBCR1 - Time Base Control Register 1 (R/W)

 0 RKWIF Reset Key Wakeup Interrupt Flag (0=No Change, 1=Reset) (W)
 1 - Not used (0)
 2 RIRQ2 Reset IRQ2 Interrupt Flag (0=No Change, 1=Reset) (W)
 3 RIRQ1 Reset IRQ1 Interrupt Flag (0=No Change, 1=Reset) (W)
 4 KWIF Key Wakeup Interrupt Flag (PB/KWI) (0=No, 1=IRQ) (R)
 5 - Not used (0)
 6 IRQ2F IRQ2 Interrupt Flag (PC6) (0=No, 1=IRQ) (R)
 7 IRQ1F IRQ1 Interrupt Flag (PC7) (0=No, 1=IRQ) (R)

 0-7 KWIEn Port B.Bit0..7 Key Wakeup Interrupt Enable (0=Disable, 1=Enable)

 0 SPRn SPI Clock Rate (0=ProcessorClock/2, 1=ProcessorClock/16)
 1-3 - Not used (0)
 4 MSTRn SPI Master Mode Select (0=Slave/SCK.In, 1=Master/SCK.Out)
 5 DORDn SPI Data Transmission Order (0=MSB First, 1=LSB First)
 6 SPEn SPI Enable (SPI1:PortC, SPI2:PortG) (0=Disable, 1=Enable)
 7 SPIEn SPI Interrupt Enable (... ack HOW?) (0=Disable, 1=Enable)

 0-5 - Not used (0)
 6 DCOLn SPI Data Collision Occurred (0=No, 1=Collision)
 7 SPIFn SPI Transfer Complete Flag (0=Busy, 1=Complete) (R)

 0-7 BITn Data to be sent / being received

 0-1 T2R Timer2 Prescaler (0=SysClk, 1=SysClk/4, 2=SysClk/32, 3=SysClk/256)
 2-3 T3R PWM Prescaler (0=CLK3, 1=CLK3/2, 2=CLK3/8, 3=Timer2compare)

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1096/1136 -

HC05 Port 11h - TBCR2 - Time Base Control Register 2 (R/W, some bits R or W)

HC05 Port OPTM=1:0Fh - MOSR - Mask Option Status Register (R)

Reading this register returns A0h (on PSX/PSone with 52pin chips).

==== Timer 1 ====

HC05 Port 12h - TCR - Timer 1 Control Register (R/W)

HC05 Port 13h - TSR - Timer 1 Status Register (R)

HC05 Port 14h - ICH - Timer 1 Input Capture High (undoc)

HC05 Port 15h - ICL - Timer 1 Input Capture Low (undoc)

 4-6 - Not used (0)
 7 TBCLK Time Base Clock (0=XOSC, 1=OSC/128) ;<-- write-able only ONCE

 0 COPC COP Clear 2bit COP timeout divider (0=No Change, 1=Clear) (W)
 1 COPE COP Enable ;<-- write-able only ONCE
 2 - Not used (0)
 3 RTBIF Reset Time Base Interrupt Flag (0=No Change, 1=Clear TBIF) (W)
 4-5 TBR Time Base Interrupt Rate (0=TBCLK/128, 1=/4096, 2=/8192, 3=/16384)
 6 TBIE Time Base Interrupt Enable (0=Disable, 1=Enable)
 7 TBIF Time Base Interrupt Flag (0=No, 1=IRQ) (R)

 0-4 - Not used (0)
 5 XOSCR XOSC Feedback Resistor (0=None, 1=Implemented)
 6 OSCR OSC Feedback Resistor (0=None, 1=Implemented)
 7 RSTR /RESET Pullup Resistor (0=None, 1=Implemented)

 0 OLVL Output Level on TCMP pin on Compare Match? (0=Low, 1=High)
 1 IEDG Input Edge on TCAP pin (0=NegativeEdge, 1=PositiveEdge)
 2-4 - Not used (0)
 5 TOIE Timer Overflow Interrupt Enable (0=Disable, 1=Enable)
 6 OC1IE Output Compare Interrupt Enable (0=Disable, 1=Enable)
 7 ICIE Input Capture Interrupt Enable (0=Disable, 1=Enable)

 0-4 - Not used (0)
 5 TOF Timer Overflow Flag (0=No, 1=Yes) (R) ;clear by Port 19h access
 6 OC1F Output Compare Flag (0=No, 1=Yes) (R) ;clear by Port 17h access
 7 ICF Input Capture Flag (0=No, 1=Yes) (R) ;clear by Port 15h access

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1097/1136 -

HC05 Port 16h - OC1H - Timer 1 Output Compare 1 High (undoc)

HC05 Port 17h - OC1H - Timer 1 Output Compare 1 Low (undoc)

HC05 Port 18h - TCNTH - Timer 1 Counter 1 High (undoc)

HC05 Port 19h - TCNTL - Timer 1 Counter 1 Low (undoc)

HC05 Port 1Ah - ACNTH - Alternate Counter High (undoc)

HC05 Port 1Bh - ACNTL - Alternate Counter Low (undoc)

==== Timer 2 ====

HC05 Port 1Ch - TCR2 - Timer 2 Control Register (R/W)

HC05 Port 1Dh - TSR2 - Timer 2 Status Register (R/W)

 0-15 Capture Value

 0-15 Compare Value

 0-15 Counter

 0-15 Alternate Counter (uh, what?)

 0 OL2 Timer Output 2 Edge (0=Falling, 1=Rising)
 1 OE2 Timer Output 2 Enable (EVO) (0=Disable, 1=Enable)
 2 IL2 Timer Input 2 Edge/Level (0=Low/Falling, 1=High/Rising)
 3 IM2 Timer Input 2 Mode Select for EVI (0=EventMode, 1=GatedByCLK2)
 4 T2CLK Timer 2 Clock Select (0=CLK2 from Prescaler, 1=EXCLK from EVI)
 5 - Not used (0)
 6 OC2IE Output Compare 2 Interrupt Enable (0=Disable, 1=Enable)
 7 TI2IE Timer Input 2 Interrupt Enable (EVI) (0=Disable, 1=Enable)

 0-1 - Not used (0)
 2 ROC2F Reset Output Compare 2 Interrupt Flag (0=No Change, 1=Clear) (W)
 3 RTI2F Reset Timer Input 2 Interrupt Flag (0=No Change, 1=Clear) (W)
 4-5 - Not used (0)
 6 OC2F Output Compare 2 Interrupt Flag (0=No, 1=Yes) (R)
 7 TI2F Timer Input 2 Interrupt Flag (EVI) (0=No, 1=Yes) (R)

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1098/1136 -

HC05 Port 1Eh - OC2 - Timer 2 Output Compare Register (R/W)

HC05 Port 1Fh - TCNT2 - Timer 2 Counter Register (R) (W=Set Counter to 01h)

==== Reserved ====

HC05 Port 3Fh - Unknown/Unused

Reading this port via Sony's test command returns 20h (same as openbus), but reading

it via Motorola's selftest function returns 00h (unlike openbus), so it seems to have

some unknown/undocumented function; bit5 might indicate selftest mode, or it might

reflect initialization of whatever other ports.

HC05 Port OPTM=0:06h..07h,0Dh..0Fh - Reserved

HC05 Port OPTM=1:01h,06h..07h,0Ch..0Dh - Reserved

HC05 Port 20h..3Dh - Reserved

These ports are unused/reserved. Trying to read them on a PSone does return 20h

(possibly the prefetched next opcode value from the RAM test command). Other HC05

variants contain some extra features in these ports:

CDROM Internal HC05 On-Chip I/O Ports - Extras

The PSX CDROM BIOS doesn't use any of these ports - execpt, it is writing [20h]=2Eh

(possibly to disable unused LCD hardware; which might be actually present in the huge

80pin HC05 chips on old PU-7 mainboards).

HC05 Openbus

Openbus values can be read from invalid memory locations, on PSX with 52pin chips:

 0-7 Compare Value ("Transferred to buffer on certain events?")

 0-7 Counter Value, incremented at T2R (set to 01h on Compare Matches)

 I/O bank 0: 0:06h..07h, 0:0Dh..0Fh
 I/O bank 1: 1:01h, 1:06h..07h, 1:0Ch..0Dh, and upper 4bit of 1:05h
 Unbanked I/O: 20h..3Dh
 Unused Memory: 0240h..0FFFh, 5000h..FDFFh

30.2 CDROM Internal HC05 On-Chip I/O Ports

- 1099/1136 -

The returned openbus value depends on the opcode's memory operand:

30.3 CDROM Internal HC05 On-Chip I/O Ports - Extras

HC05 Port OPTM=0:0Dh - SPCR2 - Serial Peripheral Control Register 2 (R/W)

HC05 Port OPTM=0:0Eh - SPSR2 - Serial Peripheral Status Register 2 (R)

HC05 Port OPTM=0:0Fh - SPDR2 - Serial Peripheral Data Register 2 (R/W)

This is a second SPI channel, works same as first SPI channel, but using the lower 3bits

of Port G (instead of Port C) for the SPI signals.

HC05 Port OPTM=0:06h - PORTG - Port G Data Register (R/W)

HC05 Port OPTM=0:07h - PORTH - Port H Data Register (R/W)

HC05 Port 3Ch - PORTJ - Port J Data Register (R/W)

HC05 Port OPTM=1:06h - DDRG - Port G Data Direction Register (R/W)

HC05 Port OPTM=1:07h - DDRH - Port H Data Direction Register (R/W)

 [nn],[mmnn],[nn+x],[mmnn+x] --> returns LAST byte of current opcode (=nn)
 [x] --> returns FIRST byte of following opcode

 PG.0 PG0 Port G Bit0 Input/Output /SDI2 (0=Low, 1=High) (R/W)
 PG.1 PG1 Port G Bit1 Input/Output /SDO2 (0=Low, 1=High) (R/W)
 PG.2 PG2 Port G Bit2 Input/Output /SCK2 (0=Low, 1=High) (R/W)
 PG.3 PG3 Port G Bit3 Input/Output /TCMP (0=Low, 1=High) (R/W)
 PG.4 PG4 Port G Bit4 Input/Output /PWM0 (0=Low, 1=High) (R/W)
 PG.5 PG5 Port G Bit5 Input/Output /PWM1 (0=Low, 1=High) (R/W)
 PG.6 PG6 Port G Bit6 Input/Output /PWM2 (0=Low, 1=High) (R/W)
 PG.7 PG7 Port G Bit7 Input/Output /PWM3 (0=Low, 1=High) (R/W)
 PH.0-7 PHn Port H Bit0..7 Input/Output (0=Low, 1=High) (R/W)
 PJ.0-3 PJn Port J Bit0..3 Output (0=Low, 1=High) (R/W)
 PJ.4-7 - Not used (0)

 0-7 DDRXn Port X Data Direction Bit0..7 (0=Input, 1=Output) (R/W)

30.3 CDROM Internal HC05 On-Chip I/O Ports - Extras

- 1100/1136 -

HC05 Port 20h - LCDCR - LCD Control Register (R/W)

HC05 Port 21h..34h - LCDDR1..20 - LCD Data Register 1..20 (R/W)

HC05 Port 34h - PWMCR - PWM Pulse Width Modulation Control Register (R/W)

HC05 Port 35h - PWMCNT - PWM Counter Register (R) (W=Set Counter to FFh)

HC05 Port 36h - PWMDR0 - PWM Duty Register 0 (R/W)

HC05 Port 37h - PWMDR1 - PWM Duty Register 1 (R/W)

HC05 Port 38h - PWMDR2 - PWM Duty Register 2 (R/W)

HC05 Port 39h - PWMDR3 - PWM Duty Register 3 (R/W)

HC05 Port 3Ah - ADR - A/D Data Register (R)

HC05 Port 3Bh - ADSCR - A/D Status and Control Register (R/W)

 0 - Not used (0)
 1 PDH Select Port D (H) (0=FP35-FP38 pins, 1=PD7-PD4 pins)
 2 PEL Select Port E (L) (0=FP31-FP34 pins, 1=PE3-PE0 pins)
 3 PEH Select Port E (H) (0=FP27-FP30 pins, 1=PE7-PE4 pins)
 4 - Not used (0)
 5-6 DUTY LCD Duty Select (...)
 7 LCDE LCD Output Enable BP and FP pins (0=Disable, 1=Enable)

 0-3 First Data Unit ;\Fourty 4bit LCD values (in the twenty registers)
 4-7 Second Data Unit ;/(some duties use only the LSBs of that 4bit values)

 0-3 CH0-3 PWM Channel 0..3 on Port G.Bit4-7 Enable (0=Disable, 1=Enable)
 4-7 - Not used (0)

 0-7 PWM Counter, incremented at PHI2 (range 01h..FFh)

 0-7 Duty (N cycles High, 255-N cycles Low)

 0-3 A/D Conversion result (probably unsigned, 00h=Lowest, FFh=Max voltage?)

30.3 CDROM Internal HC05 On-Chip I/O Ports - Extras

- 1101/1136 -

HC05 Port 3Dh - PCR - Program Control Register (R/W) (for EPROM version)

30.4 CDROM Internal HC05 I/O Port Usage in PSX

Port A - Data (indexed via Port E)

Port B - Inputs

Port C - Inputs/Outputs

 0-3 CH0-3 A/D Channel (0..7=PortF.Bit0-7, 8..0Fh=Reserved/Vref/FactorTest)
 4 - Not used (0)
 5 ADON A/D Charge Pump enable (0=Disable, 1=Enable)
 6 ADRC A/D RC Oscillator On (0=Normal/Use CPU Clock, 1=Use RC Clock)
 7 COCO A/D Conversion Complete (0=Busy, 1=Complete) (R)

 0 PGM EPROM Program Command (0=Normal, 1=Apply Programming Power)
 1 ELAT EPROM Latch Control (0=Normal/Read, 1=Latch/Write)
 2-7 RES Reserved for Factory Testing (always 0 in user mode)

 porta.0-7 i/o CXD1815Q.Data (indexed via Port E)
 porta.0 in debug.dta.serial.in ;\normally unused (exists in early bios)
 porta.1 out debug.dta.serial.out ; (prototype/debug_status stuff)
 porta.2 out debug.clk.serial.out ;/(with portc.5 = debug.select)

 portb.0 in F-BIAS ;unused
 portb.1 in SCEx input (serial 250 baud, received via 1000Hz timer2 irq)
 portb.2 in LMTSW aka /POS0 ;\pos0 and door switches
 portb.3 in DOOR aka SHELL_OPEN ;/
 portb.4 in TEST2
 portb.5 in TEST1 (CL316) enter test mode (instead of mainloop)
 portb.6 in COUT ;<-- unused, extra pin, not "SENSE=COUT"
 portb.7 in CXD2510Q.SENSE ;-from CXD2510Q (and forwarded from CXA1782BR)

 portc.0 in CXD2510Q.SUBQ ;\
 portc.1 in? NC (SPI.OUT) ; used via SPDR1 to receive SPI bus SUBQ data
 portc.2 out CXD2510Q.SQCK ;/
 portc.3 out SPEED
 portc.4 out ="SPEED XOR 1" ... AL/TE ... or CG ... or MIRR ?
 portc.5 out ROMSEL: debug.select (or "SCLK" on later boards???)
 portc.6 in CXD1815Q.XINT/IRQ2 ;unused (instead INTSTS bits are polled)
 portc.7 in CXD2510Q.SCOR/IRQ1 ;used via polling INTSR.7 (not as irq)

30.4 CDROM Internal HC05 I/O Port Usage in PSX

- 1102/1136 -

Port D - Outputs

Port E - Index (for data on Port A)

Port F - Motorola Bootstrap Serial I/O (not used in cdrom bios)

Other HC05 I/O Ports

Note: The PSX has the HC05 clocked via 4.00MHz oscillator (older boards), or via 4.3MHz

signal from SPU (newer boards); internally, the HC05 is clocked at half of those

frequencies (ie. around 2 MHz).

 portd.0 out NC ;-unused (always 1)
 portd.1 out CXD2510Q.DATA ;\serial bus for CXD2510Q
 portd.2 out CXD2510Q.XLAT ; (and also forwarded to CXA1782BR)
 portd.3 out CXD2510Q.CLOK ;/
 portd.4 out CXD1815Q.DECCS ;\
 portd.5 out CXD1815Q.DECWR ; control for data/index on Port A/E
 portd.6 out CXD1815Q.DECRD ;/
 portd.7 out LDON ... IC723.Pin11 ... maybe "laser on" ?

 porte.0-4 out CXD1815Q.Index (for data on Port A)
 porte.5 out NC, not used
 porte.6 out NC, see "idx_4xh" maybe test signal ???
 porte.7 out? NC, TEST? configured as OUTPUT... but used as INPUT?

 portf.0 out NC, TX ;\
 portf.1 in NC, RX ; not used by sony's cdrom bios
 portf.2 out NC, RTS ; (but used by motorola's bootstrap rom)
 portf.3 out NC, DTR ;/
 portf.0 in Serial Data In (from daughterboard) ;\
 portf.1 out Serial Data Out (to daughterboard) ; usage in SCPH-5903
 portf.2 out Serial Clock Out (to daughterboard) ; (PSX with Video CD)
 portf.3 out Audio/Video Select (0=Normal, 1=VCD) ;/
 portf.4-7 - NC, not used (probably pins don't even exist)

 SPI 1 - used for receiving SUBQ (via Port C)
 IRQ 1 - used for latching/polling SUBQ's "SCOR" (not used as interrupt)
 IRQ 2 - connects to CXD1815Q.XINT, but isn't actually used at all
 Timer 1 - unused
 Timer 2 - generates 1000Hz interrupts (for 250 baud "SCEx" string transfers)
 DDRx - data directions for Port A-F (as listed above)

30.4 CDROM Internal HC05 I/O Port Usage in PSX

- 1103/1136 -

30.5 CDROM Internal HC05 Motorola Selftest Mode

52-pin HC05 chips (newer psx cdrom controllers)

52-pin chips are used on LATE-PU-8 boards, and on later boards ranging from PU-18 up

to PM-41(2).

CDROM Internal HC05 Motorola Selftest Mode (52pin chips)

80-pin HC05 chips (older psx cdrom controllers)

80-pin chips are used PU-7, EARLY-PU-8, and PU-9 boards.

CDROM Internal HC05 Motorola Selftest Mode (80pin chips)

32-pin HC05 chips (joypad/mouse)

Sony's Digital Joypad and Mouse are using 32pin chips (with TQFP-32 package), which

are probably containing Motorola HC05 CPUs, too. Unknown if/how those chips can be

switched into bootstrap/dumping modes.

Pinouts

Pinouts - HC05 Pinouts

30.6 CDROM Internal HC05 Motorola Selftest Mode (52pin chips)

Motorola Bootstrap ROM

The Motorola MC68HC05 chips are including a small bootstrap ROM which gets activated

upon /RESET when having two pins strapped to following levels:

Moreover, two pins are needed on /RESET for selecting a specific test mode:

The selectable four modes are:

 Pin30 PortC.6 (/IRQ2) (/XINT) ----> wire to 3.5V (VCC)
 Pin31 PortC.7 (/IRQ1) (SCOR) ----> wire to 7V (2xVCC)

 Pin16 PortB.0 ----> ModeSelectBit0 (0=GND, 1=3.5V)
 Pin17 PortB.1 ----> ModeSelectBit1 (0=GND, 1=3.5V)

30.5 CDROM Internal HC05 Motorola Selftest Mode

- 1104/1136 -

The upload/download functions are using following additional pins:

RX/TX are RS232-like serial signals (but using other voltages, 0=0V and 1=3.5V).

Transfer format is 8-N-1, ie. one startbit(0), 8 databits LSB first, no parity, one stopbit(1).

Baudrate is OSC/2/208 (ie. 9616 bps for 4.000MHz, or 10176 bps for 4.2336MHz clock

derived from CXD2545Q/CXD2938Q).

Note: Above pins may vary on some chips (namely on chips that don't have PortF). The

pins for entering bootstrap mode (PortC in this case) should be described in datasheets;

but transfer protocol and mode selection (PortB) and transmission (PortF) aren't officially

documented.

Mode2: Upload 200h bytes to RAM & jump to 0040h

This mode is very simple and powerful: After /RESET, you send 200h bytes to the RX

input (without any response on TX output), the bytes are stored at 0040h..023Fh in

RAM, and the chip jumps to 0040h after transferring the last byte. The uploaded

program can contain a custum highspeed dumping function, or perform hardware tests,

etc. A custom dumping function for PSX/PSone can be found at:

After uploading the 200h-byte dumping function it will respond by send 4540h bytes

(containing some ASCII string, the 16.5Kbyte ROM image, plus dumps for RAM and

(banked) I/O port region, plus openbus tests for unused memory and I/O regions.

Wiring for Mode2 on PSX/PSone consoles with 52-pin HC05 chips

 Mode0: Jump to RAM Address 0040h (useless when RAM is empty)
 Mode1: Semifunctional Selftest (useless)
 Mode2: Upload 200h bytes to RAM & jump to 0040h (allows fast/custom dumping)
 Mode3: Download ROM as ASCII hexdump (nice, but very slow)

 Pin50 PortF.0 ----> TX output (11bytes: 0Dh,0Ah," AAAA DD ")
 Pin51 PortF.1 <---- RX input (1byte: "!" to request next 11 bytes)
 Pin52 PortF.2 ----> RTS output or so (not needed)
 Pin1 PortF.3 ----> DTR output or so (not needed)
 Ground ------------ GND for RX/TX

 http://www.psxdev.net/forum/viewtopic.php?f=70&t=557

 .------------ pin31, PC7, SCOR, cut the connection
 39 | 27 to Signal Processor,
 .-----------------. then wire Pin31 to 7.5V
 40 | | 26
 | C nnnn |

30.6 CDROM Internal HC05 Motorola Selftest Mode (52pin chips)

- 1105/1136 -

Good places to pick 3.5V and 7.5V from nice solder pads are:

The SCOR trace on Pin31, connects to Signal Processor...

cut that trace (preferably on the PCB between two vias or test points, so you can later

repair it easily) (better don't try to lift Pin31, it breaks off easily)

Note: Mode2 also requires Pin16=Low, and Pin30=High (but PSX/PSone boards should

have those pins at that voltages anyways).

Mode3: Download ROM as ASCII hexdump

This mode is very slow and not too powerful. But it may useful if you can't get Mode2

working for whatever reason. Wiring for Mode3 is same as above, plus PortB.0=3.5V. In

this mode, the chip will send one 0Dh,0Ah," AAAA DD " string immediately after /RESET

(with 16bit address "AAAA" (initially 1000h), and 8bit data "DD"). Thereafter the chip

will wait for incoming commands:

Basic setup would be wiring RX to GND (the chip will treat that as infinite stream of start

bits with chr(00h), so it will respond by sending data from increasing addresses

automatically; the increment wraps from 4FFFh to FE00h (skipping the gap between Main

 | SC4309nnPB |
 | G63C 185 |
 pin50, TX <--- | | ---- pin17, PB1, SCEX, wire to 3.5V,
 pin51, RX ---> | | for Mode2 Selection
 52 | O | 14
 '-----------------'
 1 13

 CN602.Pin1 = 7.5V ;\on PSX boards (with either 5pin or
 CN602.Pin3 = 3.5V ;/ 7pin CN602 connectors)
 IC601.Pin1 = 7.5V ;-on PSone boards (3pin 78M05 voltage regulator)
 IC102.Pin32 = 3.5V ;-on PSone boards (32pin Main BIOS ROM chip)

 CXD2510Q.Pin63 (eg. on PU-8 boards) ;\
 CXD2545Q.Pin74 (eg. on PU-18 boards) ; either one of these, depending
 CXD1817R.Pin49 (eg. on PU-20 boards) ; on which chipset you have
 CXD2938Q.Pin77 (eg. on PM-41 boards) ;
 CXD2941R.Pin85 (eg. PM-41(2) boards) ;/

 4-digit ASCII HEX address --> change address, and return 0Dh,0Ah," AAAA DD "
 chr(00h) --> increment address, and return 0Dh,0Ah," AAAA DD "
 chr(07h) --> jump to current address (not so useful)
 other characters --> same as chr(00h)
 All digits/characters sent to RX input will produce an echo on TX output.

30.6 CDROM Internal HC05 Motorola Selftest Mode (52pin chips)

- 1106/1136 -

ROM and Bootstrap ROM), and also wraps from FFFFh to 0000h; transfer is ultraslow: 13

characters needed per dumped byte: chr(00h) to chip, chr(00h) echo from chip, and 0Dh,

0Ah," AAAA DD " from chip.

30.7 CDROM Internal HC05 Motorola Selftest Mode (80pin chips)

80pin Sony 4246xx chips

And for anyone else planning to try this, these are the connections:

In bootstrap mode, Port A is used as follows:

The selectable testmodes are:

RX/TX are plain binary (non-ASCII), baudrate is 9600 (when using 4.000MHz oscillator),

transfer format is 8,N,2 (aka 8,N,1 with an extra pause bit).

Wiring for Upload/Download on PSX consoles with 80-pin HC05 chips

 Pin PortC
 46 PC7/IRQ1 (SCOR) disconnect from PCB, then wire the pin to Vtst (7.6V)
 45 PC6/IRQ2 (/XINT) wire to Vdd (3.5V) (you have to solder to the pin)

 Pin PortA DDRA Usage
 23 PA0 in RXD
 24 PA1 out TXD
 25 PA2 in -
 26 PA3 in Testmode.bit0 (GND=0, 3.5V=1)
 27 PA4 in Testmode.bit1 (GND=0, 3.5V=1)
 28 PA5 in Testmode.bit2 (GND=0, 3.5V=1)
 29 PA6 out RTS (don't care)
 30 PA7 out -

 PA5 PA4 PA3 Effect
 0 x x Jump to 0040h ;\
 1 0 0 Test (complex) ; not so useful
 1 0 1 Test (simple loop) ;/
 1 1 0 ROM Dump 4200h bytes (plain binary, non-ASCII)
 1 1 1 RAM Upload 100h bytes to 0040h..013Fh, then jump to 0040h

 .------------ pin46, PC7/IRQ1, SCOR, cut & wire to 7.5V
 |.----------- pin45, PC6/IRQ2, wire to 3.5V
 60 || 41
 .-----------------.
 61 | o | 40

30.7 CDROM Internal HC05 Motorola Selftest Mode (80pin chips)

- 1107/1136 -

Good places to pick 3.5V and 7.5V from nice solder pads are:

Credits to TriMesh for finding the 80pin chip's bootstrap signals.

Other 80pin chips

DTL-H100x uses 80pin chip with onchip PROM (chip text "(M) MC68HC705L15", instead

of "Sony [...] 4246xx"), wiring for serial dumping on that is unknown (the bootstrap

ROM may be a little different because it should contain PROM burning functions). PU-9

boards boards seem to use a similar PROM (with some sticker on it).

DTL-H2000 uses 80pin CXP82300 chip with socketed piggyback 32pin EPROM - that chip

is a Sony SPC700 CPU, not a Motorola HC05 CPU. Accordingly there's no Motorola

Bootstrap mode in it, but of course one can simply dump the EPROM with standard

eprom utilities, as done by TriMesh).

30.8 CDROM Internal CXD1815Q Sub-CPU Configuration

Registers

00h - DRVIF - Drive Interface (W)

01h - CONFIG 1 - Configuration 1 (W)

 | Sony Computer | ,----- pin28, PA5, wire to 3.5V
 | Entertainment | _________/ ,--- pin27, PA4, wire to 3.5V
 | Inc. (C) E35D | ==========='---- pin26, PA3, mode select
 | 4246xx 185 | ----> pin24, PA1, TXD (for ROM dump)
 | | <---- pin23, PA0, RXD (for RAM upload)
 80 | O | 21
 '-----------------'
 1 20

 CN602.Pin1 = 7.5V ;\on PSX boards (with 7pin CN602 connectors)
 CN602.Pin3 = 3.5V ;/

 0-1 "L" Reserved (should be 0)
 2 LSB 1st CD DSP DATA order (0=MSB first, 1=LSB first)
 3-4 BCK MD CD DSP Number of BCLKs per WCLK (0=16, 1=24, 2=32, 3=Reserved)
 5 BCK RED Strobe DATA on BLCK Edge (0=Falling Edge, 1=Rising Edge)
 6 LCH LOW Channel on LRCK=Low (0=Right, 1=Left)
 7 C2PL1st ... C2PO lower byte 1st

30.8 CDROM Internal CXD1815Q Sub-CPU Configuration Registers

- 1108/1136 -

02h - CONFIG 2 - Configuration 2 (W)

03h - DECCTL - Decoder Control (W)

07h - CHPCTL - Chip Control (W)

 0 HCLKDIS HCLK Pin Output (0=8.4672MHz, 1=Disable; Fixed Low)
 1 CLKDIS CLK Pin Output (0=16.9344MHz, 1=Disable; Fixed Low)
 2 9BITRAM SRAM Databus width (0=8bit/normal, 1=9bit)
 3-4 RAM SZ SRMA Address bus (0=32K, 1=64K, 2=128K, 3=Reserved)
 5 PRTYCTL ... Priority Control
 6 XSLOW Number of clock cycles per DMA cycle (0=12, 1=4) (for SRAM)
 7 "L" Reserved (should be 0)

 0 "L" Reserved (should be 0)
 1 DACODIS DAC Out Disable
 2 DAMIXEN Digital Audio Mixer Enable (0=Attentuator/Mixer for CD-DA, 1=No)
 3 SMBF2 Number of Sound Map Buffer Surfaces (0=Three, 1=Two)
 4 SPMCTL Sound Parameter Majority Control (0=?) ;\for ADPCM params
 5 SPECTL Sound Parameter Error Control (0=?) ;/
 6-7 "L" Reserved (should be 0)

 0-2 DECMD Decoder Mode (0-7)
 0 or 1 Decoder Disable ;-disable sector reading
 2 or 3 Monitor-only Mode ;\no error correction
 4 Write-only Mode ;/
 5 Real-time Correction Mode ;\with error correction
 6 Repeat Correction Mode ;/
 7 CD-DA Mode ;-audio
 3 AUTODIST Auto Distinction (0=Use MODESEL/FORMSEL bits, 1=Use Sector Hdr)
 (Error Correction is done according to above MODE/FORM values)
 4 FORMSEL Form Select (0=FORM1, 1=FORM2) (must be 0 for MODE1)
 5 MODESEL Mode Select (0=MODE1, 1=MODE2)
 6 ECCSTR ECC Strategy (0=Normal, 1=Use Error Flags; requires 9bit SRAM)
 7 ENDLADR Enable Drive Last Address ...

 0 "L" Reserved (should be 0)
 1 DBLSPD Double Speed Mode (0=Normal, 1=Double) (init CD DSP first)
 2 RPSTART Repeat Correction Start (0=No, 1=Start) (automatically cleared)
 3 SWOPEN Sync Window Open (0=SyncControlledByIC, 1=OpenDetectionWindow)
 4 CD-DA CD-DA Play (0=No, 1=Playback CD-DA as audio)
 5 CDDAMUTE CD-DA Mute (0=Normal, 1=Mute CD-DA Audio)
 6 RTMUTE Real-time Mute (0=Normal, 1=Mute CDROM ADPCM)
 7 SMMUTE Sound Map Mute (0=Normal, 1=Mute Sound Map ADPCM)

30.8 CDROM Internal CXD1815Q Sub-CPU Configuration Registers

- 1109/1136 -

30.9 CDROM Internal CXD1815Q Sub-CPU Sector Status

Registers

00h - ECCSTS - ECC Status (R)

01h - DECSTS - Decoder Status (R)

02h - HDRFLG - Header/Subheader Error Flags for HDR/SHDR registers (R)

Error flags for current sector are probably stored straight in this register (ie. these flags

are probably available even without using 9bit SRAM).

Or maybe not... if the chip supports receiving newer sectors during time-consuming error

corrections... then those newer would need to be stored in SRAM, and would thus require

9bit SRAM for the error flags?

03h - HDR - Header Bytes (R)

 0 CFORM FORM assumed by Error Correction (0=FORM1, 1=FORM2)
 1 CMODE MODE assumed by Error Correction (0=MODE1, 1=MODE2)
 2 ECCOK ECC Okay (0=Bad, 1=Okay)
 3 EDCOK EDC Okay (0=Bad, 1=Okay)
 4 CORDONE Correction Done (0=None, 1=Error occurred and was corrected)
 5 CORINH Correction Inhibit (0=Okay,1=AUTODIST couldn't determine MODE/FORM)
 6 ERINBLK Erasure in Block (0=Okay, 1=At least 1 byte is wrong & uncorrected)
 7 EDCALL0 EDC all-zero (0=No/EDC Exists, 1=Yes/All four EDC bytes are 00h)

 0 NOSYNC No Sync (0=Okay, 1=Sector Sync Mark Missing)
 1 SHRTSCT Short Sector (0=Okay, 1=Sector Sync Mark within Sector Data)
 2-4 - Reserved (undefined)
 5 RTADPBSY Real-time ADPCM Busy (0=No, 1=Busy/playback)
 6-7 - Reserved (undefined)

 0 CI Error in 4th Subheader byte (Coding Info) (0=Okay, 1=Error)
 1 SUBMODE Error in 3rd Subheader byte (Submode) (0=Okay, 1=Error)
 2 CHANNEL Error in 2nd Subheader byte (Channel) (0=Okay, 1=Error)
 3 FILE Error in 1st Subheader byte (File) (0=Okay, 1=Error)
 4 MODE Error in 4th Header byte (MODE) (0=Okay, 1=Error)
 5 BLOCK Error in 3rd Header byte (FF) (0=Okay, 1=Error)
 6 SEC Error in 2nd Header byte (SS) (0=Okay, 1=Error)
 7 MIN Error in 1st Header byte (MM) (0=Okay, 1=Error)

 1st read: 1st Header byte (MM)
 2nd read: 2nd Header byte (SS)

30.9 CDROM Internal CXD1815Q Sub-CPU Sector Status Registers

- 1110/1136 -

04h - SHDR - Subheader Bytes (R)

The contents of the HDRFLG, HDR, SHDR registers indicate:

Unknown when 1st..4th read indices are reset for HDR and SHDR (maybe on access to

certain I/O ports, or maybe anytime when receiving a new sector), also unknown what

happens on 5th read and up.

30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

Drive Address -- used for storing incoming CDROM sectors in Buffer RAM

Host Address -- used for transferring Buffer RAM to (or from) Main CPU

ADPCM Address -- used for Real-time ADPCM audio output from Buffer RAM

05h - CMADR - Drive Current Minute Address (R)

Indicates the start address of the most recently decoded sector (called "Minute Address"

because it points to the MM byte of the MM:SS:FF:MODE sector header). Normally,

CMADR should be forwarded to Host:

 3rd read: 3rd Header byte (FF)
 4th read: 4th Header byte (MODE)

 1st read: 1st Subheader byte (File)
 2nd read: 2nd Subheader byte (Channel)
 3rd read: 3rd Subheader byte (Submode) (SM)
 4th read: 4th Subheader byte (Coding Info) (CI)

 (1) The corrected value in the real-time correction or
 repeat correction mode
 (2) Value of the raw data from the drive in the monitor-only
 or write-only mode
 The CMOME? and CMODE bits (bits 1, 0) of ECCSTS indicate the FORM and MODE
 of the sector the decoder has discriminated by the raw data from the drive.
 Due to erroneous correction, the values of these bits may be at variance
 with those of the HDR register MODE byte and SHDR register submode byte
 bit5.

 0-6 CMADR Address bit10-16 (in 1Kbyte steps)
 7 - Reserved (undefined)

 HADR = (CMADR AND 7Fh)*400h+offset
 HXFR = length OR 4000h

30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

- 1111/1136 -

Whereas, offset would be usually 00h, 04h, or 0Ch (to start reading from the begin of the

sector, or to skip 4-byte MODE1 header, or 12-byte MODE2 header). And length would be

usually 800h (normal data sector), or 924h (entire sector, excluding the leading 12 sync-

bytes). Length bit14 is undocumented/reserved, but the PSX CDROM BIOS does set that

bit for whatever reason.

Alternately, the sector can be forwarded to the Real-time ADPCM decoder:

19h - ADPMNT - ADPCM "MNT" Address (W)

04h - DLADR-L, Drive Last Address, bit0-7 (W)

05h - DLADR-M, Drive Last Address, bit8-15 (W)

06h - DLADR-H, Drive Last Address, bit16 (W)

10h - DADRC-L - Drive Address Counter, bit0-7 (W)

11h - DADRC-M - Drive Address Counter, bit8-15 (W)

12h - DADRC-H - Drive Address Counter, bit16 (W)

0Eh - DADRC-L - Drive Address Counter, Bit0-7 (R)

0Fh - DADRC-M - Drive Address Counter, Bit8-15 (R)

 ADPMNT = (CMADR AND 7Fh) OR 80h

 0-6 ADPxxx ADPCM source Address bit10-16 (in 1Kbyte-steps)
 7 RTADPEN Real-time ADPCM Enable (0=Disable, 1=Enable Real-time ADPCM)

 0-16 DLADR Addr. bit0-16 ...
 17-23 "L" Reserved (should be 0)

 0-16 DADRC Incrementing Drive-to-Buffer Write Address, bit0-16
 17-23 "L" Reserved (should be 0)

 0-15 DADRC Address bit0-15 ;bit16 is in Port 0Bh ...

30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

- 1112/1136 -

0Ch - HXFR-L - Host Transfer Length, bit0-7 (W)

0Dh - HXFR-H - Host Transfer Length, bit8-11 and stuff (W)

0Eh - HADR-L - Host Transfer Address, bit0-7 (W)

0Fh - HADR-M - Host Transfer Address, bit8-15 (W)

0Ah - HXFRC-L - Host Transfer Remain Counter, bit0-7 (R)

0Bh - HXFRC-H - Host Transfer Remain Counter, bit8-11, and other bits (R)

0Ch - HADRC-L - Host Transfer Address Counter, bit0-7 (R)

0Dh - HADRC-M - Host Transfer Address Counter, bit8-15 (R)

"This counter keeps the addresses which write or read the data with host into/from the

buffer.

When data from the host is written into the buffer or data to the host is read from the

buffer, the HADRC value is output from MA0 to 16. HADRC is incremented each time one

byte of data from the drive is read from the buffer (BFRD is high) or written into the

buffer (BFWR is high)."

 0-11 HXFR number of data bytes, bit0-11 (0..FFFh) ...
 12 HADR.16 HADR bit16
 13 "L" Reserved (should be 0)
 14 "L" ?? Reserved (should be 0) ;<-- XXX but on PSX: Always 1 !?!
 ; seems to Disable INT8 ?!!!
 15 DISHXFRC Disable HXFRC (0=Use HXFRC, 1=Disable, Infinite-or-Zero Len?)

 0-15 HADR Addr. bit0-15 ;bit16 in Port 0Dh ...

 0-11 HXFRC Host Transfer Counter bit0-11 (number of remaining bytes)
 12 HADRC bit16 ;MSB of Port 0Ch/0Dh
 13 DADRC bit16 ;MSB of Port 0Eh/0Fh
 14-15 - Reserved (undefined) (usually both bits set)

 0-15 HADRC Address bit0-15 ;bit16 is in Port 0Bh

30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

- 1113/1136 -

Note

When reading from SRAM, data seems to go through a 8-byte data fifo, the HXFRC

(remain) and HADRC (addr) values aren't aware of that FIFO (ie. if there's data in the

fifo, then addr will be 8 bigger and remain 8 smaller than what has arrived at the host).

Unclear Notes

"If sound map data is to be transferred before the data is transferred (immediately after

the host has set the BFRD and BFWR bits (bits 7 and 6) of the HCHPCTL register high)":

"At any other time":

Unknown what the above crap is trying to say exactly.

"At any other time" does apparently refer to cases when transfers get started (whilst

during transfer, the address/remain values are obviously increasing/decreasing).

For sound map, theoretically, the SMEN bit should be set, but above does somewhat

suggest that BFRD or BFWR (or actually: both BFRD and BFWR) need to be set...?

Sector Buffer Memory Map (32Kx8 SRAM)

 900h is loaded into HXFRC
 and 600Ch, 6A0Ch, or 740Ch is loaded into HADRC
 (at least, supposedly, above addresses , for cases when using 32K SRAM)

 HADR and HXFR are loaded into HADRC and HXFRC

 0000h 1st Sector (at 0000h..0923h) (unused gap at 0924h..0BFFh)
 0C00h 2nd Sector (at 0C00h..1523h) (unused gap at 1524h..17FFh)
 1800h 3rd Sector (at 1800h..2123h) (unused gap at 2124h..23FFh)
 2400h 4th Sector (at 2400h..2D23h) (unused gap at 2D24h..2FFFh)
 3000h 5th Sector (at 3000h..3923h) (unused gap at 3924h..3BFFh)
 3C00h 6th Sector (at 3C00h..4523h) (unused gap at 4524h..47FFh)
 4800h 7th Sector (at 4800h..5123h) (unused gap at 5124h..53FFh)
 5400h 8th Sector (at 5400h..5D23h) (unused gap at 5D24h..5FFFh)
 6000h Soundmap ADPCM Buffer (at 600Ch..690Bh) (gaps at 6000h and 690Ch)
 6A00h Soundmap ADPCM Buffer (at 6A0Ch..730Bh) (gaps at 6A00h and 730Ch)
 7400h Soundmap ADPCM Buffer (at 740Ch..7D0Bh) (gaps at 7400h and 7D0Ch)
 7E00h Unknown/Unused

30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers

- 1114/1136 -

30.11 CDROM Internal CXD1815Q Sub-CPU Misc Registers

16h - HIFCTL - Host Interface Control (W)

11h - HIFSTS - Host Interface Status (R)

0Ah - CLRCTL - Clear Control (W)

07h - INTSTS - Interrupt Status (R) - (0=No, 1=IRQ)

09h - INTMSK - Interrupt Mask (W) - (0=Disable, 1=Enable)

0Bh - CLRINT - Clear Interrupt Status (W) - (0=No change, 1=Clear/Ack)

12h - HSTPRM - Host Parameter (R)

 0-2 HINT Request Host Interrupt (INT1..INT7, or 0=None/No change)
 3-7 "L" Reserved (should be 0)

 0-2 HINTSTS Pending Host Interrupt (INT1..INT7, or 0=None/All acknowledged)
 3 DMABUSY DMA Busy (0=Data FIFO Empty and HXFRC=0, 1=Data Transfer Busy)
 4 PRMRRDY Parameter Read Ready (0=Parameter FIFO Empty, 1=Ready/Not Empty)
 5 RSLEMPT Result Empty (0=Response FIFO Not Empty, 1=Empty)
 6 RSLWRDY Result Write Ready (0=Response FIFO Full, 1=Ready/Not Full)
 7 BUSYSTS Command Busy Status (0=Command Not Empty, 1=Ack'ed by CLRBUSY)

 0 RESYNC Sync with CD DSP (0=No change, 1=Resync, eg. after speed change)
 1-3 "L" Reserved (should be 0)
 4 RTADPCLR Abort Real-time ADPCM (0=No Change, 1=Abort; when ADPMNT.7=0)
 5 CLRRSLT Clear Reply FIFO (0=No change, 1=Acknowledge; clear FIFO)
 6 CLRBUSY Acknowledge Command (0=No change, 1=Acknowledge; clear BUSYSTS)
 7 CHPRST Chip Reset (0=No change, 1=Do Chip Initialization)

 0 HCRISD Host Chip Reset Issued
 1 HSTCMND Host Command ...
 2 DECINT Decoder Interrupt ..
 3 HDMACMP Host DMA Complete . <-- PSX: used for retry ?!?!!!
 4 RTADPEND Real-time ADPCM end
 5 RSLTEMPT Result Empty
 6 DECTOUT Decoder Time Out
 7 DRVOVRN Drive Overrun

 0-7 Param FIFO (check HIFSTS.4 to see if the FIFO is empty)

30.11 CDROM Internal CXD1815Q Sub-CPU Misc Registers

- 1115/1136 -

HIFSTS.4 goes off when all bytes read.

Said to have 8-byte FIFO in CXD1199AQ datasheet.

But, PSX has 16-byte Parameter FIFO...!?!

13h - HSTCMD - Host Command (R)

Command should be ack'ed via CLRINT.1 and CLRCTL.6.

17h - RESULT - Response FIFO (W)

Said to have 8-byte FIFO in CXD1199AQ datasheet.

But, PSX has 16-byte Response FIFO...!?!

08h - ADPCI - ADPCM Coding Information (R)

Unknown if ADPCI is affected by configurations by Main-CPU's Sound Map ADPCM or by

Sub-CPU's Real-time ADPCM (or by both)?

Note: Bit5,7 are semi-undocumented in the datasheet (mentioned in the ADPCI

description, but missing in overall register summary).

1Bh - RTCI - Real-time ADPCM Coding Information (W)

 0-7 Command (check INTSTS.1 or HIFSTS.7 to see if a command was sent)

 0-7 Data (has 8-byte FIFO)

 0 S/M ADPCM Stereo/Mono (0=Mono, 1=Stereo)
 1 - Reserved (undefined)
 2 FS ADPCM Sampling Frequency (0=37.8kHz, 1=18.9kHz)
 3 - Reserved (undefined)
 4 BITLNGTH ADPCM Sample Bit Length (0=Normal/4bit, 1=8bit)
 5 ADPBUSY ADPCM Decoding (0=No, 1=Yes/Busy)
 6 EMPHASIS ADPCM Emphasis (0=Normal/Off, 1=On)
 7 MUTE DA Data is Muted (uh?) (0=No, 1=Yes/Muted)

 0 S/M ADPCM Stereo/Mono (0=Mono, 1=Stereo)
 1 "L" Reserved (should be 0)
 2 FS ADPCM Sampling Frequency (0=37.8kHz, 1=18.9kHz)
 3 "L" Reserved (should be 0)
 4 BITLNGTH ADPCM Sample Bit Length (0=Normal/4bit, 1=8bit)
 5 "L" Reserved (should be 0)
 6 EMPHASIS ADPCM Emphasis (0=Normal/Off, 1=On)
 7 "L" Reserved (should be 0)

30.11 CDROM Internal CXD1815Q Sub-CPU Misc Registers

- 1116/1136 -

06h,09h,10h,14h..1Fh - Reserved (R)

Of these, 09h and 10h are officially unused/reserved. And addresses 06h and 14h..1Fh

aren't officially mentioned to exist at all.

Trying to read these registers on a PSone returns Data=C0h for 06h, 09h, 10h, 15h-16h,

18h-1Fh, and Data=FFh for 14h, and Data=DEh for 17h.

08h,13h-15h,18h,1Ah,1Ch-1Fh - Reserved (W)

Of these, 09h,13h-15h,18h,1Ah are officially unused/reserved. And addresses 1Ch-1Fh

aren't officially mentioned to exist at all.

30.12 CDROM Internal Commands CX(0x..3x) - CXA1782BR

Servo Amplifier

CXA1782BR - CX(0x) - Focus Servo Control - "FZC" FocusZeroCross at SENS pin

For Focus Search: Keep FS1=on, and toggle FS2 on and off (this will generate a

waveform, and SENS will indicate when reaching a good focus voltage).

CXA1782BR - CX(1x) - Tracking/Brake/Sled - "DEFECT" at SENS pin

Note: The PSX CDROM BIOS does use the "Undoc" setting (ie. bit17=1), but the effect is

undoc/unknown?

 0-7 Reserved (undefined)

 0-7 Reserved (should be 00h) (or don't write at all)

 23-20 4bit Command (00h)
 19 1bit FS4 Focus Servo (0=Off, 1=On)
 18 1bit FS3 DEFECT
 17 1bit FS2 Enable Focus Search Voltage (0=Off, 1=On)
 16 1bit FS1 Select Focus Search Voltage (0=Falling, 1=Rising)
 15-0 16bit Unused (don't care)

 23-20 4bit Command (01h)
 19 1bit TG1,TG2 ON/OFF Tracking Servo Gain Up/Normal (hmmm?)
 18 1bit Brake Circuit ON/OFF
 17-16 2bit PS Sled Kick Height (0=+/-1, 1=+/-2, 2=Undoc, 3="Don't use"?)
 15-0 16bit Unused (don't care)

30.12 CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier

- 1117/1136 -

Note: CX(1x) works different on CXD2545Q (some bits are moved around, and the

"SledKickHeight" bits are renamed to "SledKickLevel" and moved to different/new CX(3X)

commands.

CXA1782BR - CX(2x) - Tracking and Sled Servo Control - "TZC" at SENS pin

CXA1782BR - CX(3x) - "Automatic Adjustment Comparator Output" at SENS pin

Note: CX(3x) is extended and works very different on CXD2545Q.

CXA1782BR Command 4x..7x - "HIGH-Z" at SENS pin

CXA1782BR Command 8x..Fx - "UNSPECIFIED???" at SENS pin

Note

The Servo Amplifier isn't directly connected to the CPU. Instead, it's connected as a

slave device to the Signal Processor. There are two ways to access the Servo Amplifier:

1) The CPU can send CX(0X..3X) commands to the Signal Processor (which will then

forward them to the Servo Amplifier).

2) The Signal Processor can send CX(0X..3X) commands to the Servo Amplifier (this

happens during CX(4xxx) Auto Sequence command).

 23-20 4bit Command (02h)
 19-18 2bit Tracking Control (0=Off, 1=Servo On, 2=F-Jump, 3=R-Jump) ;TM1,3,4
 17-16 2bit Sled Control (0=Off, 1=Servo On, 2=F-Fast, 3=R-Fast) ;TM2,5,6
 15-0 16bit Unused (don't care)

 23-20 4bit Command (03h)
 19 1bit Value to be adjusted (0=Balance, 1=Gain)
 18-16 3bit New Balance or Gain value (depending on above bit)
 15-0 16bit Unused (don't care)

 N-N 4bit Command (04h..07h)

 N-N 4bit Command (08h..0Fh)

30.12 CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier

- 1118/1136 -

30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q

Signal Processor

CXD2510Q - CX(4xxx) - Auto Sequence

Values for AS (Auto Sequence Command):

CXD2510Q - CX(5x) - Blind,Brake,Overflow Timer

CXD2510Q - CX(6xx) - SledKick,Brake,Kick Timer

CXD2510Q - CX(7xxxx) - Track jump count setting (for Auto Sequence Command)

 23-20 4bit Command (4)
 19-16 4bit AS3-0 Auto Sequence Command (see below)
 15-12 4bit MT3-0 Max Timer Value (N timer units, or 0=Invalidate Timer)
 11 1bit LSSL Timer Units (0=2.9ms, 1=186ms) (for above MT value)
 10-8 3bit Unused (zero)
 7-0 8bit Unused (don't care)

 00h Cancel
 04h/05h Forward/Reverse Fine Search ;<--sends CX(25h) ;\these do internally
 07h Focus-On ;<--sends CX(02h) ; send commands to
 08h/09h Forward/Reverse 1 Track Jump ;\ ; CXA1782BR
 0Ah/0Bh Forward/Reverse 10 Track Jump ; sends CX(25h) ; and, auto sequence
 0Ch/0Dh Forward/Reverse 2N Track Jump ;/ ;/is interrupted?
 0Eh/0Fh Forward/Reverse 1N Track Move ;<--CXD2545Q only(Reserved on CXD2510Q)
 01h..03h,06h = Reserved

 23-20 4bit Command (5)
 19-16 4bit TR3-0 Timer (N*0.022ms for Blind/Overflow, N*0.045ms for Brake)
 15-8 8bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (6)
 19-16 4bit SD3-0 Timer KICK.D (N*2.9ms for Fine Search? else N*1.45ms?)
 15-12 4bit KF3-0 Timer KICK.F (N*0.09ms)
 11-8 4bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (7)
 19-4 16bit Track Jump Count Setting (0..65535) for Command 4x
 3-0 4bit Unused (don't care)

30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

- 1119/1136 -

CXD2510Q - CX(8xx) - MODE Specification

CXD2510Q - CX(9xx) - Function Specification

CXD2510Q - CX(Axx) - Audio Control

Normal: SQSO outputs... WHAT?

PeakMeter: SQSO outputs highest peak ever on any channel (bit15: usually 0)

LevelMeter: SQSO outputs recent peak (with bit15 toggled: 0=Right, 1=Left)

CXD2510Q - CX(Bxxxx) - Traverse Monitor Counter Setting

 23-20 4bit Command (8)
 19 1bit CDROM (0=Audio, 1=CDROM; no average and pre-value stuff)
 18 1bit DOUT Mute (0=Not muted, 1=Mute DOUT)
 17 1bit D.out Mute-F (0=Not muted, 1=Mute DA)
 16 1bit WSEL (0=Enhanced Sync Window, 1=Enhanced Anti-Rolling)
 15 1bit VCO SEL (0=Double Correction, 1=Quadruple Correction)
 14 1bit ASHS (0=Double Correction, 1=Quadruple Correction)
 13 1bit SOCT (0=Output SubQ to SQSO, 1=Output Each? to SQSO)
 12 1bit Unused (zero)
 11-8 4bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (9)
 19 1bit DCLV ON-OFF (complex stuff, related to gain and frequencies)
 18 1bit DSPB ON-OFF (0=Normal Speed, 1=Double Speed; fixed pitch)
 17 1bit ASEQ ON-OFF (select output on SENS pin)
 16 1bit DPLL ON-OFF (0=Analog RFPLL, 1=Digital RFPLL)
 15-14 1bit Bilingual Audio (0=Stereo, 1=RightOnly, 2=LeftOnly, 3=Mute)
 13 1bit FLFC (normally 0)
 12 1bit Unused (zero)
 11-8 4bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (0Ah)
 19 1bit Vari Up (write 1-then-0 to increase pitch by +0.1%)
 18 1bit Vari Down (write 1-then-0 to decrease pitch by -0.1%)
 17 1bit Mute (0=Not muted; unless muted elsewhere, 1=Mute & Peak=0)
 16 1bit ATT (0=Attentuation off, 1=Minus 12 dB)
 15-14 2bit PCT (0=Normal, 1=LevelMeter, 2=PeakMeter, 3=Normal) (0-1=QuadC2)
 13-12 2bit Unused (zero)
 11-8 4bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

- 1120/1136 -

CXD2510Q - CX(Cxx) - Spindle Servo Coefficient Setting

CXD2510Q - CX(Dx) - CLV Control

CXD2510Q - CX(Ex) - CLV Mode

Values for CM (CLV Mode):

N/A - CX(F) - Reserved

 23-20 4bit Command (0Bh)
 19-4 16bit Traverse Monitor Count (used when monitored by COMP and COUT) (?)
 3-0 4bit Unused (don't care)

 23-20 4bit Command (0Ch)
 19-18 2bit Gain MDP for CLVP mode (0=-6db, 1=0dB, 1=+6dB, 3=Reserved)
 17-16 2bit Gain MDS for CLVS/CLVP (0=-12dB, 1=-6dB, 2=0dB, 3=Reserved)
 15 1bit Zero (zero)
 14 1bit Gain DCLV0 overall gain (0=0dB, 1=+6dB
 13-12 2bit Unused (zero)
 11-8 4bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (0Dh)
 19 1bit DCLV PWM MD Digital CLV PWM mode (0=Use MDS+MDP, 1=Ternary MDP)
 18 1bit TB Bottom Hold in CLVS/CLVH modes (0=At cycle RFCK/32, 1=RFCK/16)
 17 1bit TP Peak Hold in CLVS mode (0=At cycle RFCK/4, 1=RFCK/2)
 16 1bit Gain CLVS for CLVS mode (0=0dB, 1=+6dB)(always +6dB in CLVP mode)
 15-8 8bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 23-20 4bit Command (0Eh)
 19-16 4bit CM3-0
 15-8 8bit Unused (don't care on CXD2510Q, zero on CXD2545Q)
 7-0 8bit Unused (don't care)

 00h Stop Spindle Motor Stop mode
 06h CLVA Automatic CLVS/CLVP switching mode, normally used for playback
 08h Kick Spindle Motor Forward rotation mode
 0Ah Brake Spindle Motor Reverse rotation mode
 0Ch CLVH Peak hold at 34kHz
 0Eh CLVS Rough Servo Mode, RF-PLL related
 0Fh CLVP PLL Servo mode

 23-0 N/A Don't use

30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

- 1121/1136 -

SUBQ Output

L/R is toggled after each SUBQ reading, however the PSX Report mode does usually

forward SUBQ only every 10 frames, so it stays stuck in one setting (but may toggle after

one second; ie. every 75 frames). And, peak is reset after each read, so 9 of the 10

frames are lost.

CXD2510Q - SENS output

Whereas,

 80bit subq
 15bit peak level (lsb first) (absolute/unsigned value)
 1bit peak l/r flag (aka appears as "MSB" of peak level)

 Index ASEQ=0 ASEQ=1 ;<-- ASEQ can be set via CX(9xx)
 0X HighZ SEIN (FZC) ;\aka SENS output
 1X HighZ SEIN (A.S) ... aka DEFECT ; from CXA1782BR
 2X HighZ SEIN (T.Z.C) ... aka TZC ; forwarded through
 3X HighZ SEIN (SSTOP) ... aka Gain/Bal ;/CXD2510Q
 4X HighZ XBUSY
 5X HighZ FOK
 6X HighZ SEIN (HighZ)
 AX GFS GFS
 BX COMP COMP
 CX COUT COUT
 EX /OV64 /OV64
 7X-9X,DX,FX HighZ 0

 FZC Focus Zero Cross
 DEFECT Defect?
 TZC Tracking Zero Cross
 SSTOP Gain or Balance adjust reached wanted level
 XBUSY Low while the auto sequencer operation is busy
 FOK High for "focus OK" (same as FOK pin)
 GFS High when the played back frame sync is obtained with correct timing
 COMP Measures the number of tracks set with Reg B. High when Reg B is
 latched, low when the initial Reg B number is input by CNIN
 COUT Measures the number of tracks set with Reg B. High when Reg B is
 latched, toggles each time the Reg B number is input by CNIN. While
 $44 and $45 are being executed, toggles with each CNIN 8-count
 instead of the Reg B number
 OV64 Low when filtered EFM signal is lengthened by 64 channel clock
 pulses or more

30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

- 1122/1136 -

30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q

Servo/Signal Combo

CXD2545Q - CX(0x) and CX(2x) - same as CXA1782BR Servo Amplifier

CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier

CXD2545Q - CX(4x..Ex) - same as CXD2510Q Signal Processor

CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor

One small difference is that the CXD2545Q supports a new "M Track Move" function as

part of the CX(4xxx) command. And, some "don't care" bits are now reserved (ie. some

commands need to be padded with additional leading "0" bits).

CXD2545Q - CX(1x) - Anti Shock/Brake/Tracking Gain/Filter

CXD2545Q - CX(30..33) - Sled Kick Level

CXD2545Q - CX(34xxxx) - Write to Coefficient RAM

Allows to change the default preset coefficient values,

CDROM Internal Coefficients (for CXD2545Q)

 23-20 4bit Command (01h)
 19 1bit Anti Shock (0=Off, 1=On)
 18 1bit Brake (0=Off, 1=On)
 17 1bit Tracking Gain (0=Normal, 1=Up)
 16 1bit Tracking Gain Filter (0=Select 1, 1=Select 2)
 15-0 16bit Unused (don't care)

 23-20 4bit Command (03h)
 19-18 2bit Subcommand (0)
 17-16 2bit Sled Kick Level (0=+/-1, 1=+/-2, 2=+/-3, 3=+/-4)
 15-0 16bit Unused (don't care)

 23-16 8bit Command (34h)
 15 1bit Zero (0)
 14-8 7bit Address (00h..4Fh = Select Coefficient K00..K4F)
 7-0 8bit Data (00h..FFh = New value)
 PLUS 8bit Eight more bits on PSone (!)

30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

- 1123/1136 -

CXD2545Q - CX(34Fxxx) - Write to Special Register

CXD2545Q - CX(35xxxx) - FOCUS SEARCH SPEED/VOLTAGE/AUTO GAIN

CXD2545Q - CX(36xxxx) - DTZC/TRACK JUMP VOLTAGE/AUTO GAIN

CXD2545Q - CX(37xxxx) - FZSL/SLED MOVE/Voltage/AUTO GAIN

CXD2545Q - CX(38xxxx) - Level/Auto Gain/DFSW (Initialize)

 23-12 12bit Command (34Fh)
 11-10 2bit Index (0=TRVSC, 1=FBIAS, 2=?, 3=?)
 9-0 10bit Data (for FBIAS: bit0=don't care)

 23-16 8bit Command (35h)
 15-14 2bit FT Focus Search-up speed 1
 13-8 6bit FS Focus Search limit voltage (default 011000b) (+/-1.875V)
 7 1bit FTZ Focus Search-up speed 2
 6-0 7bit FG AGF Convergence Gain Setting (default 0101101b)

 23-16 8bit Command (36h)
 15 1bit Zero (0)
 14 1bit DTZC DTZC Delay (0=4.25us/Default, 1=8.5us)
 13-8 6bit TJ Track Jump voltage (default 001110b) (+/-1.09V)
 7 1bit Zero (0)
 6-0 7bit TG AGT Convergence Gain Setting (default 0101110b)

 23-16 8bit Command (37h)
 15-14 2bit FZS XXX pg. 84
 13-8 6bit SM Sled Move Voltage
 7 1bit AGS
 6 1bit AGJ
 5 1bit AGGF
 4 1bit AGGT
 3 1bit AGV1
 2 1bit AGV2
 1 1bit AGHS
 0 1bit AGHT

 23-16 8bit Command (38h)
 15 1bit VCLM VC level measurement on/off
 14 1bit VCLC VC level compensation for FCS_In Register on/off
 13 1bit FLM Focus zero level measurement on/off
 12 1bit FLC0 Focus zero level compensation for FZC Register on/off
 11 1bit RFLM RF zero level measurement on/off
 10 1bit RFLC RF zero level compensation on/off

30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

- 1124/1136 -

VCLM,FLM,RFLM,TCLM are accepted every 2.9ms.

CXD2545Q - CX(39xx) - Select internal RAM/Registers for serial readout

Serial Readout Addresses:

CXD2545Q - CX(3Ax000) - Focus BIAS addition enable

CXD2545Q - CX(3Bxxxx) - Operation for MIRR/DFCT/FOK

 9 1bit AGF Focus automatic gain adjustment on/off
 8 1bit AGT Tracking automatic gain adjustment on/off
 7 1bit DFSW Defect switch disable (1=disable defect measurement)
 6 1bit LKSW Lock switch (1=disable sled free-running prevention)
 5 1bit TBLM Traverse center measurement on/off
 4 1bit TCLM Tracking zero level measurement on/off
 3 1bit FLC1 Focus zero level compensation for FCS_In Register on/off
 2 1bit TLC2 Traverse center compensation on/off
 1 1bit TLC1 Tracking zero level compensation on/off
 0 1bit TLC0 VC level compensation for TRK/SLD_In register on/off

 23-16 8bit Command (39h)
 15 1bit DAC Serial data readout DAC mode on/off
 14-8 7bit SD Serial readout data select (see below)
 7-0 8bit Unused (don't care)

 Addr Data Content
 00h 8bit VC input signal
 01h 8bit SE input signal
 02h 8bit TE input signal
 03h 8bit FE input signal
 04h-07h 9bit TE AVRG register (mirrored to 04h-07h)
 08h-0Bh 9bit FE AVRG register (mirrored to 08h-0Bh)
 0Ch-0Fh 9bit VC AVRG register (mirrored to 0Ch-0Fh)
 12h 8bit RFDC envelope (peak)
 13h 8bit RFDC envelope (bottom)
 1Ch 9bit TRVSC register
 1Dh 9bit FBIAS register
 1Eh 8bit RFDC input signal
 1Fh 8bit RF AVRG register
 20h-3Fh 16bit Data RAM (M00-M1F)
 40h-7Fh 8bit Coefficient RAM (K00-K3F) (note: K40-K4F cannot be read out)

 23-16 8bit Command (3Ah)
 15 1bit Zero (0)
 14 1bit FBON: FBIAS register addition (0=off, 1=Add FBIAS to FCS)
 13-0 14bit Zero (0)

30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

- 1125/1136 -

CXD2545Q - CX(3Cxxxx) - TZC for COUT SLCT HPTZC (Default)

CXD2545Q - CX(3Dxxxx) - TZC for COUT SLCT DTZC

CXD2545Q - CX(3Exxxx) - Filter

CXD2545Q - CX(3Fxxxx) - Others

 23-16 8bit Command (3Bh)
 15-14 2bit SFO FOK Slice Level (...depends on SFOX)
 13-12 2bit SDF DFCT Slice Level (0=89mV, 1=134mV, 2=179mV, 3=224mV)
 11-10 2bit MAX DFCT Maximum Time (0=No Limit, 1=2ms, 2=2.36ms, 3=2.72ms)
 9 1bit SFOX FOK Slice Level (...depends on SFO)
 8 1bit BTF Bottom Hold Double-Speed Count-Up mode for MIRR (0=off)
 7-6 2bit D2V Peak Hold 2 for DFCT (0=22.05kHz, 1=44.1, 2=88.2, 3=176.4)
 5-4 2bit D1V Peak Hold 1 for DFCT (0=176.4kHz, 1=352.8, 2=705.6, 3=1411)
 3-0 4bit Zero (0)

 23-16 8bit Command (3Ch)
 15-0 16bit Unused (don't care)

 23-16 8bit Command (3Dh)
 15-0 16bit Unused (don't care)

 23-16 8bit Command (3Eh)
 15-14 2bit F1NDM FCS servo filter 1st stage (1=normal, 2=down)
 13-12 2bit F3NUM FCS servo filter 3rd stage (1=normal, 2=up)
 11-10 2bit T1NDM TRK servo filter 1st stage (1=normal, 2=down)
 9-8 2bit T3NUM TRK servo filter 3rd stage (1=normal, 2=up)
 7 1bit DFIS FCS hold filter input extraction node (0=M05, 1=M04)
 6 1bit TLCD Mask TLC2 set by D2 of CX(38) only when FOK low
 5 1bit RFLP Pass signal from RFDC pin through low-pass-filter
 4-0 5bit Zero (0)

 23-16 8bit Command (3Fh) ... XXX pg. 89
 15-14 2bit Unused (0)
 13-12 2bit XTD
 11 1bit Unused (0)
 10-8 3bit DRR
 7 1bit Unused (0)
 6 1bit ASFG
 5 1bit Unused (0)
 4 1bit LPAS
 3-2 2bit SRO
 1-0 2bit Unused (0)

30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo

- 1126/1136 -

CXD2545Q feedback on 39xx: see pg. 77 (eg. 390C = VC AVRG)

XXX

CXD2545Q - SENS output

*1 $38 outputs AGOK during AGT and AGF command settings, and XAVEBSY during AVRG

measurement.

SSTP is output in all other cases.

30.15 CDROM Internal Commands CX(0x..Ex) - CXD2938Q

Servo/Signal/SPU Combo

Most commands are same as on CXD2545Q. New/changed commands are:

CXD2938Q - CX(349xxxxx) - New SCEx

Older PSX consoles have received the "SCEx" string at 250 baud via HC05 PortB.bit1,

which allowed modchips to injected faked "SCEx" signals to that pin. To prevent that,

the CXD2938Q contains some new 32bit commands that allow to receive somewhat

encrypted "SCEx" strings via SPI bus. The used commands are:

 Index ASEQ=0 ASEQ=1 Length
 $0X Z FZC -
 $1X Z AS -
 $2X Z TZC -
 $38 Z AGOK*1 -
 $38 Z XAVEBSY*1 -
 $30-37,$3A-3F Z SSTP -
 $3904 Z TE Avrg Reg. 9 bit
 $3908 Z FE Avrg Reg. 9 bit
 $390C Z VC Avrg Reg. 9 bit
 $391C Z TRVSC Reg. 9 bit
 $391D Z FB Reg. 9 bit
 $391F Z RFDC Avrg Reg. 8 bit
 $4X Z XBUSY -
 $5X Z FOK -
 $6X Z 0 -
 $AX GFS GFS -
 $BX COMP COMP -
 $CX COUT COUT -
 $EX OV64 OV64 -
 $7X-9X,DX,FX Z 0 -

30.15 CDROM Internal Commands CX(0x..Ex) - CXD2938Q Servo/Signal/SPU Combo

- 1127/1136 -

The relevant command is NewScexRandomKey(xy) which does send a random value

(x=01h..0Fh, and y=01h), and does then receive a 12-byte response via SPI bus (which

is normally used to receive SUB-Q data).

The 12-byte packet does contain one SCEx character encoded in 4th..10th byte

corresponding to Flags in "xy" bit 7..1 (in that order):

All bytes with Flag=1 are ORed together to compute a Character byte (those bytes could

be all set to 53h for "S", or if more than one flag is set, it could be theoretically split to

something like 41h and 12h).

All bytes with Flag=0 are ORed together to compute a Dummy byte. If the Character byte

is same as the Dummy byte, then it gets destroyed by setting Character=00h (to avoid

that, one could set all dummies to 00h, or set one or more dummies to FFh, for example).

Finally, "xy" bit0=0 indicates that the resulting character byte is inverted (XORed by FFh),

however, the CDROM BIOS does always use bit0=1, so the inversion feature is never

used.

For the whole SCEx string, there must be at least one 00h byte inserted between each

character (or some Char=Dummy mismatch, which results in Char=00h either), and there

should be a few more 00h bytes preceeding the first character ("S").

Note: Modchips didn't bother to reproduce that new SCEx transfers, instead they have

simply bypassed it by injecting the 250 baud SCEx string to some analog lower level

signal.

CXD2938Q - CX(3Bxxxx) - Some Changed Bits

Same as in older version, but initialized slightly differently: CXD2545Q used CX(3B2250)

whilst CXD2938Q is using CX(3B7250).

 CX(34910000) NewScexStopReading
 CX(3491xy80) NewScexRandomKey(xy)
 CX(34920000) NewScexFlushResyncOrSo
 CX(34944A00) NewScexInitValue1
 CX(3498C000) NewScexInitValue2
 CX(349C1000) NewScexThis ;\inverse ;\use CX(3C2080) for COUT selection
 CX(349D1000) NewScexThat ;/of COUT ;/

 1st byte: Unknown/unused (normally ADR/Control) ;\these should be probably
 2nd byte: Unknown/unused (normally Track) ; set to some invalid values
 3rd byte: Unknown/unused (normally Index/Point) ;/to avoid SUB-Q confusion
 4th..10th byte: SCEx data or Dummy bytes (depending on xy.bit7..1)
 11th..12th byte: Unknown/unused (normally Audio Peak level)

30.15 CDROM Internal Commands CX(0x..Ex) - CXD2938Q Servo/Signal/SPU Combo

- 1128/1136 -

CXD2938Q - CX(3Cxxxx) - TzcCoutSelect with New/Changed Extra Bits

The CXD2545Q used two 8bit commands, CX(3C) and CX(3D), for TzcOut selection,

which are now replaced by a single 24bit command, CX(3Cxxxx), and which do include a

new mode related to New SCEx.

CXD2938Q - CX(8xxxxx) - Disc Mode with New/Changed Extra Bits

Command CX(8xx) has been 12bit wide on CXD2545Q, and is now expanded 24bit width

(with some changed/unknown bits).

CXD2938Q - CX(9xx000) - Normal/Double Speed with New Extra Bits

Command CX(9xx) has been 12bit wide on CXD2545Q (with bit12=reserved/zero), and

is now expanded 24bit width (with bit12=unknown/one and bit11-0=unknown/zero).

CXD2938Q - CX(Dx0000) and CX(Ex0000) - New Zero Padding

Commands CX(Dx) and CX(Ex) have been 8bit wide on CXD2545Q, and are now

zeropadded to 24bit width, ie. CX(Dx0000) and CX(Ex0000). Unknown if the extra bits

are hiding any extra features. In practice, the CDROM BIOS is always setting them zero

(except in some test commands which are accidently still using the old 8bit form,

resulting in garbage in lower 16bits).

30.16 CDROM Internal Commands CX(xx) - Notes

Serial Command Transmission (for Signal Processor and Servo Amplifier)

Commands are sent serially LSB first via DATA,CLOK,XLAT pins: DATA+CLOK are used to

send commands to the chip, command execution is then applied by dragging XLAT low

 CXD2545Q CXD2938Q
 CX(3C) CX(3C0080) TzcCoutSelectHPTZC;\ <--formerly CX(3C)
 - CX(3C2080) TzcCoutSelectSCEX ; <--special NewScex mode
 CX(3D) CX(3C4080) TzcCoutSelectDTZC ;/ <--formerly CX(3D)

 CXD2545Q CXD2938Q
 CX(8180) CX(810408) MODE = Audio (CD-DA)
 CX(8120) CX(812400) MODE = Audio (CD-DA) (manual SPI bus access)
 CX(8980) CX(890408) MODE = CDROM (Data)
 - CX(898000) MODE = CDROM (Data) (used on RESET)

30.16 CDROM Internal Commands CX(xx) - Notes

- 1129/1136 -

for a moment.

Commands can be up to 24bits in length, but unused LSBs (the "don't care" bits) can be

omitted; the PSX BIOS clips the length to 8bit/16bit where possible (due to the LSB-first

transfer order, the chip does treat the most recently transferred bit as MSB=bit23, and

there's no need to transfer the LSBs if they aren't used).

Aside from being used as command number, the four most recently transferred bits are

also used to select SENS status feedback (for the SENS selection it doesn't matter if the

four bits were terminated by XLAT or not).

Sled Motor / Track Jumps / Tracking

The Sled motor moves the drive head to the current read position. On a Compact Disc,

the term "Track" does normally refer to Audio tracks (songs). But the drive hardware

uses the terms "Track" and "Tracking" for different purposes:

Tracking appears to refer to moving the Optics via magnets (ie. moving only the laser/

lens, without actually moving the whole sled) (this is done for fine adjustments, and it

seems to happen more or less automatically; emulators can just return increasing

sectors without needing to handle special tracking commands).

Track jumps refer to moving the entire Sled, one "track" is equal to one spiral winding

(1.6 micrometers). One winding contains between 9 sectors on innermost windings, and

22.5 sectors on outermost windings (the PSX cdrom bios is translating the sector-

distance to non-linear track-distance, and emulators must undo that translation;

otherwise the sled doesn't arrive at the intended location; the cdrom bios will retry

seeking a couple of times and eventually settle down at the desired location - but it will

timeout if the sled emulation is too inaccurate).

The PSX hardware uses two mechanisms for moving the Sled:

Command CX(4xxx) Forward/Reverse Track Jump: allows to move the sled by 1..131070

tracks (ie. max 210 millimeters), and the hardware does stop automatically after

reaching the desired distance.

Command CX(2x) Forward/Reverse Fast Sled: moves the sled continously until it gets

stopped by another command (in this mode, software can watch the COUT signal, which

gets toggled each "N" tracks; whereas "N" can be selected via Command CX(Bxxxx),

which is configured to N=100h in PSX).

The PSX cdrom bios is issuing another Fast Sled command (in opposite direction) after

Fast Sled commands, emulators must somehow interprete this as "sled

slowdown" (rather than as actually moving the sled in opposite direction, which could

move the sled miles away from the target). For some reason vC1 BIOS is using a

relative short slowdown period, whilst vC2/vC3 are using much longer slowdown periods

30.16 CDROM Internal Commands CX(xx) - Notes

- 1130/1136 -

(probably related to different SledKickHeight aka SledKickLevel settings and/or to

different Sled Move Voltage settings).

Focus / Gain / Balance

The hardware includes commands for adjusting & measuring focus/gain/balance.

Emulators can just omit that stuff, and can always signalize good operation (except that

one should emulate failures for Disc Missing; and eventually also for cases like

Laser=Off, or Spindle=Stopped).

Focus does obviously refer to moving the lens up/down. Gain does probably refer to

reflection level/laser intensity. Balance might refer to tracking adjustments or so.

30.17 CDROM Internal Commands CX(xx) - Summary of Used

CX(xx) Commands

The PSX CDROM BIOS versions vC1, vC2, and vC3 are using following CX() commands:

 <--vC1--> <--vC2--> <--vC3-->
 CXD2510Q CXD2545Q CXD2938Q
 CX(00) CX(00) CX(00) AllFocusSwitchesOff
 CX(02) CX(02) CX(02) FocusSearchVoltageFalling
 CX(03) CX(03) CX(03) FocusSearchVoltageRising ;ForTestOnly
 CX(08) CX(08) CX(08) FocusServoOn
 CX(0C) CX(0C) CX(0C) FocusServoOnAndDefectOn ;diff.usage vC# ?

 CX(11) - - SledKickHeight2
 CX(12) - - SledKickHeightInvalid
 CX(19) - - TrackingGainAndSledKickHeight2
 CX(1D) - - TrackingGainBrakeAndSledKickHeight2
 CX(1E) - - TrackingGainBrakeAndSledKickHeightInvalid

 - CX(11) CX(11) AntiShockOff ;\
 - CX(13) CX(13) AntiShockOffGainUp ;
 - CX(17) CX(17) AntiShockOffGainUpBrake ;/

 CX(20) CX(20) CX(20) SledAndTrackingOff
 CX(21) CX(21) CX(21) SledServoOn ;ForTestOnly
 CX(22) CX(22) CX(22) SledFastForward
 CX(23) CX(23) CX(23) SledFastReverse
 CX(24) - - TrackingServoOn
 CX(25) CX(25) CX(25) SledAndTrackingServoOn
 - CX(26) CX(26) SledFastForwardAndTrackingServoOn
 CX(28) CX(28) CX(28) TrackingForwardJump ;ForTestOnly
 CX(2C) CX(2C) CX(2C) TrackingReverseJump ;ForTestOnly

 CX(30+n) - - BalanceAdjust(0..7)

30.17 CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands

- 1131/1136 -

 CX(38+n) - - GainAdjust(0..7)

 - CX(30) CX(30) SetSledKickLevel1 ;\
 - CX(31) CX(31) SetSledKickLevel2 ;
 - CX(32) CX(32) SetSledKickLevel3 ;/

 - CX(3400E6) CX(3400E6) SetK00toE6hSledInputGain ;def=E0h
 - CX(340730) CX(340730) SetK07to30hSledAutoGain ;blah ;def=30h
 - CX(34114A) CX(34114A) SetK11to4AhFocusOutputGain ;def=32h
 - CX(341330) CX(341330) SetK13to30hFocusAutoGain ;blah ;def=30h
 - CX(341D6F) CX(341D6F) SetK1Dto6FhTrackingLowBoostFilterAL ;def=44h
 - CX(341F64) CX(341F64) SetK1Fto64hTrackingLowBoostFilterBL ;def=5Eh
 - CX(342220) CX(342220) SetK22to20hTrackingOutputGain ;def=18h
 - CX(342330) CX(342330) SetK23to30hTrackingAutoGain ;blah ;def=30h
 - CX(342D28) CX(342D28) SetK2Dto28hFocusGainDownOutputGain ;def=1Bh
 - CX(343E70) CX(343E70) SetK3Eto70hTrackingGainUpOutputGain ;def=57h
 - - CX(34910000) NewScexStopReading ;\
 - - CX(3491x180) NewScexRandomKey(x) ;
 - - CX(34920000) NewScexFlushResyncOrSo ; SCEX SPECIAL
 - - CX(34944A00) NewScexInitValue1 ; see also:
 - - CX(3498C000) NewScexInitValue2 ; CX(3C2080)
 - - CX(349C1000) NewScexThis ;\inverse ;
 - - CX(349D1000) NewScexThat ;/of COUT ;/
 - CX(34F000) CX(34F000) SetTRVSCto000h
 - CX(34Fxxx) CX(34Fxxx) SetFBIAStoNNNh

 - CX(3740AA) CX(3740AA) SetSMto00h ;\set SM to 0,6,7,9
 - CX(3746AA) CX(3746AA) SetSMto06h ; (sled move voltage)
 - CX(3747AA) CX(3747AA) SetSMto07h ; (and init several
 - CX(3749AA) CX(3749AA) SetSMto09h ;/fixed settings)

 - CX(380010) CX(380010) ModeMeasureTrackingZeroLevel ;\Measure modes
 - CX(380800) CX(380800) ModeMeasureRfZeroLevel ; (accepted
 - CX(382000) CX(382000) ModeMeasureFocusZeroLevel ; every 2.9ms)
 - CX(388000) CX(388000) ModeMeasureVcLevel ;/
 - CX(38140A) CX(38140A) ModeCompensate
 - CX(38140E) CX(38140E) ModeCompensateAndTraverseCenter
 - CX(38148A) CX(38148A) ModeCompensateAndDefectOff
 - CX(38148E) CX(38148E) ModeCompensateAndDefectOffTraverseCenter
 - CX(3814AA) CX(3814AA) ModeCompensateAndStuffAndMeasureTraverse ;!
 - CX(38150A) CX(38150A) ModeCompensateAndTrackingAutoGain
 - CX(38150E) CX(38150E) ModeCompensateAndTrackingAutoGain
 - CX(38160A) CX(38160A) ModeCompensateAndFocusAutoGain

 - CX(391E) - SenseRFDCinputSignalWithoutDAC ;\rather
 - CX(3983) - SenseFEinputSignalWithDAC ;/unused
 - CX(399C) - SenseTRVSCregisterWithDAC ;\only if
 - CX(399D) - SenseFBIASregisterWithDAC ;/TEST1=LOW

 - CX(3A0000) CX(3A0000) FocusBiasAdditionOff ;\
 - CX(3A4000) CX(3A4000) FocusBiasAdditionOn ;/
 - CX(3B2250)!CX(3B7250)!InitOperationForMirrDfctFok <-- vC2/vC3 DIFF
 - CX(3C) !!!CX(3C0080) TzcCoutSelectHPTZC;\ <--formerly CX(3C)
 - - !!!CX(3C2080) TzcCoutSelectSCEX ; <--special NewScex mode

30.17 CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands

- 1132/1136 -

Note: for vC2, some CX(38xxxx) values may differ depending on

"set_mid_lsb_to_140Eh".

For vC2, CX(Dx) and CX(Ex) should be officially zero-padded to CX(Dx00) and CX(Ex00),

but the vC2 BIOS doesn't do that, it still uses short 8bit form.

For vC2, CX(Dx) and CX(Ex) should be apparently zero-padded to CX(Dx0000) and

 - CX(3D) !!!CX(3C4080) TzcCoutSelectDTZC ;/ <--formerly CX(3D)
 - CX(3E0000) CX(3E0000) InitFilterBits ;\
 - CX(3E0008) CX(3E0008) InitFilterBitsInvalid ;/
 - CX(3F0008) CX(3F0008) InitOtherStuff ;-

 CX(4000) CX(4000) CX(4000) AutoSeqCancel
 CX(4700) CX(4700) CX(4700) AutoSeqFocusOn
 CX(4800) CX(4800) CX(4800) Forward1track
 CX(4900) CX(4900) CX(4900) Reverse1track
 CX(4C00) CX(4C00) CX(4C00) Forward2Ntrack
 CX(4D00) CX(4D00) CX(4D00) Reverse2Ntrack

 CX(54) CX(54) CX(54) BlindBrakeOverflowTimer=4
 CX(5A) CX(5A) CX(5A) BlindBrakeOverflowTimer=A
 CX(6100) CX(6100) CX(6100) SledKickBrakeKickTimer
 CX(70xxx0) CX(70xxx0) CX(70xxx0) TrackJumpCountSetting
 CX(8180) CX(8180)!!!CX(810408) MODE = Audio (CD-DA)
 - CX(8120)!!!CX(812400) MODE = Audio (CD-DA) (manual SPI bus access)
 - - CX(810000/UNUSED)
 - - CX(812000/UNUSED)
 CX(8980) CX(8980) CX(890408) MODE = CDROM (Data)
 - - CX(898000) MODE = CDROM (Data) (used on RESET)
 CX(9B00) CX(9B00)!!!CX(9B1000) NormalSpeed
 CX(9F00) CX(9F00)!!!CX(9F1000) DoubleSpeed
 CX(A040) CX(A040) CX(A040) Attentuation Off
 CX(A140) CX(A140) CX(A140) Attentuation -12 dB
 CX(B01000) CX(B01000) CX(B01000) TraverseMonitorCounterSetting
 CX(C600) CX(C600) CX(C600) SpindleServoCoefficientSetting
 CX(D7) CX(D7) CX(D70000) ClvControl (fixed)
 CX(E0) CX(E0) CX(E00000) SpindleMotorStop
 - - CX(E02000) <-- aka bugged CX(E0) with CRAP=2000h
 CX(E6) CX(E6) CX(E60000) AutomaticNormal
 CX(E8) CX(E8) CX(E80000) SpindleMotorForward
 - - CX(E8crap) <-- aka bugged CX(E8) with CRAP=xxxxh
 CX(EA) CX(EA) CX(EA0000) SpindleMotorReverse
 - - CX(EAcrap) <-- aka bugged CX(EA) with CRAP=xxxxh
 CX(EE) CX(EE) CX(EE0000) RoughServo

 CX(F) CX(F) CX(F) Unused (N/A)

 CX(Xx) CX(Xx) CX(Xx) ;\
 CX(Xxxx) CX(Xxxx) CX(Xxxx) ; TestCommand (cmd_19h_50h)
 CX(Xxxxxx) CX(Xxxxxx) CX(Xxxxxx) ;
 - - CX(Xxxxxxxx) ;/
 - CX(Xxxxxx) CX(Xxxxxx) SerialSense, CX(Xxxx) with extra 8bit junk

30.17 CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands

- 1133/1136 -

CX(Ex0000), at least, the vC3 BIOS is doing so (except on some test comannds that do

still use the CX(Ex) short form).

Used Sense Values

30.18 CDROM Internal Coefficients (for CXD2545Q)

The CXD2545Q contains Preset Coefficients in internal ROM, which are copied to internal

Coefficient RAM shortly after Reset. CX(34xxxx) allows to change those RAM settings,

and CX(39xxxx) allows to readout some of those values serially.

CXD2545Q - Coefficient Preset Values

 sense(30) SEIN.BAL ;vC2: SSTP
 sense(38) SEIN.GAIN ;vC2: AGOK(AGT/AGF) or XAVEBSY(AVRG) or SSTP(else?)
 sense(40) XBUSY (low=AutoSeqBusy)
 sense(50) FOK (high=FokusOkay)
 sense(A0) GFS (high=GoodFrameSync, ie. CorrectPlaybackSpeed)
 sense(C5) COUT (toggles each 100h 'tracks') (100h=selected via CX(B01000))
 sense(EA) /OV64 (low=EFM too long?)

 Addr Val Expl.
 K00 E0 Sled input gain
 K01 81 Sled low boost filter A-H
 K02 23 Sled low boost filter A-L
 K03 7F Sled low boost filter B-H
 K04 6A Sled low boost filter B-L
 K05 10 Sled output gain
 K06 14 Focus input gain
 K07 30 Sled auto gain
 K08 7F Focus high cut filter A
 K09 46 Focus high cut filter B
 K0A 81 Focus low boost filter A-H
 K0B 1C Focus low boost filter A-L
 K0C 7F Focus low boost filter B-H
 K0D 58 Focus low boost filter B-L
 K0E 82 Focus phase compensate filter A
 K0F 7F Focus defect hold gain
 K10 4E Focus phase compensate filter B
 K11 32 Focus output gain
 K12 20 Anti shock input gain
 K13 30 Focus auto gain
 K14 80 HPTZC / Auto Gain High pass filter A
 K15 77 HPTZC / Auto Gain High pass filter B
 K16 80 Anti shock high pass filter A
 K17 77 HPTZC / Auto Gain low pass filter B
 K18 00 Fix (should not change this preset value)

30.18 CDROM Internal Coefficients (for CXD2545Q)

- 1134/1136 -

 K19 F1 Tracking input gain
 K1A 7F Tracking high cut filter A
 K1B 3B Tracking high cut filter B
 K1C 81 Tracking low boost filter A-H
 K1D 44 Tracking low boost filter A-L
 K1E 7F Tracking low boost filter B-H
 K1F 5E Tracking low boost filter B-L
 K20 82 Tracking phase compensate filter A
 K21 44 Tracking phase compensate filter B
 K22 18 Tracking output gain
 K23 30 Tracking auto gain
 K24 7F Focus gain down high cut filter A
 K25 46 Focus gain down high cut filter B
 K26 81 Focus gain down low boost filter A-H
 K27 3A Focus gain down low boost filter A-L
 K28 7F Focus gain down low boost filter B-H
 K29 66 Focus gain down low boost filter B-L
 K2A 82 Focus gain down phase compensate filter A
 K2B 44 Focus gain down defect hold gain
 K2C 4E Focus gain down phase compensate filter B
 K2D 1B Focus gain down output gain
 K2E 00 Not used
 K2F 00 Not used
 K30 80 Fix (should not change this preset value)
 K31 66 Anti shock low pass filter B
 K32 00 Not used
 K33 7F Anti shock high pass filter B-H
 K34 6E Anti shock high pass filter B-L
 K35 20 Anti shock filter comparate gain
 K36 7F Tracking gain up2 high cut filter A
 K37 3B Tracking gain up2 high cut filter B
 K38 80 Tracking gain up2 low boost filter A-H
 K39 44 Tracking gain up2 low boost filter A-L
 K3A 7F Tracking gain up2 low boost filter B-H
 K3B 77 Tracking gain up2 low boost filter B-L
 K3C 86 Tracking gain up phase compensate filter A
 K3D 0D Tracking gain up phase compensate filter B
 K3E 57 Tracking gain up output gain
 K3F 00 Not used
 K40 04 Tracking hold filter input gain
 K41 7F Tracking hold filter A-H
 K42 7F Tracking hold filter A-L
 K43 79 Tracking hold filter B-H
 K44 17 Tracking hold filter B-L
 K45 6D Tracking hold filter output gain
 K46 00 Not used
 K47 00 Not used
 K48 02 Focus hold filter input gain
 K49 7F Focus hold filter A-H
 K4A 7F Focus hold filter A-L
 K4B 79 Focus hold filter B-H
 K4C 17 Focus hold filter B-L
 K4D 54 Focus hold filter output gain

30.18 CDROM Internal Coefficients (for CXD2545Q)

- 1135/1136 -

 K4E 00 Not used
 K4F 00 Not used

30.18 CDROM Internal Coefficients (for CXD2545Q)

- 1136/1136 -

	PlayStation Specifications - psx-spx
	1. Home
	1.1 IMPORTANT UPDATE
	1.2 Home

	2. Memory Map
	Memory Map
	Additional Memory (not mapped to the CPU bus)
	KUSEG,KSEG0,KSEG1,KSEG2 Memory Regions
	i-Cache
	Scratchpad
	Memory Mirrors
	Memory Exceptions
	Write queue
	More Memory Info

	3. I/O Map
	Expansion Region 1
	Scratchpad
	Memory Control 1
	Peripheral I/O Ports
	Memory Control 2
	Interrupt Control
	DMA Registers
	Timers (aka Root counters)
	CDROM Registers (Address.Read/Write.Index)
	GPU Registers
	MDEC Registers
	SPU Voice 0..23 Registers
	SPU Control Registers
	SPU Reverb Configuration Area
	SPU Internal Registers
	Expansion Region 2 (default 128 bytes, max 8 KBytes)
	Expansion Region 2 - Dual Serial Port (for TTY Debug Terminal)
	Expansion Region 2 - Int/Dip/Post
	Expansion Region 2 - Nocash Emulation Expansion
	Expansion Region 2 - PCSX-Redux Emulation Expansion
	Expansion Region 3 (default 1 byte, max 2 MBytes)
	BIOS Region (default 512 Kbytes, max 4 MBytes)
	Memory Control 3 (Cache Control)
	Coprocessor Registers

	4. Graphics Processing Unit (GPU)
	4.1 GPU I/O Ports, DMA Channels, Commands, VRAM
	GPU I/O Ports (1F801810h and 1F801814h in Read/Write Directions)
	GPU Timers / Synchronization
	GPU-related DMA Channels (DMA2 and DMA6)
	GPU Command Summary
	Clear Cache
	Quick Rectangle Fill
	VRAM Overview / VRAM Addressing

	4.2 GPU Render Polygon Commands
	Notes

	4.3 GPU Render Line Commands
	Note
	Wire-Frame

	4.4 GPU Render Rectangle Commands
	Texture Origin and X/Y-Flip
	Note

	4.5 GPU Rendering Attributes
	Vertex (Parameter for Polygon, Line, Rectangle commands)
	Color Attribute (Parameter for all Rendering commands, except Raw Texture)
	Texpage Attribute (Parameter for Textured-Polygons commands)
	Clut Attribute (Color Lookup Table, aka Palette)
	GP0(E1h) - Draw Mode setting (aka "Texpage")
	GP0(E2h) - Texture Window setting
	GP0(E3h) - Set Drawing Area top left (X1,Y1)
	GP0(E4h) - Set Drawing Area bottom right (X2,Y2)
	GP0(E5h) - Set Drawing Offset (X,Y)
	GP0(E6h) - Mask Bit Setting
	Note

	4.6 GPU Memory Transfer Commands
	VRAM to VRAM blitting - command 4 (100)
	CPU to VRAM blitting - command 5 (101)
	VRAM to CPU blitting - command 6 (110)
	Masking and Rounding for FILL Command parameters
	Masking for COPY Commands parameters
	Notes
	Wrapping

	4.7 GPU Other Commands
	GP0(1Fh) - Interrupt Request (IRQ1)
	GP0(03h) - Unknown?
	GP0(00h) - NOP (?)
	GP0(04h..1Eh,E0h,E7h..EFh) - Mirrors of GP0(00h) - NOP (?)

	4.8 GPU Display Control Commands (GP1)
	GP1(00h) - Reset GPU
	GP1(01h) - Reset Command Buffer
	GP1(02h) - Acknowledge GPU Interrupt (IRQ1)
	GP1(03h) - Display Enable
	GP1(04h) - DMA Direction / Data Request
	Display start/end
	GP1(05h) - Start of Display area (in VRAM)
	GP1(06h) - Horizontal Display range (on Screen)
	GP1(07h) - Vertical Display range (on Screen)
	GP1(08h) - Display mode
	GP1(10h) - Read GPU internal register
	GP1(11h..1Fh) - Mirrors of GP1(10h), Read GPU internal register
	GP1(09h) - Set VRAM size (v2)
	GP1(20h) - Set VRAM size (v1)
	GP1(0Bh) - Unknown/Internal?
	GP1(0Ah,0Ch..0Fh,21h..3Fh) - N/A
	GP1(40h..FFh) - N/A (Mirrors)
	Mis-Centered PAL Games (wrong GP1(06h)/GP1(07h) settings)

	4.9 GPU Status Register
	1F801814h - GPUSTAT - GPU Status Register (R)
	Note
	Ready Bits

	4.10 GPU Versions
	Summary of GPU Differences
	Shaded Textures
	Memory/Rendering Timings
	X/Y-Flip and PSone 2 MB VRAM
	GPU Detection (and optional VRAM size switching)
	GP0(02h) FillVram

	4.11 GPU Depth Ordering
	Absent Depth Buffer
	Simple Ordering
	Depth Ordering Table (OT)
	Initializing an empty OT (via DMA6)
	Inserting Entries (Passing GTE data to the OT) (by software)
	Sending the OT to the GPU (via DMA2-linked-list mode)

	4.12 GPU Video Memory (VRAM)
	Framebuffer
	Texture Bitmaps
	Texture Palettes - CLUT (Color Lookup Table)
	Texture Color Black Limitations

	4.13 GPU Texture Caching
	Cache blocks
	Cache entries

	4.14 GPU Timings
	Nominal Video Clock
	Vertical Video Timings
	Vertical Refresh Rates
	Video Clock
	Vertical Timings
	Horizontal Timings
	Frame Rates
	Note

	4.15 GPU (MISC)
	GP0(20h..7Fh) - Render Command Bits
	Perspective (in-)correct Rendering
	Perspective correct Rendering
	24bit RGB to 15bit RGB Dithering (enabled in Texpage attribute)
	Shading
	Semi-transparency
	Modulation (also known as Texture Blending)
	Draw to display enable

	5. Geometry Transformation Engine (GTE)
	5.1 GTE Overview
	GTE Operation
	GTE Load Delay Slots
	GTE Command Encoding (COP2 imm25 opcodes)
	GTE Data Register Summary (cop2r0-31)
	GTE Control Register Summary (cop2r32-63)

	5.2 GTE Registers
	Matrix Registers
	Translation Vector (TR) (Input, R/W?)
	Background Color (BK) (Input?, R/W?)
	Far Color (FC) (Input?) (R/W?)
	Screen Offset and Distance (Input, R/W?)
	Average Z Registers (ZSF3/ZSF4=Input, R/W?) (OTZ=Result, R)
	Screen XYZ Coordinate FIFOs
	16bit Vectors (R/W)
	Color Register and Color FIFO
	Interpolation Factor
	XX...
	XX...
	cop2r28 - IRGB - Color conversion Input (R/W)
	cop2r29 - ORGB - Color conversion Output (R)
	cop2r30 - LZCS - Count Leading Bits Source data (R/W)
	cop2r31 - LZCR - Count Leading Bits Result (R)
	cop2r63 (cnt31) - FLAG - Returns any calculation errors.

	5.3 GTE Saturation
	cop2r63 (cnt31) - FLAG - Returns any calculation errors.

	5.4 GTE Opcode Summary
	GTE Command Summary (sorted by Real Opcode bits) (bit0-5)
	GTE Command Summary (sorted by Fake Opcode bits) (bit20-24)
	Additional Functions

	5.5 GTE Coordinate Calculation Commands
	COP2 0180001h - 15 Cycles - RTPS - Perspective Transformation (single)
	COP2 0280030h - 23 Cycles - RTPT - Perspective Transformation (triple)
	COP2 1400006h - 8 Cycles - NCLIP - Normal clipping
	COP2 158002Dh - 5 Cycles - AVSZ3 - Average of three Z values (for Triangles)
	COP2 168002Eh - 6 Cycles - AVSZ4 - Average of four Z values (for Quads)

	5.6 GTE General Purpose Calculation Commands
	COP2 0400012h - 8 Cycles - MVMVA(sf,mx,v,cv,lm)
	COP2 0A00428h+sf*80000h - 5 Cycles - SQR(sf) - Square vector
	COP2 170000Ch+sf*80000h - 6 Cycles - OP(sf,lm) - Cross product of 2 vectors
	LZCS/LZCR registers - ? Cycles - Count-Leading-Zeroes/Leading-Ones

	5.7 GTE Color Calculation Commands
	COP2 0C8041Eh - 14 Cycles - NCS - Normal color (single)
	COP2 0D80420h - 30 Cycles - NCT - Normal color (triple)
	COP2 108041Bh - 17 Cycles - NCCS - Normal Color Color (single vector)
	COP2 118043Fh - 39 Cycles - NCCT - Normal Color Color (triple vector)
	COP2 0E80413h - 19 Cycles - NCDS - Normal color depth cue (single vector)
	COP2 0F80416h - 44 Cycles - NCDT - Normal color depth cue (triple vectors)
	COP2 138041Ch - 11 Cycles - CC(lm=1) - Color Color
	COP2 1280414h - 13 Cycles - CDP(...) - Color Depth Que
	COP2 0680029h - 8 Cycles - DCPL - Depth Cue Color light
	COP2 0780010h - 8 Cycles - DPCS - Depth Cueing (single)
	COP2 0x8002Ah - 17 Cycles - DPCT - Depth Cueing (triple)
	COP2 0980011h - 8 Cycles - INTPL - Interpolation of a vector and far color
	COP2 190003Dh - 5 Cycles - GPF(sf,lm) - General purpose Interpolation
	COP2 1A0003Eh - 5 Cycles - GPL(sf,?) - General Interpolation with base
	Details on "MAC+(FC-MAC)*IR0"
	Details on "(LLM*V0) SAR (sf*12)" and "(BK*1000h + LCM*IR) SAR (sf*12)"
	Notes

	5.8 GTE Division Inaccuracy
	GTE Division Inaccuracy (for RTPS/RTPT commands)

	6. Macroblock Decoder (MDEC)
	6.1 MDEC I/O Ports
	1F801820h - MDEC0 - MDEC Command/Parameter Register (W)
	1F801820h.Read - MDEC Data/Response Register (R)
	1F801824h - MDEC1 - MDEC Status Register (R)
	1F801824h - MDEC1 - MDEC Control/Reset Register (W)
	DMA

	6.2 MDEC Commands
	MDEC(1) - Decode Macroblock(s)
	MDEC(2) - Set Quant Table(s)
	MDEC(3) - Set Scale Table
	MDEC(0) - No function
	MDEC(4..7) - Invalid

	6.3 MDEC Decompression
	decode_colored_macroblock ;MDEC(1) command (at 15bpp or 24bpp depth)
	decode_monochrome_macroblock ;MDEC(1) command (at 4bpp or 8bpp depth)
	rl_decode_block(blk,src,qt)
	fast_idct_core(blk) ;fast "idct_core" version
	real_idct_core(blk) ;low level "idct_core" version
	yuv_to_rgb(xx,yy)
	y_to_mono
	set_iqtab ;MDEC(2) command
	iqtab_core(iq,src) ;src = 64 unsigned paramter bytes
	scalefactor[0..7] = cos((0..7)*90'/8) ;for [1..7]: multiplied by sqrt(2)
	zigzag[0..63] =
	scalezag[0..63] (precalulated factors, for "fast_idct_core")
	zagzig[0..63] (reversed zigzag table)
	set_scale_table: ;MDEC(3) command

	6.4 MDEC Data Format
	Colored Macroblocks (16x16 pixels) (in 15bpp or 24bpp depth mode)
	Monochrome Macroblocks (8x8 pixel) (in 4bpp or 8bpp depth mode)
	Blocks (8x8 pixels)
	.STR Files
	MDEC vs JPEG
	Run-Length compressed Blocks
	DCT (1st value)
	RLE (Run length data, for 2nd through 64th value)
	EOB (End Of Block)
	Dummy halfwords

	7. Sound Processing Unit (SPU)
	7.1 SPU Overview
	SPU I/O Port Summary
	SPU Memory layout (512Kbyte RAM)
	Voices
	Voice Capabilities
	Additional Sound Inputs
	Mono/Stereo Audio Output
	Unstable and Delayed I/O
	SPU Bus-Width

	7.2 SPU ADPCM Samples
	1F801C06h+N*10h - Voice 0..23 ADPCM Start Address (R/W)
	1F801C0Eh+N*10h - Voice 0..23 ADPCM Repeat Address (R/W)
	Sample Data (SPU-ADPCM)
	Flag Bits (in 2nd byte of ADPCM Header)
	Looped and One-shot Samples
	SPU-ADPCM vs XA-ADPCM

	7.3 SPU ADPCM Pitch
	1F801C04h+N*10h - Voice 0..23 ADPCM Sample Rate (R/W) (VxPitch)
	1F801D90h - Voice 0..23 Pitch Modulation Enable Flags (PMON)
	Pitch Counter
	Maximum Sound Frequency
	4-Point Gaussian Interpolation
	Waveform Examples

	7.4 SPU Volume and ADSR Generator
	1F801C08h+N*10h - Voice 0..23 Attack/Decay/Sustain/Release (ADSR) (32bit)
	1F801D80h - Mainvolume left
	1F801D82h - Mainvolume right
	1F801C00h+N*10h - Voice 0..23 Volume Left
	1F801C02h+N*10h - Voice 0..23 Volume Right
	1F801DB0h - CD Audio Input Volume (for normal CD-DA, and compressed XA-ADPCM)
	1F801DB4h - External Audio Input Volume
	Envelope Operation depending on Shift/Step/Mode/Direction
	1F801C0Ch+N*10h - Voice 0..23 Current ADSR volume (R/W)
	1F801DB8h - Current Main Volume Left/Right
	1F801E00h+voice*04h - Voice 0..23 Current Volume Left/Right
	Note

	7.5 SPU Voice Flags
	1F801D88h - Voice 0..23 Key ON (Start Attack/Decay/Sustain) (KON) (W)
	1F801D8Ch - Voice 0..23 Key OFF (Start Release) (KOFF) (W)
	1F801D9Ch - Voice 0..23 ON/OFF (status) (ENDX) (R)
	R/W

	7.6 SPU Noise Generator
	1F801D94h - Voice 0..23 Noise mode enable (NON)
	SPU Noise Generator

	7.7 SPU Control and Status Register
	1F801DAAh - SPU Control Register (SPUCNT)
	1F801DAEh - SPU Status Register (SPUSTAT) (R)

	7.8 SPU Memory Access
	1F801DA6h - Sound RAM Data Transfer Address
	1F801DA8h - Sound RAM Data Transfer Fifo
	1F801DACh - Sound RAM Data Transfer Control (should be 0004h)
	SPU RAM Manual Write
	SPU RAM DMA-Write
	SPU RAM Manual-Read
	SPU RAM DMA-Read (stable reading, with [1F801014h].bit24-27 = nonzero)
	SPU RAM DMA-Read (unstable reading, with [1F801014h].bit24-27 = zero)

	7.9 SPU Interrupt
	1F801DA4h - Sound RAM IRQ Address (IRQ9)
	Voice Interrupt
	Capture Interrupt
	Reverb Interrupt
	Data Transfers
	Note

	7.10 SPU Reverb Registers
	Reverb Volume and Address Registers (R/W)
	1F801D98h - Voice 0..23 Reverb mode aka Echo On (EON) (R/W)
	Reverb Bits in SPUCNT Register (R/W)

	7.11 SPU Reverb Formula
	Reverb Formula
	Notes
	Reverb Disable
	Bug
	Speed of Sound
	Reverb Buffer Resampling

	7.12 SPU Reverb Examples
	Reverb Examples
	Room (size=26C0h bytes)
	Studio Small (size=1F40h bytes)
	Studio Medium (size=4840h bytes)
	Studio Large (size=6FE0h bytes)
	Hall (size=ADE0h bytes)
	Half Echo (size=3C00h bytes)
	Space Echo (size=F6C0h bytes)
	Chaos Echo (almost infinite) (size=18040h bytes)
	Delay (one-shot echo) (size=18040h bytes)
	Reverb off (size=10h dummy bytes)

	7.13 SPU Unknown Registers
	1F801DA0h - Some kind of a read-only status register.. or just garbage..?
	1F801DBCh - 4 bytes - Unknown? (R/W)
	1F801E60h - 32 bytes - Unknown? (R/W)

	7.14 SPU Internal State Machine from SPU RAM Timing
	7.14.1 Introduction
	7.14.2 First look at the data from logic analyzer.
	7.14.3 Sequence of work
	7.14.4 What we can guess from those information.
	7.14.5 Reverb Computation Order
	7.14.6 Voices
	7.14.7 Notes

	8. Interrupts
	1F801070h I_STAT - Interrupt status register (R=Status, W=Acknowledge)
	1F801074h I_MASK - Interrupt mask register (R/W)
	Secondary IRQ10 Controller (Port 1F802030h)
	Interrupt Request / Execution
	Interrupt Acknowledge
	COP0 Interrupt Handling
	PSX specific COP0 Notes
	PS2 IOP interrupts

	9. DMA Channels
	DMA Register Summary
	1F801080h+N*10h - D#_MADR - DMA base address (Channel 0..6) (R/W)
	1F801084h+N*10h - D#_BCR - DMA Block Control (Channel 0..6) (R/W)
	1F801088h+N*10h - D#_CHCR - DMA Channel Control (Channel 0..6) (R/W)
	1F8010F0h - DPCR - DMA Control Register (R/W)
	1F8010F4h - DICR - DMA Interrupt Register (R/W)
	1F8010F8h (usually 7FFAC68Bh? or 0BFAC688h)
	1F8010FCh (usually 00FFFFF7h) (...maybe OTC fill-value)
	Commonly used DMA Control Register values for starting DMA transfers
	Linked List DMA
	DMA Transfer Rates
	DRAM Hyper Page mode
	CPU Operation during DMA
	PS2 IOP DMA

	10. Timers
	1F801100h+N*10h - Timer 0..2 Current Counter Value (R/W)
	1F801104h+N*10h - Timer 0..2 Counter Mode (R/W)
	1F801108h+N*10h - Timer 0..2 Counter Target Value (R/W)
	Dotclock/Hblank
	Reset and Wrap

	11. CDROM Drive
	Playstation CDROM I/O Ports
	Playstation CDROM Commands
	General CDROM Disk Format
	Playstation CDROM Coprocessor
	11.1 CDROM Controller I/O Ports
	0x1f801800 (read, all banks): HSTS
	0x1f801800 (write, all banks): ADDRESS
	0x1f801801 (write, bank 0): COMMAND
	0x1f801802 (write, bank 0): PARAMETER
	0x1f801803 (write, bank 0): HCHPCTL
	0x1f801802 (read, all banks): RDDATA
	0x1f801801 (read, all banks): RESULT
	0x1f801803 (read, banks 1 and 3): HINTSTS
	0x1f801803 (read, banks 0 and 2): HINTMSK
	0x1f801802 (write, bank 1): HINTMSK
	0x1f801803 (write, bank 1): HCLRCTL
	Caution - Unstable IRQ Flag polling
	0x1f801802 (write, bank 2): ATV0 (L->L volume)
	0x1f801803 (write, bank 2): ATV1 (L->R volume)
	0x1f801801 (write, bank 3): ATV2 (R->R volume)
	0x1f801802 (write, bank 3): ATV3 (R->L volume)
	0x1f801803 (write, bank 3): ADPCTL
	0x1f801801 (write, bank 1): WRDATA
	0x1f801801 (write, bank 2): CI
	BUSYSTS flag
	Misc
	To init the CD
	Seek-Busy Phase
	Sound Map Flowchart

	11.2 CDROM Controller Command Summary
	Command Summary
	sub_function numbers (for command 19h)
	Unsupported GetQ,VCD,SecretUnlock (command 1Dh,1Fh,5xh)

	11.3 CDROM - Control Commands
	Sync - Command 00h --> INTx(stat+1,40h) (?)
	Setfilter - Command 0Dh,file,channel --> INT3(stat)
	Setmode - Command 0Eh,mode --> INT3(stat)
	Init - Command 0Ah --> INT3(stat) --> INT2(stat)
	Reset - Command 1Ch,(...) --> INT3(stat) --> Delay(1/8 seconds)
	MotorOn - Command 07h --> INT3(stat) --> INT2(stat)
	Stop - Command 08h --> INT3(stat) --> INT2(stat)
	Pause - Command 09h --> INT3(stat) --> INT2(stat)
	Data/ADPCM Sector Filtering/Delivery

	11.4 CDROM - Seek Commands
	Setloc - Command 02h,amm,ass,asect --> INT3(stat)
	SeekL - Command 15h --> INT3(stat) --> INT2(stat)
	SeekP - Command 16h --> INT3(stat) --> INT2(stat)
	SetSession - Command 12h,session --> INT3(stat) --> INT2(stat)

	11.5 CDROM - Read Commands
	ReadN - Command 06h --> INT3(stat) --> INT1(stat) --> datablock
	ReadS - Command 1Bh --> INT3(stat) --> INT1(stat) --> datablock
	ReadN/ReadS
	CDROM Incoming Data / Buffer Overrun Timings
	ReadTOC - Command 1Eh --> INT3(stat) --> INT2(stat)
	Setloc, Read, Pause

	11.6 CDROM - Status Commands
	Status code (stat)
	Stat Seek/Play/Read bits
	Nop - Command 01h --> INT3(stat)
	Getparam - Command 0Fh --> INT3(stat,mode,null,file,channel)
	GetlocL - Command 10h --> INT3(amm,ass,asect,mode,file,channel,sm,ci)
	GetlocP - Command 11h - INT3(track,index,mm,ss,sect,amm,ass,asect)
	GetTN - Command 13h --> INT3(stat,first,last) ;BCD
	GetTD - Command 14h,track --> INT3(stat,mm,ss) ;BCD
	GetQ - Command 1Dh,adr,point --> INT3(stat) --> INT2(10bytesSubQ,peak_lo)
	GetID - Command 1Ah --> INT3(stat) --> INT2/5 (stat,flags,type,atip,"SCEx")

	11.7 CDROM - CD Audio Commands
	Mute - Command 0Bh --> INT3(stat)
	Demute - Command 0Ch --> INT3(stat)
	Play - Command 03h (,track) --> INT3(stat) --> optional INT1(report bytes)
	Forward - Command 04h --> INT3(stat) --> optional INT1(report bytes)
	Backward - Command 05h --> INT3(stat) --> optional INT1(report bytes)
	Setmode bits used for Play command
	Report --> INT1(stat,track,index,mm/amm,ss+80h/ass,sect/asect,peaklo,peakhi)
	AutoPause --> INT4(stat)
	Playing XA-ADPCM Sectors (compressed audio data)

	11.8 CDROM - Test Commands
	11.9 CDROM - Test Commands - Version, Switches, Region, Chipset, SCEx
	19h,20h --> INT3(yy,mm,dd,ver)
	19h,21h --> INT3(flags)
	19h,22h --> INT3("for Europe")
	19h,23h --> INT3("CXD2940Q/CXD1817Q/CXD2545Q/CXD1782BR") ;Servo Amplifier
	19h,24h --> INT3("CXD2940Q/CXD1817Q/CXD2545Q/CXD2510Q") ;Signal Processor
	19h,25h --> INT3("CXD2940Q/CXD1817Q/CXD1815Q/CXD1199BQ") ;Decoder/FIFO
	19h,04h --> INT3(stat) ;Read SCEx string (and force motor on)
	19h,05h --> INT3(total,success) ;Get SCEx Counters

	11.10 CDROM - Test Commands - Test Drive Mechanics
	19h,50h,msb[,mid,[lsb[,xlo]]] --> INT3(stat)
	19h,51h,msb[,mid,[lsb]] --> INT3(stat,hi,lo) ;BIOS vC2/vC3 only
	19h,51h,39h,xxh --> INT3(stat,hi,lo) ;BIOS vC2/vC3 only
	19h,03h --> INT3(stat) ;force motor off
	19h,17h --> INT3(stat) ;force motor on, clockwise, super-fast
	19h,01h --> INT3(stat) ;force motor on, anti-clockwise, super-fast
	19h,02h --> INT3(stat) ;force motor on, anti-clockwise, super-fast
	19h,10h --> INT3(stat) ;force motor on, anti-clockwise, super-fast
	19h,18h --> INT3(stat) ;force motor on, anti-clockwise, super-fast
	19h,00h --> INT3(stat) ;force motor on, clockwise (even if shell open)
	19h,11h --> INT3(stat) ;Move Lens Up (leave parking position)
	19h,12h --> INT3(stat) ;Move Lens Down (enter parking position)
	19h,13h --> INT3(stat) ;Move Lens Outwards (away from center of disk)
	19h,14h --> INT3(stat) ;Move Lens Inwards (towards center of disk)
	19h,15h - if motor on: move head outwards + inwards + motor off
	19h,16h --> INT3(stat) ;Unknown / makes some noise if motor is on
	19h,19h --> INT3(stat) ;Unknown / no effect
	19h,1Ah --> INT3(stat) ;Unknown / makes some noise if motor is on
	19h,06h,new --> INT3(old) ;Adjust balance in RAM, and apply it via CX(30+n)
	19h,07h,new --> INT3(old) ;Adjust gain in RAM, and apply it via CX(38+n)
	19h,08h,new --> INT3(old) ;Adjust balance in RAM only

	11.11 CDROM - Test Commands - Prototype Debug Transmission
	Serial Debug Messages
	19h,30h,index,dat1,dat2 --> INT3(stat) ;Prototype/Debug stuff
	19h,31h,dat1,dat2 --> INT3(stat) ;Prototype/Debug stuff
	19h,4xh,index --> INT3(dat1,dat2) ;Prototype/Debug stuff
	INT5 Debug Messages

	11.12 CDROM - Test Commands - Read/Write Decoder RAM and I/O Ports
	19h,71h,index --> INT3(databyte) ;Read single register
	19h,72h,index,databyte --> INT3(stat) ;Write single register
	19h,73h,index,len --> INT3(databytes...) ;Read multiple registers (bugged)
	19h,74h,index,len,databytes --> INT3(stat) ;Write multiple registers (bugged)
	19h,75h --> INT3(remain.lo,remain.hi,addr.lo,addr.hi) ;Get Host Xfer Info
	19h,76h,len_lo,len_hi,addr_lo,addr_hi --> INT3(stat) ;Prepare SRAM Transfer

	11.13 CDROM - Test Commands - Read HC05 SUB-CPU RAM and I/O Ports
	19h,60h,addr_lo,addr_hi --> INT3(data) ;Read one byte from Drive RAM or I/O
	CDROM Controller I/O Area and RAM Memory Map
	DTL-H2000 Memory Map
	Writing to RAM
	Subchannel Q Notes

	11.14 CDROM - Secret Unlock Commands
	SecretUnlockPart1 - Command 50h --> INT5(11h,40h)
	SecretUnlockPart2 - Command 51h,"Licensed by" --> INT5(11h,40h)
	SecretUnlockPart3 - Command 52h,"Sony" --> INT5(11h,40h)
	SecretUnlockPart4 - Command 53h,"Computer" --> INT5(11h,40h)
	SecretUnlockPart5 - Command 54h,"Entertainment" --> INT5(11h,40h)
	SecretUnlockPart6 - Command 55h,\<region> --> INT5(11h,40h)
	SecretUnlockPart7 - Command 56h --> INT5(11h,40h)
	SecretLock - Command 57h --> INT5(11h,40h)
	SecretCrash - Command 58h..5Fh --> Crash

	11.15 CDROM - Video CD Commands
	VideoCdSio - Cmd 1Fh,01h,JoyL,JoyH,State,Task,0 --> INT3(stat,req,mm,ss,ff,x)
	VideoCdSwitch - Cmd 1Fh,02h,flag,x,x,x,x --> INT3(stat,0,0,x,x,x)
	Some findings on the SC430924 firmware...
	Note

	11.16 CDROM - Mainloop/Responses
	SUB-CPU Mainloop
	Responses
	First Response (INT3) (or INT5 if failed)
	Second Responses (INT2) (or INT5 if failed)
	Data/Report Responses (INT1)

	11.17 CDROM - Response Timings
	First Response
	Second Response
	INT1 Rate

	11.18 CDROM - Response/Data Queueing
	Sector Buffer
	Sector Buffer Test Cases
	Sector Buffer VS GetlocL Response Tests
	Sector Buffer VS Pause Response Tests
	Double Commands (Getloc then Pause)
	Double Commands (Pause then Getloc)

	12. CDROM Format
	General CDROM Disk Format
	Playstation CDROM Protection
	12.1 CDROM Disk Format
	Overview
	CDROM Filesystem (ISO 9660 aka ECMA-119)
	CDROM Extended Architecture (CD-ROM XA aka CD-XA)
	Physical Audio/CDROM Disk Format (ISO/IEC 10149 aka ECMA-130)
	Available Documentation
	Stuff
	Track.Index (stored in subchannel, in BCD format)
	Minute.Second.Sector (stored in subchannel, and in Data sectors, BCD format)
	Subchannels
	Error Correction
	930h-Byte Sectors
	Sessions

	12.2 CDROM Subchannels
	Subchannel P
	Subchannel Q
	Subchannel Q with ADR=1 during Lead-In -- Table of Contents (TOC)
	Subchannel Q with ADR=1 in Data region -- Position
	Subchannel Q with ADR=1 during Lead-Out -- Position
	Subchannel Q with ADR=2 -- Catalogue number of the disc (UPC/EAN barcode)
	Subchannel Q with ADR=3 -- ISRC number of the current track
	Subchannel Q with ADR=5 in Lead-in -- Multisession Lead-In Info
	Subchannel Q with ADR=5 in Lead-Out -- Multisession Lead-Out Info
	Subchannel Q with ADR=5 in Lead-in -- CDR/CDRW Skip Info (Audio Only)
	Subchannel R..W
	Subchannel R..W, when used for CD-TEXT in the Lead-In area
	adjust_crc_16_ccitt(addr_len) ;for CD-TEXT and Subchannel Q

	12.3 CDROM Sector Encoding
	Audio
	Mode0 (Empty)
	Mode1 (Original CDROM)
	Mode2/Form1 (CD-XA)
	Mode2/Form2 (CD-XA)
	encode_sector
	calc_parity(sector,offs,len,j0,step1,step2)
	adjust_edc(addr,len)
	init_tables
	subfunc(a,b)

	12.4 CDROM Scrambling
	Scrambling

	12.5 CDROM XA Subheader, File, Channel, Interleave
	1st Subheader byte - File Number (FN)
	2nd Subheader byte - Channel Number (CN)
	3rd Subheader byte - Submode (SM)
	4th Subheader byte - Codinginfo (CI)
	Audio/Video Interleave (Multiple Files/Channels)
	Unused sectors in Interleave
	Real Time Streaming

	12.6 CDROM XA Audio ADPCM Compression
	Subheader
	ADPCM Sectors
	XA-ADPCM Header Bytes
	XA-ADPCM Data Words (32bit, little endian)
	decode_sector(src)
	decode_28_nibbles(src,blk,nibble,dst,old,older)
	Pos/neg Tables
	Old/Older Values
	25-point Zigzag Interpolation
	XA-ADPCM Emphasis
	Uninitialized Six-step Counter
	RIFF Headers (on PCs)

	12.7 CDROM ISO Volume Descriptors
	System Area (prior to Volume Descriptors)
	Volume Descriptors (Sector 16 and up)
	Primary Volume Descriptor (sector 16 on PSX disks)
	Volume Descriptor Set Terminator (sector 17 on PSX disks)
	Boot Record (none such on PSX disks)
	Supplementary Volume Descriptor (none such on PSX disks)
	Volume Partition Descriptor (none such on PSX disks)
	Reserved Volume Descriptors (none such on PSX disks)

	12.8 CDROM ISO File and Directory Descriptors
	Format of a Directory Record
	Path Tables
	Format of an Extended Attribute Record (none such on PSX disks)

	12.9 CDROM ISO Misc
	Both Byte Order
	d-characters (Filenames)
	a-characters
	Fixed Length Strings/Filenames
	Volume Descriptor Timestamps
	Recording Timestamps
	File Flags
	Permission Flags (in Extended Attribute Records)

	12.10 CDROM Extension Joliet
	Typical Joliet Disc Header
	Secondary Volume Descriptor (aka Supplementary Volume Descriptor)
	Directory Records and Path Tables
	File and Directory Name Characters
	File and Directory Name Length
	Official Specs

	12.11 CDROM Protection - SCEx Strings
	SCEx String
	Wobble Groove and Absolute Time in Pregroove (ATIP) on CD-R's
	Other Protections

	12.12 CDROM Protection - Bypassing it
	Modchips
	Disk-Swap-Trick
	Booting via BIOS ROM or Expansion ROM
	Secret Unlock Commands
	Booting via Memory Card

	12.13 CDROM Protection - Modchips
	Modchip Source Code
	Connection for the data/gate/sync signals:
	Note on "data" pin (all boards)
	Note on "gate" pin (older PSX boards only)
	Note on "sync" pin (newer PSX and PSone boards only)
	Note on Multi-Region chips
	Stealth (hidden modchip)
	NTSC-Boot BIOS Patch
	MODCHIP Connection Example
	Nocash BIOS "Modchip" Feature

	12.14 CDROM Protection - Chipless Modchips
	External Expansion ROM version, for older boards (PU-7 through PU-20):
	External Expansion ROM version, for newer boards (PU-22):
	Internal Kernel ROM version, for older boards (PU-7 through PU-20):
	Internal Kernel ROM version, for newer boards (PU-22 through PM-41(2)):
	What pin is where...

	12.15 CDROM Protection - LibCrypt
	Protected sectors generation schemas
	LibCrypt sectors
	Example (Legacy of Kain)

	13. CDROM File Formats
	Official PSX File Formats
	Executables
	Video Files
	Audio Files
	Virtual Filesystem Archives
	Compression
	Misc
	General CDROM Disk Images
	FILENAME.EXT
	Note
	13.1 CDROM File Official Sony File Formats
	Official Sony File Formats

	13.2 CDROM File Playstation EXE and SYSTEM.CNF
	SYSTEM.CNF
	ABCD_123.45
	PSX.EXE (Boot-Executable) (default filename when SYSTEM.CNF doesn't exist)
	XXXX_NNN.NN (Boot-Executable) (with filename as specified in SYSTEM.CNF)
	FILENAME.EXE (General-Purpose Executable)
	Relocatable EXE
	MSDOS.EXE and WINDOWS.EXE Files

	13.3 CDROM File PsyQ .CPE Files (Debug Executables)
	Fileheader
	Chunk 00h: End of File
	Chunk 01h: Load Data
	Chunk 02h: Run Address (whatever, optional, usually not used in CPE files)
	Chunk 03h: Set Value 32bit (LEN=4) (used for entrypoint)
	Chunk 04h: Set Value 16bit (LEN=2) (unused)
	Chunk 05h: Set Value 8bit (LEN=1) (unused)
	Chunk 06h: Set Value 24bit (LEN=3) (unused)
	Chunk 07h: Select Workspace (whatever, optional, usually not used in CPE)
	Chunk 08h: Select Unit (whatever, usually first chunk in CPE file)
	Example from LameGuy's sample.cpe:

	13.4 CDROM File PsyQ .SYM Files (Debug Information)
	Fileheader .SYM
	Symbol Chunks
	Chunk 01h: Symbol (Immediate, eg. memsize, or membase)
	Chunk 02h: Symbol (Function Address for Internal & External Functions)
	Chunk 05h: Symbol (?)
	Chunk 06h: Symbol (?)

	Source Code Line Chunks
	Chunk 80h: Source Code Line Numbers: Address for 1 Line
	Chunk 82h: Source Code Line Numbers: Address for N Lines (8bit)
	Chunk 84h: Source Code Line Numbers: Address for NN Lines (16bit)
	Chunk 86h: Source Code Line Numbers: Address for Line NNN (32bit?)
	Chunk 88h: Source Code Line Numbers: Start with Filename
	Chunk 8Ah: Source Code Line Numbers: End of Source Code

	Internal Function Chunks
	Chunk 8Ch: Internal Function: Start with Filename
	Chunk 8Eh: Internal Function: End of Function (end of chunk 8Ch)
	Chunk 90h: Internal Function:Whatever90h... first instruction in main func?
	Chunk 92h: Internal Function:Whatever92h... last instruction in main func?

	Class/Type Chunks
	Chunk 94h: Type/Symbol (Simple Types?)
	Chunk 96h: Type/Symbol (Complex Structures/Arrays?)

	Class/Type Values
	Class definition (in chunk 94h) (and somewhat same/similar in chunk 96h)
	Type definition (in chunk 94h/96h)

	.MAP File
	PsyQ .MAP File

	13.5 CDROM File Video Texture Image TIM/PXL/CLT (Sony)
	TIM Format
	The format of the CLUT and Pixel Data Section(s) is:
	PXL/CLT Format
	CLT Format
	PXL Format
	Compressed TIMs
	Malformed Files
	Malformed TIMs in BIGFILE.DAT
	Oversized TIMs
	Miscomputed Section Size
	NonTIMs in Bloody Roar 1 and 2
	Other uncommon/malformed TIM variants
	Malformed CLTs

	13.6 CDROM File Video Texture/Bitmap (Other)
	Compressed Bitmaps
	Uncompressed Bitmaps
	Targa TGA and Paintbrush PCX
	PSI bitmap - Power Spike (MagDemo43: POWER\GAME.IDX\.BIZ\.PSI)
	JumpStart Wildlife Safari Field Trip (MagDemo52: DEMO\DATA.DAT*.DAT+*.PSX)
	WxH Bitmap (Width*Height)
	RAWP Bitmap
	XYWH Bitmap/Palette (X,Y,Width*Height) (.BIT and .CLT)
	Doom (PSXDOOM\ABIN\PSXDOOM.WAD\\)
	Lemmings & Oh No! More Lemmings (FILES\GFX\.BOB, FILES\SMLMAPS\.BOB)
	Perfect Assassin (DATA.JFS\DATA*.BM)
	One (DIRFILE.BIN*.VCF)
	One (DIRFILE.BIN*.VCK and DIRFILE.BIN\w*\sect*.bin\TEXTURE 001)
	BMR Bitmaps
	Croc 1 (retail: *.IMG) (retail only, not in MagDemo02 demo version)
	Croc 2 (MagDemo22: CROC2\CROCII.DIR*.IMG)
	Disney's The Emperor's New Groove (MagDemo39: ENG\KINGDOM.DIR*.IMG)
	Disney's Aladdin in Nasira's Rev. (MagDemo46: ALADDIN\ALADDIN.DIR*.IMG)
	Mat Hoffman's Pro BMX (MagDemo39: BMX\FE.WAD+STR*.BIN) (Activision)
	Mat Hoffman's Pro BMX (MagDemo48: MHPB\FE.WAD+STR*.BIN) (Shaba/Activision)
	E.T. Interplanetary Mission (MagDemo54: MEGA\MEGA.CSH*)
	EA Sports: Madden NFL '98 (MagDemo02: TIBURON\.DAT\)
	EA Sports: Madden NFL 2000 (MagDemo27: MADN00\.DAT\)
	EA Sports: Madden NFL 2001 (MagDemo39: MADN01\.DAT\)
	989 Sports: NHL Faceoff '99 (MagDemo17: FO99\.KGB\.TEX)
	989 Sports: NHL Faceoff 2000 (MagDemo28: FO2000*.TEX)
	989 Sports: NCAA Final Four 2000 (MagDemo30: FF00*.TEX)
	Electronic Arts .PSH (SHPP)
	Destruction Derby Raw (MagDemo35: DDRAW*.PCK,*.FNT,*.SPR)
	Cool Boarders 2 (MagDemo02: CB2\DATA**.FBD)

	13.7 CDROM File Video Texture/Bitmap (TGA)
	Targa TGA

	13.8 CDROM File Video Texture/Bitmap (PCX)
	PC Paintbrush .PCX files (ZSoft)
	PCX Versions
	Known PCX Color Depths
	Width and Height
	Color Planes and Palettes
	Mono 2-Color Palette
	4-Color Palettes
	8-Color and 16-Color, with fixed EGA Palettes (version=03h or 04h)
	16-Color, with custom EGA/VGA Palettes (version=02h or 05h)
	256-Color VGA Palettes (version=05h)
	256-Level Grayscale Images (version=05h and [44h]=0002h)
	Default 16-color CGA/EGA Palettes
	PCX files in PSX games
	PCX files in PSX Metal Gear Solid (MGS)
	DCX Archives
	References

	13.9 CDROM File Video 2D Graphics CEL/BGD/TSQ/ANM/SDF (Sony)
	CEL: Cell Data (official format with 8bit header entries)
	CEL16: Inofficial CEL hack with 16bit entries and more extra data (R-Types)
	BGD: BG Map Data (official format with 8bit header entries)
	BGD16: Inofficial BGD hack with 16bit entries (R-Types)
	TSQ: Animation Time Sequence
	ANM: Animation Information
	SDF: Sprite Editor Project File

	13.10 CDROM File Video 3D Graphics TMD/PMD/TOD/HMD/RSD (Sony)
	TMD - Modeling Data for OS Library
	PMD - High-Speed Modeling Data
	TOD - Animation Data
	HMD - Hierarchical 3D Model, Animation and Other Data
	RSD Files (RSD,PLY,MAT,GRP,MSH,PVT,COD,MOT,OGP)

	13.11 CDROM File Video STR Streaming and BS Picture Compression (Sony)
	STR Files (movie streams)
	BS Files (Huffman compressed MDEC codes)
	Wacwac (similar as BS, but with completely different Huffman codes)
	Credits

	13.12 CDROM File Video Streaming STR (Sony)
	.STR Sectors (with 20h-byte headers) (for MDEC Movies, or User data)
	Video Frames
	STR Resolution
	Subtitles

	13.13 CDROM File Video Streaming STR Variants
	STR ID Values
	STR Type values (for videos that do have STR ID=0160h):
	Leading XA-ADPCM
	Leading SPU-ADPCM
	Metal Gear Solid (MGS\ZMOVIE.STR, 47Mbyte)
	Customized STR Video Headers
	Viewpoint (with slightly modified STR header)
	Capcom games
	Chrono Cross Disc 2 Video
	Need for Speed 3
	ReBoot (MOVIES*.WXA)
	Gran Turismo 1 (230Mbyte STREAM.DAT) and Gran Turismo 2 (330Mbyte STREAM.DAT)
	PGA Tour 96, 97, 98 (VIDEO..\.XA AND ZZBUFFER\.STR)
	Alice in Cyber Land (*.STR)
	Encrypted iki (Panekit - Infinitive Crafting Toy Case)
	Princess Maker: Yumemiru Yousei (PM3.STR)
	Parappa (Japanese Demo version only) (S0/GUIDE.STR)
	Starblade Alpha and Galaxian 3
	Largo Winch: Commando SAR (FMV\NSPIN_W.RNG)
	Player Manager (1996, Anco Software) (FILMS\1..3*.STR)
	Chiisana Kyojin Microman (DAT\STAGE**.MV)
	Black Silence padding
	Ridge Racer Type 4 (only PAL version) (R4.STR)
	Mat Hoffman's Pro BMX (MagDemo48: MHPB\SHORT.STR)
	Final Fantasy VII (FF7) (MOVIE\.MOV AND MOVIE\.STR)
	Final Fantasy IX (FF9) (*.STR and *.MBG)

	Non-standard STR Video Headers
	Final Fantasy VIII (FF8)
	Ace Combat 3 Electrosphere (in 520Mbyte ACE.SPH/SPB archive)
	Judge Dredd (1998, Gremlin) (CUTS\.IXA AND LEVELS*.IXA)

	iki

	13.14 CDROM File Video Streaming Framerate
	STR Frame Rate
	Fixed/Variable Framerates
	Audio Samplerate
	CDROM Rotation speed
	CDROM Single speed (75 sectors/frame)

	13.15 CDROM File Video Streaming Audio
	Audio Stream
	SPU-ADPCM in Chunk-based formats
	SPU-ADPCM in Chrono Cross/Legend of Mana Audio Sector
	SPU-ADPCM in Final Fantasy VIII (FF8)
	SPU-ADPCM in Final Fantasy IX (FF9) (*.STR and *.MBG)
	Dance series SPU-ADPCM streaming (bigben interactive, DATA.PAK\stream*.str)
	Raw SPU-ADPCM Streaming

	13.16 CDROM File Video Streaming Chunk-based formats
	Newer Electronic Arts videos (EA)
	Older Electronic Arts videos
	Oldest Electronic Arts videos
	Policenauts (Japan, 1996 Konami) (NAUTS\MOVIE*.MOV)
	Best Sports Games Ever (DD\.VLC and MOVIES\.VLC) (Powerline Demo Disc menu)
	Sentient (FILMS*.FXA)

	13.17 CDROM File Video Streaming Mis-mastered files
	Mis-mastered streaming files
	Partially mis-mastered files
	Porsche Challenge (USA) (SRC\MENU\STREAM*.STR)

	13.18 CDROM File Video BS Compression Versions
	STR/BS Version Summary, with popularity in percents (roughly)
	BS v0 (used by only one known game)
	BS v1 (used by older games, some of them also having v2 videos)
	BS v2 (most games)
	BS v3 (used by some newer games, some of them also having v2 videos)
	BS ea (Electronic Arts)
	BS fraquant
	BS iki
	Encrypted iki
	Encrypted v2/v3
	Wacwac MDEC
	Polygon Streaming (instead of MDEC picture streaming)
	MPEG1 (on VCD Video CDs)
	Titles without movies

	13.19 CDROM File Video BS Compression Headers
	BS v1/v2/v3 header
	Encrypted v2/v3
	BS iki Header
	Encrypted iki
	BS fraquant
	v0 Header (in STR files)
	v0 Header (in LAPKS.BIN chunks)
	BS ea Headers (Electronic Arts)
	Raw MDEC

	13.20 CDROM File Video BS Compression DC Values
	DC v0
	DC v1/v2/ea
	DC v3
	DC iki

	13.21 CDROM File Video BS Compression AC Values
	Huffman codes for AC values BS v1/v2/v3/iki
	Huffman codes for AC values BS v0 (Serial Experiments Lain)
	Huffman codes for AC values BS ea (Electronic Arts)
	Notes

	13.22 CDROM File Video BS Picture Files
	BS Picture Files
	BS Picture Resolution
	Extended BS with Width/Height

	13.23 CDROM File Video Wacwac MDEC Streams
	Wacwac MDEC Stream Sectors
	Wacwac Huffman Bitstreams
	Wacwac Huffman Table Sets

	13.24 CDROM File Video Polygon Streaming
	Ape Escape - Polygon Streaming
	Panekit - Polygon Streaming
	Aconcagua - Polygon Streaming
	Cyberia (1996) (TF\STR*.STR)
	Croc 1 (CUTS*.AN2)
	Custom STR - 3D Baseball (BIGFILE.FOO)
	Army Men Air Attack 2 (MagDemo40: AMAA2*.PMB)
	Bits Laboratory games (Charumera, and True Love Story series)
	Nightmare Project: Yakata
	Eagle One: Harrier Attack STR files

	13.25 CDROM File Audio Single Samples VAG (Sony)
	VAG audio samples
	VAG Filename Extensions
	VAG File IDs (header[000h])
	VAG Versions (header[004h])
	Reserved Header entries for ID="VAGi"
	Reserved Header entries for Version=00000002h (eg. PSX Wipeout 2097)
	Reserved Header entries for Version=00000003h (according to wiki.xentax.com)
	Reserved Header entries for Version=00020001h and Version=00030000h
	VAG ADPCM Data
	VAG Endiannes
	VAG Channels
	VAG Interleave
	AAAp Header
	See also

	13.26 CDROM File Audio Sample Sets VAB and VH/VB (Sony)
	VAB vs VH/VB
	VAB Header (VH)
	VAB Binary (VB) (ADPCM data) (to be loaded to SPU RAM)

	13.27 CDROM File Audio Sequences SEQ/SEP (Sony)
	SEQ - Single Sequence
	SEP - Multi-Track Sequences

	13.28 CDROM File Audio Other Formats
	.SQ .HD .HD (SSsq/SShd)
	Sequence Data (*.SQ)
	Channel

	Voice Header (*.HD)
	Data 0 - Programs
	Data 1 - Velocity volumes
	Data 2 - Breath waves
	Data 3 - Sequence set (Used for SFX, uses a slightly altered subset of commands)
	Data 4 - Embedded SSsq (Used for SFX)

	Voice Binary (*.BD) (same as .VB files)

	DNSa/PMSa/FNSa/FMSa
	"PMSa" (aka SaMPles backwaords)
	"DNSa" (aka SouND backwards)
	"FNSa" (aka SouNd-F... backwards)
	"FMSa" (aka SaMples-F... backwards)

	AKAO
	Others
	See also

	13.29 CDROM File Audio Streaming XA-ADPCM
	Audio Streaming (XA-ADPCM)

	13.30 CDROM File Audio CD-DA Tracks
	13.31 CDROM File Archives with Filename
	Entrysize=08h
	WWF Smackdown (MagDemo33: TAI*.PAC)

	Entrysize=10h
	Championship Motocross (MagDemo25: SMX\RESHEAD.BIN and RESBODY.BIN)
	One (DIRFILE.BIN\w*\sect*.bin)
	True Love Story 1 and 2 (TLS*\MCD.DIR and MCD.IMG)
	Star Wars Rebel Assault 2 (RESOURCE.*, and nested therein)
	BallBlazer Champions (*.DAT, and nested therein)

	Entrysize=14h
	Fighting Force (MagDemo01: FGHTFRCE*.WAD)
	Parappa (MagDemo01: PARAPPA*.INT)
	Um Jammer Lammy (MagDemo24: UJL*.INT)
	Gran Turismo 1 (MagDemo10: GT\BG.DAT\, GT\COURSE.DAT\)
	Gran Turismo 1 (MagDemo15: GT\BG.DAT\, GT\COURSE.DAT\)
	JumpStart Wildlife Safari Field Trip (MagDemo52: DEMO\DATA.DAT*.DAT)
	Croc 2 (MagDemo22: CROC2\CROCII.DAT and CROCII.DIR)
	Disney's The Emperor's New Groove (MagDemo39: ENG\KINGDOM.DIR+DAT)
	Disney's Aladdin in Nasira's Revenge (MagDemo46: ALADDIN\ALADDIN.DIR+DAT)
	Alice in Cyberland (ALICE.PAC, and nested .PAC, .FA, .FA2 archives)
	Interplay Sports Baseball 2000 (MagDemo22:BB2000\DATA\HOG.TOC\UNIFORMS*.UNI)

	Entrysize=18h
	Invasion from Beyond (MagDemo15: IFB*.CC)
	Ghost in the Shell (MagDemo03: GITSDEMO\S01*.FAC)
	Oddworld: Abe's Exodus (MagDemo17: ABE2*.LVL)
	Oddworld: Abe's Exodus (MagDemo21: ABE2*.LVL and nested .IDX files)
	Monkey Hero (MagDemo17: MONKEY\BIGFILE.PSX and nested .PSX files)
	NHL Faceoff '99 (MagDemo17: FO99*.KGB and nested *.PRM *.TMP *.ZAM)
	NHL Faceoff 2000 (MagDemo28: FO2000*.KGB, Z.CAT, and nested *.PRM and *.TMP)
	Syphon Filter 1 (MagDemo18: SYPHON\SUBWAY.FOG) (4Mbyte, namelen=10h)
	Centipede (MagDemo23: ARTFILES*.ART)
	Sheep Raider (MagDemo52: SDWDEMO*.SDW)
	Sheep Raider (MagDemo54: SDWDEMO*.SDW)
	Wing Commander III (*.LIB)
	Largo Winch - Commando SAR (LEVELS*.DCF)
	Policenauts (NAUTS*.DPK)
	Actua Ice Hockey 2 (Best Sports Games Ever (demo), AH2\GAMEDATA*.MAD)
	Muppet Monster Adventure (MagDemo37: MMA\GAMEDATA+WORLDS**.INF+WAD)
	Army Men Air Attack 2 (MagDemo40: AMAA2*.PCK)
	Mort the Chicken (MagDemo41: MORT*.PPF and .TPF)
	Hot Wheels Extreme Racing (MagDemo52: US_01293\VEHICLES*.CAB)

	Entrysize=19h
	WAD Format (Wipeout 2097)

	Entrysize=1Ch
	Command & Conquer, Red Alert (MagDemo05: RA*) FAT/MIX/XA
	Syphon Filter 2 (MagDemo30: SYPHON\TRAIN.FOG) (2.8Mbyte, namelen=14h)

	Entrysize=20h
	Colony Wars (MagDemo02: CWARS\GAME.RSC)
	Colony Wars Venegance (MagDemo14: CWV\GAME.RSC, 8Mbyte)
	WarGames (MagDemo14: WARGAMES*.DAT)
	Running Wild (MagDemo15: RUNWILD*.BIN)
	Test Drive Off-Road 3 (MagDemo27: TDOR3\TDOR3.DAT)
	Tiny Tank (MagDemo23: TINYTANK*.DSK)
	MAG 3 (MagDemo26: MAG3\MAG3.DAT, 7Mbyte)
	Play with the Teletubbies (MagDemo35: TTUBBIES*.RES)
	Mat Hoffman's Pro BMX (old demo) (MagDemo39: BMX\FE.WAD+STR) (uncompressed)
	Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\FE.WAD+STR) (compressed)

	Entrysize=28h
	Demo Menu, PlayStation Magazine Demo Disc 03-54, MENU.FF
	Test Drive 4 (MagDemo03: TD4.DAT) (headersize=2000h, used=0...h)
	Test Drive 5 (MagDemo13: TD5.DAT) (headersize=3000h, used=1EF8h)
	Demolition Racer (MagDemo27: DR\DD.DAT) (headersize=5000h, used=2328h)
	Gekido (MagDemo31: GEKIDO\GLOBAL.CD)
	Team Buddies (MagDemo37: BUDDIES\BUDDIES.DAT* and nested *.BND files)
	JumpStart Wildlife Safari Field Trip (MagDemo52: DEMO\DATA.DAT)

	Entrysize=34h
	Army Men: Air Attack (MagDemo28: AMAA\PAK*.PAK)

	Entrysize=40h
	Ninja (MagDemo13: NINJA\CUTSEQ\.WAD AND NINJA\WADS\.WAD)
	You Don't Know Jack (MagDemo23: YDKJ\RES*.GLU)
	You Don't Know Jack 2 (MagDemo41: YDKJV2\\.GLU)

	Entrysize=60h
	Army Men Air Attack 2 (MagDemo40: AMAA2\.PCK\.PAK)

	Entrysize=90h
	Grind Session (MagDemo33: GRIND\SLIP.GRV)
	Grind Session (MagDemo36: GRIND\SLIP.GRV)
	Grind Session (MagDemo42: GRIND\SLIP.GRV)
	Grind Session (MagDemo45: GRIND\SLIP.GRV)

	Variable Entrysize
	HED/WAD
	Dance UK (DATA.PAK)
	Kula Quest / Kula World / Roll Away (*.PAK)
	Largo Winch - Commando SAR (NTEXTURE\.GRP AND LEVELS\.DCF*.CAT and *.GRP)
	Jackie Chan Stuntmaster (RTARGET\GAME.GCF and LEV*.LCF)
	Syphon Filter 1 (MagDemo18: SYPHON\.HOG, SYPHON\SUBWAY.FOG\.HOG,SLF.RFF)
	Syphon Filter 2 (MagDemo30: SYPHON\.HOG, SYPHON\TRAIN.FOG\.HOG,SLF.RFF)
	Electronic Arts 32bit BIGF archives
	Electronic Arts 24bit C0FB archives
	Destruction Derby Raw (MagDemo35: DDRAW*.PTH+.DAT, and nested therein)
	SnoCross Championship Racing (MagDemo37: SNOCROSS\SNOW.TOC+.IMG)

	13.32 CDROM File Archives with Offset and Size
	Crash Team Racing (retail: BIGFILE.BIG, and MagDemo30/42: KART\SAMPLER.BIG)
	Black Matrix (*.DAT)
	Charumera (*.CVF)
	Vs (MagDemo03: THQ*) has .CDB archives
	Monster Rancher (MagDemo06: MR_DEMO*.OBJ)
	Deception III Dark Delusion (MagDemo33: DECEPT3\K3_DAT.BIN)
	Star Trek Invasion (MagDemo34: STARTREK\STARTREK.RES)
	Einhander (MagDemo08: BININDEX.BIN/BINPACK0.BIN/BINPACK1.BIN)
	SO98 Archives (NBA Shootout '98, MagDemo10: SO98..*.MDL *.TEX *.ANI *.DAT)
	Gran Turismo 1 (MagDemo10: GT*.DAT) GT-ARC
	Gran Turismo 1 (MagDemo15: GT*.DAT) GT-ARC
	Gran Turismo 2 (GT2.VOL\arcade\arc_fontinfo) GT-ARC
	O.D.T. (MagDemo17: ODT*.LNK and ODT\RSC\NTSC\ALLSOUND.SND and nested LNK's)
	Barbie Explorer (MagDemo50: BARBIEX*.STR and nested therein)
	Bust A Groove (MagDemo18: BUSTGR_A\.DFS and BUSTGR_B\.DFS) (DFS)
	Bust-A-Groove 2 (MagDemo37: BUSTAGR2\BUST2.BIN*) (main=DF2 and child=DFS)
	Monaco Grand Prix Racing Simulation 2 (MagDemo24: EXE\\.SUN)
	Rollcage (MagDemo19: ROLLCAGE\SPEED.IMG) (2Mbyte)
	Rollcage Stage II (MagDemo31: ROLLCAGE\SPEED.IDX+SPEED.IMG) (3Kbyte+9Mbyte)
	Sydney 2000 (MagDemo37: OLY2000\DEMO.IDX+DEMO.IMG) (1Kbyte+2Mbyte)
	Ultimate 8 Ball (MagDemo23: POOL.DAT) (5.5Mbyte)
	BIGFOOL - 3D Baseball (BIGFILE.FOO)
	Spec Ops - Airborne Commando (BIGFILE.CAT and nested CAT files therein)
	Hot Shots Golf 2 (retail: DATA\F0000.BIN, MagDemo31/42: HSG2\MINGOL2.BIN)
	Threads of Fate (MagDemo33: TOF\DEWPRISM.HED+.EXE+.IMG)
	WWF Smackdown (MagDemo33: TAI\.PAC\, and nested therein)
	Tyco R/C Racing (MagDemo36: TYCO\MAINRSRC.BFF)
	Team Buddies (MagDemo37: BUDDIES\BUDDIES.DAT)
	Gundam Battle Assault 2 (DATA*.PAC, and nested therein)
	Incredible Crisis (MagDemo38: IC*.CDB)
	Ape Escape Sound Archive (MagDemo22:KIDZ\KKIIDDZZ.HED\DAT\1Bh-1Dh,49h-53h,..)
	Ape Escape Sound Archive (MagDemo44:KIDZ\KKIIDDZZ.HED\DAT\1Bh-1Dh,4Fh-59h,..)
	Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB)
	Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\183h,37Bh..3EBh)
	E.T. Interplanetary Mission (MagDemo54: MEGA\MEGA.CSH+.BIN)
	Driver 2 The Wheelman is Back (MagDemo40: DRIVER2\SOUND\\)
	Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS*.ZAL) (Z-Axis)
	Dave Mirra Freestyle BMX (MagDemo36: BMX\ASSETS*.ZAL) (Z-Axis)
	Dave Mirra Freestyle BMX (MagDemo46: BMX\ASSETS*.ZAL) (Z-Axis)
	Speed Punks (MagDemo32: SPUNKS*.GDF)
	Legend of Dragoon (MagDemo34: LOD\SECT*.BIN, and nested therein)
	RC Revenge (MagDemo37: RV2\BB\3.BBK and Retail: BB\\.BBK)

	13.33 CDROM File Archives with Offset
	DOT1 Archives (named after the ".1" extension in R-Types)
	NFL Gameday '98 (MagDemo04: GAMEDAY*.FIL) (32bit) (with nested FIL's)
	NFL Gameday '99 (MagDemo17: GAMEDAY*.FIL) (32bit)
	NFL Gameday 2000 (MagDemo27: GAMEDAY*.FIL) (16bit and 32bit)
	NCAA Gamebreaker '98 (MagDemo05: GBREAKER*.FIL,*.BIN) (16bit and 32bit)
	NCAA Gamebreaker 2000 (MagDemo27: GBREAKER*.FIL) (16bit and 32bit)
	PreSizeDOT1 (Ace Combat 2) (retail and MagDemo01: ACE2.DAT*)
	DOT-T (somewhat same as DOT1, but with 16bit entries)
	DOTLESS Archive
	Twisted Metal: Small Brawl (MagDemo54: TMSB\SHL*.TMS)
	Ridge Racer Type 4 (MagDemo19: R4DEMO\R4.BIN, 39Mbyte)
	Ridge Racer Type 4 (MagDemo21: R4DEMO\R4.BIN, 39Mbyte)
	Legend of Legaia (MagDemo20: LEGAIA\PROT.DAT)
	Bloody Roar 1 (MagDemo06: BL*.DAT)
	Bloody Roar 2 (MagDemo22: ASC,CMN,EFT,LON,SND,ST5,STU*.DAT)
	Klonoa (MagDemo08: KLONOA\FILE.IDX*)
	C - The Contra Adventure (DATA\SND*.SGG)
	Ninja (MagDemo13: NINJA\VRW*.VRW)
	The Next Tetris (MagDemo22: TETRIS*) has PSX.BSE (and nested therein)
	Tactics Ogre (UBF*.BIN)
	Spyro the Dragon (MagDemo12: SPYRO\PETE.WAD)

	13.34 CDROM File Archives with Size
	Disney-Pixar's Monsters, Inc. (MagDemo54: MINC*.BZE)
	Bugs Bunny: Lost in Time (MagDemo25: BBLIT*.BZZ) (without extra entry)
	The Grinch (MagDemo40: GRINCH*.BZZ) (with extra entry)
	Jersey Devil .BZZ (MagDemo10: JD*.BZZ)
	Jackie Chan Stuntmaster (RCHARS*.RR)
	NBA Basketball 2000 (MagDemo28: FOXBB*.RR)
	Bomberman World (MagDemo15: BOMBER*.RC)
	Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\BMXCD.HED+WAD)
	Madden NFL 2000 (MagDemo27: MADN00*.DAT and nested therein)
	Madden NFL 2001 (MagDemo39: MADN01*.DAT and nested therein)
	Croc 2 (MagDemo22: CROC2\CROCII.DIR\FESOUND.WAD)
	Disney's The Emperor's New Groove (MagDemo39:ENG\KINGDOM.DIR\FESOUND.WAD)
	Disney's Aladdin in Nasira's Rev. (MagDemo46:ALADDIN\ALADDIN.DIR\FESOUND.WAD)
	Dino Crisis 1 and 2 (PSX\DATA*.DAT and *.DBS and *.TEX) ("dummy header")

	13.35 CDROM File Archives with Chunks
	Interchange File Format (IFF)
	Z-Axis little-endian IFF variant
	Alice in Cyberland little-endian IFF variant (.TPK)
	Touring Car Championship (MagDemo09: TCAR\GAME\\.BFX)
	Jarret & LaBonte Stock Car Racing (MagDemo38: WTC\\.BFX)
	Colony Wars Venegance (MagDemo14: CWV\GAME.RSC\VAG.WAD)
	Colony Wars Red Sun (MagDemo31: CWREDSUN\GAME.RSC\0002\VAG_WAD)
	Mat Hoffman's Pro BMX (new demo) (MagDemo48: MHPB\STILLS.BIN)
	Ridge Racer (TEX*.TMS)
	Ridge Racer Revolution (BIG*.TMS)
	Ridge Racer Type 4 (MagDemo19+21: R4DEMO\R4.BIN\\)
	Jet Moto 2 (MagDemo03: JETMOTO2*.TMS)
	Twisted Metal 2 (MagDemo50: TM2*.TMS)
	Princess Maker - Yumemiru Yousei (BDY*.BD and PM.*)
	Project Horned Owl (COMDATA.BIN, DEMODATA.BIN, ROLL.BIN, ST*DATA.BIN)
	Blaster Master (DATA\.IDX, DATA\.DAT)
	See also

	13.36 CDROM File Archives with Folders
	Archives with Folders
	Perfect Assassin (*.JFS)
	Alone in the Dark The New Nightmare (FAT.BIN=Directory, and DATA.BIN=Data)
	Interplay Sports Baseball 2000 (MagDemo22: BB2000* HOG.DAT and HOG.TOC)
	Tenchu 2 (MagDemo35: TENCHU2\VOLUME.DAT)
	Blasto (MagDemo10: BLASTO\BLASTO.DAT and BLASTO\BLASTO.LFS)
	Twisted Metal 4 (MagDemo30: TM4DATA*.MR and *.IMG)

	13.37 CDROM File Archive HUG/IDX/BIZ (Power Spike)
	Power Spike (MagDemo43: POWER\GAME.IDX and .HUG)
	Power Spike (MagDemo43: POWER\GAME.IDX*.BIZ) (BIZ nested in IDX/HUG)

	13.38 CDROM File Archive TOC/DAT/LAY
	File Entries
	Folder Entries (with Filesize=FFFFFFFFh)
	Final Entries (with Name="",00h and Filesize=FFFFFFFxh)

	13.39 CDROM File Archive WAD (Doom)
	Doom, PSXDOOM\ABIN\.WAD and PSXDOOM\MAPDIR*\.WAD)
	Folders
	LZSS Decompression

	13.40 CDROM File Archive WAD (Cardinal Syn/Fear Effect)
	.WAD files (Cardinal Syn/Fear Effect)
	Cardinal Syn Types
	Fear Effect Types

	13.41 CDROM File Archive DIR/DAT (One/Viewpoint)
	DIR/DAT (One/Viewpoint)

	13.42 CDROM File Archive Darkworks Chunks (Alone in the Dark)
	Alone in the Dark The New Nightmare (FAT.BIN*)
	VRAM Chunks (Texture/Palette) (in various files)
	G3DB Chunks (Models) (in various files)
	DRAM Chunks (Text and Binary data) (in various files)
	WEAP Chunks (Weapons) (in WEAPON\\)
	HAND Chunks (Hands) (in LEFTHAND*\HAND*)
	MIDB Chunks (Music) (in MIDI\\)
	DSND Chunks (Sounds) (in various files)
	Note

	13.43 CDROM File Archive Blue Chunks (Blue's Clues)
	Blue's Clues: Blue's Big Musical (*.TXD)

	13.44 CDROM File Archive HED/CDF (Parasite Eve 2)
	STAGE0.HED and STAGE0.CDF
	STAGE1.CDF .. STAGE5.CDF
	File List entries (in STAGE0 and STAGE1-5)
	File Chunks (for files within File List)
	Streaming List Movie entries (stream type 1)
	Streaming List Audio entries (stream type 2)
	Audio Stream Data (stored alongsides with file data in STAGEx.CDF file)
	Movie Stream Data (stored in .CDF, or in separate INTERx.STR file)
	PE_DISK.01 and PE_DISK.02
	Note

	13.45 CDROM File Archive IND/WAD (MTV Music Generator)
	MTV Music Generator (IND/WAD) (MagDemo30: JESTER\WADS\ECTS.IND and .WAD)

	13.46 CDROM File Archive GAME.RSC (Colonly Wars Red Sun)
	Colony Wars Red Sun (MagDemo31: CWREDSUN\GAME.RSC, 13Mbyte)

	13.47 CDROM File Archive BIGFILE.DAT (Soul Reaver)
	Legacy of Kain: Soul Reaver - BIGFILE.DAT
	Legacy of Kain: Soul Reaver (MagDemo26: KAIN2\BIGFILE.DAT)

	13.48 CDROM File Archive FF8 IMG (Final Fantasy VIII)
	IMG File
	Root Directory
	Fields Directory
	Movie List
	PADBUG archives
	Compression
	Known/unknown sectors for US version FF8DISC1.IMG
	See also

	13.49 CDROM File Archive FF9 IMG (Final Fantasy IX)
	Final Fantasy IX (FF9.IMG, 320Mbyte) Overall format
	IMG Root Directory
	IMG Child Folders (FolderType=2)
	IMG Child Folders (FolderType=3)
	Nested Child Archives
	Folders in Root directory
	See also

	13.50 CDROM File Archive GTFS (Gran Turismo 2)
	Gran Turismo 2 (MagDemo27: GT2\GT2.VOL, GT2.VOL\arcade\arc_carlogo) - GTFS

	13.51 CDROM File Archive Nightmare Project: Yakata
	Nightmare Project: Yakata

	13.52 CDROM File Archive FAdj0500 (Klonoa)
	Klonoa (MagDemo08: KLONOA\FILE.IDX+FILE.BIN)

	13.53 CDROM File Archives in Hidden Sectors
	Hidden Sector Overview
	Xenogears (2 discs, 1998)
	Chrono Cross (2 discs, 1999,2000)
	Threads of Fate (aka Dewprism) (1 disc, 1999,2000)
	Threads of Fate (demo version) (MagDemo33: TOF\DEWPRISM.HED+.EXE+.IMG)

	13.54 CDROM File Archive HED/DAT/BNS/STR (Ape Escape)
	Ape Escape KKIIDDZZ.HED/.DAT/.BNS/.STR

	13.55 CDROM File Archive WAD.WAD, BIG.BIN, JESTERS.PKG (Crash/Herc/Pandemonium)
	WAD.WAD (Crash/Crash)
	X-Men: Mutant Academy (MagDemo33,50: PSXDATA\WAD.WAD)
	PKG (Herc/Pandemonium/UnholyWar)

	13.56 CDROM File Archive BIGFILE.BIG (Gex)
	Gex (GXDATA\BIGFILE.BIG and nested BIG files therein)

	13.57 CDROM File Archive BIGFILE.DAT (Gex - Enter the Gecko)
	Gex - Enter the Gecko - BIGFILE.DAT

	13.58 CDROM File Archive FF9 DB (Final Fantasy IX)
	DB Archive
	Data Types

	13.59 CDROM File Archive Ace Combat 2 and 3
	Ace Combat 2 (Namco 1997) (ACE2.DAT and ACE2.STH/STP)
	Ace Combat 3 Electrosphere (Namco 1999) (ACE.BPH/BPB and ACE.SPH/SPB)

	13.60 CDROM File Archive NSD/NSF (Crash Bandicoot 1-3)
	NSD/NSF versions
	NSD
	Overall NSD Structure (v0 contains only the Lookup entries)
	NSD Lookup
	NSD Level Data
	NSD Bitmap
	NSD Compression Info

	NSF
	NSF Chunk Types
	NSF Child Archives
	NSF Chunk Loading and Decompression

	Filetypes
	Filetype Summary
	See also:
	Weird Note

	13.61 CDROM File Archive STAGE.DIR and *.DAT (Metal Gear Solid)
	Summary of ISO files in MGS folder (with filesizes for different releases)
	STAGE.DIR:
	FACE.DAT (face animations for video calls):
	DEMO.DAT, DEMO.SYM
	VOX.DAT, VOX.SYM
	RADIO.DAT:
	BRF.DAT:
	ZMOVIE.STR (movie archive with several STR files with subtitles)
	STAGE.DIR\\.sb - stage binary/header
	STAGE.DIR\\.cp, STAGE.DIR\\.nd.p, BRF.DAT* - PCX bitmap files
	STAGE.DIR\\.nd - texture archive (with .PCX files)
	STAGE.DIR\init**.rd - misc archive (with misc files)
	STAGE.DIR\\.sw - wave archive
	STAGE.DIR\\.se - sound effects? maybe short midi-like sequences or so?
	STAGE.DIR\\.sm - whatever nested archives - sound music? mide-like?
	File IDs

	13.62 CDROM File Archive DRACULA.DAT (Dracula)
	Dracula - The Resurrection - DRACULA.DAT (180Mbyte)

	13.63 CDROM File Archive Croc 1 (DIR, WAD, etc.)
	Croc 1 (MagDemo02: CROC*) (plus more files in retail version)

	13.64 CDROM File Archive Croc 2 (DIR, WAD, etc.)
	Croc 2 (MagDemo22: CROC2\CROCII.DIR\T*.WAD+DEM)
	Disney's The Emperor's New Groove (MagDemo39: ENG\KINGDOM.DIR\T*.WAD+DEM)
	Disney's Aladdin in Nasira's Rev. (MagDemo46: ALADDIN\ALADDIN.DIR\T*.WAD+DEM)
	Alien Resurrection, and Harry Potter 1 and 2 ... slightly different format?

	13.65 CDROM File Archive Headerless Archives
	Headerless Archives

	13.66 CDROM File Compression
	Compressed Bitmaps
	Compressed Audio
	Compressed Files
	Compressed Archives

	13.67 CDROM File Compression LZSS (Moto Racer 1 and 2)
	Moto Racer 1 ("LZSS" with len+2) (MagDemo03: MRDEMO\IMG*.TIM)
	Moto Racer 2 ("LZSS" with len+3) (MagDemo16: MR2DEMO\IMG*.TIM and .TPK)

	13.68 CDROM File Compression LZSS (Dino Crisis 1 and 2)
	Dino Crisis 1 and 2 (PSX\DATA*.DAT and *.DBS and *.TEX, File type 7,8)

	13.69 CDROM File Compression LZSS (Serial Experiments Lain)
	Serial Experiments Lain (7MB SITEA.BIN on Disc 1, 5MB SITEB.BIN on Disc 2)
	Serial Experiments Lain (LAPKS.BIN on Disc 1 and 2)
	Decompression function

	13.70 CDROM File Compression ZOO/LZSS
	Jarret & LaBonte Stock Car Racing (MagDemo38: WTC*.ZOO)
	Decompression function

	13.71 CDROM File Compression Ulz/ULZ (Namco)
	Ulz Format (Ace Combat 3 Electrosphere, Namco)
	Ulz Format (Klonoa, MagDemo08: KLONOA\FILE.IDX*)
	ULZ Format (Time Crisis, Namco)
	Ulz/ULZ Decompression Function

	13.72 CDROM File Compression SLZ/01Z (chunk-based compressed archive)
	SLZ/01Z chunk headers
	SLZ/01Z decompression function:

	13.73 CDROM File Compression LZ5 and LZ5-variants
	Original LArc LZ5 (method "-lz5-")
	DSi Dr. Mario (DSiware, Nintendo/Arika, 2008-2009)
	PSX Final Fantasy VII (FF7)
	PSX Final Fantasy VIII (FF8)
	PSX Ultimate Fighting Championship (MagDemo38: UFC\CU00.RBB\383h*)
	Ninja (MagDemo13: NINJA\LOADPICS\.PAK and NINJA\VRW\FOREST.VRW\)
	PSX Power Spike (MagDemo43: POWER\GAME.IDX*.BIZ)
	PSX Army Men Air Attack 2 (MagDemo40: AMAA2\.PCK\.PAK)
	Alice in Cyberland (ALICE.PAC*.FA2)
	Decompression
	Initial Ringbuf Content

	13.74 CDROM File Compression PCK (Destruction Derby Raw)
	Destruction Derby Raw (MagDemo35: DDRAW*.PCK,EXE,DAT)
	Self-decompressing GUI code in PSX BIOS for SCPH-7000 and up
	Decompression function

	13.75 CDROM File Compression GT-ZIP (Gran Turismo 1 and 2)
	BS iki Video
	Gran Turismo 1 (MagDemo10: GT*.DAT) - headerless
	Gran Turismo 1 (MagDemo15: GT*.DAT) - headerless
	Gran Turismo 2 (MagDemo27: GT2\GT2.VOL\arcade\arc_other.tim*) - with header
	Decompression function
	Notes

	13.76 CDROM File Compression GT20 and PreGT20
	GT20 Compressed Files
	Pre-GT20 Compressed Files

	13.77 CDROM File Compression HornedLZ
	HornedLZ Detection
	DecompressHornedLZ:

	13.78 CDROM File Compression LZS (Gundam Battle Assault 2)
	Gundam Battle Assault 2 (DATA\.PAC\, with ID="lzs")

	13.79 CDROM File Compression BZZ
	BZZ Decompression

	13.80 CDROM File Compression RESOURCE (Star Wars Rebel Assault 2)
	Star Wars Rebel Assault 2 (RESOURCE.**)
	BallBlazer Champions (*.DAT)
	Special case for BallBlazer Champions

	13.81 CDROM File Compression TIM-RLE4/RLE8
	13.82 CDROM File Compression RLE_16
	Apocalypse (MagDemo16: APOC\CD.HED*.RLE)
	Spider-Man (MagDemo31,40: SPIDEY\CD.HED*.RLE)
	Spider-Man 2 (MagDemo50: HARNESS\CD.HED*.RLE)
	Decompression
	Other RLE16 variants

	13.83 CDROM File Compression PIM/PRS (Legend of Mana)
	Legend of Mana (.PIM/.PRS)

	13.84 CDROM File Compression BPE (Byte Pair Encoding)
	Bust A Groove (MagDemo18: BUSTGR_A*.BPE)
	Bust-A-Groove 2 (MagDemo37: BUSTAGR2\BUST2.BIN*)
	Legend of Dragoon (MagDemo34: LOD\OVL\.OV_ and LOD\SECT\.BIN*)
	BPE Decompression for Bust-A-Groove and Legend of Dragoon
	Electronic Arts

	13.85 CDROM File Compression RNC (Rob Northen Compression)
	Rob Northen compression
	RNC Method 1 - with custom Huffman trees
	RNC Method 2 - with hardcoded Huffman trees
	Links
	RNC in PSX Games
	RNC in Mega Drive games

	13.86 CDROM File Compression Darkworks
	Decompression

	13.87 CDROM File Compression Blues
	Blue's Clues: Blue's Big Musical (VRAM and FRAM chunks in *.TXD)

	13.88 CDROM File Compression Z (Running Wild)
	Running Wild (MagDemo15: RUNWILD\.BIN\.Z and *.z)

	13.89 CDROM File Compression ZAL (Z-Axis)
	Thrasher: Skate and Destroy (MagDemo27: SKATE\ASSETS*.ZAL) (Z-Axis)
	Dave Mirra Freestyle BMX (MagDemo36: BMX\ASSETS*.ZAL) (Z-Axis)
	Dave Mirra Freestyle BMX (MagDemo46: BMX\ASSETS*.ZAL) (Z-Axis)
	ZAL Decompression

	13.90 CDROM File Compression EA Methods
	Electronic Arts Compression Headers
	Compression Formats
	Usage in PSX games
	See also

	13.91 CDROM File Compression EA Methods (LZSS RefPack)
	RefPack

	13.92 CDROM File Compression EA Methods (Huffman)
	Huffman
	Huffman

	13.93 CDROM File Compression EA Methods (BPE)
	Byte-Pair Encoding

	13.94 CDROM File Compression EA Methods (RLE)
	Run-Length Encoding

	13.95 CDROM File Compression ZIP/GZIP/ZLIB (Inflate/Deflate)
	PSX Disk Images
	PSX Games

	13.96 Inflate - Core Functions
	tinf_uncompress(dst,src)
	tinf_inflate_uncompressed_block()
	tinf_inflate_compressed_block()
	tinf_decode_symbol(tree)
	tinf_read_bits(num) ;get N bits from source stream
	tinf_getbit() ;get one bit from source stream
	tinf_align_src_to_byte_boundary()

	13.97 Inflate - Initialization & Tree Creation
	tinf_init()
	tinf_build_bits_base(bits,base,delta,base_val)
	tinf_build_fixed_trees()
	tinf_decode_dynamic_trees()
	tinf_build_tree(tree, first, num)
	tinf_data

	13.98 Inflate - Headers and Checksums
	tinf_gzip_uncompress(dst, destLen, src, sourceLen)
	tinf_zlib_uncompress(dst, destLen, src, sourceLen)
	tinf_adler32(src, length)

	13.99 CDROM File Compression LArc/LHarc/LHA (LZS/LZH)
	Overall File Format
	LHA Header v0 (with [14h]=00h)
	LHA Header v1 (with [14h]=01h)
	LHA Header v2 (with [14h]=02h)
	LHA Header v3 (with [14h]=03h)
	Compression Methods
	Extended Headers
	See also

	13.100 CDROM File Compression UPX
	UPX Compression (used in AmiDog's GTE test)

	13.101 CDROM File Compression LZMA
	LZMA Bitstreams
	.lzma files (LZMA_Alone format from LZMA SDK)
	.lz files (LZIP)
	.chd (MAME compressed CDROM and HDD images)
	.xz files (XZ Utils)
	.7z files (7-Zip archives)
	LZMA2 (used in .7z and .xz files)
	LZMA Source code

	13.102 CDROM File Compression XZ
	Overall Structure of .xz File
	Stream
	Index List
	Compressed Block
	Filter 21h: LZMA2 Compression Method
	Filter 03h: Delta Filter
	Filter 04h-09h: Executable Branch/Call/Jump (BCJ) Filters
	Cyclic Redundancy Checks (CRCs)
	Endianness and Variable Length (VL) Integers
	Notes and References

	13.103 CDROM File Compression FLAC audio
	FLAC file format
	FLAC METADATA_BLOCK_STREAMINFO
	More info

	13.104 CDROM File Compression ARJ
	ARJ archives contain several chunks
	ARJ main "comment" header, with [00Ah]=2
	ARJ local file header, with [00Ah]=0,1,3,4
	ARJ backup "chapter" header (ARJ >2.50?) (exists in 2.75a), with [00Ah]=5
	ARJ End Marker (with [002h]=0000h)
	ARJ Method [009h]
	ARJ File Type [00Ah]
	ARJ Flags (in Main [008h])
	ARJ Flags (in Local [008h])
	ARJ Flags (in Chapter [008h])
	Host OS [007h]
	ARJ Method 1-3 (LHA/LZH compression)
	ARJ Method 4 (custom fastest compression)
	ARJ Glossary & Oddities
	See also

	13.105 CDROM File Compression ARC
	ARC Archives
	Sub-directories
	RLE90 (run-length compression with value 90h used as escape code)
	Squeeze
	Randomized LZW
	ClearGap LZW
	LZHUF
	Notes
	See also

	13.106 CDROM File Compression RAR
	RAR v1.3 (March 1994, used only in RAR 1.402)
	RAR 1.5 (June 1994) and newer
	See also

	13.107 CDROM File Compression ZOO
	ZOO Archives
	Zoo Tiny format (single-file) (commandline "z" option)
	Zoo Filter format (for modem streaming) (commandline "f" command)

	13.108 CDROM File Compression nCompress.Z
	nCompress.Z

	13.109 CDROM File Compression Octal Oddities (TAR, CPIO, RPM)
	Compression
	TAR format (1979)
	CPIO Format (1977) (and MAC .PAX files)
	RPM Format (1997) (BIG-ENDIAN)
	File Extensions

	13.110 CDROM File Compression MacBinary, BinHex, PackIt, StuffIt, Compact Pro
	MacBinary I,II,III format (v1,v2,v3)
	BinHex 4.0 (.hqx) (ASCII, RLE90, big-endian)
	PackIt (.pit) (Macintosh) (1986) (big-endian)
	StuffIt (.sit) (Macintosh) (old format) (1987) (big-endian)
	StuffIt 5 (.sit) (Macintosh, Windows) (1997) (big-endian)
	StuffIt X (.sitx) (Macintosh, Windows) (20xx?)
	Compact Pro aka Compactor (.cpt) (Macintosh) (1990s) (big-endian)
	Self-Extracting Archives (SEA)
	Mac OS Data forks
	Mac OS Resource forks

	13.111 CDROM File XYZ and Dummy/Null Files
	Dummy/Null Files
	XYZ Files

	13.112 CDROM Disk Images CCD/IMG/SUB (CloneCD)
	File.IMG - 2352 (930h) bytes per sector
	File.SUB - 96 (60h) bytes per sector (subchannel P..W with 96 bits each)
	File.CCD - Lead-in info in text format
	[CloneCD]
	[Disc]
	[CDText]
	[Session 1]
	[Entry 0]
	[TRACK 1] ;-track number (non-BCD) (1..99)
	Missing Sectors & Sector Size
	Non-BCD Caution
	Versions
	Entry & Points & Sessions

	13.113 CDROM Disk Images CDI (DiscJuggler)
	Overall Format
	Sector Data
	Number of Sessions (1 byte)
	Session Block (15-bytes)
	Track/Disc Header (30h+F bytes) (used in Track Blocks and Disc Info Block)
	Track Block (E4h+F+I+T bytes)
	Disc Info Block (5Fh+F+V+T bytes)
	Entrypoint (4 bytes) (located at "Filesize-4")

	13.114 CDROM Disk Images CUE/BIN/CDT (Cdrwin)
	.CUE/.BIN (CDRWIN)
	FILE \<filename> BINARY|MOTOTOLA..or..MOTOROLA?|AIFF|WAVE|MP3
	FLAGS DCP 4CH PRE SCMS
	INDEX NN MM:SS:FF
	TRACK NN datatype
	PREGAP MM:SS:FF
	POSTGAP MM:SS:FF
	REM comment
	CATALOG 1234567890123
	ISRC ABCDE1234567
	PERFORMER "The Band"
	SONGWRITER "The Writer"
	TITLE "The Title"
	CDTEXTFILE "C:\LONG FILENAME.CDT"
	Missing
	Malformed .CUE files

	13.115 CDROM Disk Images MDS/MDF (Alcohol 120%)
	File.MDF - Contains sector data (optionally with sub-channel data)
	File.MDS - Contains disc/lead-in info (in binary format)
	Header (58h bytes)
	Session-Blocks (18h bytes)
	Data-Blocks (50h bytes)
	Index Blocks (usually 8 bytes per track)
	Filename Blocks (10h bytes)
	Filename Strings (usually 6 bytes)
	Read errors aka DPM data blocks (present if errors occured during recording)
	Missing

	13.116 CDROM Disk Images NRG (Nero)
	.NRG (NERO)
	Chunk Entrypoint (in last 8/12 bytes of file)
	Cue Sheet (summary of the Table of Contents, TOC)
	Disc at Once Information
	End of chain
	Track Information (contained only in Track at Once images)
	Unknown 1 (contained only in Track at Once images)
	Unknown 2 (contained only in Track at Once images)
	Session Info (begin of a session) (contained only in multi-session images)
	CD-Text (contained only in whatever images)
	Media Type? (contained only in whatever images)
	Optional Filenames (names where the image was generated from?)
	Optional Volume name
	Notes
	Missing

	13.117 CDROM Disk Image/Containers CDZ
	.CDZ File Structure
	.CDZ Chunk Format
	.CDZ Chunks / Content
	Cdztool.exe Versions

	13.118 CDROM Disk Image/Containers ECM
	.EXT.ECM - Double extension
	Example / File Structure
	Type/Length Byte(s)
	ECM Decompression
	Central Mistakes
	Worst-case Scenario

	13.119 CDROM Subchannel Images
	SBI (redump.org)
	M3S (Subchannel Q Data for Minute 3) (ePSXe)
	CDROM Images with Subchannel Data

	13.120 CDROM Disk Images PBP (Sony)
	.PBP
	PBP Format (rev-engineered from homebrew DBALL.PBP)

	13.121 CDROM Disk Images CHD (MAME)
	V1/V2 header (hdcomp):
	V3/V4 header (chdman):
	V5 header (chdman):
	CHD Metadata
	V3/V4/V5 Metadata
	V3/V4/V5 Metadata in ASCII format
	CHCD Metadata (94Ch bytes, plus 10h-byte metadata header)

	CHD Maps
	V1/V2 map format (64bit entries with 44bit+20bit):
	V3/V4 map entries (per hunk):
	V5 Map Formats
	Uncompressed V5 Map loading (when [filehdr+10h]=00000000h)
	Compressed V5 Map loading (when [filehdr+10h]\<>00000000h)

	CHD Compression
	Compression V1-V4 format 0 (uncompressed)
	Compression V5 0,0,0,0 (uncompressed)
	Compression V1-V4 format 1 (zlib) (Generic Deflate)
	Compression V1-V4 format 2 (zlib+) (Generic Deflate)
	Compression V5 "zlib" (Generic Deflate)
	Compression V5 "lzma" (Generic LZMA)
	Compression V5 "flac" (Generic FLAC)
	Compression V5 "huff" (Generic Huffman)
	Compression V5 "cdzl" (CDROM Deflate+Delate)
	Compression V5 "cdlz" (CDROM LZMA+Deflate)
	Compression V5 "cdfl" (CDROM FLAC+Deflate)
	Compression V5 "avhu" (A/V mixup with Huffman and FLAC or so)
	Compression V4 format 3 (AV)
	Compression V3-V4 secondary compression method (FLAC CDDA)

	CHD Compression for CDROMs
	CDROM "cdzl" and "cdlz"
	CDROM "cdfl"
	CDROM Subchannel data

	CHD CDROM Sector Sizes
	CHD Compression Methods
	Deflate
	LZMA
	FLAC
	Huffman

	CHD Notes
	Track/Hunk Padding and Missing Index0 sectors
	Parent references
	Self references
	Mini
	CHDMAN versions
	References

	13.122 CDROM Disk Images Other Formats
	.ISO - A raw ISO9660 image (can contain a single data track only)
	.C2D
	.ISZ - compressed ISO file with 800h-byte sectors (UltraISO)
	.MDX
	.CU2/.BIN
	CD Image File Format (Xe - Multi System Emulator)

	14. Controllers and Memory Cards
	Controllers/Memory Cards
	Controllers
	Memory Cards
	Pocketstation (Memory Card with built-in LCD screen and buttons)
	Pinouts
	14.1 Controller and Memory Card Overview
	Device addressing
	DSR (/ACK) Controller and Memory Card - Byte Received Interrupt
	/IRQ10 (/IRQ) Controller - Lightpen Interrupt
	Plugging and Unplugging Cautions
	Emulation Note
	BIOS Functions
	Synchronous I/O

	14.2 Controller and Memory Card Signals
	Overview
	Address byte (01h) being sent

	14.3 Controller and Memory Card Multitap Adaptor
	SCPH-1070 (Multitap)
	Multitap Controller Access
	Multitap Controller Access, Method 1 Details
	Multitap Memory Card Access
	Multitap Games
	Multitap Versions
	MultiTap Parsed Controller IDs
	Power Supply
	PS2 multitap
	See also

	14.4 Controllers - Communication Sequence
	Controller Communication Sequence
	Controller ID (Halfword Number 0)

	14.5 Controllers - Standard Digital/Analog Controllers
	Standard Controllers
	Analog Mode Note
	Analog Joypad Range
	Dual Analog Pad in LED=Green Mode
	See also

	14.6 Controllers - Mouse
	Sony Mouse Controller
	Sony Mouse Hardware Bug on Power-On
	Sony Mouse Compatible Games
	Sony Mouse Component List
	PS/2 and USB Mouse Adaptors
	RS232 Mice
	Standard Serial Mouse
	Mouse Systems Serial Mouse (rarely used)
	Notes

	14.7 Controllers - Racing Controllers
	neGcon Racing Controller (Twist) (NPC-101/SLPH-00001/SLEH-0003)
	Namco Volume Controller (a paddle with two buttons) (SLPH-00015)
	SANKYO N.ASUKA aka Nasca Pachinco Handle (SLPH-00007)
	Mad Catz Steering Wheel (SLEH-0006)
	MadCatz Dual Force Racing Wheel
	MadCatz MC2 Vibration compatible Racing Wheel and Pedals
	MadCatz Button Chart
	Namco Jogcon (NPC-105/SLEH-0020/SLPH-00126/SLUH-00059)

	14.8 Controllers - Lightguns
	Namco Lightgun (GunCon)
	Konami Lightgun (IRQ10)
	Third-Party Lightguns
	Lightgun Games
	Compatibilty Notes (IRQ10 vs Cinch, PAL vs NTSC, Calibration)

	14.9 Controllers - Lightguns - Namco (GunCon)
	GunCon Cinch-based Lightguns (Namco)
	Error/Busy Codes
	Minimum Brightness
	Coordinates
	Misinformation (from bugged homebrew source code)
	Namco Lightgun Drawing
	See also

	14.10 Controllers - Lightguns - Konami Justifier/Hyperblaster (IRQ10)
	Overall IRQ10-Based Lightgun Access
	Standard IRQ10-based Lightguns (Konami)
	Konami Lightgun Drawing
	Konami IRQ10 Notes
	IRQ10 Priority
	IRQ10 Timer Reading
	IRQ10 Bugs

	14.11 Controllers - Lightguns - PSX Lightgun Games
	PSX Lightgun Games

	14.12 Controllers - Configuration Commands
	Normal Mode
	Configuration Mode
	Normal Mode - Command 42h "B" - Read Buttons (and analog inputs when enabled)
	Normal Mode - Command 43h "C" - Enter/Exit Configuration Mode
	Config Mode - Command 42h "B" - Read Buttons AND analog inputs
	Config Mode - Command 43h "C" - Enter/Exit Configuration Mode
	Config Mode - Command 44h "D" - Set LED State (analog mode on/off)
	Config Mode - Command 45h "E" - Get LED State (and Type/constants)
	Config Mode - Command 46h "F" - Get Variable Response A
	Config Mode - Command 47h "G" - Get whatever values
	Config Mode - Command 4Ch "L" - Get Variable Response B
	Config Mode - Command 48h "H" - Unknown (response HiZ F3h 5Ah 4x00h 01h 00h)
	Config Mode - Command 4Dh "M" - Get/Set RumbleProtocol
	Config Mode - Command 40h "@" Dualshock2: Get/Set ButtonAttr?
	Config Mode - Command 41h "A" Dualshock2: Get Reply Capabilities
	Config Mode - Command 4Fh "O" Dualshock2: Set ReplyProtocol
	Config Mode - Command 49h "I" - Unused
	Config Mode - Command 4Ah "J" - Unused
	Config Mode - Command 4Bh "K" - Unused
	Config Mode - Command 4Eh "N" - Unused
	Config Mode - Command 40h "@" - Unused (except, used by Dualshock2)
	Config Mode - Command 41h "A" - Unused (except, used by Dualshock2)
	Config Mode - Command 4Fh "O" - Unused (except, used by Dualshock2)
	Note

	14.13 Controllers - Vibration/Rumble Control
	Old Method, one motor, no config commands (SCPH-1150, SCPH-1200, SCPH-110)
	New Method, two motors, with config commands (SCPH-1200, SCPH-110)
	Config Mode - Command 4Dh "M" - Get/Set RumbleProtocol
	Unknown Dualshock2 Vibration
	Note

	14.14 Controllers - Analog Buttons (Dualshock2)
	Config Mode - Command 40h "@" Dualshock2: Get/Set ButtonAttr?
	Config Mode - Command 41h "A" Dualshock2: Get Reply Capabilities
	Config Mode - Command 4Fh "O" Dualshock2: Set ReplyProtocol
	Analog Button Sensitivity
	Digital Button Sensitivity
	See also

	14.15 Controllers - Dance Mats
	Dance Mat vs Joypad Compatibility
	Dance Mat Unknown Things
	Dance Mat Games
	Dance Mat Variants
	Stay Cool?

	14.16 Controllers - Pop'n Controllers
	14.17 Controllers - Taiko Controllers (Tatacon)
	14.18 Controllers - Densha de Go! / Jet de Go! Controllers
	14.19 Controllers - Fishing Controllers
	PSX Fishing Controller Games
	Logos on CD Covers
	PSX Fishing Controllers
	Tech Info (all unknown)
	ASCII SLPH-00100 / agetec SLUH-00063 (silver)
	Bandai BANC-0001 (dark gray/blue)
	Hori HPS-97 / HPS-98 (black/gray)

	14.20 Controllers - PS2 DVD Remote
	Command 04h - IR poll (and disable controller mode)
	Command 06h, 03h - Re-enable controller mode
	Command 0Fh - Unknown
	IR code format
	Low-level IR protocol
	Built-in IR receivers

	14.21 Controllers - I-Mode Adaptor (Mobile Internet)
	PSX Games for I-Mode Adaptor (Japan only)
	Tech Details (all unknown)
	Hardware Variant

	14.22 Controllers - Keyboards
	Sony SCPH-2000 PS/2 Keyboard/Mouse Adaptor (prototype/with cable) (undated)
	Sony SCPH-2000 PS/2 Keyboard/Mouse Adaptor (without cable) (undated)
	Lightspan Online Connection CD Keyboard (1997)
	Spectrum Emulator Keyboard Adaptor (v1/serial port) (undated)
	Spectrum Emulator Keyboard & Sega Sticks Adaptor (v2/controller port) (2000)
	Homebrew PS/2 Keyboard/Mouse Adaptor (undated/from PSone era)
	Runix hardware add-on USB Keyboard/Mouse Adaptor (2001) (PIO extension port)
	TTY Console

	14.23 Controllers - Additional Inputs
	Reset Button
	CDROM Shell Open
	PocketStation
	Serial Port PSX only (not PSone)
	TTY Debug Terminal

	14.24 Controllers - Misc
	Standard Controllers
	Special Controllers
	Joystick
	MX4SIO

	14.25 Memory Card Read/Write Commands
	Reading Data from Memory Card
	Writing Data to Memory Card
	Get Memory Card ID Command
	Invalid Commands
	FLAG Byte
	Timings
	Notes

	14.26 Memory Card Data Format
	Data Size
	Header Frame (Block 0, Frame 0)
	Directory Frames (Block 0, Frame 1..15)
	Filename Notes
	Broken Sector List (Block 0, Frame 16..35)
	Broken Sector Replacement Data (Block 0, Frame 36..55)
	Unused Frames (Block 0, Frame 56..62)
	Write Test Frame (Block 0, Frame 63)
	Title Frame (Block 1..15, Frame 0) (in first block of file only)
	Icon Frame(s) (Block 1..15, Frame 1..3) (in first block of file only)
	Data Frame(s) (Block 1..15, Frame N..63; N=excluding any Title/Icon Frames)
	Shift-JIS Character Set (16bit) (used in Title Frames)

	14.27 Memory Card Images
	Raw Memory Card Images (without header) (ie. usually 128K in size)
	Xploder and Action Replay Files (54 byte header)
	.MCS Files (Single Save Format)
	.GME Files (usually 20F40h bytes)

	14.28 Memory Card Notes
	Sony PSX Memory Cards
	Sony PS2 Memory Cards
	Third Party Cards with bigger capacity
	Third Party Cards with bigger capacity and Data Compression
	Joytech Smart Card Adaptor
	Datel VMEM (virtual memory card storage on expansion port)
	Passwords (instead of Memory Cards)
	Yaroze Access Cards (DTL-H3020)
	Pocketstation (Memory Card with built-in LCD screen and buttons)

	15. Pocketstation
	15.1 Pocketstation Overview
	Sony's Pocketstation (SCPH-4000) (1998)
	The RTC Problem
	CPU Specs

	15.2 Pocketstation I/O Map
	Memory and Memory-Control Registers
	Interrupts and Timers
	Communication Ports, Audio/Video
	Memory Access Time
	Invalid/Unused Memory Locations
	Unsupported 8bit Reads
	Unsupported 16bit Reads
	garbage_byte (for unsupported 8bit reads)

	15.3 Pocketstation Memory Map
	Overall Memory Map
	00000000h..000001FFh - Kernel RAM
	00000200h..000007FFh - User RAM and User stack (stacktop at 800h)
	02000000h - FLASH1 - Flash ROM (virtual file-mapped addresses in this region)
	08000000h - FLASH2 - Flash ROM (128K) (physical addresses in this region)
	04000000h - BIOS ROM (16K) - Kernel and GUI
	Bus-Width Restrictions
	Waitstates

	15.4 Pocketstation IO Video and Audio
	0D000000h - LCD_MODE - LCD control word (R/W)
	0D000004h - LCD_CAL - LCD Calibration (maybe contrast or so?)
	0D000100h..D00017Fh - LCD_VRAM - 32x32 pixels, 1bit color depth (R/W)
	0D800010h - DAC_CTRL - Audio Control (R/W)
	0D800014h - DAC_DATA - Audio D/A Converter

	15.5 Pocketstation IO Interrupts and Buttons
	0A000004h - INT_INPUT - Raw Interrupt Signal Levels (R)
	0A000008h - INT_MASK_SET - Set Interrupt Mask (W)
	0A00000Ch - INT_MASK_CLR - Clear Interrupt Mask (W)
	0A000008h - INT_MASK_READ - Read Interrupt Mask (R)
	0A000000h - INT_LATCH - Interrupt Request Flags (R)
	0A000010h - INT_ACK - Acknowledge Interrupts (W)

	15.6 Pocketstation IO Timers and Real-Time Clock
	Timer and RTC interrupts
	0A800000h - T0_RELOAD - Timer 0 Reload Value
	0A800010h - T1_RELOAD - Timer 1 Reload Value
	0A800020h - T2_RELOAD - Timer 2 Reload Value
	0A800004h - T0_COUNT - Timer 0 Current value
	0A800014h - T1_COUNT - Timer 1 Current value
	0A800024h - T2_COUNT - Timer 2 Current value
	0A800008h - T0_MODE - Timer 0 Control
	0A800018h - T1_MODE - Timer 1 Control
	0A800028h - T2_MODE - Timer 2 Control
	0B800000h - RTC_MODE - RTC control word
	0B800004h - RTC_ADJUST - Modify value (write only)
	0B800008h - RTC_TIME - Real-Time Clock Time (read only) (R)
	0B80000Ch - RTC_DATE - Real-Time Clock Date (read only) (R)

	15.7 Pocketstation IO Infrared
	0C800000h - IRDA_MODE - Controlling the protocol - send/recv, etc. (R/W)
	0C800004h - IRDA_DATA - Infrared TX Data
	0C80000Ch - IRDA_MISC
	INT_INPUT.12 - IRQ - Infrared RX Interrupt
	IR Notes

	15.8 Pocketstation IO Memory-Control
	06000000h - F_CTRL
	06000004h F_STAT
	06000008h F_BANK_FLG ;FLASH virtual bank mapping enable flags (16 bits)(R/W)
	06000100h F_BANK_VAL ;FLASH virtual bank mapping addresses (16 words)(R/W)
	0600000Ch F_WAIT1 ;waitstates...?
	06000010h F_WAIT2 ;waitstates, and FLASH-Write-Control-and-Status...?
	08002A54h - F_KEY1 - Flash Unlock Address 1 (W)
	080055AAh - F_KEY2 - Flash Unlock Address 2 (W)
	06000300h - F_SN_LO - Serial Number LSBs
	06000302h - F_SN_HI - Serial Number MSBs
	06000308h - F_CAL - Calibration value for LCD
	F_BANK_VAL and F_BANK_FLG Notes

	15.9 Pocketstation IO Communication Ports
	0C000000h - COM_MODE - Com Mode
	0C000008h - COM_DATA - Com RX/TX Data
	0C000004h - COM_STAT1 - Com Status Register 1 (Bit1=Error)
	0C000014h - COM_STAT2 - Com Status Register 2 (Bit0=Ready)
	0C000010h - COM_CTRL1 - Com Control Register 1
	0C000018h - COM_CTRL2 - Com Control Register 2
	INT_INPUT.6 FIQ (!) COM for the COM_registers? (via /SEL Pin?)
	INT_INPUT.11 IRQ Docked ("IOP") (0=Undocked, 1=Docked to PSX)
	IOP_START/IOP_STOP.Bit1
	Opcode E6000010h (The Undefined Instruction) - Write chr(r0) to TTY

	15.10 Pocketstation IO Power Control
	0B000000h - CLK_MODE - Clock control (CPU and Timer Speed) (R/W)
	0B000004h - CLK_STOP - Clock stop (Sleep Mode)
	0D800000h - IOP_CTRL - Configures whatever...? (R/W)
	0D800004h - IOP_STAT (R) - Read Current bits? -- No, seems to be always 0
	0D800004h - IOP_STOP (W) - Set IOP_DATA Bits
	0D800008h - IOP_START (W) - Clear IOP_DATA Bits
	0D80000Ch - IOP_DATA (R)
	0D800020h - BATT_CTRL - Battery Monitor Control?
	Battery Low Interrupt

	15.11 Pocketstation SWI Function Summary
	SWI Function Summary

	15.12 Pocketstation SWI Misc Functions
	SWI 01h - SetCallbacks(index,proc)
	IRQ and FIQ Callbacks
	SWI 02h - CustomSwi2(r0..r6,r8..r10) out: r0
	SWI 04h - SetCpuSpeed(speed) out: old_speed

	15.13 Pocketstation SWI Communication Functions
	SWI 11h - SetComOnOff(flag)
	SWI 06h - GetPtrToComFlags()
	SWI 07h - ChangeAutoDocking(flags.16-18)
	SWI 0Bh - ClearComFlagsBit10()
	SWI 05h - SenseAutoCom()
	SWI 17h - GetPtrToFunc3addr()
	Download Notification callback

	15.14 Pocketstation SWI Execute Functions
	SWI 08h - PrepareExecute(flag,dir_index,param)
	GUI \<param> values - for PrepareExecute(1,0,param)
	SWI 09h - DoExecute(), or DoExecute(snapshot_saving_flag) for MCX1
	SWI 16h - GetDirIndex()
	SWI 15h - MakeAlternateDirIndex(flag,dir_index) out: alt_dir_index (new/old)
	SWI 12h - TestSnapshot(dir_index)
	Snapshot Notes (MCX1 Files)

	15.15 Pocketstation SWI Date/Time/Alarm Functions
	SWI 0Ch - SetBcdDateTime(date,time)
	SWI 0Dh - GetBcdDate()
	SWI 0Eh - GetBcdTime()
	SWI 13h - GetPtrToAlarmSetting()

	15.16 Pocketstation SWI Flash Functions
	SWI 10h - FlashWritePhysical(sector,src)
	SWI 03h - FlashWriteVirtual(sector,src)
	SWI 0Ah - FlashReadSerial()
	SWI 0Fh - FlashWriteSerial(serial_number) ;old BIOS only!
	SWI 18h - FlashReadWhateverByte(sector)

	15.17 Pocketstation SWI Useless Functions
	SWI 00h - Reset() ;don't use, destroys RTC settings
	SWI 14h - GetPtrToPtrToSwiTable()
	SWI service routine

	15.18 Pocketstation BU Command Summary
	BU Command Summary

	15.19 Pocketstation BU Standard Memory Card Commands
	BU Command 52h (Read Sector)
	BU Command 53h (Get ID)
	BU Command 57h (Write Sector)
	Write Error Code FDh (Directory Entries of currently executed file)
	Write Error Code FEh (write-protected Broken Sector region, sector 16..55)

	15.20 Pocketstation BU Basic Pocketstation Commands
	BU Command 50h (Change a FUNC 03h related value or so)
	BU Command 58h (Get an ID or Version value or so)
	BU Command 59h (Prepare File Execution with Dir_index, and Parameter)
	BU Command 5Ah (Get Dir_index, ComFlags, F_SN, Date, and Time)
	BU Command 5Eh (Get-and-Send ComFlags.bit1,3,2)
	BU Command 5Fh (Get-and-Send ComFlags.bit0)

	15.21 Pocketstation BU Custom Pocketstation Commands
	BU Command 5Bh (Execute Function and transfer data from Pocketstation to PSX)
	BU Command 5Ch (Execute Function and transfer data from PSX to Pocketstation)
	BU Command 5Dh (Execute Custom Download Notification Function)
	FUNC 00h - Get or Set Date/Time (FUNC0)
	FUNC 01h - Get or Set Memory Block (FUNC1)
	FUNC 02h - Get or Set Alarm/Flags (FUNC2)
	FUNC 03h - Custom Function 3 (aka FUNC3)
	FUNC 80h..FFh - Custom Function 80h..FFh
	First Function Call (Pre-Data)
	Second Function Call (Post-Data)
	Function flags (r0)

	15.22 Pocketstation File Header/Icons
	Pocketstation File Content
	Special "P" Filename in Directory Sector
	Special Pocketstation Entries in the Title Sector at [50h..5Fh]
	Snapshot Region (in "MCX1" Files only)
	Function Table (FUNC 80h..FFh)
	File Viewer Mono Icon
	Executable Mono Icon List
	Entrypoint
	Returning to the GUI

	15.23 Pocketstation File Images
	Pocketstation specific files
	Pocketstation .BIN Files ("SC" variant)
	Pocketstation .BIN Files ("SN" variant)

	15.24 Pocketstation XBOO Cable
	POC-XBOO Circuit
	POC-XBOO Upload
	POC-XBOO TTY Debug Messages

	16. Serial Interfaces (SIO)
	1F801040h+N*10h - SIO#_TX_DATA (W)
	1F801040h+N*10h - SIO#_RX_DATA (R)
	1F801044h+N*10h - SIO#_STAT (R)
	1F801048h+N*10h - SIO#_MODE (R/W) (eg. 004Eh --> 8N1 with Factor=MUL16)
	1F80104Ah+N*10h - SIO#_CTRL (R/W)
	1F80105Ch - SIO1_MISC (R/W)
	1F80104Eh+N*10h - SIO#_BAUD (R/W) (eg. 00DCh --> 9600 bps; when Factor=MUL16)
	SIO_TX_DATA Notes
	SIO_RX_DATA Notes
	Interrupt Acknowledge Notes
	Note
	SIO1 link cable games

	17. Expansion Port (PIO)
	Size/Bus-Width
	Expansion 1 - EXP1 - Intended to contain ROM
	Expansion 2 - EXP2 - Intended to contain I/O Ports
	Expansion 3 - EXP3 - Intended to contain RAM
	Other Expansions
	Missing Expansion Port
	Latched Address Bus
	17.1 EXP1 Expansion ROM Header
	Expansion 1 - ROM Header (accessed with 8bit databus setting)
	Pre-Boot Function
	Post-Boot Function
	Mid-Boot Hook
	Note

	17.2 EXP2 Dual Serial Port (for TTY Debug Terminal)
	SCN2681 Dual Asynchronous Receiver/Transmitter (DUART)
	1F802023h/Read - RHRA - DUART Rx Holding Register A (FIFO) (R)
	1F80202Bh/Read - RHRB - DUART Rx Holding Register B (FIFO) (R)
	1F802023h/Write - THRA - DUART Tx Holding Register A (W)
	1F80202Bh/Write - THRB - DUART Tx Holding Register B (W)
	1F802020h/FirstAccess - MR1A - DUART Mode Register 1.A (R/W)
	1F802028h/FirstAccess - MR1B - DUART Mode Register 1.B (R/W)
	1F802020h/SecondAccess - MR2A - DUART Mode Register 2.A (R/W)
	1F802028h/SecondAccess - MR2B - DUART Mode Register 2.B (R/W)
	1F802021h/Write - CSRA - DUART Clock Select Register A (W)
	1F802029h/Write - CSRB - DUART Clock Select Register B (W)
	1F802022h/Write - CRA - DUART Command Register A (W)
	1F80202Ah/Write - CRB - DUART Command Register B (W)
	1F802025h/Read - ISR - DUART Interrupt Status Register (R)
	1F802025h/Write - IMR - DUART Interrupt Mask Register (W)
	1F802021h/Read - SRA - DUART Status Register A (R)
	1F802029h/Read - SRB - DUART Status Register B (R)
	1F802024h/Write - ACR - DUART Aux. Control Register (W)
	1F802024h/Read - IPCR - DUART Input Port Change Register (R)
	1F80202Dh/Read - IP - DUART Input Port (R)
	1F80202Eh/Write - DUART Set Output Port Bits Command (Set means Out=LOW)
	1F80202Fh/Write - DUART Reset Output Port Bits Command (Reset means Out=HIGH)
	1F80202Dh/Write - OPCR - DUART Output Port Configuration Register (W)
	1F802022h/Read - - DUART Toggle Baud Rate Generator Test Mode (Read=Strobe)
	1F80202Ah/Read - - DUART Toggle 1X/16X Test Mode (Read=Strobe)
	1F80202Eh/Read - CT_START - DUART Start Counter Command (Read=Strobe)
	1F80202Fh/Read - CT_STOP - DUART Stop Counter Command (Read=Strobe)
	1F802026h/Read - CTU - DUART Counter/Timer Current Value, Upper/Bit15-8 (R)
	1F802027h/Read - CTL - DUART Counter/Timer Current Value, Lower/Bit7-0 (R)
	1F802026h/Write - CTUR - DUART Counter/Timer Reload Value, Upper/Bit15-8 (W)
	1F802027h/Write - CTLR - DUART Counter/Timer Reload Value, Lower/Bit7-0 (W)
	1F80202Ch - N/A - DUART Reserved Register (neither R nor W)
	Chip versions
	Notes

	17.3 EXP2 DTL-H2000 I/O Ports
	1F802000h - DTL-H2000: EXP2: - ATCONS STAT (R)
	1F802002h - DTL-H2000: EXP2: - ATCONS DATA (R and W)
	1F802004h - DTL-H2000: EXP2: - 16bit - ?
	1F802030h - DTL-H2000: Secondary IRQ10 Controller (IRQ Flags)
	1F802032h - DTL-H2000: EXP2: - maybe IRQ enable?
	1F802040h - DTL-H2000: EXP2: 1-byte - DIP Switch?
	1F802042h - DTL-H2000: EXP2: POST/LED (R/W)

	17.4 EXP2 Post Registers
	1F802041h - POST - External 7-segment Display (W)
	1F802042h - DTL-H2000: EXP2: POST/LED (R/W)
	1F802070h - POST2 - Unknown? (W) - PS2
	1FA00000h - POST3 - External 7-segment Display (W) - PS2

	17.5 EXP2 Nocash Emulation Expansion
	1F802060h Emu-Expansion ID1 "E" (R)
	1F802061h Emu-Expansion ID2 "X" (R)
	1F802062h Emu-Expansion ID3 "P" (R)
	1F802063h Emu-Expansion Version (01h) (R)
	1F802064h Emu-Expansion Enable1 "O" (R/W)
	1F802065h Emu-Expansion Enable2 "N" (R/W)
	1F802066h Emu-Expansion Halt (R)
	1F802067h Emu-Expansion Turbo Mode Flags (R/W)

	17.6 EXP2 PCSX-Redux Emulation Expansion
	1F802080h 4 Redux-Expansion ID "PCSX" (R)
	1F802080h 1 Redux-Expansion Console putchar (W)
	1F802081h 1 Redux-Expansion Debug break (W)
	1F802082h 1 Redux-Expansion Exit code (W)
	1F802084h 4 Redux-Expansion Notification message pointer (W)

	18. Memory Control
	1F801000h - Expansion 1 Base Address (usually 1F000000h)
	1F801004h - Expansion 2 Base Address (usually 1F802000h)
	1F801008h - Expansion 1 Delay/Size (usually 0013243Fh) (512Kbytes, 8bit bus) (573: 24173F47h)
	1F80100Ch - Expansion 3 Delay/Size (usually 00003022h) (1 byte)
	1F801010h - BIOS ROM Delay/Size (usually 0013243Fh) (512Kbytes, 8bit bus)
	1F801014h - SPU Delay/Size (200931E1h) (use 220931E1h for SPU-RAM reads)
	1F801018h - CDROM Delay/Size (00020843h or 00020943h)
	1F80101Ch - Expansion 2 Delay/Size (usually 00070777h) (128 bytes, 8bit bus)
	1F801020h - COM_DELAY / COMMON_DELAY (00031125h or 0000132Ch or 00001325h)
	1F801060h - RAM_SIZE (R/W) (usually 00000B88h) (or 00000888h)
	FFFE0130h - BCC, BIU/Cache Configuration Register (R/W)

	19. Unpredictable Things
	I/O Write Datasize
	I/O Read Datasize
	I/O Write Datasize
	Cache Problems
	Writebuffer Problems
	CPU Load/Store Problems
	CPU Register Problems - R1 (AT), R26 (K0), R29 (SP)
	Locked Locations in Memory and I/O Area
	Mirrors in I/O Area
	Garbage Locations in I/O Area
	PSX as Abbreviation for Playstation 1
	PSX as Abbreviation for POSIX.1
	PSX as Abbreviation for an Extended Playstation 2

	20. CPU Specifications
	CPU
	System Control Coprocessor (COP0)
	20.1 CPU Registers
	R29 (SP) - Full Decrementing Wasted Stack Pointer

	20.2 CPU Opcode Encoding
	Primary opcode field (Bit 26..31)
	Secondary opcode field (Bit 0..5) (when Primary opcode = 00h)
	Opcode/Parameter Encoding
	Coprocessor Opcode/Parameter Encoding
	Illegal Opcodes

	20.3 CPU Load/Store Opcodes
	Load instructions
	Caution - Load Delay
	Store instructions
	Caution - 8/16-bit writes to certain IO registers
	Load/Store Alignment
	Unaligned Load/Store
	Unaligned Load/Store (Details)

	20.4 CPU ALU Opcodes
	arithmetic instructions
	comparison instructions
	logical instructions
	shifting instructions
	Multiply/divide

	20.5 CPU Jump Opcodes
	jumps and branches
	JALR cautions
	exception opcodes

	20.6 CPU Coprocessor Opcodes
	Coprocessor Instructions (COP0..COP3)
	Caution - Load Delay
	Caution - Store Delay

	20.7 CPU Pseudo Opcodes
	Pseudo instructions (native/spasm)
	Pseudo instructions (nocash/a22i, not present on most other assemblers)
	Directives (nocash)
	Directives (native)
	Syntax for unknown assembler (for pad.s)

	20.8 COP0 - Register Summary
	COP0 Register Summary

	20.9 COP0 - Exception Handling
	cop0r13 - CAUSE - (Read-only, except, Bit8-9 are R/W)
	cop0r12 - SR - System status register (R/W)
	cop0r14 - EPC - Return Address from Trap (R)
	Interrupts vs GTE Commands
	cop0cmd=10h - RFE opcode - Prepare Return from Exception
	cop0r8 - BadVaddr - Bad Virtual Address (R)
	Exception Vectors (depending on BEV bit in SR register)
	Exception Priority

	20.10 COP0 - Misc
	cop0r15 - PRID - Processor Revision Identifier (R)
	cop0r6 - TAR - Target Address (R)
	cop0r0..r2, cop0r4, cop0r10, cop0r32..r63 - N/A
	cop0cmd=01h,02h,06h,08h - TLBR,TLBWI,TLBWR,TLBP
	jf/jt cop0flg,dest - conditional cop0 jumps
	mov [mem],cop0reg / mov cop0reg,[mem] - coprocessor cop0 load/store
	cop0r16-r31 - Garbage

	20.11 COP0 - Debug Registers
	cop0r7 - DCIC - Debug and Cache Invalidate Control (R/W)
	cop0r7.bit12-13 - Jump Redirection Note
	cop0r5 - BDA - Breakpoint Data Address (R/W)
	cop0r9 - BDAM - Breakpoint Data Address Mask (R/W)
	cop0r3 - BPC - Breakpoint Program Counter (R/W)
	cop0r11 - BPCM - Breakpoint Program Counter Mask (R/W)
	Note (BREAK Opcode)
	Note (LibCrypt)
	Note (Cheat Devices/Expansion ROMs)

	21. Kernel (BIOS)
	21.1 BIOS Overview
	BIOS CDROM Boot
	BIOS Bootmenu
	BIOS Functions
	BIOS Memory

	21.2 BIOS Memory Map
	BIOS ROM Map (512Kbytes)
	BIOS ROM Header/Footer
	BIOS RAM Map (1st 64Kbytes of RAM) (fixed addresses mainly in 1st 500h bytes)
	User Memory (not used by Kernel)
	Table of Tables (see BIOS Control Blocks for details)
	Garbage Area at Address 00000000h

	21.3 BIOS Function Summary
	Parameters, Registers, Stack
	A-Functions (Call 00A0h with function number in R9 Register)
	B-Functions (Call 00B0h with function number in R9 Register)
	C-Functions (Call 00C0h with function number in R9 Register)
	SYS-Functions (Syscall opcode with function number in R4 aka A0 Register)
	BREAK-Functions (Break opcode with function number in opcode's immediate)

	21.4 BIOS File Functions
	A(00h) or B(32h) - open(filename, accessmode) - Opens a file for IO
	A(01h) or B(33h) - lseek(fd, offset, seektype) - Move the file pointer
	A(02h) or B(34h) - read(fd, dst, length) - Read data from an open file
	A(03h) or B(35h) - write(fd, src, length) - Write data to an open file
	A(04h) or B(36h) - close(fd) - Close an open file
	A(08h) or B(3Ah) - getc(fd) - read one byte from file
	A(09h) or B(3Bh) - putc(char,fd) - write one byte to file
	B(40h) - cd(name) - Change the current directory on target device
	B(42h) - firstfile2(filename,direntry) - Find first file to match the name
	B(43h) - nextfile(direntry) - Searches for the next file to match the name
	B(44h) - rename(old_filename, new_filename)
	B(45h) - erase(filename) - Delete a file on target device
	B(46h) - undelete(filename)
	B(41h) - format(devicename)
	B(54h) - _get_errno()
	B(55h) - _get_error(fd)
	A(05h) or B(37h) - ioctl(fd,cmd,arg)
	A(07h) or B(39h) - isatty(fd)
	B(59h) - testdevice(devicename)
	File Error Numbers for B(54h) and B(55h)

	21.5 BIOS File Execute and Flush Cache
	A(41h) - LoadTest(filename, headerbuf)
	A(42h) - Load(filename, headerbuf)
	A(43h) - Exec(headerbuf, param1, param2)
	A(51h) - LoadExec(filename, stackbase, stackoffset)
	A(9Ch) - SetConf(num_EvCB, num_TCB, stacktop)
	A(9Dh) - GetConf(num_EvCB_dst, num_TCB_dst, stacktop_dst)
	A(44h) - FlushCache()
	Executable Memory Allocation
	Note

	21.6 BIOS CDROM Functions
	General File Functions
	Absent CD-Audio Support
	Asynchronous CDROM Access
	A(A4h) - CdGetLbn(filename)
	A(A5h) - CdReadSector(count,sector,buffer)
	A(A6h) - CdGetStatus()
	A(78h) - CdAsyncSeekL(src)
	A(7Ch) - CdAsyncGetStatus(dst)
	A(7Eh) - CdAsyncReadSector(count,dst,mode)
	A(81h) - CdAsyncSetMode(mode)
	A(94h) - CdromGetInt5errCode(dst1,dst2)
	A(54h) or A(71h) - _96_init()
	A(56h) or A(72h) - _96_remove() ;does NOT work due to SysDeqIntRP bug
	A(90h) - CdromIoIrqFunc1()
	A(91h) - CdromDmaIrqFunc1()
	A(92h) - CdromIoIrqFunc2()
	A(93h) - CdromDmaIrqFunc2()
	A(95h) - CdInitSubFunc() ;subfunction for _96_init()
	A(9Eh) - SetCdromIrqAutoAbort(type,flag)
	A(A2h) - EnqueueCdIntr() ;with prio=0 (fixed)
	A(A3h) - DequeueCdIntr() ;does NOT work due to SysDeqIntRP bug

	21.7 BIOS Memory Card Functions
	General File Functions
	File Header, Filesize, and Sector Alignment
	Poor Memcard Performance
	Asynchronous Access
	Multitap Support (and Multitap Problems)
	B(4Ah) - InitCARD2(pad_enable) ;uses/destroys k0/k1 !!!
	B(4Bh) - StartCARD2()
	B(4Ch) - StopCARD2()
	A(55h) or A(70h) - _bu_init()
	A(ABh) - _card_info(port)
	B(4Dh) - _card_info_subfunc(port) ;subfunction for "_card_info"
	A(AFh) - card_write_test(port) ;not supported by old CEX-1000 version
	B(50h) - _new_card()
	B(4Eh) - _card_write(port,sector,src)
	B(4Fh) - _card_read(port,sector,dst)
	B(5Ch) - _card_status(slot)
	B(5Dh) - _card_wait(slot)
	A(A7h) - bufs_cb_0()
	A(A8h) - bufs_cb_1()
	A(A9h) - bufs_cb_2()
	A(AAh) - bufs_cb_3()
	A(AEh) - bufs_cb_4()
	B(58h) - _card_chan()
	A(ACh) - _card_load(port)
	A(ADh) - _card_auto(flag)
	C(1Ah) - set_card_find_mode(mode)
	C(1Dh) - get_card_find_mode()

	21.8 BIOS Interrupt/Exception Handling
	Inefficiency
	Unstable IRQ Handling
	B(18h) - ResetEntryInt()
	B(19h) - HookEntryInt(addr)
	Priority Chains
	C(02h) - SysEnqIntRP(priority,struc) ;bugged, use with care
	C(03h) - SysDeqIntRP(priority,struc) ;bugged, use with care
	SYS(01h) - EnterCriticalSection() ;syscall with r4=01h
	SYS(02h) - ExitCriticalSection() ;syscall with r4=02h
	C(0Dh) - SetIrqAutoAck(irq,flag)
	C(06h) - ExceptionHandler()
	B(17h) - ReturnFromException()
	C(00h) - EnqueueTimerAndVblankIrqs(priority) ;used with prio=1
	C(01h) - EnqueueSyscallHandler(priority) ;used with prio=0
	C(0Ch) - InitDefInt(priority) ;used with prio=3
	No Nested Exceptions

	21.9 BIOS Event Functions
	B(08h) - OpenEvent(class, spec, mode, func)
	B(09h) - CloseEvent(event) - releases event from the event table
	B(0Ch) - EnableEvent(event) - Turns on event handling for specified event
	B(0Dh) - DisableEvent(event) - Turns off event handling for specified event
	B(0Ah) - WaitEvent(event)
	B(0Bh) - TestEvent(event)
	B(07h) - DeliverEvent(class, spec)
	B(20h) - UnDeliverEvent(class, spec)
	C(04h) - get_free_EvCB_slot()
	Event Classes
	Event Specs
	Event modes

	21.10 BIOS Event Summary
	CDROM Events
	Memory Card - Higher Level File/Device Events
	Memory Card - Lower Level Hardware I/O Events
	Timer/Vblank Events
	Default IRQ Handler Events (very unstable, don't use)
	Unresolved Exception Events

	21.11 BIOS Thread Functions
	B(0Eh) - OpenTh(reg_PC,reg_SP_FP,reg_GP)
	BUG - Unitialized SR Register
	B(0Fh) - CloseTh(handle)
	B(10h) - ChangeTh(handle)
	C(05h) - get_free_TCB_slot()
	SYS(03h) ChangeThreadSubFunction(addr) ;syscall with r4=03h, r5=addr

	21.12 BIOS Timer Functions
	Timers (aka Root Counters)
	Vblank
	B(02h) - init_timer(t,reload,flags)
	B(03h) - get_timer(t)
	B(04h) - enable_timer_irq(t)
	B(05h) - disable_timer_irq(t)
	B(06h) - restart_timer(t)
	C(0Ah) - ChangeClearRCnt(t,flag) ;root counter (aka timer)

	21.13 BIOS Joypad Functions
	Pad Input
	B(12h) - InitPAD2(buf1, siz1, buf2, siz2)
	B(13h) - StartPAD2()
	B(14h) - StopPAD2()
	B(15h) - PAD_init2(type, button_dest, unused, unused)
	B(16h) - PAD_dr()

	21.14 BIOS GPU Functions
	A(48h) - SendGP1Command(gp1cmd)
	A(49h) - GPU_cw(gp0cmd) ;send GP0 command word
	A(4Ah) - GPU_cwp(src,num) ;send GP0 command word and parameter words
	A(4Bh) - send_gpu_linked_list(src)
	A(4Ch) - gpu_abort_dma()
	A(4Dh) - GetGPUStatus()
	A(46h) - GPU_dw(Xdst,Ydst,Xsiz,Ysiz,src)
	A(47h) - gpu_send_dma(Xdst,Ydst,Xsiz,Ysiz,src)
	A(4Eh) - gpu_sync()

	21.15 BIOS Memory Allocation
	A(33h) - malloc(size)
	A(34h) - free(buf)
	A(37h) - calloc(sizx, sizy) ;SLOW!
	A(38h) - realloc(old_buf, new_size) ;SLOW!
	A(39h) - InitHeap(addr, size)
	B(00h) - alloc_kernel_memory(size)
	B(01h) - free_kernel_memory(buf)
	Scratchpad Note
	A(9Fh) - SetMem(megabytes)

	21.16 BIOS Memory Fill/Copy/Compare (SLOW)
	A(2Ah) - memcpy(dst, src, len)
	A(2Bh) - memset(dst, fillbyte, len)
	A(2Ch) - memmove(dst, src, len) - bugged
	A(2Dh) - memcmp(src1, src2, len) - bugged
	A(2Eh) - memchr(src, scanbyte, len)
	A(27h) - bcopy(src, dst, len)
	A(28h) - bzero(dst, len)
	A(29h) - bcmp(ptr1, ptr2, len) - bugged

	21.17 BIOS String Functions
	A(15h) - strcat(dst, src)
	A(16h) - strncat(dst, src, maxlen)
	A(17h) - strcmp(str1, str2)
	A(18h) - strncmp(str1, str2, maxlen)
	A(19h) - strcpy(dst, src)
	A(1Ah) - strncpy(dst, src, maxlen)
	A(1Bh) - strlen(src)
	A(1Ch) - index(src, char)
	A(1Dh) - rindex(src, char)
	A(1Eh) - strchr(src, char) ;exactly the same as "index"
	A(1Fh) - strrchr(src, char) ;exactly the same as "rindex"
	A(20h) - strpbrk(src, list)
	A(21h) - strspn(src, list)
	A(22h) - strcspn(src, list)
	A(23h) - strtok(src, list) ;first call
	A(23h) - strtok(0, list) ;further call(s)
	A(24h) - strstr(str, substr) - buggy

	21.18 BIOS Number/String/Character Conversion
	A(0Eh) - abs(val)
	A(0Fh) - labs(val) ;exactly same as "abs"
	A(0Ah) - todigit(char)
	A(25h) - toupper(char)
	A(26h) - tolower(char)
	A(0Dh) - strtol(src, src_end, base)
	A(0Ch) - strtoul(src, src_end, base)
	A(10h) - atoi(src)
	A(11h) - atol(src) ;exactly same as "atoi" (but slightly slower)
	A(12h) - atob(src, num_dst)
	A(0Bh) - atof(src) ;USES (ABSENT) COP1 FPU !!!
	A(32h) - strtod(src, src_end) ;USES (ABSENT) COP1 FPU !!!
	Note

	21.19 BIOS Misc Functions
	A(2Fh) - rand()
	A(30h) - srand(seed)
	A(B4h) - GetSystemInfo(index) ;not supported by old CEX-1000 version
	B(56h) - GetC0Table()
	B(57h) - GetB0Table()
	A(31h) - qsort(base, nel, width, callback)
	A(35h) - lsearch(key, base, nel, width, callback)
	A(36h) - bsearch(key, base, nel, width, callback)
	C(19h) - _ioabort(txt1,txt2)
	A(B2h) - _ioabort_raw(param) ;not supported by old CEX-1000 version
	A(13h) - setjmp(buf)
	A(14h) - longjmp(buf, param)
	A(53h) - set_ioabort_handler(src) ;PS2 only ;PSX: SystemError
	A(06h) or B(38h) - exit(exitcode)
	A(A0h) - _boot()
	A(B5h..BFh) B(11h,24h..29h,2Ch..31h,5Eh..FFh) C(1Eh..7Fh) - N/A - Jump 0
	A(57h..5Ah,73h..77h,79h..7Bh,7Dh,7Fh..80h,82h..8Fh,B0h..B1h,B3h), and
	C(0Eh..11h,14h) - N/A - Returns 0
	SYS(00h) - NoFunction()
	SYS(04h..FFFFFFFFh) - calls DeliverEvent(F0000010h,4000h)
	A(3Ah) - _exit(exitcode)
	A(40h) - SystemErrorUnresolvedException()
	A(A1h) - SystemError(type,errorcode) ;type "B"=Boot,"D"=Disk
	A(4Fh,50h,52h,53h,9Ah,9Bh) B(1Ah..1Fh,21h..23h,2Ah,2Bh,52h,5Ah) C(0Bh) - N/A
	BRK(1C00h) - Division by zero (commonly checked/invoked by software)
	BRK(1800h) - Division overflow (-80000000h/-1, sometimes checked by software)

	21.20 BIOS Internal Boot Functions
	A(45h) - init_a0_b0_c0_vectors
	C(07h) - InstallExceptionHandlers() ;destroys/uses k0/k1
	C(08h) - SysInitMemory(addr,size)
	C(09h) - SysInitKernelVariables()
	C(12h) - InstallDevices(ttyflag)
	C(1Ch) - AdjustA0Table()

	21.21 BIOS More Internal Functions
	Internal Device Stuff
	Device Names

	21.22 BIOS PC File Server
	DTL-H2000
	Caetla Blurb
	BRK(101h) - PCInit() - Inits the fileserver
	BRK(102h) - PCCreat(filename, fileattributes) - Creates a new file on PC
	BRK(103h) - PCOpen(filename, accessmode) - Opens a file on the PC
	BRK(104h) - PCClose(filehandle) - Closes a file on the PC
	BRK(105h) - PCRead(filehandle, length, memory_destination_address)
	BRK(106h) - PCWrite(filehandle, length, memory_source_address)
	BRK(107h) - PClSeek(filehandle, file_offset, seekmode) - Change Filepos

	21.23 BIOS TTY Console (std_io)
	A(3Fh) - Printf(txt,param1,param2,etc.) - Print string to console
	A(3Eh) or B(3Fh) - puts(src) - Write string to TTY
	A(3Dh) or B(3Eh) - gets(dst) - Read string from TTY (keyboard input)
	A(3Bh) or B(3Ch) - getchar() - Read character from TTY
	A(3Ch) or B(3Dh) - putchar(char) - Write character to TTY
	C(13h) - FlushStdInOutPut()
	C(1Bh) - KernelRedirect(ttyflag) ;PS2: ttyflag=1 causes SystemError
	Activating std_io
	B(49h) - PrintInstalledDevices()
	Note

	21.24 BIOS Character Sets
	B(51h) - Krom2RawAdd(shiftjis_code)
	B(53h) - Krom2Offset(shiftjis_code)
	Character Sets in ROM (112Kbytes)

	21.25 BIOS Control Blocks
	Exception Control Blocks (ExCB) (4 blocks of 8 bytes each)
	Event Control Blocks (EvCB) (usually 16 blocks of 1Ch bytes each)
	Thread Control Blocks (TCB) (usually 4 blocks of 0C0h bytes each)
	Process Control Block (1 block of 4 bytes)
	File Control Blocks (FCB) (16 blocks of 2Ch bytes each)
	Device Control Blocks (DCB) (10 blocks of 50h bytes each)

	21.26 BIOS Versions
	Kernel Versions
	Bootmenu/Intro Versions
	Character Set Versions

	21.27 BIOS Patches
	Patches and Anti-Patch-Patches
	Compatibility
	patch_missing_cop0r13_in_exception_handler:
	early_card_irq_patch:
	patch_uninstall_early_card_irq_handler:
	patch_card_specific_delay:
	patch_card_info_step4:
	patch_pad_error_handling_and_get_pad_enable_functions:
	patch_optional_pad_output:
	patch_no_pad_card_auto_ack:
	patch_install_lightgun_irq_handler:
	set_conf_without_realloc:
	Cheat Devices
	Note

	22. Arcade Cabinets
	22.1 CPU
	22.2 GPU
	22.3 Audio
	22.4 Controls
	22.5 Storage
	22.6 Security
	22.7 Games

	23. Konami System 573
	23.1 Differences vs. PS1
	23.1.1 Main changes
	23.1.2 Additional hardware

	23.2 Register map
	23.2.1 Konami ASIC registers
	0x1f400000 (ASIC register 0): ADC / Coin counters / Audio control
	0x1f400004 (ASIC register 2): DIP switches / JVS status / Security cartridge
	0x1f400006 (ASIC register 3): Misc. inputs
	0x1f400008 (ASIC register 4): JAMMA controls
	0x1f40000a (ASIC register 5): Data from JVS MCU
	0x1f40000c (ASIC register 6): JAMMA controls / External inputs
	0x1f40000e (ASIC register 7): JAMMA controls / External inputs

	23.2.2 IDE registers
	0x1f480000 (IDE bank 0, address 0): Data
	0x1f480002 (IDE bank 0, address 1): Error / Features
	0x1f480004 (IDE bank 0, address 2): Sector count
	0x1f480006 (IDE bank 0, address 3): Sector number
	0x1f480008 (IDE bank 0, address 4): Cylinder number low
	0x1f48000a (IDE bank 0, address 5): Cylinder number high
	0x1f48000c (IDE bank 0, address 6): Head number / Drive select
	0x1f48000e (IDE bank 0, address 7): Status / Command
	0x1f4c000c (IDE bank 1, address 6): Alternate status
	IDE DMA and quirks

	23.2.3 RTC registers
	0x1f623ff0 (M48T58 register 0x1ff8): Calibration / Control
	0x1f623ff2 (M48T58 register 0x1ff9): Seconds / Stop
	0x1f623ff4 (M48T58 register 0x1ffa): Minute
	0x1f623ff6 (M48T58 register 0x1ffb): Hour
	0x1f623ff8 (M48T58 register 0x1ffc): Day of week / Century
	0x1f623ffa (M48T58 register 0x1ffd): Day of month / Battery state
	0x1f623ffc (M48T58 register 0x1ffe): Month
	0x1f623ffe (M48T58 register 0x1fff): Year

	23.2.4 Other registers
	0x1f500000: Bank switch / Security cartridge
	0x1f520000: JVSIRDY clear
	0x1f560000: IDE reset control
	0x1f5c0000: Watchdog clear
	0x1f600000: External outputs
	0x1f680000: Data to JVS MCU
	0x1f6a0000: Security cartridge outputs

	23.3 JVS interface
	23.3.1 Packet format
	23.3.2 MCU communication protocol

	23.4 I/O boards
	23.4.1 Analog I/O board (GX700-PWB(F))
	0x1f640080: Bank A
	0x1f640088: Bank B
	0x1f640090: Bank C
	0x1f640098: Bank D

	23.4.2 Digital I/O board (GX894-PWB(B)A)
	0x1f640080 (FPGA, all bitstreams): Magic number
	0x1f640082 (FPGA, 573in1 bitstream): Configuration
	0x1f640090 (FPGA, all bitstreams): Network board address
	0x1f640092 (FPGA, all bitstreams): Unknown (network related)
	0x1f6400a0 (FPGA, all bitstreams): MP3 data start address high
	0x1f6400a2 (FPGA, all bitstreams): MP3 data start address low
	0x1f6400a4 (FPGA, all bitstreams): MP3 data end address high
	0x1f6400a6 (FPGA, all bitstreams): MP3 data end address low
	0x1f6400a8 (FPGA, all bitstreams): MP3 frame counter / Descrambler key 1
	0x1f6400aa (FPGA, all bitstreams): MP3 playback status
	0x1f6400ac (FPGA, all bitstreams): MAS3507D I2C
	0x1f6400ae (FPGA, all bitstreams): MP3 data feeder control
	0x1f6400b0 (FPGA, all bitstreams): DRAM write address high
	0x1f6400b2 (FPGA, all bitstreams): DRAM write address low
	0x1f6400b4 (FPGA, all bitstreams): DRAM data
	0x1f6400b6 (FPGA, all bitstreams): DRAM read address high
	0x1f6400b8 (FPGA, all bitstreams): DRAM read address low
	0x1f6400ba (FPGA, all bitstreams): Unknown
	0x1f6400c0 (FPGA, all bitstreams): Network data
	0x1f6400c2 (FPGA, all bitstreams): Network TX FIFO length
	0x1f6400c4 (FPGA, all bitstreams): Network RX FIFO length
	0x1f6400c6 (FPGA, all bitstreams): Unknown
	0x1f6400c8 (FPGA, all bitstreams): Unknown (network related)
	0x1f6400ca (FPGA, all bitstreams except Solo): DAC sample counter high
	0x1f6400cc (FPGA, all bitstreams): DAC sample counter low
	0x1f6400ce (FPGA, all bitstreams): DAC sample counter delta
	0x1f6400e0 (FPGA, all bitstreams): Bank A
	0x1f6400e2 (FPGA, all bitstreams): Bank A
	0x1f6400e4 (FPGA, all bitstreams): Bank B
	0x1f6400e6 (FPGA, all bitstreams): Bank D
	0x1f6400e8 (FPGA, all bitstreams): Internal logic reset
	0x1f6400ea (FPGA, all bitstreams): Descrambler key 2
	0x1f6400ec (FPGA, all bitstreams): Descrambler key 3
	0x1f6400ee (FPGA, all bitstreams): 1-wire bus
	0x1f6400f0 (CPLD): Unknown (unused?)
	0x1f6400f2 (CPLD): Unknown (unused?)
	0x1f6400f4 (CPLD): DAC reset
	0x1f6400f6 (CPLD): FPGA status and control
	0x1f6400f8 (CPLD): FPGA bitstream upload
	0x1f6400fa (CPLD): Bank C
	0x1f6400fc (CPLD): Bank C
	0x1f6400fe (CPLD): Bank B

	23.4.3 Alternate analog I/O board (GX700-PWB(K))
	23.4.4 Fishing controller I/O board (GE765-PWB(B)A)
	23.4.5 DDR Karaoke Mix I/O board (GX921-PWB(B))
	23.4.6 GunMania I/O board (PWB0000073070)
	23.4.7 Hypothetical debugging board
	0x1f640000: UART data
	0x1f640002: UART control
	0x1f640004: UART baud rate select
	0x1f640006: UART mode
	0x1f640010: 7-segment display

	23.5 Security cartridges
	23.5.1 Electrical interface
	Handshaking lines
	Note about RTS/CTS

	23.5.2 Cartridge EEPROM types
	ZS01 protocol

	23.5.3 EEPROM-less cartridge variants
	Hyper Bishi Bashi Champ 3-player cartridge (GX700-PWB(E))

	23.5.4 X76F041 cartridge variants
	Generic cartridge (GX700-PWB(D))
	Generic cartridge with DS2401 (GX894-PWB(D))
	Early serial port cartridge (GX896-PWB(A)A)
	Serial port cartridge with DS2401 (GX883-PWB(D))
	PunchMania cartridge (GX700-PWB(J))
	Hyper Bishi Bashi Champ 2-player cartridge (PWB0000068819)
	Salary Man Champ cartridge (PWB0000088954)

	23.5.5 ZS01 cartridge variants
	Serial port cartridge (GE949-PWB(D)A)
	Stripped down serial port cartridge (GE949-PWB(D)B)

	23.5.6 Cartridge identifiers
	SID (silicon/serial ID?)
	TID (trace ID)
	MID (medium ID?)
	XID (external ID?)

	23.6 External modules
	23.6.1 Relay board (GN845-PWB(A))
	23.6.2 DDR stage I/O board (GN845-PWB(B))
	23.6.3 PS1 controller and memory card adapter (GE885-PWB(A))
	23.6.4 PunchMania 2 PCMCIA splitter (PWB0000085445)
	23.6.5 e-Amusement network unit (PWB0000100991)
	23.6.6 Multisession unit (GXA25-PWB(A))
	23.6.7 Master calendar
	0x70: Get date and time
	0x71: Get game region or initialization data
	0x7c, 0x7f, 0x00: Get trace ID "main" serial number
	0x7c, 0x80, 0x00: Get trace ID "sub" serial number
	0x7d, 0x80, 0x10: Get next ID
	0x7e: Set DS2401 identifiers
	0x7f: Unknown
	0xf0: Reset master calendar

	23.7 BIOS
	23.7.1 Shell revisions
	23.7.2 Kernel differences
	23.7.3 Boot sequence
	23.7.4 Command-line arguments
	23.7.5 JVS MCU test sequence
	23.7.6 DVD-ROM support
	23.7.7 Scrapped CF card support

	23.8 Bootleg mod boards
	23.8.1 DDRTURBO mod board

	23.9 Game-specific information
	23.9.1 Black case I/O connectors
	23.9.2 DDR I/O connectors
	23.9.3 DDR light mapping
	23.9.4 DDR Solo input and light mapping
	23.9.5 DrumMania light mapping

	23.10 Notes
	23.10.1 Hard-to-install games
	23.10.2 Homebrew guidelines
	23.10.3 Missing support for PAL mode
	23.10.4 Flash chips and PCMCIA cards
	23.10.5 Known working replacement PCMCIA cards
	23.10.6 Known working replacement drives
	23.10.7 Bemani launcher error and status codes

	23.11 Pinouts
	23.11.1 Main board pinouts (GX700-PWB(A))
	Analog input port (ANALOG, CN3)
	Digital output port (EXT-OUT, CN4)
	Digital input port (EXT-IN, CN5)
	Amplified speaker output (SOUND-OUT, CN9)
	Main I/O board connector (CN10)
	Analog CD-DA/MP3 audio input (CD-DA IN, CN12)
	Security cartridge slot (CN14)
	Power input or output (CN17)
	I2S digital SPU audio output (DIGITAL-AUDIO, CN19)
	Secondary I/O board connector (CN21)
	Watchdog test header (WD-CHECK, CN22)
	GPU clock and compositing output (CN23)
	Security cartridge serial port (CN24)
	RGB video output (CN25)
	Watchdog configuration jumper (S86)
	H8/3644 JVS MCU pin mapping

	23.11.2 Analog I/O board pinouts (GX700-PWB(F))
	Output banks A, B (CN33, CN34 respectively)
	Output bank C (CN35)
	Output bank D (CN36)

	23.11.3 Digital I/O board pinouts (GX894-PWB(B)A)
	Output bank C (CN10)
	Output bank B (CN11)
	Output bank A (CN12)
	Output bank D (CN13)
	Input bank (CN14)
	RS-232 serial port (CN15)
	Analog MP3 audio output (CN16)
	Unknown (CN17)
	I2S digital MP3 audio output (CN18)
	Digital I/O XC9536 CPLD pin mapping
	Digital I/O XCS40XL FPGA pin mapping

	23.11.4 Security cartridge pinouts
	RS-232 "network" connector
	"Control" or "amp box" connector

	23.12 Credits, sources and links

	24. Cheat Devices
	Action Replay, GameShark, Gamebuster, GoldFinger, Equalizer (Datel/clones)
	Xplorer/Xploder/X-Terminator (FCD/Blaze)
	FLASH Chips (for both Xplorer and Datel)
	Separating between Gameshark and Xplorer Codes
	24.1 Cheat Devices - Datel I/O
	Datel Memory and I/O Map (for PAR2 or so)
	Datel PAR1
	Datel PAR3

	24.2 Cheat Devices - Datel DB25 Comms Link Protocol
	Boot Command Handler
	Menu/Game Command Handler

	24.3 Cheat Devices - Datel Chipset Pinouts
	DATEL REF1288 board (with DATEL ASIC1 chip)
	PALCE20V8 Cuthbert Action Replay schematic (from hitmen webpage)
	Charles MacDonald Game Shark schematic
	Charles MacDonald Gold Finger schematic
	Charles MacDonald Comms Link schematic
	DB25 Connector
	nocash FiveWire mod (for connecting datel expansion cart to parallel port)

	24.4 Cheat Devices - Datel Cheat Code Format
	PSX Gameshark Code Format
	Below for v2.2 and up only
	Below for v2.41 and up only
	Below probably v2.41, too (though other doc claims for v2.2)
	Below probably v2.41, too (though other doc claims for ALL versions)
	Below from Caetla .341 release notes
	Notes

	24.5 Cheat Devices - Xplorer Memory and I/O Map
	Xplorer Memory Map
	Xplorer I/O Map

	24.6 Cheat Devices - Xplorer DB25 Parallel Port Function Summary
	Xplorer Parallel Port Commands (from PC side)

	24.7 Cheat Devices - Xplorer DB25 Parallel Port Command Handler
	Pre-Boot Handler
	Mid-Boot Handler (Xplorer GUI)
	Post-Boot Handler (at start of CDROM booting)
	In-Game Handler (after CDROM booting) (...probably also DURING booting?)

	24.8 Cheat Devices - Xplorer DB25 Parallel Port Low Level Transfer Protocol
	Tx(Data) - transmit data byte(s)
	Rx(Data) - receive data byte(s)
	RxFast(Data) for TurboGetMem - slightly faster than normal Rx(Data)
	RxFaster(Data) for OptimalGetMem - much faster than normal Rx(Data)
	TxRxChksum for SetMem/GetMem functions
	TxFilename for Memcard (bu) functions
	TxFiledata for Memcard (bu) WriteFile
	RxDataFFEEh for Memcard (bu) ReadFile and GetWhatever
	RxTurbo for Memcard (bu) GetDirectory/GetFileHeader functions

	24.9 Cheat Devices - Xplorer Versions
	Xplorer names
	Xplorer suffices
	Xplorer PCB types
	Xplorer Compatibility Issues
	X-Assist add-on for Xplorer carts

	24.10 Cheat Devices - Xplorer Chipset Pinouts
	Xplorer Pinout GAL20V8 (generic array logic)
	Xplorer Pinout 74373 (8bit tristate latch)
	Xplorer Pinout 74245 (8bit bus transceiver)
	Xplorer Pinout 7805 (voltage regulator)
	Xplorer Pinout SWITCH (on/off)
	Xplorer Pinout DB25 (parallel/printer port)

	24.11 Cheat Devices - Xplorer Cheat Code Format
	PSX Xplorer/Xploder Code Format
	break_type (cccc) (aka MSBs of cop0r7 DCIC register)
	Notes

	24.12 Cheat Devices - Xplorer Cheat Code and ROM-Image Decryption
	decrypt_xplorer_cheat_code:
	decrypt_xplorer_fcd_rom_image:

	24.13 Cheat Devices - FLASH/EEPROMs
	FLASH/EEPROM Commands
	FLASH/EEPROM Wait Busy
	Board and Chip Detection
	FLASH/EEPROM Chip IDs

	25. PSX Dev-Board Chipsets
	Sony DTL-H2000 CPU Board
	Sony DTL-H2000 PIO Board
	Sony DTL-H2500 Dev board (PCI bus)
	Sony DTL-H2700 Dev board (ISA bus) (CPU, ANALYZER ...?)
	Sony DTL-H201A / DT-HV - Graphic Artist Board (IBM PC/ATs to NTSC video)
	DTL-S2020 aka Psy-Q CD Emu
	PSY-Q Development System (Psygnosis 1994)
	Sony DTL-H800 Sound Artist Board (with optical fibre audio out)
	Sony COH-2000 (unknown purpose)
	Sony DTL-H2010 (Black External CDROM Drive for DTL-H2000, CD-R compatible)
	Sony DTL-H2510 (Gray Internal CDROM Drive)
	Sony SCPH-9903 (Gray SCEx-free Playstation)

	26. Hardware Numbers
	Sony's own hardware (for PSX) (can be also used with PSone)
	Sony's own hardware (for PSone)
	Sony's own hardware (for PS2, can be used with PSX/PSone)
	Sony's own devkits
	SN System / Psy-Q devkit add-ons / SCSI cards
	Sony Licensed Hardware (Japan)
	Sony Licensed Hardware (Europe)
	Sony Licensed Hardware (USA)
	Sony Licensed Hardware (Asia)
	Newer hardware add-ons?
	Note
	Software (CDROM Game Codes)

	27. Pinouts
	External Connectors
	Internal Pinouts
	Mods/Upgrades
	27.1 Pinouts - Controller Ports and Memory-Card Ports
	Controller Ports and Memory-Card Ports
	/IRQ pin

	27.2 Pinouts - Audio, Video, Power, Expansion Ports
	AV Multi Out (Audio/Video Port)
	Parallel Port (PIO) (Expansion Port) (CN103)
	Internal Power Supply (PSX)
	External Power Supply (PSone)

	27.3 Pinouts - SIO Pinouts
	Serial Port
	PSone Serial Port
	PSX Serial Port Connection (PU-23 board) (missing on PM-41 board)
	Serial RS232 Adaptor

	27.4 Pinouts - Chipset Summary
	PSX/PSone Mainboards
	CPU chips
	GPU chips - Graphics Processing Unit
	SPU chips - Sound Processing Unit
	IC106 CPU-RAM / Main RAM chips
	GPU-RAM / Video RAM chips
	IC310 - SPU-RAM - Sound RAM chips
	BIOS ROM
	Oscillators and Clock Multiplier/Divider
	Voltage Converter (for +7.5V to +5.0V conversion)
	Pulse-Width-Modulation Power-Control Chip
	Reset Generator
	CDROM Chips
	RGB Chips
	MISC
	Controller/Memory Card Chips

	27.5 Pinouts - CPU Pinouts
	CPU Pinouts (IC103)
	CPU Pinout Notes

	27.6 Pinouts - GPU Pinouts (for old 160-pin GPU)
	IC203 - Sony CXD8514Q - Old 160pin GPU for use with Dual-ported VRAM
	IC207 - SONY CXD2923AR - Digital VRAM to Analog RGB Converter (for old GPU)
	IC201 - 64pin NEC uPD482445LGW-A70-S or SEC KM4216Y256G-60 (VRAM 256Kx16)
	IC202 - 64pin NEC uPD482445LGW-A70-S or SEC KM4216Y256G-60 (VRAM 256Kx16)
	IC501 24pin "SONY CXA1645M" Analog RGB to Composite (older boards only)

	27.7 Pinouts - GPU Pinouts (for new 208-pin GPU)
	GPU Pinouts (IC203)
	GPU Pinout Notes
	IC202 44pin "Philips TDA8771H" Digital to Analog RGB (older boards only)
	IC502 48pin "SONY CXA2106R-T4" - 24bit RGB video D/A converter
	Beware

	27.8 Pinouts - SPU Pinouts
	IC308 - SONY CXD2922Q (SPU) (on PU-7, EARLY-PU-8 boards)
	IC308 - SONY CXD2925Q (SPU) (on LATE-PU-8, PU-16, PU-18, PU-20 boards)
	IC732 - SONY CXD2941R (SPU+CDROM+SPU_RAM) (on PM-41(2) boards)
	IC732 - SONY CXD2938Q (SPU+CDROM) (on newer boards) (PM-41 boards)
	CXD2938Q SPU Pinout Notes
	CXD2938Q CDROM clocks
	CXD2938Q CDROM signals
	CXD2938Q CDROM/SPU Testpoints (on PM-41 board)
	IC402 - 24pin AKM AK4309VM (or AK4309AVM/AK4310VM) - Serial 2x16bit DAC
	IC405 - "2174, 1047C, JRC" or "3527, 0A68" (on newer boards)
	IC405 - "NJM2100E (TE2)" Audio Amplifier (on older PU-8 and PU-22 boards)

	27.9 Pinouts - DRV Pinouts
	IC304 - 52pin/80pin - Motorola HC05 8bit CPU
	IC305 - SONY CXD1815Q - CDROM Decoder/FIFO (used on PU-8, PU-16, PU-18)
	ICsss - SONY CXA1782BR - CDROM Servo Amplifier (used on PU-8 boards)
	IC309 - SONY CXD2510Q - CDROM Signal Processor (used on PU-8, PU-16 boards)
	IC701 - SONY CXD2545Q - Signal Processor + Servo Amp (used on PU-18 boards)
	IC101 - SONY CXD2515Q - Signal Processor + Servo Amp (used on DTL-H2010)
	IC720 - 144pin SONY CXD1817R (=CXD2545Q+CXD1815Q) ;PU-20
	IC701 - 8pin chip (on bottom side, but NOT installed) (PU-7 and EARLY-PU-8)
	IC722 "BA5947FP" or "Panasonic AN8732SB" - IC for Compact Disc Players
	IC703 - 20pin - "SONY CXA1791N" (RF Amplifier) (on PU-18 boards)
	IC723 - 20pin - "SONY CXA2575N-T4" (RF (Matrix?) Amplifier) (PU-22..PM-41(2))
	CN702 CDROM Data Signal socket (PU-23 and PM-41 board)
	CN701 CDROM Motor socket (PU-8, PU-18, PU-23, PM-41 boards)
	CLnnn - Calibration Points (PU-23 and PM-41 boards)

	27.10 Pinouts - VCD Pinouts
	VCD Mainboard "PU-16, 1-655-191-11" Component List
	VCD Daughterboard "MP-45, 1-665-192-11" Component List
	VCD Daughterboard Connector
	IC104 "Sony CXD1852AQ" (MPEG-1 Decoder for Video CD) (120 pin)
	IC107 "6230FV" (OSD chip, similar to BU6257AFV-E2) (20 pin)
	IC111 "Sony CXP10224-603R" (8bit SPC700 CPU) (64pin LQFP)
	IC109 "TLC2932" (PLL) (14pin)
	IC112 "74HCT32" (Quad OR gate) (14pin)
	IC113 "H74 7H" (single D-type flip-flop; OSD clock divider) (8 pin)
	ICnnn "4053C" (Triple multiplexor, for Audio LRCK,BCLK,DATA) (16pin)
	ICnnn "4053C" (Triple multiplexor, for Video FSC,CSYNC) (16pin)
	ICnnn "NJM2283" (Triple multiplexor, for Video R,G,B) (16pin)

	27.11 Pinouts - HC05 Pinouts
	Motorola HC05 chip versions for PSX cdrom control
	IC304 - "C 3060, SC430943PB, G63C 185" (PAL/PSone) - CDROM Controller
	HC05 - 80pin version (pinout from MC68HC05L16 datasheet)
	HC05 - 32pin/64pin Versions

	27.12 Pinouts - MEM Pinouts
	IC102 - BIOS ROM (32pin, 512Kx8, used on LATE-PU-8 boards, and newer boards)
	IC102 - BIOS ROM (40pin, 512Kx8, used on PU-7 boards, and EARLY-PU-8 boards)
	IC102 - BIOS ROM (44pin, 1Mx8, used on P16-boards, ie. VCD console)
	CPU-RAM (four 28pin chips) (older boards)
	IC106 - CPU-RAM (single 70pin chip, on newer boards)
	IC106/IC107/IC108/IC109 - CPU-RAM (four 28pin chips, on PU-8, PU-18 boards)
	IC310 - SPU-RAM (512Kbyte)
	IC303 - CDROM Buffer (32Kbyte)
	IC201 - GPU-RAM (1MByte) (or 2MByte, of which, only 1MByte is used though)

	27.13 Pinouts - CLK Pinouts
	PSone/PAL - IC204 8pin - "CY2081, SL-509" or "2294A, 1913"
	PSone/NTSC - IC204 8pin "CY2081 SL-500" (PSone, and PSX/PU-20 and up)
	PSX/PAL
	PSX/NTSC

	27.14 Pinouts - PWR Pinouts
	Voltage Summary
	Fuses
	IC601 3pin +5.0V "78M05, RZ125, (ON)"
	IC602 - Audio/CDROM Supply
	IC002/IC003 - Reset Generator (PM-41 board)
	IC606/IC607 - TL594CD - Pulse-Width-Modulation Power-Control Chip
	Q602
	CN602 - PU-8, PU-9 board Power Socket (to internal power supply board)
	CN602 - PU-18, PU-23 board Power Socket (to internal power supply board)
	CN102 - Controller/memory card daughter-board connector (PU-23 board)

	27.15 Pinouts - Component List and Chipset Pin-Outs for Digital Joypad, SCPH-1080
	Digital Joypad Component List (SCPH-1080)
	Digital Joypad Connection Cable:
	Digital Joypad 32pin SC401800 Chip Pin-Outs
	Digital Joypad 14pin BA10339F Chip Pin-Outs

	27.16 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1150
	Analog Joypad Component List (SCPH-1150, single motor)
	Analog Joypad Connection Cables (SCPH-1150)
	Analog Joypad Chipset Pin-Outs (SCPH-1150)
	Motor

	27.17 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-1200
	Analog Joypad Component List (SCPH-1200, two motors)
	Analog Joypad Connection Cables (SCPH-1200)
	Analog Joypad Chipset Pin-Outs (SCPH-1200)
	Motors

	27.18 Pinouts - Component List and Chipset Pin-Outs for Analog Joypad, SCPH-110
	Analog Joypad Component List (SCPH-110, two motors, PSone-design)
	Analog Joypad Connection Cables (SCPH-110)
	U1 ("SD707, 039 107")
	Misc
	Motors

	27.19 Pinouts - Component List and Chipset Pin-Outs for Namco Lightgun, NPC-103
	Schematic
	Namco Lightgun "NPC-103, (C) 1996 NAMCO LTD." Component List

	27.20 Pinouts - Component List and Chipset Pin-Outs for Multitap, SCPH-1070
	Multitap Component List
	Multitap PSX Controller Port Cable
	Multitap CARD A/B/C/D Slots
	Multitap JOY A/B/C/D Slots
	Multitap IC02 8pin "7W14, 5K" some tiny SMD chip
	Multitap "SONY CXD103-166Q" Chip Pin-Outs (Multitap CPU)

	27.21 Pinouts - Memory Cards
	Sony Playstation Memory Card (SCPH-1020)
	Sanyo LC86F8604A
	Note

	27.22 Mods - Nocash PSX-XBOO Upload
	Nocash PSX-XBOO Connection (required)
	Nocash PSX-BIOS Connection (required)
	Nocash BIOS "Modchip" Feature (optional)
	Composite NTSC/PAL Mod (optional)
	Component List
	PSX-XBOO Upload BIOS
	Pinouts
	Note

	27.23 Mods - PAL/NTSC Color Mods
	RGB Cables
	Newer Consoles (PU-22, PU-23, PM-41, PM-41(2))
	Older Consoles (PU-7, PU-8, PU-16, PU-18, PU-20)
	Notes
	Region Checks

	28. About & Credits
	Credits
	PSXSPX homepage
	Contact

	29. CDROM Video CDs (VCD)
	VCDs on Playstation
	ISO Filesystem (Track 1)
	MPEG Streams (Track 2 and up)
	VCD Versions & Variants
	29.1 VCD ISO Basic Files (INFO, ENTRIES, AVSEQnn, ISO Filesystem)
	Primary Volume Descriptor (00:02:16)
	VCD\INFO.VCD or SVCD\INFO.SVD (00:04:00) (800h bytes, one sector)
	VCD\ENTRIES.VCD or SVCD\ENTRIES.SVD (00:04:01) (800h bytes, one sector)
	MPEGAV\AVSEQnn.DAT (pointers to max 98 MPEG-1 Tracks, nn=01..98) (for VCDs)
	MPEG2\AVSEQnn.MPG (pointers to max 98 MPEG-2 Tracks, nn=01..98) (for SVCDs)
	MPEGAV\AVSEQnn.MPG (pointers to WHATEVER) (as so on some SVCDs or VCD30?)

	29.2 VCD ISO Playback Control PBC Files (PSD, LOT, ITEMnnnn)
	VCD\PSD.VCD or SVCD\PSD.SVD (00:04:34 and up) (max 256 sectors)
	VCD\LOT.VCD or SVCD\LOT.SVD (00:04:02..33) (64Kbyte, 32 sectors)
	SEGMENT\ITEMnnnn.DAT (Pictures, Menu screens) (nnnn=0001..1980)
	EXT\PSD_X.VCD or EXT\PSD_X.SVD (extended version of PSD.VCD)
	EXT\LOT_X.VCD or EXT\LOT_X.SVD (extended version of LOT.VCD)
	Playback Control Issues

	29.3 VCD ISO Search Files (SCANDATA, SEARCH, TRACKS, SPICONTX)
	Caution: Overlapping Sectors (!?!)
	EXT\SCANDATA.DAT (12+3*N bytes for VCD 2.0) (or 16+3*N+2*X+3*Y+3*Z for SVCD)
	SVCD\SEARCH.DAT (13+3*N bytes)
	SVCD\TRACKS.SVD (11+4*N bytes) (or rarely:11+5*N bytes)
	SVCD\SPICONTX.SVD (1000h bytes, two sectors)
	Content Flags for Segments and Tracks

	29.4 VCD ISO Misc files (CAPTnn, AUDIOnn, KARINFO, PICTURES, CDI)
	EXT\CAPTnn.DAT (Closed Caption data, aka subtitles) (SVCD only?)
	CDDA\AUDIOnn.DAT (pointers to uncompressed CD Audio Tracks)
	KARAOKE\KARINFO.xxx (whatever)
	PICTURES*.* (whatever)
	CDI*.* (some kind of GUI/driver for Philips CDI Players)

	29.5 VCD MPEG-1 Multiplex Stream
	Multiplex Stream & Sector Boundaries
	MPEG-1 Multiplex Pack (sector header) (12 bytes)
	MPEG-1 Multiplex System Header (12+N*3 bytes)(optionally)(at start of stream)
	MPEG-1 Multiplex Video/Audio/Special Packets (7..24 bytes, plus data)
	MPEG-1 Multiplex End Code (4 bytes)

	29.6 VCD MPEG-1 Video Stream
	MPEG-1 Video Sequence Header (12, 76, or 140 bytes, ie. 12+N*64)
	MPEG-1 Video Group of Pictures (GOP) (8 bytes) XXX...
	MPEG-1 Video Picture Header XXX...
	Frame Order
	MPEG-1 Video Slice
	MPEG-1 Video Group/Sequence Extension Data (reserved)
	MPEG-1 Video User Data (optional)
	MPEG-1 Video Sequence End Code (4 bytes)
	MPEG-1 Video 4:2:0 Macroblock

	29.7 VCD MP2 Audio Stream
	Overall MP2 Frame Format
	MP2 Header
	MP2 Checksum (optional)
	Allocation Information
	Scale Factor Selector Information
	Scale Factors
	Data

	30. CDROM Internal Info on PSX CDROM Controller
	Motorola MC68HC05 (8bit single-chip CPU)
	Decoder/FIFO (CXD1199BQ or CXD1815Q)
	Signal Processor and Servo Amplifier
	CDROM Pinouts
	30.1 CDROM Internal HC05 Instruction Set
	ALU, Load/Store, Jump/Call
	Read-Modify-Write
	Bit Manipulation and Bit Test with Relative Jump (to $+3+/-dd)
	Branch (Relative jump to $+2+/-nn)
	Control/Misc
	Registers
	Pushed on IRQ are:
	Addressing Modes
	Exception Vectors
	Directives/Pseudos (used by a22i assembler; in no$psx utility menu)

	30.2 CDROM Internal HC05 On-Chip I/O Ports
	HC05 Port 3Eh - MISC - Miscellaneous Register (R/W)
	HC05 Port OPTM=0:00h - PORTA - Port A Data Register (R/W)
	HC05 Port OPTM=0:01h - PORTB - Port B Data Register (R)
	HC05 Port OPTM=0:02h - PORTC - Port C Data Register (R/W)
	HC05 Port OPTM=0:03h - PORTD - Port D Data Register (R/W)
	HC05 Port OPTM=0:04h - PORTE - Port E Data Register (R/W)
	HC05 Port OPTM=0:05h - PORTF - Port F Data Register (R) (undoc: R/W)
	HC05 Port OPTM=1:00h - DDRA - Port A Data Direction Register (R/W)
	HC05 Port OPTM=1:02h - DDRC - Port C Data Direction Register (R/W)
	HC05 Port OPTM=1:03h - DDRD - Port D Data Direction Register (R/W)
	HC05 Port OPTM=1:04h - DDRE - Port E Data Direction Register (R/W)
	HC05 Port OPTM=1:05h - DDRF - Port F Data Direction Register (undoc)
	HC05 Port OPTM=1:08h - RCR1 - Resistor Control Register 1 (R/W)
	HC05 Port OPTM=1:09h - RCR2 - Resistor Control Register 2 (R/W)
	HC05 Port OPTM=1:0Ah - WOM1 - Open Drain Output Control Register 1 (R/W)
	HC05 Port OPTM=1:0Bh - WOM2 - Open Drain Output Control Register 2 (R/W)
	HC05 Port OPTM=0:08h - INTCR - Interrupt Control Register (R/W)
	HC05 Port OPTM=0:09h - INTSR - Interrupt Status Register (R and W)
	HC05 Port OPTM=1:0Eh - KWIE - Key Wakeup Interrupt Enable Register (R/W)
	HC05 Port OPTM=0:0Ah - SPCR1 - Serial Peripheral Control Register 1 (R/W)
	HC05 Port OPTM=0:0Bh - SPSR1 - Serial Peripheral Status Register 1 (R)
	HC05 Port OPTM=0:0Ch - SPDR1 - Serial Peripheral Data Register 1 (R/W)
	HC05 Port 10h - TBCR1 - Time Base Control Register 1 (R/W)
	HC05 Port 11h - TBCR2 - Time Base Control Register 2 (R/W, some bits R or W)
	HC05 Port OPTM=1:0Fh - MOSR - Mask Option Status Register (R)
	HC05 Port 12h - TCR - Timer 1 Control Register (R/W)
	HC05 Port 13h - TSR - Timer 1 Status Register (R)
	HC05 Port 14h - ICH - Timer 1 Input Capture High (undoc)
	HC05 Port 15h - ICL - Timer 1 Input Capture Low (undoc)
	HC05 Port 16h - OC1H - Timer 1 Output Compare 1 High (undoc)
	HC05 Port 17h - OC1H - Timer 1 Output Compare 1 Low (undoc)
	HC05 Port 18h - TCNTH - Timer 1 Counter 1 High (undoc)
	HC05 Port 19h - TCNTL - Timer 1 Counter 1 Low (undoc)
	HC05 Port 1Ah - ACNTH - Alternate Counter High (undoc)
	HC05 Port 1Bh - ACNTL - Alternate Counter Low (undoc)
	HC05 Port 1Ch - TCR2 - Timer 2 Control Register (R/W)
	HC05 Port 1Dh - TSR2 - Timer 2 Status Register (R/W)
	HC05 Port 1Eh - OC2 - Timer 2 Output Compare Register (R/W)
	HC05 Port 1Fh - TCNT2 - Timer 2 Counter Register (R) (W=Set Counter to 01h)
	HC05 Port 3Fh - Unknown/Unused
	HC05 Port OPTM=0:06h..07h,0Dh..0Fh - Reserved
	HC05 Port OPTM=1:01h,06h..07h,0Ch..0Dh - Reserved
	HC05 Port 20h..3Dh - Reserved
	HC05 Openbus

	30.3 CDROM Internal HC05 On-Chip I/O Ports - Extras
	HC05 Port OPTM=0:0Dh - SPCR2 - Serial Peripheral Control Register 2 (R/W)
	HC05 Port OPTM=0:0Eh - SPSR2 - Serial Peripheral Status Register 2 (R)
	HC05 Port OPTM=0:0Fh - SPDR2 - Serial Peripheral Data Register 2 (R/W)
	HC05 Port OPTM=0:06h - PORTG - Port G Data Register (R/W)
	HC05 Port OPTM=0:07h - PORTH - Port H Data Register (R/W)
	HC05 Port 3Ch - PORTJ - Port J Data Register (R/W)
	HC05 Port OPTM=1:06h - DDRG - Port G Data Direction Register (R/W)
	HC05 Port OPTM=1:07h - DDRH - Port H Data Direction Register (R/W)
	HC05 Port 20h - LCDCR - LCD Control Register (R/W)
	HC05 Port 21h..34h - LCDDR1..20 - LCD Data Register 1..20 (R/W)
	HC05 Port 34h - PWMCR - PWM Pulse Width Modulation Control Register (R/W)
	HC05 Port 35h - PWMCNT - PWM Counter Register (R) (W=Set Counter to FFh)
	HC05 Port 36h - PWMDR0 - PWM Duty Register 0 (R/W)
	HC05 Port 37h - PWMDR1 - PWM Duty Register 1 (R/W)
	HC05 Port 38h - PWMDR2 - PWM Duty Register 2 (R/W)
	HC05 Port 39h - PWMDR3 - PWM Duty Register 3 (R/W)
	HC05 Port 3Ah - ADR - A/D Data Register (R)
	HC05 Port 3Bh - ADSCR - A/D Status and Control Register (R/W)
	HC05 Port 3Dh - PCR - Program Control Register (R/W) (for EPROM version)

	30.4 CDROM Internal HC05 I/O Port Usage in PSX
	Port A - Data (indexed via Port E)
	Port B - Inputs
	Port C - Inputs/Outputs
	Port D - Outputs
	Port E - Index (for data on Port A)
	Port F - Motorola Bootstrap Serial I/O (not used in cdrom bios)
	Other HC05 I/O Ports

	30.5 CDROM Internal HC05 Motorola Selftest Mode
	52-pin HC05 chips (newer psx cdrom controllers)
	80-pin HC05 chips (older psx cdrom controllers)
	32-pin HC05 chips (joypad/mouse)
	Pinouts

	30.6 CDROM Internal HC05 Motorola Selftest Mode (52pin chips)
	Motorola Bootstrap ROM
	Mode2: Upload 200h bytes to RAM & jump to 0040h
	Wiring for Mode2 on PSX/PSone consoles with 52-pin HC05 chips
	Mode3: Download ROM as ASCII hexdump

	30.7 CDROM Internal HC05 Motorola Selftest Mode (80pin chips)
	80pin Sony 4246xx chips
	Wiring for Upload/Download on PSX consoles with 80-pin HC05 chips
	Other 80pin chips

	30.8 CDROM Internal CXD1815Q Sub-CPU Configuration Registers
	00h - DRVIF - Drive Interface (W)
	01h - CONFIG 1 - Configuration 1 (W)
	02h - CONFIG 2 - Configuration 2 (W)
	03h - DECCTL - Decoder Control (W)
	07h - CHPCTL - Chip Control (W)

	30.9 CDROM Internal CXD1815Q Sub-CPU Sector Status Registers
	00h - ECCSTS - ECC Status (R)
	01h - DECSTS - Decoder Status (R)
	02h - HDRFLG - Header/Subheader Error Flags for HDR/SHDR registers (R)
	03h - HDR - Header Bytes (R)
	04h - SHDR - Subheader Bytes (R)

	30.10 CDROM Internal CXD1815Q Sub-CPU Address Registers
	05h - CMADR - Drive Current Minute Address (R)
	19h - ADPMNT - ADPCM "MNT" Address (W)
	04h - DLADR-L, Drive Last Address, bit0-7 (W)
	05h - DLADR-M, Drive Last Address, bit8-15 (W)
	06h - DLADR-H, Drive Last Address, bit16 (W)
	10h - DADRC-L - Drive Address Counter, bit0-7 (W)
	11h - DADRC-M - Drive Address Counter, bit8-15 (W)
	12h - DADRC-H - Drive Address Counter, bit16 (W)
	0Eh - DADRC-L - Drive Address Counter, Bit0-7 (R)
	0Fh - DADRC-M - Drive Address Counter, Bit8-15 (R)
	0Ch - HXFR-L - Host Transfer Length, bit0-7 (W)
	0Dh - HXFR-H - Host Transfer Length, bit8-11 and stuff (W)
	0Eh - HADR-L - Host Transfer Address, bit0-7 (W)
	0Fh - HADR-M - Host Transfer Address, bit8-15 (W)
	0Ah - HXFRC-L - Host Transfer Remain Counter, bit0-7 (R)
	0Bh - HXFRC-H - Host Transfer Remain Counter, bit8-11, and other bits (R)
	0Ch - HADRC-L - Host Transfer Address Counter, bit0-7 (R)
	0Dh - HADRC-M - Host Transfer Address Counter, bit8-15 (R)
	Note
	Unclear Notes
	Sector Buffer Memory Map (32Kx8 SRAM)

	30.11 CDROM Internal CXD1815Q Sub-CPU Misc Registers
	16h - HIFCTL - Host Interface Control (W)
	11h - HIFSTS - Host Interface Status (R)
	0Ah - CLRCTL - Clear Control (W)
	07h - INTSTS - Interrupt Status (R) - (0=No, 1=IRQ)
	09h - INTMSK - Interrupt Mask (W) - (0=Disable, 1=Enable)
	0Bh - CLRINT - Clear Interrupt Status (W) - (0=No change, 1=Clear/Ack)
	12h - HSTPRM - Host Parameter (R)
	13h - HSTCMD - Host Command (R)
	17h - RESULT - Response FIFO (W)
	08h - ADPCI - ADPCM Coding Information (R)
	1Bh - RTCI - Real-time ADPCM Coding Information (W)
	06h,09h,10h,14h..1Fh - Reserved (R)
	08h,13h-15h,18h,1Ah,1Ch-1Fh - Reserved (W)

	30.12 CDROM Internal Commands CX(0x..3x) - CXA1782BR Servo Amplifier
	CXA1782BR - CX(0x) - Focus Servo Control - "FZC" FocusZeroCross at SENS pin
	CXA1782BR - CX(1x) - Tracking/Brake/Sled - "DEFECT" at SENS pin
	CXA1782BR - CX(2x) - Tracking and Sled Servo Control - "TZC" at SENS pin
	CXA1782BR - CX(3x) - "Automatic Adjustment Comparator Output" at SENS pin
	CXA1782BR Command 4x..7x - "HIGH-Z" at SENS pin
	CXA1782BR Command 8x..Fx - "UNSPECIFIED???" at SENS pin
	Note

	30.13 CDROM Internal Commands CX(4x..Ex) - CXD2510Q Signal Processor
	CXD2510Q - CX(4xxx) - Auto Sequence
	CXD2510Q - CX(5x) - Blind,Brake,Overflow Timer
	CXD2510Q - CX(6xx) - SledKick,Brake,Kick Timer
	CXD2510Q - CX(7xxxx) - Track jump count setting (for Auto Sequence Command)
	CXD2510Q - CX(8xx) - MODE Specification
	CXD2510Q - CX(9xx) - Function Specification
	CXD2510Q - CX(Axx) - Audio Control
	CXD2510Q - CX(Bxxxx) - Traverse Monitor Counter Setting
	CXD2510Q - CX(Cxx) - Spindle Servo Coefficient Setting
	CXD2510Q - CX(Dx) - CLV Control
	CXD2510Q - CX(Ex) - CLV Mode
	N/A - CX(F) - Reserved
	SUBQ Output
	CXD2510Q - SENS output

	30.14 CDROM Internal Commands CX(0x..Ex) - CXD2545Q Servo/Signal Combo
	CXD2545Q - CX(0x) and CX(2x) - same as CXA1782BR Servo Amplifier
	CXD2545Q - CX(4x..Ex) - same as CXD2510Q Signal Processor
	CXD2545Q - CX(1x) - Anti Shock/Brake/Tracking Gain/Filter
	CXD2545Q - CX(30..33) - Sled Kick Level
	CXD2545Q - CX(34xxxx) - Write to Coefficient RAM
	CXD2545Q - CX(34Fxxx) - Write to Special Register
	CXD2545Q - CX(35xxxx) - FOCUS SEARCH SPEED/VOLTAGE/AUTO GAIN
	CXD2545Q - CX(36xxxx) - DTZC/TRACK JUMP VOLTAGE/AUTO GAIN
	CXD2545Q - CX(37xxxx) - FZSL/SLED MOVE/Voltage/AUTO GAIN
	CXD2545Q - CX(38xxxx) - Level/Auto Gain/DFSW (Initialize)
	CXD2545Q - CX(39xx) - Select internal RAM/Registers for serial readout
	CXD2545Q - CX(3Ax000) - Focus BIAS addition enable
	CXD2545Q - CX(3Bxxxx) - Operation for MIRR/DFCT/FOK
	CXD2545Q - CX(3Cxxxx) - TZC for COUT SLCT HPTZC (Default)
	CXD2545Q - CX(3Dxxxx) - TZC for COUT SLCT DTZC
	CXD2545Q - CX(3Exxxx) - Filter
	CXD2545Q - CX(3Fxxxx) - Others
	CXD2545Q feedback on 39xx: see pg. 77 (eg. 390C = VC AVRG)
	CXD2545Q - SENS output

	30.15 CDROM Internal Commands CX(0x..Ex) - CXD2938Q Servo/Signal/SPU Combo
	CXD2938Q - CX(349xxxxx) - New SCEx
	CXD2938Q - CX(3Bxxxx) - Some Changed Bits
	CXD2938Q - CX(3Cxxxx) - TzcCoutSelect with New/Changed Extra Bits
	CXD2938Q - CX(8xxxxx) - Disc Mode with New/Changed Extra Bits
	CXD2938Q - CX(9xx000) - Normal/Double Speed with New Extra Bits
	CXD2938Q - CX(Dx0000) and CX(Ex0000) - New Zero Padding

	30.16 CDROM Internal Commands CX(xx) - Notes
	Serial Command Transmission (for Signal Processor and Servo Amplifier)
	Sled Motor / Track Jumps / Tracking
	Focus / Gain / Balance

	30.17 CDROM Internal Commands CX(xx) - Summary of Used CX(xx) Commands
	Used Sense Values

	30.18 CDROM Internal Coefficients (for CXD2545Q)
	CXD2545Q - Coefficient Preset Values

